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1. Introduction

A self-adjoint operator A in a Krein space (K, [·, ·]) is called definitizable
if the resolvent set ρ(A) is nonempty and there exists a polynomial p such that
[p(A)x, x] ≥ 0 for all x ∈ dom (p(A)). Spectral and perturbation theory of
definitizable operators is well developed and of great importance in many ap-
plications (see e.g. [6, 7, 8, 14, 25, 29, 30, 31, 34]). It was shown by H. Langer
in [30, 31] (see also [18]) that a definitizable operator A has a spectral function
and with the help of this spectral function the real points of the spectrum
σ(A) can be classified in points of positive and negative type and a finite set of
so-called critical points. A fundamental paper on perturbations of definitizable
operators is [25] by P. Jonas and H. Langer where it is proved that a definiti-
zable operator remains definitizable after a finite dimensional perturbation in
resolvent sense if the perturbed operator is self-adjoint and has a nonempty
resolvent set.

The aim of this paper is to generalize this perturbation result to a class
of self-adjoint operators in Krein spaces which locally have the same spectral
properties as definitizable operators. More precisely, let Ω be some domain in C

symmetric with respect to the real line such that Ω∩R 6= ∅ and the intersections



of Ω with the upper and lower open half-planes are simply connected. A self-
adjoint operator A is said to be definitizable over Ω if every point µ ∈ Ω ∩ R

has an open connected neighbourhood Iµ in R such that the spectral points in
each component of Iµ\{µ} are all of the same sign type, the nonreal spectrum

of A in Ω\R does not accumulate to Ω ∩ R, consists of isolated points which
are poles of the resolvent of A and the resolvent is of finite order growth
near to Ω ∩ R (cf. [23]). Perturbations of locally definitizable operators and
stability properties of spectral points of positive and negative type and so-
called spectral points or intervals of type π+ and type π− were investigated in
e.g. [2, 4, 19, 20, 21, 33].

The main result of this note is Theorem 3.2 where we prove that a self-
adjoint operator, or more generally a self-adjoint relation, which is locally
definitizable over Ω remains locally definitizable over Ω after a finite dimen-
sional perturbation in resolvent sense if the perturbed operator or relation is
self-adjoint and the unperturbed and perturbed operator or relation have a
common point in their resolvent sets belonging to Ω. For the special case
of definitizable operators this result coincides with [25, Theorem 1] mentioned
above. The methods used in the proof of Theorem 3.2 differ from those applied
in [25]. Our proof is based on a variant of [4, Theorem 2.4] (see Theorem 3.1)
on the stability of intervals of type π+ and type π− under compact pertur-
bations and a recent result from [1] on the spectral properties of the inverses
of certain matrix-valued functions associated to locally definitizable operators
and relations.

We briefly describe the contents of this paper. In Section 2 we introduce
the spectral points of positive and negative type with the help of approximative
eigensequences and we recall the definitions and connections between locally
definitizable self-adjoint relations and locally definitizable functions from [23]
and [24]. In particular, Theorem 2.8 on the representation of a locally definitiz-
able function with the help of the resolvent of a locally definitizable self-adjoint
relation is an important tool in the proof of our main result (Theorem 3.2)
which is the focus of Section 3. In Section 4.1 we apply our perturbation re-
sult to the self-adjoint extensions of symmetric operators or relations of finite
defect. We use the concept of boundary value spaces and associated Weyl func-
tions for the parametrization of the closed extensions of a symmetric relation
and the description of their spectral properties (see e.g. [10, 11, 12, 13]). As
an example we consider in Section 4.2 the direct sum of a regular and a singu-
lar Sturm-Liouville differential operator with the indefinite weight sgn x and
we show in Section 4.3 that in such a general setting self-adjoint differential
operators with an empty resolvent set can appear.
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2. Locally definitizable self-adjoint relations and locally

definitizable functions

2.1. Preliminaries. The linear space of bounded linear operators defined on
a Krein space K1 with values in a Krein space K2 is denoted by L(K1,K2). If
K := K1 = K2 we simply write L(K). We study linear relations from K1 to
K2, that is, linear subspaces of K1 × K2. The set of all closed linear relations

from K1 to K2 is denoted by C̃(K1,K2). If K = K1 = K2 we write C̃(K). Linear
operators from K1 into K2 are viewed as linear relations via their graphs. For
the usual definitions of the linear operations with relations, the inverse etc.,
we refer to [15]. The sum and the direct sum of subspaces in K1 × K2 will be

denoted by and
.

.
In the following let (K, [·, ·]) be a separable Krein space and let S be a

closed linear relation in K. The resolvent set ρ(S) of S is the set of all λ ∈ C

such that (S−λ)−1 ∈ L(K), the spectrum σ(S) of S is the complement of ρ(S)
in C. We say that λ ∈ C is a point of regular type of S, λ ∈ r(S), if (S − λ)−1

is a bounded operator.
A point λ ∈ C is an eigenvalue of S if ker(S−λ) 6= {0}; we write λ ∈ σp(S).

We say that λ ∈ C belongs to the continuous spectrum σc(S) (the residual
spectrum σr(S)) of S if ker(S − λ) = {0} and ran (S − λ) is dense in K
(resp. if ker(S − λ) = {0} and ran (S − λ) is not dense in K). We say that
λ ∈ C belongs to the approximate point spectrum of S, denoted by σap(S),
if there exists a sequence

(
xn

yn

)
∈ S, n = 1, 2, . . . , such that ‖xn‖ = 1 and

limn→∞ ‖yn − λxn‖ = 0. The extended approximate point spectrum σ̃ap(S) of
S is defined by

σ̃ap(S) :=

{
σap(S) ∪ {∞} if 0 ∈ σap(S

−1)

σap(S) if 0 6∈ σap(S
−1)

.

Next we recall the definitions of the spectra of positive and negative type
of a closed linear relation (see e.g. [23, 33]).

Definition 2.1. Let S be a closed linear relation in K. A point λ ∈ σap(S)
is said to be of positive type (negative type) with respect to S, if for every
sequence

(
xn

yn

)
∈ S, n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖yn − λxn‖ = 0 we

have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

If ∞ ∈ σ̃ap(S), ∞ is said to be of positive type (negative type) with respect to
S if for every sequence

(
xn

yn

)
∈ S, n = 1, 2 . . . , with limn→∞ ‖xn‖ = 0, ‖yn‖ = 1
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we have

lim inf
n→∞

[yn, yn] > 0
(
resp. lim sup

n→∞
[yn, yn] < 0

)
.

The set of all points of positive type (negative type) with respect to S will be
denoted by σ++(S) (resp. σ−−(S)). An open subset ∆ of R is said to be of
positive type (negative type) with respect to S if

∆ ∩ σ̃(S) ⊂ σ++(S)
(
resp. ∆ ∩ σ̃(S) ⊂ σ−−(S)

)
.

An open subset ∆ of R is called of definite type with respect to S if ∆ is of
positive or negative type with respect to S.

Note, that ∞ ∈ σ̃ap(S) is of positive (negative) type with respect to S if
and only if 0 is of positive (resp. negative) type with respect to S−1.

Let S be a linear relation in K. The adjoint relation S+ ∈ C̃(K) is defined
by

S+ :=

{(
h
h′

) ∣∣∣ [h, f ′] = [h′, f ] for all

(
f
f ′

)
∈ S

}
.

S is said to be symmetric (self-adjoint) if S ⊂ S+ (resp. S = S+). We remark
that for a self-adjoint relation S in K the points of definite type introduced in
Definition 2.1 belong to R.

2.2. Locally definitizable self-adjoint relations. Let Ω be some domain
in C symmetric with respect to the real axis such that Ω∩R 6= ∅ and the inter-
sections of Ω with the upper and lower open half-planes are simply connected.

Let A be a self-adjoint relation in the Krein space K such that σ(A)∩(Ω\R)
consists of isolated points which are poles of the resolvent of A, and no point
of Ω ∩ R is an accumulation point of the nonreal spectrum of A in Ω. Let ∆
be an open subset of Ω ∩ R. We say that A belongs to the class S∞(∆), if for
every finite union ∆′ of open connected subsets, ∆′ ⊂ ∆, there exists m ≥ 1,
M > 0 and an open neighbourhood U of ∆′ in C such that

‖(A − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m(2.1)

holds for all λ ∈ U\R. The next definition can be found in e.g. [20].

Definition 2.2. Let Ω be a domain as above and let A be a self-adjoint rela-
tion in the Krein space K such that σ(A) ∩ (Ω\R) consists of isolated points
which are poles of the resolvent of A and no point of Ω ∩ R is an accumula-
tion point of the nonreal spectrum of A in Ω. The relation A is said to be
definitizable over Ω, if A ∈ S∞(Ω∩R) and every point µ ∈ Ω∩R has an open
connected neighbourhood Iµ in R such that both components of Iµ\{µ} are of
definite type with respect to A.
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By [23, Theorem 4.7] a self-adjoint relation A is definitizable over C if and
only if A is definitizable, that is, the resolvent set of A is nonempty and there
exists a real polynomial p such that

[
p(A)x, x

]
≥ 0

holds for all x ∈ dom (p(A)). For a detailed study of definitizable self-adjoint
operators and relations we refer to the fundamental paper [31] of H. Langer
and to [16, §4 and §5]. The next theorem is a simple modification of [23,
Theorem 4.8].

Theorem 2.3. Let A be a self-adjoint relation in K and let Ω be a domain
as above. A is definitizable over Ω if and only if for every domain Ω′ with the
same properties as Ω, Ω′ ⊂ Ω, there exists a self-adjoint projection E in K
such that A can be decomposed in

A =
(
A ∩ (EK)2

) . (
A ∩ ((1 − E)K)2

)

and the following holds.

(i) A ∩ (EK)2 is a definitizable relation in the Krein space EK.

(ii) σ̃
(
A ∩ ((1 − E)K)2

)
∩ Ω′ = ∅.

Let A = A+ be definitizable over Ω, let Ω′ be a domain with the same
properties as Ω, Ω′ ⊂ Ω, and let E be a self-adjoint projection with the prop-
erties as in Theorem 2.3. If E ′(·) is the spectral function of the definitizable
self-adjoint relation A ∩ (EK)2 in the Krein space EK, then the mapping

δ 7→ E ′(δ)E =: EA(δ)

defined for all finite unions δ of connected subsets of Ω′ ∩ R the endpoints of
which belong to Ω′ ∩ R and are of definite type with respect to A ∩ (EK)2, is
the spectral function of A on Ω′ ∩ R (see [23, Section 3.4 and Remark 4.9]).
With the help of the local spectral function EA(·) the open subsets of definite
type in Ω′ ∩ R can be characterized in the following way. An open subset
∆ ⊂ Ω′ ∩ R is of positive type (negative type) with respect to A if and only if
for every finite union δ of open connected subsets of ∆, δ ⊂ ∆, such that the
boundary points of δ in R are of definite type with respect to A the spectral
subspace (EA(δ)K, [·, ·]) (resp. (EA(δ)K,−[·, ·])) is a Hilbert space.

As a generalization of open subsets of positive and negative type we in-
troduce open subsets of type π+ and type π− in the next definition.

Definition 2.4. Let Ω be a domain as in the beginning of this section and
let A be a self-adjoint relation in K which is definitizable over Ω. An open
subset ∆ of Ω ∩ R is said to be of type π+ (type π−) with respect to A if for
every finite union δ of open connected subsets of ∆, δ ⊂ ∆, such that the
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boundary points of δ in R are of definite type with respect to A the spectral
subspace (EA(δ)K, [·, ·]) is a Pontryagin space with finite rank of negativity
(resp. positivity). We shall say that A is of type π+ over Ω (type π− over Ω)
if Ω ∩ R is of type π+ (resp. type π−) with respect to A.

We remark, that spectral points in open subsets of type π+ and type π−
can also be characterized with the help of approximative eigensequences (see
[2]).

2.3. Matrix-valued locally definitizable functions. Let Ω be a domain
as in the beginning of Section 2.2 and let τ be an L(Cn)-valued piecewise
meromorphic function in Ω\R which is symmetric with respect to the real
axis, that is τ(λ) = τ(λ)∗ for all points λ of holomorphy of τ . If, in addition,
no point of Ω ∩ R is an accumulation point of nonreal poles of τ we write
τ ∈ Mn×n(Ω). The set of the points of holomorphy of τ in Ω\R and all points
µ ∈ Ω∩R such that τ can be analytically continued to µ and the continuations
from Ω ∩ C+ and Ω ∩ C− coincide, is denoted by h(τ).

The following definition of open sets of positive and negative type with
respect to matrix functions and Definition 2.6 below of locally definitizable
matrix functions can be found in [24].

Definition 2.5. Let τ ∈ Mn×n(Ω). An open subset ∆ ⊂ Ω ∩ R is said to be
of positive type with respect to τ if for every x ∈ Cn and every sequence (µk)
of points in Ω ∩ C+ ∩ h(τ) which converges in C to a point of ∆ we have

lim inf
k→∞

Im
(
τ(µk)x, x

)
≥ 0.

An open subset ∆ ⊂ Ω ∩ R is said to be of negative type with respect to τ if
∆ is of positive type with respect to −τ . ∆ is said to be of definite type with
respect to τ if ∆ is of positive or of negative type with respect to τ .

Definition 2.6. A function τ ∈ Mn×n(Ω) is called definitizable in Ω if the
following holds.

(i) Every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R

such that both components of Iµ\{µ} are of definite type with respect to
τ .

(ii) For every finite union ∆ of open connected subsets in R, ∆ ⊂ Ω ∩ R,
there exists m ≥ 1, M > 0 and an open neighbourhood U of ∆ in C such
that

‖τ(λ)‖ ≤ M(1 + |λ|)2m |Im λ|−m

holds for all λ ∈ U\R.
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If τ ∈ Mn×n(C) is definitizable in C there exists a scalar rational function
g symmetric with respect to the real line such that the poles of g belong to
h(τ) ∪ {∞} and gτ is the sum of a Nevanlinna function and a meromorphic
function in C (cf. [23, Theorem 4.7]). In this case we shall say that τ is a
definitizable function. For a comprehensive study of definitizable functions we
refer to [22]. A famous subclass of the definitizable functions are the generalized
Nevanlinna functions introduced and studied by M.G. Krein and H. Langer
(see e.g. [28]). Recall that a function τ ∈ Mn×n(C) belongs to the class Nκ,
κ = 0, 1, 2, . . . , if the kernel Kτ ,

Kτ (λ, µ) :=
τ(λ) − τ(µ)

λ − µ
,

has κ negative squares. Note, that the class N0 coincides with the class of
Nevanlinna functions.

In [24] it is shown that a function τ ∈ Mn×n(Ω) is definitizable in Ω if
and only if for every finite union ∆ of open connected subsets of R such that
∆ ⊂ Ω ∩ R, τ can be written as the sum τ = τ0 + τ(0) of an L(Cn)-valued
definitizable function τ0 and an L(Cn)-valued function τ(0) which is locally

holomorphic on ∆.
Let τ ∈ Mn×n(Ω). We shall say that an open subset ∆ ⊂ Ω ∩ R is of

type π+ with respect to τ if for every open set δ which is the union of a finite
number of pairwise disjoint connected open subsets of ∆ such that δ ⊂ ∆, τ can
be written as the sum τ = τ0 + τ(0) of an L(Cn)-valued generalized Nevanlinna
function τ0 and an L(Cn)-valued function τ(0) which is locally holomorphic on

δ. We shall say that an open subset ∆ ⊂ Ω ∩ R is of type π− with respect to
τ if ∆ is of type π+ with respect to −τ .

The following theorem is a consequence of [24, §3.1] and [23, Theorem 3.18].
It establishes a connection between self-adjoint relations which are locally
definitizable and L(Cn)-valued locally definitizable functions.

Theorem 2.7. Let Ω be a domain as above and let A be a self-adjoint relation
in the Krein space K which is definitizable over Ω. Let γ ∈ L(Cn,K) and
S = S∗ ∈ L(Cn), fix some point λ0 ∈ ρ(A) ∩ Ω and define

τ(λ) := S + γ+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A − λ)−1

)
γ

for all λ ∈ ρ(A) ∩ Ω. Then the following holds.

(i) The function τ is definitizable in Ω.

(ii) An open subset ∆ of Ω ∩ R which is of positive type (negative type) with
respect to A is of positive type (resp. negative type) with respect to τ .
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(iii) An open subset ∆ of Ω ∩ R which is type π+ (type π−) with respect to A
is of type π+ (resp. type π−) with respect to τ .

Proof. In order to show assertions (i) and (ii) let µ ∈ Ω∩R and choose an open
connected neighbourhood Iµ of µ in R such that both components of Iµ\{µ}
are of definite type with respect to A. Assume e.g. that a component ∆+ of
Iµ\{µ} is of positive type with respect to A. Let x ∈ Cn and let (λk) be a
sequence in Ω ∩ C+ ∩ h(τ) which converges to some point in ∆+. Making use
of [23, Theorem 3.18] we obtain

lim inf
k→∞

Im
(
τ(λk)x, x

)
=

lim inf
k→∞

Im
[(

(λk − Re λ0) + (λk − λ0)(λk − λ0)(A − λk)
−1

)
γ x, γ x

]
≥ 0

and this implies that ∆+ is of positive type with respect to τ . A similar
reasoning shows that a component ∆− of Iµ\{µ} which is of negative type with
respect to A is also of negative type with respect to τ . Therefore property (i)
of Definition 2.6 is fulfilled and assertion (ii) holds. The growth properties of
the resolvent of A (see (2.1)) imply that τ is locally definitizable in Ω.

It remains to prove assertion (iii). Let δ be a finite union of open connected
subsets of ∆, ∆ ⊂ Ω ∩ R, and choose a finite union δ1 of open connected
subsets of ∆ such that δ ⊂ δ1, δ1 ⊂ ∆ and the boundary points of δ1 in R

are of definite type with respect to A. As A is of type π+ over ∆ the spectral
subspace (EA(δ1), [·, ·]) is a Pontryagin space with finite rank of negativity.
Therefore

τ0(λ) := S + γ+
(
(λ − Reλ0) + (λ − λ0)(λ − λ0)(A − λ)−1

)
EA(δ1)γ

is a generalized Nevanlinna function and from σ̃(A∩ ((1−EA(δ1))K2)∩ δ = ∅
we obtain that

τ(0)(λ) := γ+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A − λ)−1

)
(1 − EA(δ1))γ

is holomorphic in a neighbourhood of δ. Hence ∆ is of type π+ with respect
to τ . A similar argument shows that an open subset ∆ ⊂ Ω ∩ R which is of
type π− with respect to A is also of type π− with respect to τ .

The next theorem states that a locally definitizable function can be rep-
resented with the help of the resolvent of a locally definitizable self-adjoint
relation. A proof can be found in [24].

Theorem 2.8. Let τ be an L(Cn)-valued function definitizable in Ω (an L(Cn)-
valued local generalized Nevanlinna function in Ω) and let Ω′ be a domain with
the same properties as Ω such that Ω′ ⊂ Ω.
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Then there exists a Krein space G, a self-adjoint relation T in G which is
definitizable over Ω′ (resp. of type π+ over Ω′) and a mapping γ ∈ L(Cn,G)
with the following properties.

(a) ρ(T ) ∩ Ω′ = h(τ) ∩ Ω′.

(b) For a fixed λ0 ∈ ρ(T ) ∩ Ω′ and all λ ∈ ρ(T ) ∩ Ω′

τ(λ) = Re τ(λ0) + γ+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(T − λ)−1

)
γ

holds.

(c) For any finite union ∆ of open connected subsets of R, ∆ ⊂ Ω′ ∩R, such
that the boundary points of ∆ are of definite type with respect to τ the
spectral projection ET (∆) is defined. If Ω′′ is a domain with the same
properties as Ω, Ω′′ ⊂ Ω′, and ET (Ω′′\R) is the Riesz-Dunford projection
corresponding to σ(T ) ∩ Ω′′\R and if we set E := ET (∆) + ET (Ω′′\R),
then the minimality condition

EG = clsp
{(

1 + (λ − λ0)(T − λ)−1
)
Eγx |λ ∈ ρ(T ) ∩ Ω′, x ∈ C

n
}

is fulfilled.

(d) Any finite union ∆ of open connected subsets of R, ∆ ⊂ Ω′ ∩ R, is of
positive type (negative type, type π+, type π−) with respect to τ if and
only if ∆ is of positive type (resp. negative type, type π+, type π−) with
respect to T .

If τ and T are as in Theorem 2.8 we shall say that T is an Ω′-minimal
representing relation for τ .

3. Finite rank perturbations of locally definitizable

self-adjoint relations in Krein spaces

In [25] P. Jonas and H. Langer proved that a self-adjoint definitizable op-
erator remains definitizable after a finite dimensional perturbation in resolvent
sense if the perturbed operator is self-adjoint and the unperturbed and per-
turbed operator have a common point in their resolvent sets. In this section we
prove that this holds also for locally definitizable operators and relations. The
methods we apply here differ from those used in the proof of [25, Theorem 1]
where a definitizing polynomial for the perturbed operator was constructed.
The essential ingredients in the proof of Theorem 3.2 below are [1, Theo-
rem 2.5] which states that the inverse of a matrix-valued locally definitizable
function is also locally definitizable, Theorem 2.8 on the representation of lo-
cally definitizable functions and a variant of [4, Theorem 2.4] on the stability
of intervals of type π+ under compact perturbations (see Theorem 3.1).
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Let (K, [·, ·]) be a separable Krein space. The set of compact operators
and finite rank operators defined on K with values in K will be denoted by S∞
and F , respectively. Let, as in Section 2.2, Ω be some domain in C symmetric
with respect to the real axis such that Ω ∩ R 6= ∅ and the intersections of Ω
with the upper and lower open half-planes are simply connected. The next
theorem is a simple modification of [4, Theorem 2.4] (see also [2, Theorem 29]
and [33, Theorem 5.1]).

Theorem 3.1. Let A and B be self-adjoint relations in the Krein space K, let
ρ(A) ∩ ρ(B) ∩ Ω 6= ∅ and assume that

(B − λ0)
−1 − (A − λ0)

−1 ∈ S∞

holds for some λ0 ∈ ρ(A)∩ ρ(B). Then A is definitizable over Ω and Ω ∩ R is
of type π+ (type π−) with respect to A if and only if B is definitizable over Ω
and Ω ∩ R is of type π+ (resp. type π−) with respect to B.

The next theorem is the main result of this paper.

Theorem 3.2. Let A and B be self-adjoint relations in the Krein space K, let
ρ(A) ∩ ρ(B) ∩ Ω 6= ∅ and assume that

(B − λ0)
−1 − (A − λ0)

−1 ∈ F
holds for some λ0 ∈ ρ(A)∩ ρ(B). Then A is definitizable over Ω if and only if
B is definitizable over Ω.

Moreover, if A is definitizable over Ω and ∆ ⊂ Ω ∩ R is an open interval
with endpoint µ ∈ Ω ∩ R and ∆ is of positive type (negative type) with respect
to A, then there exists an open interval ∆′, ∆′ ⊂ ∆, with endpoint µ such that
∆′ is of positive type (resp. negative type) with respect to B.

Proof. 1. Assume that A is a self-adjoint relation in K which is definitizable
over Ω. Let λ0 ∈ ρ(A)∩ ρ(B)∩Ω and let e1, . . . , en, f1, . . . , fn be vectors in K
such that

(B − λ0)
−1 − (A − λ0)

−1 =
n∑

i=1

[·, ei]fi.(3.2)

It is no restriction to assume that the system {f1, . . . , fn} as well as the system
{e1, . . . , en} is linearly independent. For λ ∈ ρ(A) ∩ ρ(B) the assumption
λ0 ∈ ρ(A) ∩ ρ(B) implies that the vectors

(
1 + (λ − λ0)(A − λ)−1

)
fi, i = 1, . . . , n,(3.3)

as well as the vectors
(
1 + (λ − λ0)(B − λ)−1

)
ei, i = 1, . . . , n,
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and
(
1 + (λ − λ0)(B − λ)−1

)
ei, i = 1, . . . , n,(3.4)

are also linearly independent. From

(B − λ)−1 − (A − λ)−1 =
(
1 + (λ − λ0)(A − λ)−1

)
(
(B − λ0)

−1 − (A − λ0)
−1

)(
1 + (λ − λ0)(B − λ)−1

)(3.5)

we obtain that dim(ran ((B − λ)−1 − (A − λ)−1)) < ∞ holds for every λ in
ρ(A) ∩ ρ(B). From the assumption that A is definitizable over Ω it follows
that σ(A) ∩ (Ω\R) consists of a discrete set of normal eigenvalues of A. Well
known perturbation results imply

Ω\R ⊂ ρ(B) ∪ σp,norm(B).(3.6)

The set σp,norm(A) ∪ σp,norm(B) is discrete in Ω\R and we have
(
Ω\(R ∪ σp,norm(A) ∪ σp,norm(B))

)
⊂ ρ(A) ∩ ρ(B).

Inserting (3.2) in (3.5) and using the self-adjointness of A and B yields

(B −λ)−1 − (A − λ)−1

=

n∑

i=1

[
·,

(
1 + (λ − λ0)(B − λ)−1

)
ei

](
1 + (λ − λ0)(A − λ)−1

)
fi

=

n∑

i=1

[
·,

(
1 + (λ − λ0)(A − λ)−1

)
fi

](
1 + (λ − λ0)(B − λ)−1

)
ei

(3.7)

for all λ ∈ ρ(A)∩ ρ(B). Replacing λ and λ0 in (3.5) by λ and λ0, respectively,
and inserting the adjoint of (3.2) gives

(B −λ)−1 − (A − λ)−1

=
n∑

i=1

[
·,

(
1 + (λ − λ0)(A − λ)−1

)
ei

](
1 + (λ − λ0)(B − λ)−1

)
fi

(3.8)

for all λ ∈ ρ(A) ∩ ρ(B). Let

K′ := clsp
{(

1 + (λ − λ0)(A−λ)−1
)
fi |

i = 1, . . . , n, λ ∈ ρ(A) ∩ ρ(B) ∩ Ω
}
.

(3.9)

By (3.8) we get

K′ = clsp
{(

1 + (λ − λ0)(B −λ)−1
)
fi |

i = 1, . . . , n, λ ∈ ρ(A) ∩ ρ(B) ∩ Ω
}
.

(3.10)
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If µ0 ∈ ρ(A)∩ρ(B)∩Ω we have (A−µ0)
−1K′ ⊂ K′ and (A−µ0)

−1K′[⊥] ⊂ K′[⊥].
For x ∈ K′[⊥] (3.9) implies

[
x,

(
1 + (λ − λ0)(A − λ)−1

)
fi

]
= 0

for all λ ∈ ρ(A) ∩ ρ(B) ∩ Ω and i = 1, . . . , n. Therefore (3.7) yields

(A − λ)−1|K′[⊥] = (B − λ)−1|K′[⊥], λ ∈ ρ(A) ∩ ρ(B) ∩ Ω.(3.11)

2. In this part of the proof we show that there exists an invertible L(Cn)-

valued function α and mappings Γλ0
, Γ̃λ0

∈ L(Cn,K) such that

−α(λ)−1 = Re(−α(λ0)
−1) + Γ+

λ0

(
(λ−Re λ0) +

(λ − λ0)(λ − λ0)(A − λ)−1
)
Γλ0

and

α(λ) = Re α(λ0) + Γ̃+
λ0

(
(λ −Re λ0) + (λ − λ0)(λ − λ0)(B − λ)−1

)
Γ̃λ0

holds for all λ ∈ ρ(A) ∩ ρ(B). Some of the following calculations can be
found in [27, Proof of Theorem 5.1] and [35, Proof of Proposition 2.1]. For the
convenience of the reader we present the details.

By (3.3) and (3.4) the vectors (1 + (λ − λ0)(A − λ)−1)fj, j = 1, . . . , n,

and (1 + (λ− λ0)(B − λ)−1)ei, i = 1, . . . , n, are linearly independent for every
λ ∈ ρ(A) ∩ ρ(B). Hence for every λ ∈ ρ(A) ∩ ρ(B) there exists an invertible
matrix

α(λ) =
(
αij(λ)

)n

i,j=1

such that

(
1 + (λ − λ0)(B − λ)−1

)
ei =

n∑

j=1

αji(λ)
(
1 + (λ − λ0)(A − λ)−1

)
fj

holds for all i = 1, . . . , n. Let Γλ0
: Cn → K, (c1, . . . , cn)> 7→ ∑n

i=1 cifi and
define

Γλ :=
(
1 + (λ − λ0)(A − λ)−1

)
Γλ0

for all λ ∈ ρ(A). Then Γ+

λ
: K → Cn is given by

x 7→




[
x, (1 + (λ − λ0)(A − λ)−1)f1

]
...[

x, (1 + (λ − λ0)(A − λ)−1)fn

]




and we can rewrite (3.7) as

(B − λ)−1 − (A − λ)−1 = Γλα(λ)Γ+

λ
.(3.12)
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Replacing λ by λ and taking adjoints in (3.12) we obtain

Γλα(λ)Γ+

λ
= Γλα(λ)∗Γ+

λ
.

From (ranΓ+

λ
)⊥ = ker Γλ and the fact that Γλ and Γλ are injective we conclude

α(λ) = α(λ)∗, λ ∈ ρ(A) ∩ ρ(B).(3.13)

It is straightforward to check that the relation

(µ − λ)
(
(B − λ)−1 − (A − λ)−1

)(
(B − µ)−1 − (A − µ)−1

)

=
(
1 + (λ − µ)(A − λ)−1

)(
(B − µ)−1 − (A − µ)−1

)

−
(
(B − λ)−1 − (A − λ)−1

)(
1 + (µ − λ)(A − µ)−1

)

holds for all λ, µ ∈ ρ(A) ∩ ρ(B) (cf. [27, Proof of Theorem 5.1]). Using (3.12)
and Γλ = (1 + (λ − µ)(A − λ)−1)Γµ, λ, µ ∈ ρ(A), we find

(µ − λ)Γλα(λ)Γ+

λ
Γµα(µ)Γ+

µ = Γλα(µ)Γ+
µ − Γλα(λ)Γ+

µ .

From ker Γλ = ker Γµ = {0} we obtain (µ − λ)α(λ)Γ+

λ
Γµα(µ) = α(µ) − α(λ)

and

(µ − λ)Γ+

λ
Γµ = α(λ)−1 − α(µ)−1, λ, µ ∈ ρ(A) ∩ ρ(B).(3.14)

In particular the relation

(Im λ0) Γ+
λ0

Γλ0
= Im

(
−α(λ0)

−1
)

(3.15)

holds.
It is easy to see that the function τ defined for all λ ∈ ρ(A) by

λ 7→ τ(λ) := Γ+
λ0

(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A − λ)−1

)
Γλ0

(3.16)

fulfils

τ(λ) − τ(µ) = (λ − µ)Γ+

λ
Γµ and τ(λ) = τ(λ)∗(3.17)

for all λ, µ ∈ ρ(A). The relations (3.13), (3.14), (3.15), (3.16) and (3.17) imply
that the function

λ 7→ α(λ)−1 + τ(λ)

is equal to the self-adjoint constant Re(α(λ0)
−1) ∈ L(Cn). Therefore (3.12)

can be written in the form

(B − λ)−1 = (A − λ)−1 + Γλ

(
Re

(
α(λ0)

−1
)
− τ(λ)

)−1

Γ+

λ
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and (3.15) and (3.16) imply

−α(λ)−1 = Re(−α(λ0)
−1) + Γ+

λ0

(
(λ − Re λ0)

+ (λ − λ0)(λ − λ0)(A − λ)−1
)
Γλ0

= (−α(λ0)
−1)∗ + (λ − λ0)Γ

+
λ0

(
1 + (λ − λ0)(A − λ)−1

)
Γλ0

= (−α(λ0)
−1)∗ + (λ − λ0)Γ

+
λ0

(
1 + (λ0 − λ)(A − λ0)

−1
)−1

Γλ0
.

(3.18)

Making use of (3.15) it follows that

U := 1 − (λ0 − λ0)Γλ0
α(λ0)

∗Γ+
λ0

∈ L(K)

is unitary, i.e. U+ = U−1, and that UΓλ0
α(λ0) = Γλ0

α(λ0)
∗ holds. With the

help of (3.12) and the relation

(λ0 − λ0)Γλ0
α(λ0)

∗Γ+
λ0

Γλ0
α(λ0)Γ

+

λ0

= Γλ0
α(λ0)

∗Γ+

λ0

− Γλ0
α(λ0)Γ

+

λ0

,

which follows easily from (3.15), we obtain that U(1 + (λ0 − λ)(B − λ0)
−1)

coincides with

1 + (λ0 − λ)(A − λ0)
−1 − (λ0 − λ0)Γλ0

α(λ0)
∗Γ+

λ0

− (λ0 − λ0)(λ0 − λ)Γλ0
α(λ0)

∗Γ+
λ0

(A − λ0)
−1+(λ0 − λ)Γλ0

α(λ0)
∗Γ+

λ0

.
(3.19)

From Γ+

λ0

= Γ+
λ0

(
1 + (λ0 − λ0)(A − λ0)

−1
)

and (3.19) we get

U
(
1 + (λ0 − λ)(B − λ0)

−1
)

= 1 + (λ0−λ)(A − λ0)
−1

+ (λ0 − λ)Γλ0
α(λ0)

∗Γ+
λ0

.

In particular the right hand side is a boundedly invertible operator with an
everywhere defined inverse. Now we can apply [32, Lemma 3.1] to (3.18) and
we obtain

α(λ) = α(λ0)
∗ + (λ − λ0)α(λ0)

∗Γ+
λ0(

1 + (λ0 − λ)(A − λ0)
−1 + (λ0 − λ)Γλ0

α(λ0)
∗Γ+

λ0

)−1
Γλ0

α(λ0)
∗.

Let Γ̃λ0
:= Γλ0

α(λ0). Then we have

Γ̃λ0
= U−1Γλ0

α(λ0)
∗ and (Im λ0) Γ̃+

λ0
Γ̃λ0

= Im α(λ0)

and therefore

α(λ) = α(λ0)
∗ + (λ − λ0)Γ̃

+
λ0

(
1 + (λ0 − λ)(B − λ0)

−1
)−1

Γ̃λ0

= α(λ0)
∗ + (λ − λ0)Γ̃

+
λ0

(
1 + (λ − λ0)(B − λ)−1

)
Γ̃λ0

= Re α(λ0) + Γ̃+
λ0

(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(B − λ)−1

)
Γ̃λ0

.

(3.20)
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3. In this part of the proof we show that B is definitizable over Ω. We
prove first that every point µ ∈ Ω ∩ R has an open connected neighbourhood
Iµ in R such that both components of Iµ\{µ} are of definite type with respect
to B.

Let µ ∈ Ω ∩ R and assume e.g. that ∆+, ∆+ ⊂ Ω∩ R, is an open interval
with endpoint µ such that ∆+ is of positive type with respect to A. From
Theorem 2.7 we obtain that the function

−α(λ)−1 = Re(−α(λ0)
−1) + Γ+

λ0

(
(λ − Re λ0)

+ (λ − λ0)(λ − λ0)(A − λ)−1
)
Γλ0

is definitizable in Ω and ∆+ is of positive type with respect to this function.
By [1, Theorem 2.5] the function λ 7→ α(λ) is also definitizable in Ω and
there exists a (in general smaller) smaller open interval ∆′

+, ∆′
+ ⊂ ∆+, with

endpoint µ, which is of positive type with respect to α.
Let Ω+ be a domain with the same properties as Ω such that Ω+ ⊂ Ω and

∆′
+ = Ω+ ∩ R. As A is definitizable over Ω+, ρ(A) ∩ ρ(B) ∩ Ω+ is nonempty

and Ω+ ∩ R is of positive type with respect to A we can apply Theorem 3.1.
It follows that B is definitizable over Ω+ and ∆′

+ is of type π+ with respect

to B. Let δ+ be an open interval such that δ+ ⊂ ∆′
+ and EB(δ+) is defined.

Then (EA(δ+)K, [·, ·]) is a Hilbert space and (EB(δ+)K, [·, ·]) is a Pontryagin
space with finite rank of negativity.

In the following we will show that EB(δ+)K equipped with the indefinite
inner product [·, ·] is a Hilbert space. This will be done in four steps.

(i) Let Ω′ be a domain with the same properties as Ω such that Ω′ ⊂ Ω,
∆′

+ ⊂ Ω′∩R and λ0 ∈ Ω′ holds. As the function α is definitizable in Ω and ∆′
+

is of positive type with respect to α we obtain from Theorem 2.8 that there
exists a Krein space (G, [·, ·]G), a self-adjoint relation T in G definitizable over
Ω′ and a mapping Γ ∈ L(Cn,G) such that ρ(T ) ∩ Ω′ = h(α) ∩ Ω′ and

α(λ) = Re α(λ0) + Γ+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(T − λ)−1

)
Γ(3.21)

holds for all λ ∈ ρ(T )∩Ω′. Note that by (3.20) the function α is holomorphic at
λ0 and therefore λ0 belongs to ρ(T ). According to Theorem 2.8 we can assume
that T is chosen Ω′-minimal and that ∆′

+ is of positive type with respect to T .
Then the spectral projection ET (δ+) of T corresponding to the open interval
δ+ is defined, ET (δ+)G equipped with the inner product [·, ·]G is a Hilbert space
and the condition

ET (δ+)G = clsp
{(

1 + (λ − λ0)(T − λ)−1
)
ET (δ+)Γx|
λ ∈ ρ(T ) ∩ Ω′, x ∈ C

n
}(3.22)

is fulfilled.
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From (3.20) and (3.21) we obtain

Γ̃+
λ0

Γ̃λ0
= Γ+Γ and Γ̃+

λ0
(B − λ)−1Γ̃λ0

= Γ+(T − λ)−1Γ

for all λ ∈ ρ(T ) ∩ ρ(B) ∩ Ω′. Therefore the relation V ⊂ G × K defined by

V :=

{( ∑l
k=1(1 + (λk − λ0)(T − λk)

−1)Γxk∑l
k=1(1 + (λk − λ0)(B − λk)

−1)Γ̃λ0
xk

) ∣∣∣ λk ∈ ρ(T ) ∩ ρ(B) ∩ Ω′

xk ∈ Cn, k = 1, . . . , l

}

is linear and isometric and the same holds for its closure V ∈ C̃(G,K).
(ii) Now we show that V is reduced by ET (δ+)G × EB(δ+)K, i.e. we

verify that V can be written as

V ∩
(
ET (δ+)G × EB(δ+)K

) .
V ∩

((
I − ET (δ+)

)
G ×

(
I − EB(δ+)

)
K

)
.

Let
(

f
g

)
∈ V and choose a sequence

(
fm

gm

)
∈ V such that

(
fm

gm

)
→

(
f
g

)
for

m → ∞. We assume first that the endpoints d1 and d2 of the bounded open
interval δ+ = (d1, d2) are no eigenvalues of T and B.

We fix some η > 0 such that the rectangle

Q :=
{
z ∈ C | d1 ≤ Re z ≤ d2, −η ≤ Im z ≤ η

}

has the property Q\R ⊂ ρ(T ) ∩ ρ(B). Let the boundary C∞ of Q be oriented
in the mathematical positive sense and let the curves

Ck := C∞ ∩
{
z ∈ C | |Im z| ≥ 1

k

}
, k > η−1,

be oriented as C∞.
As

(
fm

gm

)
∈ V , m = 1, 2, . . . , we obtain

(
(T − λ)−1fm

(B − λ)−1gm

)
∈ V

for all λ ∈ ρ(T ) ∩ ρ(B) ∩ Ω′ and m = 1, 2, . . . . Therefore the elements
(− 1

2πi

∫
Ck

(T − λ)−1 dλ fm

− 1
2πi

∫
Ck

(B − λ)−1 dλ gm

)
, m ∈ N, k > η−1,

belong to V . From

ET (δ+)fm = lim
k→∞

− 1

2πi

∫

Ck

(T − λ)−1 dλ fm

and

EB(δ+)gm = lim
k→∞

− 1

2πi

∫

Ck

(B − λ)−1 dλ gm
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we conclude
(

ET (δ+)fm

EB(δ+)gm

)
∈ V and this implies

(
ET (δ+)f
EB(δ+)g

)
∈ V and

(
(I − ET (δ+))f
(I − EB(δ+))g

)
∈ V .

Thus V is reduced by ET (δ+)G × EB(δ+)K.
If d1 or d2 is an eigenvalue of T or B it follows from the strong σ-additivity

of the local spectral function and the case considered above that V is reduced
by ET (δ+)G × EB(δ+)K.

(iii) We prove that

V δ+ := V ∩
(
ET (δ+)G × EB(δ+)K

)

is an operator and that (EB(δ+)K′, [·, ·]) (cf. (3.9) and (3.10)) is a Hilbert
space.

The relation V δ+ is isometric and by the definition of Γλ0
and Γ̃λ0

we have

ran Γ̃λ0
= ranΓλ0

= sp {fi | i = 1, . . . , n}.
As the the elements

( ∑l
k=1(1 + (λk − λ0)(T − λk)

−1)ET (δ+)Γxk∑l
k=1(1 + (λk − λ0)(B − λk)

−1)EB(δ+)Γ̃λ0
xk

)
,

λk ∈ ρ(T ) ∩ ρ(B) ∩ Ω′, xk ∈ Cn, k = 1, . . . , l, belong to V δ+ we conclude

from (3.10) and (3.22) that dom V δ+ and ran V δ+ are dense in ET (δ+)G and
EB(δ+)K′, respectively. From the fact that (ET (δ+)G, [·, ·]G) is a Hilbert space
we conclude that ran V δ+ and EB(δ+)K′ are nonnegative subspaces of the Pon-
tryagin space (EB(δ+)K, [·, ·]).

Let us show that

L0 :=
{
x ∈ EB(δ+)K′ | [x, x] = 0

}

is trivial. As EB(δ+)K′ is nonnegative we have

L0[⊥]EB(δ+)K′ and L0[⊥](I − EB(δ+))K′,

and therefore L0 ⊂ K′[⊥]. In view of (3.11)

(A − λ)−1|L0 = (B − λ)−1|L0

holds for all λ ∈ ρ(A) ∩ ρ(B) ∩ Ω. Hence for x0 ∈ L0 and δ+ = (d1, d2) we
conclude that

EA(δ+)x0 = lim
η↘0

lim
ε↘0

−1

2πi

∫ d2−η

d1+η

(
(A − (λ+iε))−1− (A − (λ−iε))−1

)
x0 dλ
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and EB(δ+)x0 coincide. As

EA(δ+)L0 = EB(δ+)L0

and (EA(δ+)K, [·, ·]) is a Hilbert space for x ∈ EB(δ+)L0, x 6= 0, we find
[x, x] 6= 0. Then by EB(δ+)L0 = L0 we conclude L0 = {0}.

The fact L0 = {0} implies that the multivalued part

mul V δ+ =
{
x ∈ EB(δ+)K |

(
0
x

)
∈ V δ+

}

of V δ+ is trivial. Hence V δ+ is a densely defined closed isometric operator. We

claim that ran V δ+ is closed. As in the proof of [17, Theorem 6.2] one verifies

that V δ+ is a bounded operator and therefore domV δ+ = ET (δ+)G holds. From

L0 = {0} we also obtain that V δ+ is injective and another application of [17,

Theorem 6.2] shows that the closed isometric operator V
−1

δ+
is bounded. Thus

dom V
−1

δ+
= ranV δ+ is closed.

As ranV δ+ = EB(δ+)K′ is a closed positive subspace of the Pontrya-
gin space (EB(δ+)K, [·, ·]) we infer that EB(δ+)K′ is uniformly positive, i.e.
EB(δ+)K′ equipped with the inner product [·, ·] is a Hilbert space.

(iv) Let H be the orthogonal complement of EB(δ+)K′ in the Pontryagin
space (EB(δ+)K, [·, ·]),

EB(δ+)K = EB(δ+)K′[+̇]H.(3.23)

H is a Pontryagin space with finite rank of negativity. From H[⊥]EB(δ+)K′

and H[⊥](I − EB(δ+))K′ we obtain H ⊂ K′[⊥]. By (3.11) the resolvents of
A and B restricted to H coincide and by writing the projections EA(δ+) and
EB(δ+) as strong limits of the resolvent of A and B, respectively, we see that
EA(δ+)H and EB(δ+)H coincide. As above we obtain that H = EB(δ+)H is
a Hilbert space and from (3.23) we conclude that (EB(δ+)K, [·, ·]) is a Hilbert
space.

As for any open interval δ+ in ∆′
+, δ+ ⊂ ∆′

+, such that EB(δ+) is defined
the spectral subspace (EB(δ+)K, [·, ·]) is a Hilbert space it follows that the open
interval ∆′

+ is of positive type with respect to B. In fact, let ξ ∈ ∆′
+∩σ(B) and

choose an open interval δ+ with ξ ∈ δ+ such that δ+ ⊂ ∆′
+ and the boundary

points of δ+ are of positive type with respect to B. If
(

xn

yn

)
∈ B is a sequence

with ‖xn‖ = 1 and ‖yn − ξxn‖ → 0 for n → ∞ then
(
B ∩

(
(I − EB(δ+))K

)2 − ξ
)−1 ∈ L

(
(I − EB(δ+))K

)

and

lim
n→∞

‖(I − EB(δ+))(yn − ξxn)‖ = 0
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imply ‖(I − EB(δ+))xn‖ → 0 and ‖EB(δ+)xn‖ → 1 for n → ∞. As EB(δ+)K
equipped with the inner product [·, ·] is a Hilbert space we have

lim inf
n→∞

[xn, xn] = lim inf
n→∞

[EB(δ+)xn, EB(δ+)xn] > 0,

that is, ξ is of positive type with respect to B. Hence ∆′
+ is of positive type

with respect to B.
Analogously one verifies that an open interval ∆− with endpoint µ ∈ Ω∩R

which is of negative type with respect to A contains an open interval ∆′
−

with endpoint µ which is of negative type with respect to B. Therefore we
have shown that for every point µ ∈ Ω ∩ R there exists an open connected
neighbourhood Iµ in R such that both components of Iµ\{µ} are of the same
sign type with respect to A and B.

It remains to verify that B belongs to S∞(Ω ∩ R). As α is a definitizable
function in Ω and A is definitizable over Ω no point of Ω∩R is an accumulation
point of nonreal poles of α and nonreal spectrum of A in Ω\R. Hence by (3.12)
the nonreal spectrum of B in Ω\R does not accumulate to points in Ω∩R and
by (3.6) the set σ(B)∩ (Ω\R) consists of isolated points which are poles of the
resolvent of B. Now the growth properties of α (see Definition 2.6) and the
resolvent of A imply B ∈ S∞(Ω ∩ R). Therefore B is definitizable over Ω and
Theorem 3.2 is proved.

4. Self-adjoint extensions of symmetric operators and direct

sums of Sturm-Liouville operators

In this section we apply the general perturbation results from Section 3 to
self-adjoint extensions of symmetric operators and relations of finite defect. As
an example we consider direct sums of symmetric Sturm-Liouville operators
with the indefinite weight sgn x where the self-adjoint extensions are not defini-
tizable but turn out to be locally definitizable over C. First we recall some
necessary definitions and the notion of boundary value spaces and associated
Weyl functions.

4.1. Self-adjoint extensions of symmetric operators and relations of
finite defect. Let K be a separable Krein space, let J be a corresponding

fundamental symmetry and let S ∈ C̃(K) be a closed symmetric relation in K.
We say that S is of defect m ∈ N ∪ {∞}, if both deficiency indices

n±(JS) = dim ker
(
(JS)∗ − λ

)
, λ ∈ C

±,

of the symmetric relation JS in the Hilbert space (K, [J ·, ·]) are equal to m.
With the help of the von Neumann formulas for a closed symmetric relation
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in a Hilbert space (see e.g. [13, §2.3]) one can verify without difficulty that
this is equivalent to the fact that there exists a self-adjoint extension of S in

K and that each self-adjoint extension Ã of S in K satisfies dim(Ã/S) = m.
For the description of the self-adjoint extensions of closed symmetric re-

lations we use the so-called boundary value spaces.

Definition 4.1. Let S be a closed symmetric relation in the Krein space K.
We say that {G, Γ0, Γ1} is a boundary value space for S+ if (G, (·, ·)) is a Hilbert
space and there exist linear mappings Γ0, Γ1 : S+ → G such that Γ :=

(
Γ0

Γ1

)
:

S+ → G × G is surjective, and the relation

[f ′, g] − [f, g′] = (Γ1f̂ , Γ0ĝ) − (Γ0f̂ , Γ1ĝ)(4.24)

holds for all f̂ =
(

f

f ′

)
, ĝ =

( g

g′

)
∈ S+.

If S is closed symmetric relation in K and Ã ∈ C̃(K) is a self-adjoint exten-

sion of S with ρ(Ã) 6= ∅, then there exists a boundary value space {G, Γ0, Γ1}
for S+ such that Ã coincides with ker Γ0 (see [11]).

For basic facts on boundary value spaces and further references see e.g.
[10, 11, 12, 13]. We recall only a few important consequences. Let S be
a closed symmetric relation and assume that there exists a boundary value
space {G, Γ0, Γ1} for S+. Then

A0 := ker Γ0 and A1 := ker Γ1(4.25)

are self-adjoint extensions of A. The mapping Γ =
(

Γ0

Γ1

)
induces, via

AΘ := Γ−1Θ =
{
f̂ ∈ S+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G),(4.26)

a bijective correspondence Θ 7→ AΘ between C̃(G) and the set of closed exten-
sions AΘ ⊂ S+ of S. In particular (4.26) gives a one-to-one correspondence
between the closed symmetric (self-adjoint) extensions of S and the closed
symmetric (resp. self-adjoint) relations in G. If Θ is a closed operator in G,
then the corresponding extension AΘ of S is determined by

AΘ = ker
(
Γ1 − ΘΓ0

)
.(4.27)

Let Nλ := ker(S+ − λ) = ran (S − λ)[⊥], λ ∈ r(S), be the defect subspace
of S and set

N̂λ :=
{(

f
λf

)∣∣f ∈ Nλ

}
.

Now we assume that the self-adjoint relation A0 in (4.25) has a nonempty
resolvent set. Then for λ ∈ ρ(A0) the adjoint S+ is the direct sum of A0 and
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N̂λ. The functions

λ 7→ γ(λ) :=
(
Γ0 | N̂λ

)−1 ∈ L(G,K), λ ∈ ρ(A0),

and

λ 7→ M(λ) := Γ1

(
Γ0 | N̂λ

)−1 ∈ L(G), λ ∈ ρ(A0),(4.28)

are holomorphic on ρ(A0) and are called the γ-field and Weyl function corre-
sponding to S and {G, Γ0, Γ1}. We remark that for a fixed λ0 ∈ ρ(A0) and all
λ ∈ ρ(A0) the Weyl function M can be written in the form

M(λ) = Re M(λ0) + γ(λ0)
+
(
(λ − Reλ0)

+ (λ − λ0)(λ − λ0)(A0 − λ)−1
)
γ(λ0).

(4.29)

With the help of the Weyl function the spectral properties of the closed exten-
sions of S can be described. If Θ ∈ C̃(G) and AΘ is the corresponding extension
of S via (4.26) then a point λ ∈ ρ(A0) belongs to ρ(AΘ) (σi(AΘ), i = p, c, r)
if and only if 0 belongs to ρ(Θ − M(λ)) (resp. σi(Θ − M(λ)), i = p, c, r) and
the well-known formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+

holds for all λ ∈ ρ(A0) ∩ ρ(AΘ) (see e.g. [11]). In the special case that S
is of defect one the self-adjoint extensions AΘ of S, AΘ 6= ker Γ0, in K can
be parametrized with the real numbers Θ ∈ R. Therefore, in this case, all
self-adjoint extensions of S have a nonempty resolvent set if the (scalar) Weyl
function is not equal to a constant.

The following theorem is an immediate consequence of Theorem 3.1, The-
orem 3.2 and the fact that the difference of the resolvents of two self-adjoint
extensions of a symmetric relation of finite defect is a finite rank operator.

Theorem 4.2. Let S be a closed symmetric relation in the Krein space K and
assume that the defect of S is finite. Then the following holds.

(i) If there exists a self-adjoint extension A of S in K which is definitizable

over Ω, then every self-adjoint extension Ã of S in K with ρ(Ã) ∩ Ω 6= ∅
is definitizable over Ω.

(ii) If A is a self-adjoint extension of S in K which is definitizable over Ω
and ∆ ⊂ Ω ∩ R is an open interval with endpoint µ ∈ Ω ∩ R and ∆ is of
positive type (negative type) with respect to A, then for every self-adjoint

extension Ã of A with ρ(Ã) ∩ Ω 6= ∅ there exists an open interval ∆′,
∆′ ⊂ ∆, with endpoint µ such that ∆′ is of positive type (resp. negative

type) with respect to Ã.
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(iii) If there exists a self-adjoint extension A of S in K which is of type π+

(type π−) over Ω, then every self-adjoint extension Ã of S in K with

ρ(Ã) ∩ Ω 6= ∅ is of type π+ (type π−) over Ω.

4.2. Direct sums of second order differential operators. In this section
we investigate the spectral properties of direct sums of regular and singular
Sturm-Liouville operators with the indefinite weight sgn x. The following no-
tation will be useful. If (K, [·, ·]K) and (H, [·, ·]H) are Krein spaces the elements
of K×H will be written in the form {k, h}, k ∈ K, h ∈ H. The direct sum of a
linear operator S in K and a linear operator T in H will be denoted by S ×T .
If S and T are symmetric in K and H, respectively, then S × T is symmetric
in the Krein space (K ×H, [·, ·]), where

[{k, h}, {k̃, h̃}] := [k, k̃]K + [h, h̃]H, k, k̃ ∈ K, h, h̃ ∈ H.

Let in the following (K, [·, ·]K) be the Krein space L2(R) equipped with
the inner product

[f, g]K :=

∫ ∞

−∞
f(x)g(x) sgn x dx, f, g ∈ L2(R),

and let

(Sf)(x) := −sgn x f ′′(x)

dom S :=
{
f ∈ W 2,2(R) | f(0) = f ′(0) = 0

}
.

Then S is a densely defined closed symmetric operator in K of defect two and
the adjoint operator S+ is given by

(S+f)(x) = −sgn x f ′′(x), dom S+ = W 2,2(R−) × W 2,2(R+),

where R+ := (0,∞) and R− := (−∞, 0). A straightforward calculation shows
that {C2, Γ0, Γ1}, where

Γ0f̂ :=

(
f(0+) − f(0−)
f ′(0+) − f ′(0−)

)
, f̂ =

(
f

S+f

)
,(4.30)

and

Γ1f̂ :=
1

2

(
f ′(0+) + f ′(0−)
−f(0+) − f(0−)

)
, f̂ =

(
f

S+f

)
,(4.31)

is a boundary value space for S+ and the self-adjoint extension A0 = ker Γ0 is
the usual second order differential operator with the indefinite weight function
x 7→ sgn x on R.
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Besides the Krein space K we consider the Krein space H := (L2((a, b)), [·, ·]H),
where −∞ < a < 0 < b < ∞ and [·, ·] is defined by

[h, k]H := −
∫ b

a

h(x)k(x) sgn x dx, h, k ∈ L2((a, b)).

Let p−1, q ∈ L1((a, b)) be real functions and assume that p > 0 is fulfilled. We
consider the densely defined closed symmetric operator T ,

(Th)(x) := sgnx
(
−(p(x)h′(x))′ + q(x)h(x)

)
,

dom T :=

{
h ∈ L2((a, b))

∣∣∣∣∣
h, ph′ ∈ W 1,2((a, b)), −(ph′)′ + qh ∈ L2((a, b))

h(a) = h(b) = h(0) = ph′(0) = 0

}
,

in H. Then T has defect two and the operator T + is given by

(T+h)(x) = sgnx
(
−(p(x)h′(x))′ + q(x)h(x)

)
,

dom T+ =

{
h ∈ L2((a, b))

∣∣∣∣∣
h, ph′ ∈ W 1,2((a, 0)) × W 1,2((0, b)),

−(ph′)′ + qh ∈ L2((a, b)), h(a) = h(b) = 0

}
.

Here we choose {C2, Γ′
0, Γ

′
1}, where

Γ′
0ĥ :=

(
h(0−)
h(0+)

)
and Γ′

1ĥ :=

(
(ph′)(0−)
−(ph′)(0+)

)
, ĥ =

(
h

T+h

)
,(4.32)

as boundary value space for T +. We remark that the self-adjoint extension BΦ

of T in (H, [·, ·]H) corresponding to the self-adjoint relation

Φ =

{(
(x, x)>

(y,−y)>

) ∣∣∣ x, y ∈ C

}
∈ C̃(C2)

via (4.26) is the usual second order differential operator

sgn x

(
− d

dx

(
p

d

dx

)
+ q

)

in L2((a, b)) with Dirichlet boundary conditions.

Theorem 4.3. Let S and T be the symmetric differential operators in the
Krein spaces K and H from above and let {C2, Γ0, Γ1}, A0 = ker Γ0, and
{C2, Γ′

0, Γ
′
1}, B0 = ker Γ′

0, be the boundary value spaces from (4.30)-(4.31) and
(4.32) and denote the corresponding Weyl functions by M and τ , respectively.
Then the following assertions (i)-(iii) hold.

(i) All canonical self-adjoint extensions of S and T in the Krein spaces K
and H, respectively, are definitizable (over C).

23



(ii) The self-adjoint operator A0×B0 in the Krein space K×H is definitizable
over C\{∞} and σ(A0 × B0) coincides with R. The interval (0,∞) is of
type π+ and the interval (−∞, 0) is of type π− with respect to A0 × B0.

(iii) If Θ̃ ∈ C̃(C4) is a self-adjoint relation such that 0 ∈ ρ(M(λ) ⊕ τ(λ) − Θ̃)
for some λ ∈ C\R, then the self-adjoint differential operator

ÃeΘ = S+ × T+ � dom ÃeΘ,

dom ÃeΘ =

{
{f, h} ∈ K ×H

∣∣∣∣∣

(
(Γ0f̂ , Γ′

0ĥ)>

(Γ1f̂ , Γ′
1ĥ)>

)
∈ Θ̃,

f̂ =
(

f

S+f

)
,

ĥ =
(

h
T+h

)
}

in K ×H is definitizable over C\{∞} and the interval (0,∞) ((−∞, 0))

is of type π+ (resp. type π−) with respect to ÃeΘ.

Proof. (i) As S is a densely defined symmetric operator in (K, [·, ·]K) and A0

is a nonnegative self-adjoint operator with σ(A0) = R (see e.g. [9]) it follows

from [8, Proposition 1.1] that all self-adjoint extensions AΘ, Θ ∈ C̃(C2), of S
in K are definitizable (over C).

Denote by p1 (p2) and q1 (q2) the restrictions of the functions p and q
onto the interval (a, 0) (resp. (0, b)). Then the self-adjoint extension B0 =
ker Γ′

0 of T in H is a fundamentally reducible operator as it coincides with
the direct sum of the self-adjoint realizations of the regular Sturm-Liouville
differential expressions d

dx
(p1

d
dx

) − q1 and − d
dx

(p2
d
dx

) + q2, in (L2((a, 0)), (·, ·))
and (L2((0, b)), (·, ·)) corresponding to Dirichlet boundary conditions. Hence
σ(B0) is real and consists only of eigenvalues (with one or two-dimensional
eigenspaces) accumulating only to ∞ and −∞. Here the assumptions p1, p2 >
0 imply that there are only finitely many eigenvalues belonging to

σ++(B0) ∩ (0,∞) and σ−−(B0) ∩ (−∞, 0)

(cf. [26, 36]). Therefore the hermitian form [B0·, ·] defined on dom B0 has
finitely many positive squares and it follows again from [8, Proposition 1.1]

that all self-adjoint extensions BΦ, Φ ∈ C̃(C2), are definitizable.
(ii) Since A0 and B0 are definitizable they belong to the class S∞(R) and

therefore A0 × B0 is also in the class S∞(R). From σ(A0) ∪ σ(B0) = R we
obtain σ(A0 × B0) = R. In order to see that A0 × B0 is definitizable over
C\{∞} we have to check that for every point µ ∈ R there is an open interval
Iµ ⊂ R, µ ∈ Iµ, such that both components of Iµ\{µ} are of definite type with
respect to A0 × B0. This follows from the nonnegativity of A0, hence (0,∞)
((−∞, 0)) is of positive type (resp. negative type) with respect to A0, and the
fact that σ(B0) consists of eigenvalues accumulating only to ∞ and −∞.
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Let δ be an open interval such that δ ⊂ (0,∞) and the boundary points of
δ in R are no eigenvalues of B0. As the spectral subspace (EA0

(δ)K, [·, ·]K) is a
Hilbert space and (EB0

(δ)H, [·, ·]H) is a finite dimensional Pontryagin space we
conclude that (0,∞) is of type π+ with respect to A0×B0. A similar argument
shows that (−∞, 0) is of type π− with respect to A0 × B0.

(iii) It is easy to see that

Γ̃0{f̂ , ĥ} :=

(
Γ0f̂

Γ′
0ĥ

)
and Γ̃1{f̂ , ĥ} :=

(
Γ1f̂

Γ′
1ĥ

)
,

{f̂ , ĥ} :=
{(

f

S+f

)
,
(

h
T+h

)}
∈ S+×T+, defines a boundary value space {C4, Γ̃0, Γ̃1}

for S+ × T+ with ker Γ̃0 = A0 × B0 and corresponding Weyl function

λ 7→
(

M(λ) 0
0 τ(λ)

)
= M(λ) ⊕ τ(λ) ∈ L(C4), λ ∈ ρ(A0 × B0).(4.33)

Now assertion (iii) follows from Theorem 4.2.

Let S and T be the symmetric differential operators from above and let
{C

2, Γ0, Γ1} and {C
2, Γ′

0, Γ
′
1} be the boundary value spaces from (4.30)-(4.31)

and (4.32). By (4.29) and Theorem 2.7 the Weyl functions M and τ corre-
sponding to {C2, Γ0, Γ1} and {C2, Γ′

0, Γ
′
1}, respectively, are definitizable func-

tions (in C) (see Section 2.3 and [22]) and the function (4.33) is definitizable in
C. Here M can be calculated explicitely and also the structure of τ is known.

Indeed, if +
√· ( −

√·) denotes the branch of
√· defined in C with a cut along

[0,∞) ((−∞, 0]) and fixed by Im
√

λ > 0 for λ 6∈ [0,∞) and
√

λ ≥ 0 for

λ ∈ [0,∞) (resp. Re
√

λ > 0 for λ 6∈ (−∞, 0] and Im
√

λ ≥ 0 for λ ∈ (−∞, 0]),
then for λ ∈ C\R the defect subspace Nλ = ker(S+ − λ) is spanned by the
functions

fλ(x) :=

{
exp

(
i

+
√

λx
)

x > 0

0 x < 0
and gλ(x) :=

{
0 x > 0

exp
(

−

√
λx

)
x < 0

.

Hence with f̂λ =
(

fλ

λfλ

)
and ĝλ =

( gλ

λgλ

)
we have Γ0f̂λ =

(
1

i
+
√

λ

)
, Γ1f̂λ =

1
2

(
i
+
√

λ
−1

)
, Γ0ĝλ =

( −1

−−
√

λ

)
and Γ1ĝλ = 1

2

(
−
√

λ
−1

)
and therefore the Weyl function

M corresponding to the boundary value space {C2, Γ0, Γ1} is given by

M(λ) =
1

i
+
√

λ − −

√
λ

(
−i+

√
λ−

√
λ 1

2

(
i+
√

λ + −

√
λ
)

1
2

(
i

+
√

λ +
−

√
λ
)

−1

)
, λ ∈ C\R.

Similarly ker(T + − λ), λ ∈ ρ(B0), is spanned by some functions hλ (kλ),
which vanish on the interval (0, b) (resp. (a, 0)). It is not difficult to see that
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there exist scalar Nevanlinna functions N1 and N2, h(N1) ∩ h(N2) = ρ(B0),
such that the Weyl function τ corresponding to {C2, Γ′

0, Γ
′
1} has the form

τ(λ) =

(
N1(λ) 0

0 −N2(λ)

)
, λ ∈ ρ(B0).

4.3. An example for a self-adjoint extension ÃeΘ of a direct sum of

differential operators with σp(ÃeΘ) = C. In the following we will give a
simple example of a direct sum S × T of two differential operators S and T
where a certain self-adjoint extension has an empty resolvent set.

In the Hilbert space K := (L2((α, β)), (·, ·)), −∞ < α < β < ∞, we
consider the symmetric second order differential operator

(Sf)(x) := −f ′′(x),

dom S :=
{
f ∈ L2((α, β)) | f ∈ W 2,2((α, β)), f(α) = f ′(α) = f(β) = 0

}
,

the adjoint operator S∗,

(S∗f)(x) = −f ′′(x),

domS∗ =
{
f ∈ L2((α, β)) | f ∈ W 2,2((α, β)), f(β) = 0

}
,

and we choose {C, Γ0, Γ1}, Γ0f̂ := f(α), Γ1f̂ := f ′(α), f̂ =
(

f
S∗f

)
, as a

boundary value space for S∗. Let ker(S∗ − λ) = sp {fλ}, λ ∈ C\R. Then the
Weyl function M corresponding to {C, Γ0, Γ1} is given by

M(λ) =
Γ1f̂λ

Γ0f̂λ

, f̂λ =

(
fλ

λfλ

)
, λ ∈ C\R.

We equip L2((α, β)) with the negative definite inner product [·, ·] defined
by [g, h] := −(g, h), g, h ∈ L2((α, β)), and denote the corresponding Krein
space by H. The differential operator

(Th)(x) := −h′′(x), domT = dom S,

is symmetric in H and the adjoint operator is (T +h)(x) = −h′′(x), domT + =

dom S∗. Here {C, Γ′
0, Γ

′
1}, Γ′

0ĥ := h′(α), Γ′
1ĥ := h(α), ĥ =

(
h

S+h

)
, is a bound-

ary value space for T + and the corresponding Weyl function τ is given by

τ(λ) =
Γ′

1f̂λ

Γ′
0f̂λ

=
Γ0f̂λ

Γ1f̂λ

=
1

M(λ)
, λ ∈ C\R.
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As in the proof of Theorem 4.3 (iii) we define the boundary value space

{C2, Γ̃0, Γ̃1} for S∗ × T+ by

Γ̃0{f̂ , ĥ} :=

(
Γ0f̂

Γ′
0ĥ

)
and Γ̃1{f̂ , ĥ} :=

(
Γ1f̂

Γ′
1ĥ

)
,

{f̂ , ĥ} :=
{(

f
S∗f

)
,
(

h
T+h

)}
. Note that the selfadjoint operator ker Γ̃0 is defini-

tizable over C\{∞}. Now the corresponding Weyl function M̃ is

λ 7→ M̃(λ) =

(
M(λ) 0

0 1
M(λ)

)
, λ ∈ C\R.

The self-adjoint extension ÃeΘ, Θ̃ :=
(

0 1
1 0

)
∈ L(C2), of S × T in the Krein

space K ×H via (4.26)-(4.27) is given by

ÃeΘ = S∗ × T+ � dom ÃeΘ

dom ÃeΘ =
{
{f, h} ∈ dom S∗ × domT +

∣∣ f(α) = h(α), f ′(α) = h′(α)
}

and we have σp(ÃeΘ) = C since the function λ 7→ det(M̃(λ) − Θ̃) is identically
equal to zero.
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