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Abstract

The main goal of this note is to study the time evolution of superoscillations under
the 1D-Schrödinger equation with attractive or repulsive Dirac δ-potential located at
the origin of the real line. Such potentials are of particular interest since they simulate
short range interactions and the corresponding quantum system is an explicitely solvable
model. Moreover, we give the large time asymptotics of this solution, which turns out to
be different for the repulsive and the attractive model. The method that we use to study
the time evolution of superoscillations is based on the continuity of the time evolution
operator acting in a space of exponentially bounded entire functions.

AMS Classification: 32A15, 32A10, 47B38.
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1 Introduction

Superoscillatory functions and their evolution in time under different Hamiltonians have de-
served a lot of attention in the physical and mathematical literature in the recent past. The
main physical motivation is the fact that superoscillatory functions may appear as the out-
come of weak measurements, which were introduced by Aharonov and collaborators. In a
series of papers Aharonov, Berry and coauthors have shown various important aspects of
superoscillations, and without claiming completeness we mention [1, 10, 12, 16, 17, 18]. More
recently superoscillations were also investigated from a mathematical point of view, see, e.g.,
[2, 3, 4, 5, 6, 8, 23]. The list of contributions related to the mathematical aspects of superoscil-
lations is much longer, thus we refer the interested reader to the survey papers [9, 11, 14] and
the references therein. A particularly important issue is to understand how superoscillations
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evolve in time under different Hamiltonians. The Hamiltonian of the Dirac δ-potential will
be investigated in this note.

The standard example of superoscillatory functions is the following: For every real number
a ∈ R with |a| > 1 consider the sequence of entire functions

Fn(z, a) =

n∑
j=0

Cj(n, a)ei(1−2j/n)z, z ∈ C, (1.1)

with coefficients

Cj(n, a) =

(
n

j

)(
1 + a

2

)n−j (1− a
2

)j
, (1.2)

where
(
n
j

)
denotes the binomial coefficient. The special property of this sequence is, that

although every function Fn is a superposition of waves with frequencies in [−1, 1], the whole
sequence converges to

lim
n→∞

Fn(z, a) = eiaz, z ∈ C, (1.3)

a plane wave with frequency |a| > 1. This intuitively explains why such a sequence is called
superoscillatory. One can prove that the limit (1.3) converges uniformly on all compact subsets
of C and even in a certain stronger sense, see [24, Theorem 2.1]. However, the convergence
(1.3) is not uniform on all of C, see [3, Proposition 4.2].

The following definitions are now inspired by this example and put the notion of super-
oscillations into a mathematical framework. We start with the definition of a generalized
Fourier sequences as a generalization of (1.1).

Definition 1.1. A generalized Fourier sequence is a sequence of the form

Fn(z) =

n∑
j=0

Cj(n)eikj(n)z, z ∈ C, (1.4)

where Cj(n) ∈ C and kj(n) ∈ R.

The key feature of the above example (1.1) is the convergence (1.3) to a plain wave with
a higher frequency. This superoscillatory property is formalized in the next definition, where
it is convenient to use a suitable space of exponentially bounded entire functions. More
precisely, for a fixed γ ∈ (0,∞] we shall denote the collection of entire functions f that satisfy
the estimate |f(z)| ≤ AeB|z|, z ∈ C, for some A ≥ 0 and B ∈ [0, γ), by A1,γ(C). For more
details on this space and the corresponding notion of convergence, we refer the reader to
Section 2.

Definition 1.2. Let γ ∈ (0,∞]. A generalized Fourier sequence (Fn) ⊂ A1,γ(C) of the form
(1.4) is said to be superoscillating in A1,γ(C) if:

(i) There exists k′ ∈ [0, γ) such that |kj(n)| ≤ k′ for all n ∈ N0 and j = 0, . . . , n.

(ii) There exists a ∈ R with k′ < |a| < γ such that Fn converges to z 7→ eiaz in A1,γ(C),
that is, for some B ∈ [0, γ) one has

lim
n→∞

∥∥∥(Fn − eia ·)e−B| · |
∥∥∥
∞

= 0. (1.5)
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The main objective in this note is to study the time evolution of the solution of the
Schrödinger equation with Dirac δ-potential,

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ 2cδ0(x)

)
Ψ(t, x), t > 0, x ∈ R, (1.6)

and superoscillating inital data. Here c ∈ R \ {0} is, up to the factor 2, the potential strength
and can be either attractive (c < 0) or repulsive (c > 0), but is considered to be time
independent. In the context of solvable models in quantum mechanics the spectral theory of
Schrödinger operators with δ-potentials has deserved a lot of attention in the last decades;
for a first glance we refer the reader to the monograph [13] and the contributions [15, 20, 25].
The formal equation (1.6) is made mathematically rigorous by treating the distribution δ0 via
boundary conditions at x = 0:

i
∂

∂t
Ψ(t, x) = − ∂2

∂x2
Ψ(t, x), t > 0, x ∈ R \ {0}, (1.7)

Ψ(t, 0+) = Ψ(t, 0−), t > 0, (1.8)

∂

∂x
Ψ(t, 0+)− ∂

∂x
Ψ(t, 0−) = 2cΨ(t, 0), t > 0. (1.9)

The continuity condition (1.8) is understood in the sense that Ψ(t, 0±) := limε↘0 Ψ(t,±ε)
both exist, are finite and coincide. Hence Ψ(t, ·) can be continuously extended to the whole
real line by Ψ(t, 0) := Ψ(t, 0±), which appers on the right-hand side of the transmission
condition (1.9).

One can deduce (on a formal level) from [19, 22, 26, 27] that the solution of the corre-
sponding Cauchy problem admits the representation

Ψ(t, x) =

∫
R
G(x, y, t)Ψ(0, y)dy, t > 0, x ∈ R, (1.10)

where the Green function has the explicit form

G(x, y, t) = − c
2
e−

(|x|+|y|)2
4it Λ

(
c
√
it+

|x|+ |y|
2
√
it

)
+

1

2
√
iπt

e−
(x−y)2

4it ; (1.11)

here the entire function Λ is defined (using the error function erf) as

Λ(z) = ez
2
(1− erf(z)), erf(z) =

2√
π

∫ z

0
e−ξ

2
dξ, z ∈ C. (1.12)

Although we will not use results from the theory of Mittag-Leffler functions, we mention
for completeness that Λ in (1.12) is connected to the special Mittag-Leffler function E 1

2
,1 by

Λ(z) = E 1
2
,1(−z), see [28].

For our purposes it is important to provide an explicit representation of the solution of the
Schrödinger equation (1.6), or, more precisely, of the problem (1.7) – (1.9), with a plane wave
eiax as initial condition. This is the content of our first result. For the convenience of the
reader we give a self-contained direct proof in Section 3 instead of using the Green function
above.
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Theorem 1.3. Let c ∈ R \ {0} and a ∈ R. Then the solution Ψ of (1.7) – (1.9) with initial
condition Ψ(0, x) = eiax, has the form

Ψ(t, x) = Ψfree(t, x) + Ψ
(0)
δ (t, x) + Ψ

(+)
δ (t, x) + Ψ

(−)
δ (t, x), t > 0, x ∈ R, (1.13)

where the four terms of the wave function are

Ψfree(t, x) = eiax−ia
2t,

Ψ
(0)
δ (t, x) =

c2

c2 + a2
e−

x2

4itΛ

(
|x|

2
√
it

+ c
√
it

)
,

Ψ
(±)
δ (t, x) = − c

2(c∓ ia)
e−

x2

4itΛ

(
|x|

2
√
it
± ia
√
it

)
.

(1.14)

The long-time behaviour of this plane wave disturbed by a δ-potential (1.13) is investigated
in the second result of this note. Again we refer the reader to Section 3 for a detailed proof.

Theorem 1.4. Let a, c ∈ R \ {0}. For every fixed x ∈ R and c > 0 the solution Ψ in (1.13)
has the asymptotic behaviour

Ψ(t, x) = e−ia
2t

(
eiax − c

c− i|a|
ei|ax|

)
+O

(
1

t

)
, t→∞, (1.15)

and for every fixed x ∈ R and c < 0 the solution Ψ in (1.13) has the asymptotic behaviour

Ψ(t, x) = e−ia
2t

(
eiax − c

c− i|a|
ei|ax|

)
+

2c2

c2 + a2
ec|x|+ic

2t +O
(

1

t

)
, t→∞. (1.16)

In the repulsive case c > 0 we have a δ-potential barrier and scattering solutions with
positive energy. Equation (1.15) shows, that for large times the wave keeps oscillating as
e−ia

2t, as the free wave Ψfree does, but with a different complex prefactor, which means a
different amplitude as well as a phase shift. In the attractive case c < 0 we have a δ-potential
well with a bound state whose negative energy is proportional to −c2. The additional term

2c2

c2 + a2
ec|x|+ic

2t, (1.17)

that appears in the asymptotic solution (1.16), is the damped wave that interacts with the
δ-potential well. In fact, the exponential damping ec|x| in space, as well as the oscillations
eic

2t in time, depend on c. The prefactor 2c2

c2+a2
shows that (1.17) becomes negligible (also in

a neighborhood of the origin) when |a| is much larger than |c|.

We also remark that in Theorem 1.4 only the solution Ψ of (1.6) with initial condition
eiax is considered. Of course, by the linearity of the Schrödinger equation, one can also allow
any superposition of plane waves as initial condition and gets the respective superposition of
waves from (1.15) or (1.16) as asymptotics of the corresponding solution.

The next theorem can be viewed as the main result of this note. Now we discuss the time
evolution of a superoscillatory sequence (Fn) of the form (1.4) as initial data in the Cauchy
problem (1.7) – (1.9).
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Theorem 1.5. Let c ∈ R \ {0} and let (Fn) be a superoscillating sequence in A1,|c|(C), that
is, Fn is of the form (1.4) and converges to z 7→ eiaz in A1,|c|(C), see Definition 1.2. Then
the solutions Ψn of (1.7) – (1.9) with initial condition Ψn(0, x) = Fn(x) converge uniformly
on every compact subset of (0,∞) × R to the solution Ψ in (1.13) with initial condition
Ψ(0, x) = eiax.

Note that by Definition 1.2, the plain wave eiax in Theorem 1.5 is only allowed to have a
frequency |a| < |c|. This condition seems to be necessary for mathematical reasons only (in
order to apply the strategy of convolution operators).

The proof of Theorem 1.5 is given at the end of Section 3. The key idea of the proof is
to use the explicit representation of the solutions Ψn and Ψ and to study the time evolution
operator Fn 7→ Ψn in the space A1,|c|(C); cf. Lemma 3.2 and Lemma 3.3. A similar technique
was also used in [4, 5, 6, 9, 11, 14, 21].

Theorems 1.4 and 1.5 can be combined to the concept of the existence of a shift (for the
limit function) and longevity of superoscillations in time. Namely, if we take a sequence (Fn)
of the form (1.4) and define Φλ(t, x) as the solution of (1.6) with initial data eiλx then, due
to the linearity of the Schrödinger equation, the solution Ψn(t, x) can be written in the form

Ψn(t, x) =

n∑
j=0

Cj(n)Φkj(n)(t, x). (1.18)

As pointed out by Aharonov, we can view the right-hand side of (1.18) as an approximation
of the function λ 7→ Φλ(t, x) for fixed t > 0 and x ∈ R. Indeed, if we compute Φλ(t, x) in
the points λ = kj(n) ∈ [−k′, k′] then the limit Ψn → Ψ in Theorem 1.5 determines Φa(t, x)
in points a ∈ (−|c|, |c|), also outside of [−k′, k′].

2 Exponentially bounded entire functions

In this preparatory section we introduce a space of exponentially bounded entire functions
and a corresponding notion of convergence.

Definition 2.1. For γ ∈ (0,∞] we define the space

A1,γ(C) :=
{
f ∈ H(C) : ∃A ≥ 0, B ∈ [0, γ) such that |f(z)| ≤ AeB|z| for all z ∈ C

}
, (2.1)

where H(C) denotes the space of entire functions. We say that a sequence (fn) ⊂ A1,γ(C)
converges to f ∈ A1,γ(C) in A1,γ(C) if there exists some B ∈ [0, γ) such that

lim
n→∞

∥∥∥(fn − f)e−B| · |
∥∥∥
∞

= 0. (2.2)

This type of convergence will be denoted by fn
A1,γ−→ f .

Observe that convergence in A1,γ(C) implies the uniform convergence on all compact
subsets of C. Note also that the space A1,∞(C) coincides with the space

A1(C) :=
{
f ∈ H(C) : ∃A,B ≥ 0 such that |f(z)| ≤ AeB|z| for all z ∈ C

}
, (2.3)

which appears often in the treatement of superoscillating functions. Moreover, the A1,∞(C)-
convergence from Definition 2.1 coincides with the usual notion of convergence in the space
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A1(C) and also Lemma 2.2 in the special case γ = ∞ reduces to [14, Lemma 2.2]. For more
details on the space A1(C) we refer the reader to [6, Chapter 4] or [14]. However, for the
present purposes the space A1(C) is not suitable and has to be replaced by A1,γ(C) for some
γ ∈ (0,∞); cf. Remark 3.4.

The next lemma provides a characterization of the space A1,γ(C) in terms of bounds for
the coefficients in the power series expansion of an entire function. In the following, for
f ∈ H(C) we shall use the notation

f(z) =
∞∑
k=0

f (k)zk, z ∈ C, (2.4)

where the coefficients f (k) can be expressed by Cauchy’s integral formula in the form

f (k) =
1

k!

dk

dzk
f(z)

∣∣∣
z=0

=
1

2πi

∫
|z|=r

f(z)

zk+1
dz, r > 0. (2.5)

Lemma 2.2. Let γ ∈ (0,∞] and consider the space A1,γ(C) from Definition 2.1. Then

A1,γ(C) =

{
f ∈ H(C) : ∃A ≥ 0, B ∈ [0, γ) such that |f (k)| ≤ AB

k

k!
for all k ∈ N0

}
(2.6)

and for any sequence (fn) ⊂ A1,γ(C) and f ∈ A1,γ(C) we have fn
A1,γ−→ f if and only if there

exists a sequence (An) ≥ 0 and B ∈ [0, γ) such that

(i)
∣∣f (k)n − f (k)

∣∣ ≤ AnBkk! for all n ∈ N and k ∈ N0;

(ii) lim
n→∞

An = 0.

Proof. Let us first prove the identity (2.6). For the inclusion “ ⊇ “ assume that the coefficients
f (k) satisfy

|f (k)| ≤ AB
k

k!
, k ∈ N0, (2.7)

for some A ≥ 0 and B ∈ [0, γ). Then we can estimate f pointwise by

|f(z)| ≤
∞∑
k=0

|f (k)||z|k ≤ A
∞∑
k=0

Bk

k!
|z|k = AeB|z|, z ∈ C, (2.8)

which implies f ∈ A1,γ(C). For the inverse inclusion “ ⊆ “ in (2.6) let f ∈ A1,γ(C), that is,
f ∈ H(C) and satisfies

|f(z)| ≤ AeB|z|, z ∈ C, (2.9)

for some A ≥ 0 and B ∈ [0, γ). It is no restriction to assume that B > 0, which will be done
in the following. Using (2.5) and (2.9) we obtain the estimate

|f (k)| = 1

2π

∣∣∣∣∣
∫
|z|=r

f(z)

zk+1
dz

∣∣∣∣∣ ≤ 1

2π
sup
|z|=r

∣∣∣∣ f(z)

zk+1

∣∣∣∣ 2πr ≤ AeBr

rk
, (2.10)
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for any r > 0. It is easy to see that the right-hand side of (2.10), regarded as a function of r,
has its minimum at r = k

B , which leads to the estimate

|f (k)| ≤ A
(
eB

k

)k
, k ∈ N0. (2.11)

Now choose some B̃ ∈ (B, γ). Then by the asymptotic behaviour k! ∼
√

2πk
(
k
e

)k
of the

factorial we get (
eB

k

)k k!

B̃k
∼
√

2πk

(
B

B̃

)k
,

and since B̃ > B we conclude that the right-hand side tends to zero as k →∞. Hence there
exists a constant C̃ > 0, only depending on B and B̃, such that

(
eB

k

)k k!

B̃k
≤ C̃, k ∈ N0.

Using this in (2.11), finally gives the estimate

|f (k)| ≤ AC̃ B̃
k

k!
, k ∈ N0, (2.12)

and we have shown that f is contained in the right-hand side of (2.6).

In order to prove the equivalence of the A1,γ(C)-convergence with the conditions (i) and

(ii), assume first that fn
A1,γ−→ f for some sequence (fn) ⊂ A1,γ(C) and f ∈ A1,γ(C). Then by

Definition 2.1 there exists B ∈ [0, γ) such that

lim
n→∞

∥∥∥(fn − f)e−B| · |
∥∥∥
∞

= 0. (2.13)

If we choose An := ‖(fn − f)e−B| · |‖∞ then |fn(z)− f(z)| ≤ AneB|z|, z ∈ C, and in the same
way as in the above argument (showing that (2.9) implies (2.12)) one concludes

∣∣f (k)n − f (k)
∣∣ ≤ AnC̃ B̃k

k!
, k ∈ N0, n ∈ N.

Hence (i) is satisfied, and from (2.13) we conclude that (ii) holds as well.

Conversely, assume that (i) and (ii) hold true for some sequence (fn) ⊂ A1,γ(C) and
f ∈ A1,γ(C), and some sequence (An) ≥ 0 and B ∈ [0, γ). Then we obtain in the same way
as above (showing that (2.7) leads to (2.8)) that

|fn(z)− f(z)| ≤ AneB|z|, z ∈ C.

As lim
n→∞

An = 0 we conclude lim
n→∞

‖(fn − f)e−B| · |‖∞ = 0, which shows fn
A1,γ−→ f .
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3 Proofs of Theorem 1.3, Theorem 1.4 and Theorem 1.5

In this section we prove the main results of this note. First, Lemma 3.1 provides some basic
properties of the function Λ from (1.12), which will be used throughout this section.

Lemma 3.1. For the function Λ in (1.12) the following statements hold:

(i) Λ(−z) = 2ez
2 − Λ(z);

(ii) d
dzΛ(z) = 2zΛ(z)− 2√

π
;

(iii) for |z| → ∞ one has

Λ(z) =


1√
πz

+O
(

1
|z|2

)
, if Re(z) ≥ 0,

2ez
2

+ 1√
πz

+O
(

1
|z|2

)
, if Re(z) ≤ 0;

(3.1)

(iv) Λ admits the power series representation

Λ(z) =
∞∑
n=0

(−1)n

Γ(n2 + 1)
zn. (3.2)

Proof. (i) Since erf(−z) = − erf(z), we conclude from the definition of Λ in (1.12), that

Λ(−z) = ez
2
(1 + erf(z)) = 2ez

2 − ez2(1− erf(z)) = 2ez
2 − Λ(z).

(ii) Since d
dz erf(z) = 2√

π
e−z

2
, we conclude

d

dz
Λ(z) = 2zez

2
(1− erf(z))− ez2 2√

π
e−z

2
= 2zΛ(z)− 2√

π
.

(iii) Inserting the integral representation of the error function into Λ in (1.12), gives

Λ(z) =
2√
π
ez

2

(∫ ∞
0

e−ξ
2
dξ −

∫ z

0
e−ξ

2
dξ

)
. (3.3)

Now we use that the complex integral over the entire function e−ξ
2

is path independent and
that limx→∞

∫ x+z
x e−ξ

2
dξ = 0. Hence the two integrals on the right-hand side of (3.3) can be

replaced by a path integral from z to ∞ parallel to the real axis, which implies

Λ(z) =
2√
π
ez

2

∫ ∞
0

e−(z+s)
2
ds =

2√
π

∫ ∞
0

e−s
2−2zsds. (3.4)

Using partial integration in (3.4) leads to

Λ(z) = − 1√
π

∫ ∞
0

1

z + s

d

ds
e−s

2−2zsds =
1√
π

(
1

z
−
∫ ∞
0

e−s
2−2zs

(z + s)2
ds

)
.

In the case Re(z) ≥ 0 we can use e−2Re(z)s ≤ 1 as well as |z + s|2 ≥ |z|2 to estimate the
integral on the right-hand side by∣∣∣∣∫ ∞

0

e−s
2−2zs

(z + s)2
ds

∣∣∣∣ ≤ ∫ ∞
0

e−2Re(z)s−s2

|z + s|2
ds ≤

∫ ∞
0

e−s
2

|z|2
ds =

√
π

2|z|2
,
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which shows the asymptotic behaviour for Re(z) ≥ 0. The case Re(z) ≤ 0 follows from (i).

(iv) In order to prove (3.2), we rewrite (3.4) in the form

Λ(z) =
2√
π

∫ ∞
0

e−s
2−2szds

=
2√
π

∞∑
n=0

(−2z)n

n!

∫ ∞
0

e−s
2
snds

=
1√
π

∞∑
n=0

(−2)nΓ(n+1
2 )

n!
zn,

where dominated convergence theorem was used in the second equality. Then the Legendre
duplication formula

Γ

(
n+ 1

2

)
Γ
(n

2
+ 1
)

=

√
π

2n
Γ(n+ 1) =

√
π

2n
n!

implies the power series representation (3.2).

Now the explicit solution Ψ of (1.6) with initial condition Ψ(0, x) = eiax, stated in The-
orem 1.3, will be proven. For the convenience of the reader we prefer not to use the Green
function (1.11) and the corresponding integral representation (1.10) of the solution (some-
times it is not exactly stated for which classes of initial conditions the integral exists), but
instead we give a self-contained direct proof.

Proof of Theorem 1.3. To compute the derivatives of Ψfree, Ψ(0) and Ψ(±) for t > 0 and
x ∈ R \ {0} we use Lemma 3.1 (ii). A straightforward calculation leads to

∂

∂t
Ψfree(t, x) = −ia2eiax−ia2t,

∂

∂x
Ψfree(t, x) = iaeiax−ia

2t,

∂2

∂x2
Ψfree(t, x) = −a2eiax−ia2t,

and

∂

∂t
Ψ

(0)
δ (t, x) =

ic2

c2 + a2
e−

x2

4it

[
c2Λ

(
|x|

2
√
it

+ c
√
it

)
+

1

it
√
π

(
|x|

2
√
it
− c
√
it

)]
,

∂

∂x
Ψ

(0)
δ (t, x) =

sgn(x)c2

c2 + a2
e−

x2

4it

[
cΛ

(
|x|

2
√
it

+ c
√
it

)
− 1√

iπt

]
,

∂2

∂x2
Ψ

(0)
δ (t, x) =

c2

c2 + a2
e−

x2

4it

[
c2Λ

(
|x|

2
√
it

+ c
√
it

)
+

1

it
√
π

(
|x|

2
√
it
− c
√
it

)]
,

and

∂

∂t
Ψ

(±)
δ (t, x) =

ic

2(c∓ ia)
e−

x2

4it

[
a2Λ

(
|x|

2
√
it
± ia
√
it

)
− 1

it
√
π

(
|x|

2
√
it
∓ ia
√
it

)]
,

∂

∂x
Ψ

(±)
δ (t, x) =

sgn(x)c

2(c∓ ia)
e−

x2

4it

[
∓iaΛ

(
|x|

2
√
it
± ia
√
it

)
+

1√
iπt

]
,

∂2

∂x2
Ψ

(±)
δ (t, x) =

c

2(c∓ ia)
e−

x2

4it

[
a2Λ

(
|x|

2
√
it
± ia
√
it

)
− 1

it
√
π

(
|x|

2
√
it
∓ ia
√
it

)]
.

9



It follows that the individual functions Ψfree, Ψ
(0)
δ , Ψ

(±)
δ and hence also their sum Ψ fulfill

(1.7). Moreover, the continuity condition (1.8) is satisfied by the individual functions and
by Ψ as well. Combining the first spatial derivatives from above, we find the following jump
conditions at x = 0 for the individual functions:

∂

∂x
Ψfree(t, 0

+)− ∂

∂x
Ψfree(t, 0

−) = 0,

∂

∂x
Ψ

(0)
δ (t, 0+)− ∂

∂x
Ψ

(0)
δ (t, 0−) = 2cΨ

(0)
δ (t, 0)− 2c2

(c2 + a2)
√
iπt

,

∂

∂x
Ψ

(±)
δ (t, 0+)− ∂

∂x
Ψ

(±)
δ (t, 0−) =

c

c∓ ia

(
∓iaΛ

(
±ia
√
it
)

+
1√
iπt

)
.

Note that the identity
∑
± Λ

(
±ia
√
it
)

= 2e−ia
2t in Lemma 3.1 (i) implies

∑
±

∓iac
c∓ ia

Λ
(
±ia
√
it
)

= 2ce−ia
2t −

∑
±

c2

c∓ ia
Λ
(
±ia
√
it
)

= 2c

(
Ψfree(t, 0) +

∑
±

Ψ
(±)
δ (t, 0)

)
.

The above formulas, combined with
∑
±

1
c∓ia = 2c

c2+a2
, then give jump condition (1.9),

∂

∂x
Ψ(t, 0+)− ∂

∂x
Ψ(t, 0−) = 0 + 2cΨ

(0)
δ (t, 0)− 2c2

(c2 + a2)
√
iπt

+ 2c

(
Ψfree(t, 0) +

∑
±

Ψ
(±)
δ (t, 0)

)
+
∑
±

c

(c∓ ia)
√
iπt

= 2cΨ(t, 0).

Finally, we check the initial condition Ψ(0, x) = eiax, for every x ∈ R. For x = 0 it follows
immediately from Λ(0) = 1, that

Ψ(0, 0) = 1 +
c2

c2 + a2
− c

2(c− ia)
− c

2(c+ ia)
= 1.

Fix now any x ∈ R \ {0} and note that we can choose t > 0 sufficiently small, such that

Re

(
|x|

2
√
it

+ c
√
it

)
≥ 0 and Re

(
|x|

2
√
it
± ia
√
it

)
≥ 0.

Hence, for t→ 0 we obtain the asympotics

Ψ
(0)
δ (t, x) =

c2

c2 + a2
e−

x2

4it

 1
√
π
(
|x|
2
√
it

+ c
√
it
) +O(t)

→ 0,

Ψ
(±)
δ (t, x) = − c

2(c∓ ia)
e−

x2

4it

 1
√
π
(
|x|
2
√
it
± ia
√
it
) +O(t)

→ 0,

10



from Lemma 3.1 (iii) and consequently the initial value

Ψ(0, x) = Ψfree(0, x) = eiax, x ∈ R \ {0}.

Hence, the initial condition is fulfilled for all x ∈ R and we have shown that the function
Ψ in (1.13) is a solution of (1.6) with initial condition eiax. This completes the proof of
Theorem 1.3.

Using the explicit representation of the solution Ψ in Theorem 1.3 we will now verify its
long time behaviour in Theorem 1.4.

Proof of Theorem 1.4. For the functions Ψ
(±)
δ of (1.14) we note, that for large enough t > 0

we get

Re

(
|x|

2
√
it
± ia
√
it

)
≥ 0, if ± a < 0, and

Re

(
|x|

2
√
it
± ia
√
it

)
≤ 0, if ± a > 0.

Now we can use Lemma 3.1 (iii) and the characteristic functions 1R± of R+ = (0,∞) and
R− = (−∞, 0), to get the expansion

Ψ
(±)
δ (t, x) = − c e−

x2

4it

2(c∓ ia)

2 1R±(a)e

(
|x|

2
√
it
±ia
√
it
)2

+
1

|x|
√
π

2
√
it
± ia
√
iπt

+O

 1∣∣∣ |x|
2
√
it
± ia
√
it
∣∣∣2



= −c1R±(a)

c∓ ia
e±ia|x|−ia

2t ∓ c e−
x2

4it

2ia
√
iπt(c∓ ia)

(
1∓ |x|2at

) +O

 1∣∣∣ |x|
2
√
it
± ia
√
it
∣∣∣2
 ,

where we were allowed to include the exponential e−
x2

4it into the O(·) term, since its absolute

value is 1. Using 1
1+ε = 1+O(ε) and 1

1+ε = O(1) for ε→ 0, we can rewrite Ψ
(±)
δ asymptotically

as

Ψ
(±)
δ (t, x) = −c1R±(a)

c∓ ia
e±ia|x|−ia

2t ∓ c

2ia
√
iπt(c∓ ia)

e−
x2

4it

(
1 +O

(
1

t

))
+O

(
1

t

)
= −c1R±(a)

c∓ ia
e±ia|x|−ia

2t ∓ c

2ia
√
iπt(c∓ ia)

e−
x2

4it +O
(

1

t

)
.

In order to expand Ψ
(0)
δ , we note, that for large enough t > 0 we have

Re

(
|x|

2
√
it

+ c
√
it

)
≥ 0, if c > 0, and

Re

(
|x|

2
√
it

+ c
√
it

)
≤ 0, if c < 0.

11



We use again Lemma 3.1 (iii) and obtain in a similar way as above, that

Ψ
(0)
δ (t, x) =

c2

c2 + a2
e−

x2

4it

2 1R−(c)e

(
|x|

2
√
it
+c
√
it
)2

+
1

|x|
√
π

2
√
it

+ c
√
iπt

+O

 1∣∣∣ |x|
2
√
it

+ c
√
it
∣∣∣2



=
2c21R−(c)

c2 + a2
ec|x|+itc

2
+

c
√
iπt(c2 + a2)

(
1 + |x|

2itc

)e− x24it +O

 1∣∣∣ |x|
2
√
it

+ c
√
it
∣∣∣2


=
2c21R−(c)

c2 + a2
ec|x|+itc

2
+

c√
iπt(c2 + a2)

e−
x2

4it

(
1 +O

(
1

t

))
+O

(
1

t

)
=

2c21R−(c)

c2 + a2
ec|x|+itc

2
+

c√
iπt(c2 + a2)

e−
x2

4it +O
(

1

t

)
.

Summing up the terms from the above expansions we obtain

Ψ(t, x) = eiax−ia
2t +

2c21R−(c)

c2 + a2
ec|x|+itc

2 −
∑
±

c1R±(a)

c∓ ia
e±ia|x|−ia

2t

+
1√
iπt

(
c

c2 + a2
− c

2ia(c− ia)
+

c

2ia(c+ ia)

)
e−

x2

4it +O
(

1

t

)
= eiax−ia

2t +
2c21R−(c)

c2 + a2
ec|x|+itc

2 − c

c− i|a|
ei|ax|−ia

2t +O
(

1

t

)
= e−ia

2t

(
eiax − c

c− i|a|
ei|ax|

)
+ 1R−(c)

2c2

c2 + a2
ec|x|+itc

2
+O

(
1

t

)
.

Next we define for every fixed t > 0 and x ∈ R the differential expression U(t, x), acting
on functions in an auxilary variable ξ, by

U(t, x) = Ufree(t, x) + U
(0)
δ (t, x) + U

(+)
δ (t, x) + U

(−)
δ (t, x), (3.5)

with the components

Ufree(t, x) =

∞∑
k=0

k∑
n=0

(it)nxk−n

n!(k − n)!

dn+k

dξn+k
,

U
(0)
δ (t, x) = e−

x2

4itΛ

(
|x|

2
√
it

+ c
√
it

) ∞∑
n=0

1

c2n
d2n

dξ2n
,

U
(+)
δ (t, x) = e−

x2

4it

∞∑
m=0

∞∑
n=0

n∑
k=0

(−1)n+1(it)
n
2
−k|x|k

2k+1cmΓ(n2 + 1)

(
n

k

)
dn−k+m

dξn−k+m
,

U
(−)
δ (t, x) = e−

x2

4it

∞∑
m=0

∞∑
n=0

n∑
k=0

(−1)m−k+1(it)
n
2
−k|x|k

2k+1cmΓ(n2 + 1)

(
n

k

)
dn−k+m

dξn−k+m
.

The next lemma shows how the differential expression U(t, x) can be used to gain the
solution of (1.6) out of the initial condition.
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Lemma 3.2. Let c ∈ R\{0} and consider the differential expression U(t, x) in (3.5) for fixed
t > 0 and x ∈ R. Then

Ψn(t, x) =
(
U(t, x)Fn

)
(0) (3.6)

holds for every function Fn of the form (1.4) with |k(n)j | < |c|. Here Ψn is the solution of
(1.6) with initial condition Ψn(0, x) = Fn(x).

Proof. Since the differential expression U(t, x) in (3.5) as well as the Schrödinger equation
(1.6) are linear, and because the function Fn is a linear combination of exponentials, it is
sufficient to prove (3.6) for Fn(ξ) = eiaξ with |a| < |c|. Since for this initial condition
we have already computed the explicit solutions Ψn = Ψ in Theorem 1.3, we will compare
ξ 7→ U(t, x)eiaξ from (3.5) at ξ = 0 with Ψ in (1.13). This will now be done for each component
seperately. The following identity will be used:

dn

dξn
eiaξ
∣∣∣
ξ=0

= (ia)n, n ∈ N0. (3.7)

Step 1. We rewrite the function Ψfree in (1.14) as the power series

Ψfree(t, x) =

∞∑
k=0

(−ita2 + iax)k

k!

=
∞∑
k=0

1

k!

k∑
n=0

(
k

n

)
(iax)k−n(−ita2)n

=
∞∑
k=0

k∑
n=0

(it)nxk−n

n!(k − n)!
(ia)n+k.

This representation together with the identity (3.7) shows

Ψfree(t, x) = Ufree(t, x)eiaξ
∣∣∣
ξ=0

.

Step 2. Since we have assumed |a| < |c| we can use the geometric series to write Ψ
(0)
δ in (1.14)

in the form

Ψ
(0)
δ (t, x) =

1

1−
(
ia
c

)2 e− x24itΛ

(
|x|

2
√
it

+ c
√
it

)

= e−
x2

4itΛ

(
|x|

2
√
it

+ c
√
it

) ∞∑
n=0

1

c2n
(ia)2n.

Hence we conclude
Ψ

(0)
δ (t, x) = U

(0)
δ (t, x)eiaξ

∣∣∣
ξ=0

.

Step 3. For the last two terms U
(±)
δ (t, x) we use (3.2) to write Ψ

(±)
δ in (1.14) as

Ψ
(±)
δ (t, x) = − 1

2(1∓ ia
c )
e−

x2

4itΛ

(
|x|

2
√
it
± ia
√
it

)
= −1

2

∞∑
m=0

(
± ia
c

)m
e−

x2

4it

∞∑
n=0

(−1)n

Γ(n2 + 1)

(
|x|

2
√
it
± ia
√
it

)n
= e−

x2

4it

∞∑
m=0

∞∑
n=0

n∑
k=0

(−1)n+1(it)
n
2
−k|x|k

2k+1cmΓ(n2 + 1)

(
n

k

)
(±ia)n−k+m,
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which shows
Ψ

(±)
δ (t, x) = U

(±)
δ (t, x)eiaξ

∣∣∣
ξ=0

.

Summing up the identities in the above Steps 1 – 3 we conclude (3.6).

In the next lemma we study the continuity of U(t, x) in the space A1,|c|(C).

Lemma 3.3. Let c ∈ R \ {0} and consider the differential expression U(t, x) from (3.5) for
fixed t > 0 and x ∈ R. Then for every B ∈ [0, |c|) there exists some SB(t, x) ≥ 0 such that for

any function f ∈ A1,|c|(C), whose power series coefficients f (k) from (2.4) satisfy |f (k)| ≤ ABk

k!
for some A ≥ 0, the estimate

|U(t, x)f(ξ)| ≤ ASB(t, x)eB|ξ|, ξ ∈ C, (3.8)

holds. In particular, the differential expression U(t, x) gives rise to an everywhere defined
continuous operator in A1,|c|(C). Furthermore, the function SB can be chosen to be continuous
in the variables (t, x) ∈ (0,∞)× R.

Remark 3.4. In Lemma 3.3 the differential operator U(t, x) is studied in the space A1,|c|(C),
introduced in Definition 2.1. We emphasize, that it is not possible to deal with the larger space
A1(C) = A1,∞(C), which appears in [7, 8, 9, 11, 14], in a similar context. In fact, the finite
constant c ∈ R\{0} models the strength of the δ-interaction in the Schrödinger equation (1.6)
and the estimate (3.8), which is the key ingredient in the proof of Theorem 1.5, does not hold
for an arbitrary function f ∈ A1(C). Furthermore, even the expression (U(t, x)f)(ξ) itself is
in general not defined for f ∈ A1(C), since the appearing sums do not converge.

Proof of Lemma 3.3. Recall from Lemma 2.2 that for f ∈ A1,|c|(C) there exists A ≥ 0 and

B ∈ [0, |c|) such that |f (k)| ≤ ABk

k! holds for the coefficients f (k) in the power series (2.4). In
particular, for such f we have the useful estimate∣∣∣∣ dndξn f(ξ)

∣∣∣∣ ≤ ∞∑
k=n

|f (k)| k!

(k − n)!
|ξ|k−n ≤ A

∞∑
k=n

Bk

(k − n)!
|ξ|k−n = ABneB|ξ|, ξ ∈ C. (3.9)

In order to verify (3.8), the components Ufree(t, x), U
(0)
δ (t, x) and U

(±)
δ (t, x) of U(t, x) in (3.5)

will be discussed in separate steps in a similar way as in the proof of Lemma 3.2.

Step 1. Using (3.9) in the representation of Ufree(t, x) leads to the estimate

∣∣Ufree(t, x)f(ξ)
∣∣ ≤ AeB|ξ| ∞∑

k=0

k∑
n=0

tn|x|k−n

n!(k − n)!
Bn+k

= AeB|ξ|
∞∑
k=0

1

k!

(
B2t+B|x|

)k
= ASB,free(t, x)eB|ξ|,

where SB,free(t, x) = eB
2t+B|x|.

Step 2. For the component U
(0)
δ (t, x) we obtain

∣∣U (0)
δ (t, x)f(ξ)

∣∣ ≤ AeB|ξ| ∣∣∣∣Λ( |x|2
√
it

+ c
√
it

)∣∣∣∣ ∞∑
n=0

B2n

c2n
= AS

(0)
B,δ(t, x)eB|ξ|,
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with S
(0)
B,δ(t, x) =

∣∣∣Λ( |x|
2
√
it

+ c
√
it
)∣∣∣ c2

c2−B2 , which is a positive finite number since we assumed

B < |c|.

Step 3. For the components U
(±)
δ (t, x) we again use (3.9) and estimate

∣∣U (±)
δ (t, x)f(ξ)

∣∣ ≤ AeB|ξ| ∞∑
m=0

∞∑
n=0

n∑
k=0

t
n
2
−k|x|k

2k+1|c|mΓ(n2 + 1)

(
n

k

)
Bn−k+m

=
A

2
eB|ξ|

∞∑
m=0

∞∑
n=0

(
B

|c|

)m 1

Γ(n2 + 1)

(
|x|

2
√
t

+
√
tB

)n
= AeB|ξ|

|c|
2(|c| −B)

Λ

(
− |x|

2
√
t
−
√
tB

)
,

where S
(±)
B,δ (t, x) = |c|

2(|c|−B)Λ
(
− |x|

2
√
t
−
√
tB
)

.

The above estimates, together with (3.5), show that (3.8) holds for t > 0 and x ∈ R with

SB(t, x) := SB,free(t, x) + S
(0)
B,δ(t, x) + S

(+)
B,δ (t, x) + S

(−)
B,δ (t, x),

and it is also clear that SB is a continuous nonnegative function on (0,∞) × R. Note also
that Lemma 2.2 and (3.8) imply that U(t, x) is an everywhere defined operator in A1,|c|(C),
which maps continuously into A1,|c|(C).

We will now use the representation in Lemma 3.2 and the estimate in Lemma 3.3 to finally
prove Theorem 1.5.

Proof of Theorem 1.5. Since Fn
A1,|c|−→ eia ·, there exist a sequence (An) ≥ 0 and B ∈ [0, |c|)

such that the coefficients of the power series of (Fn − eia · ) satisfy∣∣∣∣F (k)
n − (ia)k

k!

∣∣∣∣ ≤ AnBk

k!
, and lim

n→∞
An = 0;

cf. Lemma 2.2. Let K ⊆ (0,∞) × R be an arbitrary compact set, denote the solutions
of (1.7)–(1.9) with initial condition Fn(x) by Ψn, and let Ψ be the solution in (1.13) with
initial condition Ψ(0, x) = eiax. Using the representation in Lemma 3.2 and the estimate in
Lemma 3.3 for ξ = 0, we conclude

lim
n→∞

sup
(t,x)∈K

∣∣Ψn(t, x)−Ψ0(t, x)
∣∣ = lim

n→∞
sup

(t,x)∈K

∣∣(U(t, x)(Fn − eia · )
)
(0)
∣∣

≤ lim
n→∞

sup
(t,x)∈K

AnSB(t, x)eB 0

= sup
(t,x)∈K

SB(t, x) lim
n→∞

An = 0,

where sup(t,x)∈K SB(t, x) <∞ since SB is continuous on (0,∞)× R by Lemma 3.3.
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