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REALIZATION OF NONSTRICT MATRIX
NEVANLINNA FUNCTIONS AS WEYL FUNCTIONS

OF SYMMETRIC OPERATORS IN PONTRYAGIN SPACES

JUSSI BEHRNDT

(Communicated by Marius Junge)

Abstract. Matrix-valued Nevanlinna functions with possibly noninvertible
imaginary part are realized as Q-functions or Weyl functions of symmetric
operators in Pontryagin spaces. The functions are decomposed into a constant
part, which gives rise to a realization in a finite dimensional Pontryagin space
K, and a strict or uniformly strict part, which gives rise to a realization in a
Hilbert space H. A coupling procedure then leads to a symmetric operator
in the product space H × K and to the realization of the given Nevanlinna
function.

1. Introduction

Let A be a closed (not necessarily densely defined) symmetric operator with equal
finite deficiency indices dim (ker(A∗∓ i)) = n < ∞ in a Hilbert space H and let A0

be a selfadjoint extension of A in H. Recall that the Q-function corresponding to
the pair {A, A0} is an n×n-matrix function which is determined up to a selfadjoint
n × n-matrix by

(1.1)
Q(λ) − Q(µ)∗

λ − µ̄
= γ(µ)∗γ(λ), λ, µ ∈ ρ(A0),

where γ(λ) = (1 + (λ− i)(A0 −λ)−1)γ(i) and γ(i) is an isomorphism from Cn onto
the defect subspace ker(A∗ − i); cf. [20, 21, 24]. It follows that Q is a Nevanlinna
function; that is, Q holomorphic on C\R, Q(λ) = Q(λ)∗ holds for all λ ∈ C\R and
the selfadjoint matrix ImQ(λ) is nonnegative (nonpositive) for all λ ∈ C+ (λ ∈ C−,
respectively). Furthermore, definition (1.1) implies ker(ImQ(λ)) = {0} for λ ∈ C\R
and therefore ImQ(λ) is even a uniformly positive (uniformly negative) matrix for
all λ ∈ C+ (λ ∈ C−, respectively). Nevanlinna functions with this additional
property are called uniformly strict. Conversely, if Q is a given uniformly strict
n × n-matrix Nevanlinna function, then there exists a Hilbert space H, a closed
symmetric operator A with deficiency indices (n, n) and a selfadjoint extension A0

of A in H such that Q is the Q-function of the pair {A, A0}; see [24].
The notion of Q-functions coincides with the modern terminology of Weyl func-

tions associated to boundary triples of symmetric operators, so that, in particular,
any uniformly strict Nevanlinna function can be realized as the Weyl function of
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a boundary triple and vice versa. The concept of boundary triples and their Weyl
functions (see Section 2) is an efficient tool for the description of the spectral proper-
ties of selfadjoint extensions of symmetric operators; cf., e.g., [8, 9, 16]. Recently the
concept of boundary relations and Weyl families was introduced as a generalization
of the notion of boundary triples and Weyl functions in [11, 12, 13]. The essen-
tial advantage of this concept is that all Nevanlinna functions and, more generally,
so-called Nevanlinna families, i.e., R-symmetric holomorphic families of maximal
dissipative (in C+) linear relations, can be realized as Weyl families of boundary
relations.

In this little note we propose another method to realize (not necessarily uniformly
strict) matrix-valued Nevanlinna functions as Q-functions or Weyl functions. The
advantage is that we stay within the framework of (ordinary) boundary triples, but
the model space in general will be a Pontryagin space instead of a Hilbert space.
Furthermore, the realization is in general not minimal, but with the exception of
the point zero the analytic properties of the given Nevanlinna function are still
exactly reflected in the spectral properties of the representing selfadjoint operator
or relation. The idea is to decompose a given n × n-matrix Nevanlinna function
τ into a constant part and a “smaller” uniformly strict m × m-matrix Nevanlinna
function τ̃ , m ∈ {0, . . . , n}, so that τ̃ can be minimally realized as the Weyl function
corresponding to a symmetric operator A with deficiency indices (m, m) in a Hilbert
space H and a suitable boundary triple. Furthermore, a simple construction shows
that a selfadjoint (n−m)×(n−m)-matrix can be realized as the Weyl function of a
(nondensely defined) symmetric operator B in a 2(n − m)-dimensional Pontryagin
space K with negative index n − m. Then a coupling procedure yields a boundary
triple for the operator A× B in the Pontryagin space H×K such that τ coincides
with the corresponding Weyl function. We point out that the negative index of the
Pontryagin space H×K is dim (ker(Im τ (i))) = n−m and that for the special case
of a uniformly strict Nevanlinna function the space K is trivial, so that our result
reduces to the well-known realization results in [9, 24] if n = m.

2. Boundary triples and Weyl functions of symmetric relations

in Pontryagin spaces

Let (K, [·, ·]) be a Pontryagin space and let J be a corresponding fundamental
symmetry. We study linear relations in K, that is, linear subspaces of K ×K. The
elements in a linear relation will be denoted in the form f̂ = {f, f ′}, f, f ′ ∈ K.
For the set of all closed linear relations in K we write C̃(K). Linear operators in K
are viewed as linear relations via their graphs. The linear space of bounded linear
operators defined on a Pontryagin space K with values in a Pontryagin space H is
denoted by L(K,H). If K = H, we simply write L(K).

For a linear relation A in the Pontryagin space K the adjoint relation A+ ∈ C̃(K)
is defined by

A+ :=
{
f̂ = {f, f ′} ∈ K ×K : [g′, f ] = [g, f ′] for all ĝ = {g, g′} ∈ A

}
.

A linear relation A in K is said to be symmetric (selfadjoint) if A ⊂ A+ (A = A+,
respectively). We say that a closed symmetric relation A ∈ C̃(K) is of defect m ∈ N0

if the deficiency indices n±(JA) = dim ker((JA)∗ ∓ i) of the closed symmetric
relation JA in the Hilbert space (K, [J ·, ·]) are both equal to m. Here ∗ denotes the
adjoint with respect to the Hilbert scalar product [J ·, ·].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NONSTRICT MATRIX NEVANLINNA FUNCTIONS 2687

For the description of the selfadjoint extensions of a closed symmetric operator or
relation in a Pontryagin space we use the concept of boundary triples; see [8, 9, 16]
and, e.g., [6, 7] for the Pontryagin and Krĕın space cases respectively.

Definition 2.1. Let A be a closed symmetric relation in the Pontryagin space K.
A triple {G, Γ0, Γ1} is said to be a boundary triple for A+ if G is a Hilbert space,
Γ0, Γ1 : A+ → G are linear mappings such that the abstract Green’s identity

[f ′, g] − [f, g′] = (Γ1f̂ , Γ0ĝ) − (Γ0f̂ , Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A+, and the mapping

Γ :=
(

Γ0

Γ1

)
: A+ → G × G

is surjective.

Let A ∈ C̃(K) be a closed symmetric relation in the Pontryagin space K. Then
a boundary triple {G, Γ0, Γ1} for A+ exists if and only if A admits a selfadjoint
extension in K. In this case the defect of A coincides with dimG. Assume now
that {G, Γ0, Γ1} is a boundary triple for A+. Then A = ker(Γ) and the linear
relations A0 := ker(Γ0) and A1 := ker(Γ1) are selfadjoint extensions of A in K. If
the resolvent set ρ(A0) of the selfadjoint relation A0 = ker(Γ0) is nonempty, then
it is not difficult to see that

A+ = A0 +̂ N̂λ,A+ , N̂λ,A+ =
{
{fλ, λfλ} : fλ ∈ Nλ,A+ = ker(A+ − λ)

}
holds for all λ ∈ ρ(A0). Here +̂ denotes the direct sum of subspaces. Recall that
in the case ρ(A0) �= ∅ the nonreal spectrum of A0 consists of finitely many pairs
{µj , µ̄j}, µj ∈ C+, of eigenvalues. For further details on the spectral properties
of selfadjoint operators and relations in Pontryagin spaces, we refer the reader to
[15, 25, 26].

Associated to a boundary triple are the so-called γ-field and Weyl function. For
symmetric operators in Hilbert spaces the following definition can be found in [8, 9],
for the Pontryagin and Krĕın space cases; see [6, 7].

Definition 2.2. Let A be a closed symmetric relation in the Pontryagin space K,
let {G, Γ0, Γ1} be a boundary triple for A+ and A0 = ker(Γ0). Assume ρ(A0) �= ∅
and denote the projection in K ×K onto the first component by π1. The γ-field γ
and Weyl function M corresponding to {G, Γ0, Γ1} are defined by

γ(λ) = π1

(
Γ0 �N̂λ,A+

)−1 and M(λ) = Γ1

(
Γ0 �N̂λ,A+

)−1
, λ ∈ ρ(A0).

Again let A ∈ C̃(K) be symmetric, let {G, Γ0, Γ1} be a boundary triple for A+

and assume ρ(A0) �= ∅, where A0 = ker(Γ0). Then the γ-field λ �→ γ(λ) ∈ L(G,K)
of {G, Γ0, Γ1} is holomorphic on ρ(A0) and the identity

γ(λ) =
(
I + (λ − µ)(A0 − λ)−1

)
γ(µ)

holds for all λ, µ ∈ ρ(A0). The Weyl function λ �→ M(λ) ∈ L(G) of {G, Γ0, Γ1} is
holomorphic on ρ(A0) and the identities

(2.1) M(λ) − M(µ)∗ = (λ − µ̄)γ(µ)+γ(λ)

and

(2.2) M(λ) = Re M(λ0)+γ(λ0)+
(
(λ−Re λ0)+(λ−λ0)(λ− λ̄0)(A0−λ)−1

)
γ(λ0)
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hold for all λ, µ ∈ ρ(A0) and any fixed λ0 ∈ ρ(A0). The spectral properties of the
selfadjoint extensions of A can be described with the help of the Weyl function M ;
cf. [6, 7, 8, 9].

As A0 is a selfadjoint relation in a Pontryagin space, it follows that the Weyl
function M belongs to the class of generalized Nevanlinna functions introduced by
M.G. Krĕın and H. Langer; cf. [21, 22, 23]. If, for example, the negative index of the
Pontryagin space K is κ, κ ∈ N0, then M belongs to some generalized Nevanlinna
class Nκ̃(L(G)), κ̃ ∈ N0, κ̃ ≤ κ; i.e., M is piecewise meromorphic in C\R, symmetric
with respect to the real line (M(λ̄) = M(λ)∗ for all λ in the set h(M) of points of
holomorphy of M), and the kernel

KM (λ, µ) :=
M(λ) − M(µ)∗

λ − µ̄
, λ, µ ∈ C

+ ∩ h(M),

has κ̃ negative squares; that is, for all m ∈ N, λ1, . . . , λm ∈ C+ ∩ h(M) and all
x1, . . . , xm ∈ G the selfadjoint matrix(

(KM (λi, λj)xi, xj)
)m

i,j=1

has at most κ̃ negative eigenvalues, and κ̃ is minimal with this property. We note
that κ̃ = κ if the defect subspaces Nλ,A+ = ker(A+ − λ) span a dense subset of K,

(2.3) K = clsp
{
Nλ,A+ : λ ∈ ρ(A0)

}
.

The functions in the class N0(L(G)) are called Nevanlinna functions. A function
τ ∈ N0(L(G)) is holomorphic on C\R and Im τ (λ) is nonnegative (nonpositive) for
all λ ∈ C+ (λ ∈ C−, respectively). It is well-known that Nevanlinna functions
can equivalently be characterized by integral representations. More precisely, τ is
an L(G)-valued Nevanlinna function if and only if there exist selfadjoint operators
α, β ∈ L(G), β ≥ 0, and a nondecreasing selfadjoint operator function t �→ Σ(t) ∈
L(G) on R such that

∫
R

1
1+t2 dΣ(t) ∈ L(G) and

(2.4) τ (λ) = α + λβ +
∫ ∞

−∞

( 1
t − λ

− t

1 + t2

)
dΣ(t)

holds for all λ ∈ C\R. Note that if K is a Hilbert space, A is a closed symmetric
relation in K, and {G, Γ0, Γ1} is a boundary triple for the adjoint relation A∗, then
the corresponding Weyl function M belongs to the class N0(L(G)) and the identity
(2.1) implies

(2.5) Im M(λ) >> 0, λ ∈ C
+, and ImM(λ) << 0, λ ∈ C

−.

Nevanlinna functions with this property are called uniformly strict; cf. [12]. If
dimG < ∞, then the Nevanlinna function τ in (2.4) is either uniformly strict or
ker(Im τ (λ)), λ ∈ C\R, is nontrivial.

Example 2.3. Let αj , βj ∈ L(G), j = 1, . . . , m, be selfadjoint operators in the
Hilbert space G and assume βj ≥ 0. Then the function

C\R � λ �→ τ (λ) := α1 + λβ1 +
m∑

j=2

β
1/2
j (αj − λ)−1β

1/2
j

belongs to the class N0(L(G)) and τ is uniformly strict if and only if 0 ∈ ρ(βj)
for some j = 1, . . . , m. Observe also that ker(Im τ (λ)) =

⋂m
j=1 ker(βj), λ ∈ C\R,

holds.
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3. Realization of matrix-valued Nevanlinna functions

as Weyl functions

It is well-known that every uniformly strict L(G)-valued Nevanlinna function τ
can be realized as the Weyl function corresponding to a closed symmetric operator
A in a Hilbert space and a suitable boundary triple {G, Γ0, Γ1} for A∗; see, e.g.,
[8, 9, 12] and [24]. In the following we will restrict our investigations to the case of
matrix-valued Nevanlinna functions.

3.1. Realization of uniformly strict matrix-valued Nevanlinna functions.
Let τ ∈ N0(L(Cn)) be a matrix-valued Nevanlinna function given by the integral
representation (2.4) and assume that τ is uniformly strict; i.e., Im τ (λ) is uniformly
positive (uniformly negative) for λ ∈ C+ (λ ∈ C−, respectively). In this subsection
we recall a particular operator model and realization for τ ; cf. [9, 27]. Let L2

Σ(R, Cn)
be the Hilbert space of Cn-valued functions with the property

‖g‖L2
Σ

:=
(∫

R

(
dΣ(t)g(t), g(t)

)) 1
2

< ∞

and denote the corresponding scalar product by (·, ·)L2
Σ
. For details on the space

L2
Σ(R, Cn), see, e.g., [5, 16, 27]. Denote by Gβ the Hilbert space (ran β, (·, ·)β),

where
(βx, βy)β := (βx, y), x, y ∈ C

n.

The orthogonal sum of the maximal multiplication operator with the independent
variable in L2

Σ(R, Cn) and the “pure” relation in Gβ is a selfadjoint relation in the
Hilbert space L2

Σ(R, Cn) ⊕ Gβ and will be denoted by A0,

(3.1) A0 =
{{

f(t) ⊕ 0, tf(t) ⊕ b̃
}

: f(t), tf(t) ∈ L2
Σ(R, Cn), b̃ ∈ Gβ

}
.

For brevity we have denoted here the functions t �→ f(t) and t �→ tf(t) in L2
Σ(R, Cn)

just by f(t) and tf(t) and we agree to use this notation also in the next theorem.
The following result was proved by V.A. Derkach and M.M. Malamud in [9].

Theorem 3.1. Let τ ∈ N0(L(Cn)) be a uniformly strict matrix-valued Nevanlinna
function of the form (2.4). Let L2

Σ(R, Cn)⊕Gβ be the Hilbert space from above and
let A0 be the selfadjoint relation from (3.1). Then

A =
{{

f(t) ⊕ 0, tf(t) ⊕ b̃
}
∈ A0 :

∫
R

dΣ(t)f(t) + b̃ = 0
}

is a closed simple symmetric operator in L2
Σ(R, Cn) ⊕ Gβ; the adjoint is

A∗ =
{{

f(t) ⊕ b, f̃(t) ⊕ b̃
}

: f(t), f̃(t) ∈ L2
Σ(R, Cn), b̃ ∈ Gβ,

∃h ∈ C
n : f̃(t) − tf(t) = −h, b = βh

}
;

and {Cn, Γ0, Γ1}, where

Γ0f̂ := h, Γ1f̂ := b̃ + αh +
∫

R

dΣ(t)
tf̃(t) + f(t)

1 + t2
,

f̂ = {f(t) ⊕ b, f̃(t) ⊕ b̃} ∈ A∗, is a boundary triple for A∗ with A0 = ker(Γ0) and
the corresponding Weyl function coincides with τ .
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3.2. Realization of nonstrict matrix-valued Nevanlinna functions. The fol-
lowing theorem is the main result of this paper. We prove that every (in general
nonstrict) matrix-valued Nevanlinna function τ can be realized as the Weyl func-
tion corresponding to a symmetric operator in a Pontryagin space and a suitable
boundary triplet for its adjoint. We point out that the realization constructed here
is not minimal if τ is nonstrict, so that the analytic properties of τ are in general
not completely reflected in the spectral properties of the representing selfadjoint
operator or relation; see Remark 3.3.

Theorem 3.2. Let τ ∈ N0(L(Cn)) and let κ = dim (ker(Im τ (i))). Then there
exists a Pontryagin space K̃ with negative index κ, a closed symmetric operator S

in K̃ and a boundary triple {Cn, Γ̃0, Γ̃1} for S+ such that the corresponding Weyl
function coincides with τ .

Proof. The proof of Theorem 3.2 consists of three steps. In the first step the Nevan-
linna function τ is written as the sum of a “smaller” uniformly strict Nevanlinna
function τ11 and a selfadjoint constant,

τ (λ) =
(

τ11(λ) 0
0 0

)
+

(
0 α12

α∗
12 α22

)
;

in the second step the constant α22 is realized as the Weyl function corresponding
to a symmetric operator and a suitable boundary triple in a Pontryagin space; and
in the last step it is shown that the realization of τ11 together with the realization of
α22 yields a boundary triple for the orthogonal sum of the corresponding symmetric
operators such that τ becomes the associated Weyl function.

Step 1. Let us regard the space Cn as the direct orthogonal sum of the subspaces
ran(Im τ (i)) and ker(Im τ (i)),

(3.2) C
n = ran(Im τ (i)) ⊕ ker(Im τ (i)),

and decompose the function τ accordingly, i.e.,

τ (λ) =
(

τ11(λ) τ12(λ)
τ21(λ) τ22(λ)

)
:
(

ran(Im τ (i))
ker(Im τ (i))

)
→

(
ran(Im τ (i))
ker(Im τ (i))

)
.

Let κ = dim (ker(Im τ (i))), κ ∈ 0, . . . , n, denote the canonical embedding of
ran(Im τ (i)) in C

n by ι and let π be the orthogonal projection from C
n onto

ran(Im τ (i)) so that ι∗ = π.
As a consequence of the integral representation (2.4) we have

Im τ (i) = β +
∫ ∞

−∞

1
1 + t2

dΣ(t)

and since β ≥ 0 and t �→ Σ(t) is a nondecreasing selfadjoint matrix function we
conclude that every x ∈ ker(Im τ (i)) belongs to ker(β) and the Cn-valued function
t �→ Σ(t)x, x ∈ ker(Im τ (i)), is equal to a constant. Therefore, if we decompose the
selfadjoint matrices α, β in (2.4) with respect to the space decomposition (3.2),

α =
(

α11 α12

α∗
12 α22

)
, β =

(
β11 0
0 0

)
,

it follows that τ12(λ) = α12 and τ22(λ) = α22, and the symmetry property τ (λ) =
τ (λ)∗ implies

(3.3) τ (λ) =
(

τ11(λ) α12

α∗
12 α22

)
:
(

ran(Im τ (i))
ker(Im τ (i))

)
→

(
ran(Im τ (i))
ker(Im τ (i))

)
.
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It is clear that τ11 is a Nevanlinna function with the integral representation

τ11(λ) = α11 + λβ11 +
∫ ∞

−∞

( 1
t − λ

− t

1 + t2

)
dΣ11(t),

where t �→ Σ11(t) := πΣ(t)ι ∈ L(ran(Im τ (i))) is a nondecreasing selfadjoint matrix
function on R such that

∫
R

1
1+t2 dΣ11(t) ∈ L(ran(Im τ (i))). Moreover,

Im τ11(λ) >> 0, λ ∈ C
+, and Im τ11(λ) << 0, λ ∈ C

−;

that is, τ11 is uniformly strict. The decomposition (3.3) of a nonstrict matrix
Nevanlinna function can also be found in [17].

Step 2. We equip the Hilbert space ker(Im τ (i))⊕ker(Im τ (i)) with the indefinite
inner product [·, ·] := (J ·, ·), where J =

(
0 I
I 0

)
and (·, ·) is the Hilbert scalar product

on ker(Im τ (i)) ⊕ ker(Im τ (i)). Then

K =
(
ker(Im τ (i)) ⊕ ker(Im τ (i)), [·, ·]

)
is a Pontryagin space with negative index κ = dim (ker(Im τ (i))) and the matrix

B0 :=
(

0 I
0 0

)
∈ L

(
ker(Im τ (i)) ⊕ ker(Im τ (i))

)
is selfadjoint in K. For every λ ∈ C\{0} we have

(B0 − λ)−1 =
(
−λ−1 −λ−2

0 −λ−1

)
∈ L(K).

Let λ0 ∈ C\{0}, γλ0 := (I, 0)� and define for λ ∈ C\{0},
γ(λ) : ker(Im τ (i)) → K,

x �→
(
I + (λ − λ0)(B0 − λ)−1

)
γλ0x =

(λ0

λ
x, 0

)�
.

Then obviously ran γ(λ) = ker(Im τ (i)) × {0}. From

γ(η)+ : K → ker(Im τ (i)), (x, y)� �→ λ0

η
y, η ∈ C\{0},

we obtain γ(η)+γ(λ) = 0 for all λ, η ∈ C\{0}. Consider the closed symmetric
operator

(3.4) B := B0 �
(
ker(Im τ (i)) × {0}

)
in K. Then we have Nλ,B+ = ran γ(λ) for all λ ∈ C\{0}, the defect of B coincides
with κ = dim (ker(Im τ (i))), and Nλ,B+ [⊥]Nη,B+ holds for all λ, η ∈ C\{0}. For a
fixed µ ∈ C\{0} we write the elements ĝ ∈ B+ = B0 +̂ N̂µ,B+ in the form

ĝ = {g0, B0g0} + {γ(µ)x, µγ(µ)x}, g0 ∈ K, x ∈ ker(Im τ (i)).

We leave it to the reader to check that the triple {ker(Im τ (i)), Γ′
0, Γ′

1}, where

Γ′
0ĝ := x and Γ′

1ĝ := γ(µ)+(B0 − µ)g0 + α22x,

is a boundary triple for B+ and the corresponding Weyl function is α22.
Step 3. Since τ11 is an L(ran(Im τ (i)))-valued uniformly strict Nevanlinna func-

tion there exists a Hilbert space H, a closed symmetric operator A in H and a
boundary triple {ran(Im τ (i)), Γ0, Γ1} for A∗ such that τ11 is the corresponding
Weyl function; cf. Theorem 3.1.

In the following we consider the closed symmetric operator S := A × B in the
Pontryagin space K̃ := H × K and its adjoint S+ = A∗ × B+. The elements in
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A∗ ×B+ will be denoted in the form {{f, g}, {f ′, g′}}, where f̂ = {f, f ′} ∈ A∗ and
ĝ = {g, g′} ∈ B+. We claim that {Cn, Γ̃0, Γ̃1}, where

Γ̃0{f̂ , ĝ} :=
(

Γ0f̂
Γ′

0ĝ

)
and Γ̃1{f̂ , ĝ} :=

(
Γ1f̂ + α12Γ′

0ĝ

Γ′
1ĝ + α∗

12Γ0f̂ ,

)
, {f̂ , ĝ} ∈ A∗ × B+,

is a boundary triple for S+ such that the corresponding Weyl function coincides
with τ . This can also be deduced from [10, §3.3]. However, for completeness we
give a short direct proof. Indeed, for {f̂ , ĝ}, {ĥ, k̂} ∈ A∗ × B+,(

Γ̃1{f̂ , ĝ}, Γ̃0{ĥ, k̂}
)

Cn −
(
Γ̃0{f̂ , ĝ}, Γ̃1{ĥ, k̂}

)
Cn

=
((

Γ1f̂ + α12Γ′
0ĝ

Γ′
1ĝ + α∗

12Γ0f̂

)
,

(
Γ0ĥ

Γ′
0k̂

))
Cn

−
((

Γ0f̂
Γ′

0ĝ

)
,

(
Γ1ĥ + α12Γ′

0k̂

Γ′
1k̂ + α∗

12Γ0ĥ

))
Cn

holds. Since {ran(Im τ (i)), Γ0, Γ1} and {ker(Im τ (i)), Γ′
0, Γ′

1} are boundary triples
for A∗ and B+, respectively, we conclude that the above expression becomes(

Γ1f̂ , Γ0ĥ
)
ran(Im τ(i))

−
(
Γ0f̂ , Γ1ĥ

)
ran(Im τ(i))

+
(
Γ′

1ĝ, Γ′
0k̂

)
ker(Im τ(i))

−
(
Γ′

0ĝ, Γ′
1k̂

)
ker(Im τ(i))

= (f ′, h)H − (f, h′)H + [g′, k]K − [g, k′]K
=

[
{f ′, g′}, {h, k}

]
K̃ −

[
{f, g}, {h′, k′}

]
K̃.

Therefore {Cn, Γ̃0, Γ̃1} satisfies the abstract Green’s identity. The surjectivity of
the mapping (Γ̃0, Γ̃1)� : S+ → C

n × C
n follows easily from the surjectivity of the

mappings (
Γ0

Γ1

)
: A∗ → ran(Im τ (i)) × ran(Im τ (i)),(

Γ′
0

Γ′
1

)
: B+ → ker(Im τ (i)) × ker(Im τ (i)).

Hence {Cn, Γ̃0, Γ̃1} is a boundary triple for S+. It remains to show that the corre-
sponding Weyl function coincides with τ . For this, note that

N̂λ,S+ = N̂λ,A∗×B+ = N̂λ,A∗ × N̂λ,B+ , λ ∈ C\R,

and let {{fλ, gλ}, {λfλ, λgλ}} ∈ S+ = A∗ × B+, where {fλ, λfλ} ∈ N̂λ,A∗ and
{gλ, λgλ} ∈ N̂λ,B+ . Since

τ11(λ)Γ0f̂λ = Γ1f̂λ and α22Γ′
0ĝλ = Γ′

1ĝλ, λ ∈ C\R,

we conclude

τ (λ)Γ̃0{f̂λ, ĝλ} =
(

τ11(λ) α12

α∗
12 α22

) (
Γ0f̂λ

Γ′
0ĝλ

)
=

(
Γ1f̂λ + α12Γ′

0ĝλ

α∗
12Γ0f̂λ + Γ′

1ĝλ

)
= Γ̃1{f̂λ, ĝλ}

for all λ ∈ C\R; that is, τ is the Weyl function of {Cn, Γ̃0, Γ̃1}. �

Remark 3.3. The defect subspaces Nλ,B+ = ker(B+ − λ), λ ∈ C\R, coincide with
the closed subspace ker(Im (τ (i)))× {0} of K and hence

K �= clsp
{
Nλ,B+ : λ ∈ C\R

}
= ker(Im τ (i)) × {0}.
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Therefore the representation of the function τ in Theorem 3.2 is not minimal if
κ = dim (ker(Im τ (i))) > 0,

K̃ �= clsp
{
Nλ,S+ : λ ∈ C\R

}
= clsp

{
Nλ,A∗ ×Nλ,B+ : λ ∈ C\R

}
.

This implies that the analytic properties of τ are in general not completely reflected
by the spectral properties of the selfadjoint operator or relation S0 := ker(Γ̃0) in
K̃. If the representation of τ11 is chosen to be minimal, then in the realization con-
structed above this disadvantage does only arise at the point zero. More precisely,
here zero is an eigenvalue of S0 although the measure dΣ in the integral repre-
sentation (2.4) of τ does not necessarily have a point mass at zero. Nevertheless,
the behaviour of dΣ or τ in R\{0} or C\{0} is exactly reflected in the nonzero
spectrum of S0. In particular, if h(τ ) denotes the domain of holomorphy of τ , then
h(τ )\{0} = ρ(S0)\{0}.

Remark 3.4. The Pontryagin space K̃ in Theorem 3.2 can be chosen as(
L2

Σ11

(
R, ran(Im τ (i))

)
⊕ Gβ11

)
×

(
ker(Im τ (i))

)2

equipped with the inner product[
(f ⊕ β11x) × (g ⊕ g′), (f̃ ⊕ β11y) × (h ⊕ h′)

]
:=

∫
R

(
dΣ11(t)f(t), f̃(t)

)
ran(Im τ(i))

+ (β11x, y)ran(Im τ(i))

+ (g′, h)ker(Im τ(i)) + (g, h′)ker(Im τ(i)),

with f, f̃ ∈ L2
Σ11

(R, ran(Im τ (i))), x, y ∈ ran(Im τ (i)) and g, g′, h, h′ ∈ ker(Im τ (i)).
Then the symmetric operator S is the direct product of the operator A in Theo-
rem 3.1 (where Σ and β have to be replaced by Σ11 and β11) and the nondensely
defined operator B in (3.4).

Remark 3.5. Realizations of matrix and operator-valued (generalized) Nevanlinna
functions of the form (2.2) satisfying the minimality condition (2.3) can be found in
[14, 18, 19, 24], but a nonstrict Nevanlinna function cannot be interpreted as a usual
Weyl function or Q-function. In the recent papers [11, 12, 13] by V.A. Derkach,
S. Hassi, M.M. Malamud and H.S.V. de Snoo the concept of boundary triples
and Weyl functions was generalized to so-called boundary relations (multivalued
boundary mappings) and Weyl families. In this framework also nonstrict Nevan-
linna functions, and, more generally, Nevanlinna families, can be minimally realized
as Weyl families associated to boundary relations of symmetric operators in Hilbert
spaces; see also [3]. For the case of a nonstrict Nevanlinna function that is not equal
to a constant, the corresponding boundary relation is necessarily multivalued.

4. An application: Boundary value problems

with λ-dependent boundary conditions

Boundary value problems in which the spectral parameter appears nonlinearly
in the boundary condition have been studied in many different frameworks in re-
cent decades; see, e.g., [1, 2, 4, 6, 7, 10, 13, 14] and the references therein. We
consider a boundary value problem with a nonstrict matrix Nevanlinna function τ
in the boundary condition and apply Theorem 3.2 to construct a linearization in a
straightforward way.
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Let T be a densely defined closed symmetric operator with equal finite deficiency
indices dim (ker(T ∗ ∓ i)) = n < ∞ in a Hilbert space H̃ and let {Cn, Υ0, Υ1} be
a boundary triple for the operator T ∗ with corresponding Weyl function M . The
selfadjoint extension ker(Υ0) will be denoted by T0. Let τ ∈ N0(L(Cn)) be a
(in general nonstrict) Nevanlinna function with domain of holomorphy h(τ ). We
consider the following abstract λ-dependent boundary value problem: For a given
k ∈ H̃ and λ ∈ h(τ ) find h ∈ dom T ∗ such that

(4.1) (T ∗ − λ)h = k and τ (λ)Υ0ĥ + Υ1ĥ = 0, ĥ = {h, T ∗h},

holds. According to Theorem 3.2 and Remark 3.3 there exist a Pontryagin space K̃,
a closed symmetric operator S in K̃ and a boundary triple {Cn, Γ̃0, Γ̃1} such that
τ is the corresponding Weyl function and for the selfadjoint relation S0 = ker(Γ̃0)
we have ρ(S0)\{0} = h(τ )\{0}. With the help of S and {Cn, Γ̃0, Γ̃1} a selfadjoint
solution operator Ã ⊂ T ∗×S+ for the problem (4.1) in the Pontryagin space H̃×K̃
can be constructed. For the special case of a uniformly strict Nevanlinna function
τ , the explicit form of Ã in the following theorem is known, K̃ is a Hilbert space,
and it is not necessary to exclude the point λ = 0; see Remark 4.2.

Theorem 4.1. The operator Ã
(

h
k

)
=

(
T∗h
k′

)
defined on

dom Ã =

{(
h
k

)
∈ H̃ × K̃ :

(
Υ0ĥ + Γ̃0k̂ = 0
Υ1ĥ − Γ̃1k̂ = 0

)
for some k̂ = {k, k′} ∈ S+

}

is a selfadjoint extension of T in the Pontryagin space H̃ × K̃ with σ(Ã) ⊂ R. For
λ ∈ ρ(Ã) ∩ h(τ ) ∩ ρ(T0), λ �= 0, the unique solution of (4.1) is given by

h = PH̃
(
Ã − λ

)−1
(

k
0

)
.

For λ ∈ h(τ )\{0} the problem (4.1) with k = 0 has a nontrivial solution h ∈ H̃ if
and only if λ ∈ σp(Ã). In this case the solutions are given by the components of
the eigenvectors of Ã in H̃.

Proof. Observe that Ã is an operator since h = k = 0 implies ĥ = {h, T ∗h} = 0
and hence Γ̃0k̂ = Γ̃1k̂ = 0; i.e., k̂ ∈ S and as S is an operator, k′ = 0 follows. It can
be shown that Ã is selfadjoint and that λ ∈ ρ(T0) ∩ ρ(S0) belongs to ρ(Ã) if and
only if ker(M(λ) + τ (λ)) = {0} holds. Therefore, as C\R ⊂ (ρ(T0) ∩ ρ(S0)) and
the Weyl function M ∈ N0(L(Cn)) is uniformly strict we obtain σ(Ã) ⊂ R. The
proof of the remaining assertions is essentially the same as in [4, Theorem 4.1] and
[2, Theorem 4.5]. �

Remark 4.2. Note that here σ(Ã) is real although Ã acts in a Pontryagin space and
that with the possible exception of the point λ = 0 the boundary value problem
(4.1) can be completely solved with the help of the linearization Ã. We note that
there exists also a minimal solution operator of (4.1) acting in a Hilbert space,
but for the construction, a transformation of τ into the orthogonal sum of a strict
Nevanlinna function and a purely multivalued relation is necessary (cf. [10, §5.2]),
or the concept of boundary relations and Weyl families has to be used; see [13].
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[21] M.G. Krĕın, H. Langer, Über die Q-Funktion eines π-hermiteschen Operators im Raume
Πκ, Acta. Sci. Math. (Szeged) 34 (1973), 191-230; Siberian Math. J. 18 (1977), 728-746.
MR0318958 (47:7504)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1964544
http://www.ams.org/mathscinet-getitem?mr=1964544
http://www.ams.org/mathscinet-getitem?mr=2425117
http://www.ams.org/mathscinet-getitem?mr=2250158
http://www.ams.org/mathscinet-getitem?mr=2250158
http://www.ams.org/mathscinet-getitem?mr=0222718
http://www.ams.org/mathscinet-getitem?mr=0222718
http://www.ams.org/mathscinet-getitem?mr=1361051
http://www.ams.org/mathscinet-getitem?mr=1361051
http://www.ams.org/mathscinet-getitem?mr=1728871
http://www.ams.org/mathscinet-getitem?mr=1728871
http://www.ams.org/mathscinet-getitem?mr=1087947
http://www.ams.org/mathscinet-getitem?mr=1087947
http://www.ams.org/mathscinet-getitem?mr=1318517
http://www.ams.org/mathscinet-getitem?mr=1318517
http://www.ams.org/mathscinet-getitem?mr=1903120
http://www.ams.org/mathscinet-getitem?mr=1903120
http://www.ams.org/mathscinet-getitem?mr=2222445
http://www.ams.org/mathscinet-getitem?mr=2222445
http://www.ams.org/mathscinet-getitem?mr=2238919
http://www.ams.org/mathscinet-getitem?mr=2238919
http://www.ams.org/mathscinet-getitem?mr=1251013
http://www.ams.org/mathscinet-getitem?mr=1251013
http://www.ams.org/mathscinet-getitem?mr=951970
http://www.ams.org/mathscinet-getitem?mr=951970
http://www.ams.org/mathscinet-getitem?mr=1190695
http://www.ams.org/mathscinet-getitem?mr=1190695
http://www.ams.org/mathscinet-getitem?mr=1635009
http://www.ams.org/mathscinet-getitem?mr=1635009
http://www.ams.org/mathscinet-getitem?mr=1709165
http://www.ams.org/mathscinet-getitem?mr=1709165
http://www.ams.org/mathscinet-getitem?mr=0282238
http://www.ams.org/mathscinet-getitem?mr=0282238
http://www.ams.org/mathscinet-getitem?mr=0282239
http://www.ams.org/mathscinet-getitem?mr=0282239
http://www.ams.org/mathscinet-getitem?mr=0318958
http://www.ams.org/mathscinet-getitem?mr=0318958


2696 JUSSI BEHRNDT
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