Linearizations of a class of elliptic boundary value problems

Jussi Behrndt*
Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

Abstract

We construct linearizations for a class of second order elliptic eigenvalue dependent boundary value problems on smooth bounded domains with rational operator-valued Nevanlinna functions in the boundary condition.

1 Introduction

Various types of boundary value problems with eigenparameter dependent boundary conditions appear in many physical applications and have extensively been studied in a more or less abstract framework in the last decades. A lot of attention has been drawn to λ-dependent boundary value problems for ordinary differential operators and for large classes of functions in the boundary condition the theory is well understood. In this note we consider a second order elliptic differential expression \mathcal{L} (which is regarded as an unbounded operator in $L^{2}(\Omega)$ defined on the so-called Beals space $\mathcal{D}_{1}(\Omega)$) subject to a λ-dependent boundary condition involving a rational $\mathfrak{L}\left(L^{2}(\partial \Omega)\right)$-valued Nevanlinna function τ and the traces and conormal derivatives of the functions in $\mathcal{D}_{1}(\Omega)$, see (1) below and [3] for a more abstract treatment. Here $\mathfrak{L}\left(L^{2}(\partial \Omega)\right)$ denotes the space of bounded everywhere defined linear operators in $L^{2}(\partial \Omega)$. In Theorem 3.1 we construct a self-adjoint operator \widetilde{A} in the product Hilbert space $L^{2}(\Omega) \oplus L^{2}(\partial \Omega) \oplus \cdots \oplus L^{2}(\partial \Omega)$ and we show that its compressed resolvent $\left.P_{L^{2}(\Omega)}(\widetilde{A}-\lambda)^{-1}\right|_{L^{2}(\Omega)}$ onto $L^{2}(\Omega)$ yields a solution of the λ-dependent boundary value problem (1). For the special case of λ-linear boundary condition we retrieve some results from [4, 5] in Corollary 3.2.

2 Elliptic differential operators defined on the Beals space

Let Ω be a bounded domain in \mathbb{R}^{m} with C^{∞} boundary $\partial \Omega$ and closure $\bar{\Omega}$. We consider the differential expression

$$
(\mathcal{L} f)(x):=-\sum_{j, k=1}^{m}\left(D_{j} a_{j k} D_{k} f\right)(x)+\sum_{j=1}^{m}\left(a_{j} D_{j} f-D_{j} \overline{a_{j}} f\right)(x)+a(x) f(x), \quad x \in \Omega
$$

with coefficients $a_{j k}, a_{j}, a \in C^{\infty}(\bar{\Omega})$. We assume $a_{j k}(x)=\overline{a_{k j}(x)}$ for all $x \in \bar{\Omega}$ and $j, k=1, \ldots, m$, and that a is real valued. Moreover, we assume that $\sum_{j, k=1}^{m} a_{j k}(x) \xi_{j} \xi_{k} \geq C \sum_{k=1}^{m} \xi_{k}^{2}$ holds for some constant $C>0$ and all $x \in \bar{\Omega}$, $\left(\xi_{1}, \ldots, \xi_{m}\right)^{\top} \in \mathbb{R}^{m}$, i.e., \mathcal{L} is a uniformly elliptic differential expression which is symmetric. Denote by $n(x)$ the outward normal vector at $x \in \partial \Omega$. We say that $f \in H_{\mathrm{loc}}^{2}(\Omega)$ has L^{2} boundary value on $\partial \Omega$ if the limit $\left.f\right|_{\partial \Omega}:=\lim _{\varepsilon \rightarrow 0+} f(x-\varepsilon n(x))$ exists in $L^{2}(\partial \Omega)$. The differential expression \mathcal{L} is then regarded as an operator in $L^{2}(\Omega)$ which is defined on the so-called Beals space $\mathcal{D}_{1}(\Omega):=\left\{f \in L^{2}(\Omega) \mid \mathcal{L} f \in L^{2}(\Omega), f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{m}}\right.$ have L^{2} boundary values on $\left.\partial \Omega\right\}$, cf. [2] and e.g. [1]. For the general spectral theory of operators associated with \mathcal{L} we refer the reader to [7, 8, 9] and to e.g. [3, 6] for a more abstract extension theory. We recall that the mapping $\left.\frac{\partial f}{\partial \nu}\right|_{\partial \Omega}:=\left.\sum_{j, k=1}^{m} a_{j k} n_{j} \frac{\partial f}{\partial x_{k}}\right|_{\partial \Omega}+\left.\sum_{j=1}^{m} \overline{a_{j}} n_{j} f\right|_{\partial \Omega}, f \in \mathcal{D}_{1}(\Omega)$, is surjective onto $L^{2}(\partial \Omega)$ and Green's identity $(\mathcal{L} f, g)_{\Omega}-(f, \mathcal{L} g)_{\Omega}=\left(\left.f\right|_{\partial \Omega},\left.\frac{\partial g}{\partial \nu}\right|_{\partial \Omega}\right)_{\partial \Omega}-\left(\left.\frac{\partial f}{\partial \nu}\right|_{\partial \Omega},\left.g\right|_{\partial \Omega}\right)_{\partial \Omega}$ holds for all $f, g \in \mathcal{D}_{1}(\Omega)$.

3 An eigenvalue dependent elliptic boundary value problem

Let $A_{i}, B_{i} \in \mathfrak{L}\left(L^{2}(\partial \Omega)\right), i=1, \ldots, n$, be bounded self-adjoint operators in $L^{2}(\partial \Omega)$ and assume that the B_{i} are uniformly positive, that is, $\sigma\left(B_{i}\right) \subset(0, \infty), i=1, \ldots, n$. Then the function

$$
\mathbb{C} \backslash \mathbb{R} \ni \lambda \mapsto \tau(\lambda):=A_{1}+\lambda B_{1}+\sum_{j=2}^{n} B_{j}^{1 / 2}\left(A_{j}-\lambda\right)^{-1} B_{j}^{1 / 2} \in \mathfrak{L}\left(L^{2}(\partial \Omega)\right)
$$

is an $\mathfrak{L}\left(L^{2}(\partial \Omega)\right)$-valued Nevanlinna function, i.e., τ is holomorphic on $\mathbb{C} \backslash \mathbb{R}, \tau(\bar{\lambda})=\tau(\lambda)^{*}, \lambda \in \mathbb{C} \backslash \mathbb{R}$, and $\operatorname{Im} \tau(\lambda)$ is a nonnegative operator for all $\lambda \in \mathbb{C}^{+}$. Note that by the assumption $0 \in \rho\left(B_{i}\right), B_{i} \geq 0$, here the operator $\operatorname{Im} \tau(\lambda)$ is even uniformly positive (uniformly negative) for $\lambda \in \mathbb{C}^{+}\left(\lambda \in \mathbb{C}^{-}\right.$, respectively). Moreover τ can be analytically continued to all real λ which belong to $\rho\left(A_{2}\right) \cap \cdots \cap \rho\left(A_{n}\right)$.

[^0]We consider the following elliptic boundary value problem: For a given $g \in L^{2}(\Omega)$ and $\lambda \in \mathbb{C} \backslash \mathbb{R}$ find a function $f \in \mathcal{D}_{1}(\Omega)$ such that

$$
\begin{equation*}
(\mathcal{L}-\lambda) f=g \quad \text { and }\left.\quad \tau(\lambda) \frac{\partial f}{\partial \nu}\right|_{\partial \Omega}+\left.f\right|_{\partial \Omega}=0 \tag{1}
\end{equation*}
$$

holds. In the next theorem we show how this problem can be solved with the help of the compressed resolvent of a self-adjoint operator \widetilde{A} in $L^{2}(\Omega) \oplus\left(L^{2}(\partial \Omega)\right)^{n}$.

Theorem 3.1 The operator $\widetilde{A}\left\{f, h_{1}, \ldots, h_{n}\right\}=\left\{\mathcal{L} f, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right\}$ defined on

$$
\operatorname{dom} \widetilde{A}=\left\{\begin{array}{ll}
\left\{f, h_{1}, \ldots, h_{n}\right\}: & \left.\left.\left.\begin{array}{l}
f \in \mathcal{D}_{1}(\Omega), h_{i}, h_{i}^{\prime} \in L^{2}(\partial \Omega), i=1, \ldots, n \\
\\
\left.\frac{\partial f}{\partial \nu}\right|_{\partial \Omega}=B_{1}^{-1 / 2} h_{1}=B_{j}^{-1 / 2}\left(h_{j}^{\prime}-A_{j} h_{j}\right), j=2, \ldots, n, \\
\\
\left.f\right|_{\partial \Omega}=-A_{1} B_{1}^{-1 / 2} h_{1}-B_{1}^{1 / 2} h_{1}^{\prime}+\sum_{j=2}^{n} B_{j}^{1 / 2} h_{j}
\end{array}\right\}\right\} ;\right\} .
\end{array}\right\}
$$

is self-adjoint in the Hilbert space $L^{2}(\Omega) \underset{\sim}{\oplus}\left(L^{2}(\partial \Omega)\right)^{n}$. For all $\lambda \in \mathbb{C} \backslash \mathbb{R}$ the unique solution $f \in \mathcal{D}_{1}(\Omega)$ of the boundary value problem (1) is given by $f=\left.P_{L^{2}(\Omega)}(\widetilde{A}-\lambda)^{-1}\right|_{L^{2}(\Omega)} g$.

Proof. Let us first verify that \widetilde{A} is well defined as an operator. In fact, if $f=0$ and $h_{1}=\cdots=h_{n}=0$ then obviously $\mathcal{L} f=0$ and the boundary conditions reduce to $0=\left.\frac{\partial f}{\partial \nu}\right|_{\partial \Omega}=B_{2}^{-1 / 2} h_{2}^{\prime}=\cdots=B_{n}^{-1 / 2} h_{n}^{\prime}$ and $0=\left.f\right|_{\partial \Omega}=-B_{1}^{1 / 2} h_{1}^{\prime}$. Since $0 \in \rho\left(B_{i}\right), i=1, \ldots, n$ we obtain $h_{1}^{\prime}=\cdots=h_{n}^{\prime}=0$, i.e., \widetilde{A} is an operator. Next we check that \widetilde{A} is symmetric in $L^{2}(\Omega) \oplus\left(L^{2}(\partial \Omega)\right)^{n}$. For this, let $\tilde{f}=\left\{f, h_{1}, \ldots, h_{n}\right\}, \tilde{g}=\left\{g, k_{1}, \ldots, k_{n}\right\} \in \operatorname{dom} \widetilde{A}$ and $\widetilde{A} \tilde{f}=\left\{\mathcal{L} f, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right\}$, $\widetilde{A} \tilde{g}=\left\{\mathcal{L} g, k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right\}$. Making use of Green's identity we obtain

$$
\begin{equation*}
(\tilde{A} \tilde{f}, \tilde{g})-(\tilde{f}, \widetilde{A} \tilde{g})=\left(\left.f\right|_{\partial \Omega},\left.\frac{\partial g}{\partial \nu}\right|_{\partial \Omega}\right)_{\partial \Omega}-\left(\left.\frac{\partial f}{\partial \nu}\right|_{\partial \Omega},\left.g\right|_{\partial \Omega}\right)_{\partial \Omega}+\sum_{i=1}^{n}\left(\left(h_{i}^{\prime}, k_{i}\right)_{\partial \Omega}-\left(h_{i}, k_{i}^{\prime}\right)_{\partial \Omega}\right) \tag{2}
\end{equation*}
$$

and a straightforward calculation using the boundary conditions satisfied by $\tilde{f}, \tilde{g} \in \operatorname{dom} \widetilde{A}$ shows that (2) is zero and hence \widetilde{A} is symmetric. For the self-adjointness of \widetilde{A} it is now sufficient to prove $\operatorname{ran}\left(\widetilde{A}-\lambda_{+}\right)=\operatorname{ran}\left(\widetilde{A}-\lambda_{-}\right)=L^{2}(\Omega) \oplus L^{2}(\partial \Omega)^{n}$ for some $\lambda_{+} \in \mathbb{C}^{+}$and $\lambda_{-} \in \mathbb{C}^{-}$. This follows from a perturbation argument as in [3, Theorem 5.1].

Let now $\lambda \in \mathbb{C} \backslash \mathbb{R}$ and set $f:=\left.P_{L^{2}(\Omega)}(\widetilde{A}-\lambda)^{-1}\right|_{L^{2}(\Omega)} g$. If we denote the element $\left.P_{L^{2}(\partial \Omega)^{n}}(\widetilde{A}-\lambda)^{-1}\right|_{L^{2}(\Omega)} g$ by $\left\{h_{1}, \ldots, h_{n}\right\}, h_{i} \in L^{2}(\partial \Omega)$, then $\left\{f, h_{1}, \ldots, h_{n}\right\}$ belongs to dom \widetilde{A} and $\widetilde{A}\left\{f, h_{1}, \ldots, h_{n}\right\}=\left\{g+\lambda f, \lambda h_{1}, \ldots, \lambda h_{n}\right\}$ holds. Hence we have $\mathcal{L} f=g+\lambda f$ and it remains to show that the boundary condition in (1) is satisfied. In fact, since $\left\{f, h_{1}, \ldots, h_{n}\right\} \in \operatorname{dom} \widetilde{A}$ and $h_{i}^{\prime}=\lambda h_{i}, i=1, \ldots, n$, we obtain

$$
\begin{aligned}
\left.\tau(\lambda) \frac{\partial f}{\partial \nu}\right|_{\partial \Omega} & =\left.\left(A_{1}+\lambda B_{1}+\sum_{j=2}^{n} B_{j}^{1 / 2}\left(A_{j}-\lambda\right)^{-1} B_{j}^{1 / 2}\right) \frac{\partial f}{\partial \nu}\right|_{\partial \Omega} \\
& =\left(A_{1}+\lambda B_{1}\right) B_{1}^{-1 / 2} h_{1}+\sum_{j=2}^{n} B_{j}^{1 / 2}\left(A_{j}-\lambda\right)^{-1} B_{j}^{1 / 2} B_{j}^{-1 / 2}\left(\lambda h_{j}-A_{j} h_{j}\right)=-\left.f\right|_{\partial \Omega}
\end{aligned}
$$

and hence $f=\left.P_{L^{2}(\Omega)}(\tilde{A}-\lambda)^{-1}\right|_{L^{2}(\Omega)} g$ solves the boundary value problem (1). The uniqueness follows as in [3].
Corollary 3.2 Let A and B be bounded self-adjoint operators in $L^{2}(\partial \Omega)$ and assume that B is uniformly positive. Then

$$
\widetilde{A}\left\{f,\left.B^{1 / 2} \frac{\partial f}{\partial \nu}\right|_{\partial \Omega}\right\}=\left\{\mathcal{L} f,-B^{-1 / 2}\left(\left.f\right|_{\partial \Omega}+\left.A \frac{\partial f}{\partial \nu}\right|_{\partial \Omega}\right)\right\}, \quad f \in \mathcal{D}_{1}(\Omega)
$$

is a self-adjoint operator in $L^{2}(\Omega) \oplus L^{2}(\partial \Omega)$ and the unique solution $f \in \mathcal{D}_{1}(\Omega)$ of the λ-linear boundary value problem

$$
(\mathcal{L}-\lambda) f=g,\left.\quad(A+\lambda B) \frac{\partial f}{\partial \nu}\right|_{\partial \Omega}+\left.f\right|_{\partial \Omega}=0
$$

is given by $f=\left.P_{L^{2}(\Omega)}(\widetilde{A}-\lambda)^{-1}\right|_{L^{2}(\Omega)} g$.

References

[1] W. O. Amrein, D. B. Pearson, J. Comput. Appl. Math. 171 (2004), 1-26.
[2] R. Beals, Amer. J. Math. 87 (1965), 315-362.
[3] J. Behrndt, M. Langer, submitted.
[4] P. Binding, R. Hryniv, H. Langer, B. Najman, J. Differential Equations 174 (2001), 30-54.
[5] J. Ercolano, M. Schechter, Comm. Pure Appl. Math. 18 (1965), 83-105 and 397-414.
[6] W. N. Everitt, L. Markus, Mem. Amer. Math. Soc. 162, no. 770, (2003).
[7] G. Grubb, Ann. Scuola Norm. Sup. Pisa 22 (1968), 425-513.
[8] J. Lions, E. Magenes, Springer Verlag, Berlin Heidelberg New York (1972).
[9] M. I. Višik, Trudy Moskov. Mat. Obšč. 1 (1952), 187-246. (Russian)

[^0]: * Corresponding author: e-mail: behrndt @ math.tu-berlin.de, Phone: +493031423607, Fax: +493031421110

