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We show that a Schrödinger operator Aδ,α with a δ-interaction of strength α supported on a bounded or un-
bounded C2-hypersurface Σ ⊂ Rd, d ≥ 2, can be approximated in the norm resolvent sense by a family
of Hamiltonians with suitably scaled regular potentials. The differential operator Aδ,α with a singular inter-
action is regarded as a self-adjoint realization of the formal differential expression −∆ − α〈δΣ, ·〉δΣ, where
α : Σ → R is an arbitrary bounded measurable function. We discuss also some spectral consequences of this
approximation result.
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1 Introduction

Singular Schrödinger operators with ‘potentials’ supported on subsets of the configuration space of a lower di-
mension are often used as models of physical systems because they are easier to solve, the original differential
equation being reduced to the analysis of an algebraic or functional problem. The best known about them are
solvable models with point interactions used in physics since the 1930s (see [26]), the rigorous analysis of which
started from the seminal paper [8]; for a survey see the monograph [2]. In the last two decades the attention
focused on interactions supported on curves, surfaces, and more complicated sets composed of them, which are
used to model ‘leaky’ quantum systems in which the particle is confined to such manifolds or complexes, but the
tunnelling between different parts of the interaction support is not neglected; for a review see [15] or [19, Chap-
ter 10].

While these models are useful and mathematically accessible, one has to keep in mind that the singular inter-
action represents an idealized form of the actual, more realistic description. This naturally inspires the question
about approximations of such singular potentials by regular ones. In the simplest case of a point interaction this
problem was already addressed in the 1930s in [37]. Starting from the 1970s the approximation of Hamilto-
nians with point interactions supported on a finite or an infinite set of points in Rd, d ∈ {1, 2, 3}, was treated
systematically; cf. the monograph [2] and the references therein.
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Apart from that, the literature on the approximation of Schrödinger operators with δ-potentials supported on
curves in R2 and surfaces in R3 is less complete; there are results available for the special cases that Σ is a sphere
in R3 [5,34], that Σ is the boundary of a star-shaped domain in the plane [32], and that Σ is a smooth planar curve
or surface and the interaction strength is constant [16,18]. In all of the above mentioned works convergence in the
norm resolvent sense is shown. Abstract approaches developed in [3,35] cover more cases but imply only strong
resolvent convergence in this context; for a very recent result on convergence in the operator norm in the case of
compact hypersurfaces we refer to [22, Theorem 7.2]. We point out that the usage of scaled regular potentials
is not the unique way of an approximation of δ-interactions supported on hypersurfaces, other mechanisms of
approximation are discussed in e.g. [11, 12, 20, 31]. It is also worth mentioning that the approximation of δ-
interactions supported on special periodic structures in R2 has important applications in the mathematical theory
of photonic crystals, see [21] and the references therein.

The aim of the present paper is to analyze the general case where the interaction support is a C2-smooth
hypersurface Σ ⊂ Rd, d ≥ 2, which is not necessarily bounded or closed, and the interaction strength is an
arbitrary real valued bounded measurable function α on Σ. Following the approach of [16, 18] we show that the
corresponding singular Schrödinger operator can be approximated in the norm resolvent sense by a family of
regular ones with potentials suitably scaled in the direction perpendicular to Σ. We pay particular attention to the
order of convergence and provide all preparatory technical integral estimates in a complete and self-contained
form. We shall also mention some spectral consequences of the general approximation result.

In the following we describe our main result. Let d ≥ 2 and let Σ ⊂ Rd be a bounded or unbounded orientable
C2-hypersurface as in Definition 2.1, and consider the symmetric sesquilinear form

aδ,α[f, g] =
(
∇f,∇g

)
L2(Rd;Cd)

−
∫

Σ

α f |Σ g|Σ dσ, dom aδ,α = H1(Rd),

where α ∈ L∞(Σ) is a real valued function and f |Σ, g|Σ denote the traces of functions f, g ∈ H1(Rd) on Σ.
Standard arguments yield that aδ,α is a densely defined, closed, and semibounded form in L2(Rd), and hence
there exists a unique self-adjoint operator Aδ,α in L2(Rd) such that

(Aδ,αf, g) = aδ,α[f, g], f ∈ domAδ,α, g ∈ dom aδ,α, (1.1)

see Lemma 2.7 for more details. The operator Aδ,α is regarded as a Schrödinger operator with a δ-interaction of
strength α supported on Σ which corresponds to the formal singular differential expression −∆ − α〈δΣ, ·〉δΣ;
cf. [10] and [7, Theorem 3.3]. The choice of the negative potential sign is motivated by the fact that interesting
spectral features are in this context usually associated with attractive interactions.

Let ν be the continuous unit normal vector field on Σ, choose β > 0 sufficiently small as in Hypothesis 2.3
and consider layer neighborhoods Ωε of Σ of the form

Ωε :=
{
xΣ + tν(xΣ) : xΣ ∈ Σ, t ∈ (−ε, ε)

}
, 0 < ε ≤ β.

Fix a real valued potential V ∈ L∞(Rd) with support in Ωβ , define the scaled potentials Vε ∈ L∞(Rd) with
support in Ωε by

Vε(x) :=

{
β
ε V
(
xΣ + β

ε tν(xΣ)
)
, if x = xΣ + tν(xΣ) ∈ Ωε,

0, else,
(1.2)

and consider the corresponding self-adjoint Schrödinger operators

Hεf = −∆f − Vεf, domHε = H2(Rd). (1.3)

With these preparatory considerations we can formulate the main result of the present paper.
Theorem 1.1 Let Σ ⊂ Rd, d ≥ 2, be an orientable C2-hypersurface as in Definition 2.1 which satisfies

Hypothesis 2.3, let Q ∈ L∞(Rd) be real valued, and let V ∈ L∞(Rd) be real valued with support in Ωβ . Define
α ∈ L∞(Σ) as the transversally averaged value of t 7→ V (xΣ + tν(xΣ)) by

α(xΣ) :=

∫ β

−β
V (xΣ + sν(xΣ))ds (1.4)
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for a.e. xΣ ∈ Σ and let Aδ,α be the corresponding Schrödinger operator with a δ-interaction of strength α
supported on Σ. Then there exists a λ0 < 0 such that (−∞, λ0) ⊂ ρ(Aδ,α + Q) ∩ ρ(Hε + Q) for all ε > 0
sufficiently small and for every λ ∈ (−∞, λ0) there is a constant c = c(d, λ,Σ, V,Q) > 0 such that∥∥(Hε +Q− λ)−1 − (Aδ,α +Q− λ)−1

∥∥ ≤ c ε(1 + | ln ε|
)

holds for all ε > 0 sufficiently small. In particular, Hε + Q converges to Aδ,α + Q in the norm resolvent sense,
as ε→ 0+.

For given potentials Q and V Theorem 1.1 shows that the associated Hamiltonians Hε +Q in (1.3) converge
in the norm resolvent sense to Aδ,α +Q, where the interaction strength α is as in (1.4). In the next corollary the
converse situation is treated.

Corollary 1.2 Let Σ ⊂ Rd, d ≥ 2, be an orientable C2-hypersurface as in Definition 2.1 which satisfies
Hypothesis 2.3, letQ ∈ L∞(Rd) be real valued, let α ∈ L∞(Σ) be real valued and letAδ,α be the corresponding
Schrödinger operator with a δ-interaction of strength α supported on Σ. Define V ∈ L∞(Rd) by

V (x) :=

{
1

2βα(xΣ), if x = xΣ + tν(xΣ) ∈ Ωβ ,

0, else,

and let the associated scaled potentials Vε and HamiltoniansHε be as in (1.2) and (1.3), respectively. Then there
exists a λ0 < 0 such that (−∞, λ0) ⊂ ρ(Aδ,α + Q) ∩ ρ(Hε + Q) for all ε > 0 sufficiently small and for every
λ ∈ (−∞, λ0) there is a constant c = c(d, λ,Σ, α,Q) > 0 such that∥∥(Hε +Q− λ)−1 − (Aδ,α +Q− λ)−1

∥∥ ≤ c ε(1 + | ln ε|
)

holds for all ε > 0 sufficiently small. In particular, Hε + Q converges to Aδ,α + Q in the norm resolvent sense,
as ε→ 0+.

Let us briefly describe the structure of the proof of Theorem 1.1 and the contents of this paper. Section 2
contains preliminary material, definitions and properties of the hypersurfaces Σ and their layer neighborhoods,
as well as a representation of the resolvent of the Schrödinger operator Aδ,α which goes back to [10]. The heart
of the proof of Theorem 1.1 is in Section 3. The main part of this section deals with the special case Q = 0.
For this purpose, the potentials Vε in (1.2) are factorized with the standard Birman-Schwinger method and useful
representations of the resolvent of Hε are provided. The convergence analysis is then done by comparing the
different resolvent representations from Theorem 2.8 and Proposition 3.3, and essentially reduces to convergence
properties of certain integral operators discussed in Lemma 3.4. However, the proof of Lemma 3.4 requires
various refined technical estimates for integrals containing the Green’s function for the free Laplacian which are
outsourced to Appendix A. We wish to mention that in Appendix A particular attention is paid to keep the present
paper self-contained. Therefore all necessary estimates are presented in full detail and complete rigorous form;
as a result Appendix A is of mainly technical nature. The statement of Theorem 1.1 in the general case with
Q 6= 0 follows then from the previous considerations by a simple perturbation argument. Eventually, there is a
short Appendix B in which it is shown that boundaries of bounded C2-domains satisfy the assumptions imposed
on the hypersurfaces Σ in this paper.

Finally, we agree that throughout the paper c, C,Ck, C̃k, k ∈ N, denote constants that do not depend on
space variables and on ε. In the formulation of the results we usually write C = C(. . . ) to emphasize on which
parameters these constants depend, but in the proofs we will mostly omit this.

2 Preliminaries

This section contains some preliminary material that will be useful in the main part of the paper. In Section 2.1
we recall certain basic facts from differential geometry of hypersurfaces in Euclidean spaces and of layers built
around these hypersurfaces. Then, in Section 2.2 we define Schrödinger operators with δ-interactions supported
on hypersurfaces in a mathematically rigorous way.
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2.1 Hypersurfaces and their layer neighborhoods

In this section we introduce several notions associated to hypersurfaces and layers around these hypersurfaces.
We follow the presentation from [27], which we adopt for our applications. We start with a suitable definition of
a class of hypersurfaces in the Euclidean space Rd. We wish to emphasize that the hypersurfaces considered here
are in general unbounded and not necessarily closed; note also that the index set I in the parametrization below
is assumed to be finite.

Definition 2.1 We call Σ ⊂ Rd, d ≥ 2, a C2-hypersurface and {ϕi, Ui, Vi}i∈I a parametrization of Σ, if I is
a finite index set and the following holds:

(a) Ui ⊂ Rd−1 and Vi ⊂ Rd are open sets and ϕi : Ui → Vi is a C2-mapping for all i ∈ I;

(b) rankDϕi(u) = d− 1 for all u ∈ Ui and i ∈ I;

(c) ϕi(Ui) = Vi ∩ Σ and ϕi : Ui → Vi ∩ Σ is a homeomorphism;

(d) Σ ⊂
⋃
i∈I Vi;

(e) there exists a constant C > 0 such that

|ϕi(u)− ϕi(v)| ≤ C|u− v|

for all u, v ∈ Ui and i ∈ I .

Let Σ ⊂ Rd be a C2-hypersurface with parametrization {ϕi, Ui, Vi}i∈I . Then the inverse mappings ϕ−1
i :

Vi ∩Σ→ Ui are often called charts and the family {ϕ−1
i , Vi ∩Σ, Ui}i∈I atlas of Σ. For x = ϕi(u) ∈ Σ (u ∈ Ui,

i ∈ I) we denote the tangent hyperplane by

Tx := span
{
∂1ϕi(u), . . . , ∂d−1ϕi(u)

}
.

The tangent hyperplane Tx is independent of the parametrization of Σ and dimTx = d − 1 holds by Defini-
tion 2.1 (b). Subsequently, it is assumed that Σ is orientable, i.e. there exists a globally continuous unit normal
vector field on Σ. From now on we fix a continuous unit normal vector field (which is unique up to multiplication
with −1) and denote it by ν(x) for x ∈ Σ. Then the mapping Ui 3 u 7→ ν(ϕi(u)) is continuously differentiable
for all i ∈ I and ∂jν(ϕi(u)) ∈ Tϕi(u) for all u ∈ Ui and j ∈ {1, . . . , d − 1}, see, e.g., [27, Lemma 3.9 and
Section 3F].

The first fundamental form Ix associated to Σ is the bilinear form on the tangent hyperplane Tx defined by

Ix[a, b] := 〈a, b〉, a, b ∈ Tx,

where 〈·, ·〉 denotes the standard scalar product in Rd. For x = ϕi(u) ∈ Σ (u ∈ Ui, i ∈ I) the matrix representing
Ix in the canonical basis {(∂jϕi)(u)}d−1

j=1 of Tx is given by

Gi(u) =
(〈

(∂kϕi)(u), (∂lϕi)(u)
〉)d−1

k,l=1
(2.1)

and also known as the metric tensor of Σ. Observe thatGi(u) = (Dϕi(u))> ·(Dϕi(u)). Together with condition
(b) in Definition 2.1 this implies that Gi(u) is positive definite.

Finally, we introduce the notion of the Weingarten map or shape operator.

Definition 2.2 Let Σ ⊂ Rd, d ≥ 2, be an orientable C2-hypersurface with parametrization {ϕi, Ui, Vi}i∈I
and let ν(x), x ∈ Σ, be a continuous unit normal vector field on Σ. For x = ϕi(u) ∈ Σ (u ∈ Ui, i ∈ I) the
Weingarten map W (x) : Tx → Tx is the linear operator acting on the basis vectors {∂jϕi(u)}d−1

j=1 of Tx as

W (x)∂jϕi(u) := −∂jν(ϕi(u)).
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The Weingarten map W (x) is well defined (but its sign depends on the choice of the continuous unit normal
vector field), independent of the parametrization and symmetric with respect to the inner product induced by the
first fundamental form, see e.g. [27, Lemma 3.9] for the case d = 3. For x = ϕi(u) ∈ Σ (u ∈ Ui, i ∈ I) the
matrix associated to the linear mapping W (x) corresponding to the canonical basis {∂jϕi(u)}d−1

j=1 of Tx will be
denoted by Li(u).

The eigenvalues {µj(u)}d−1
j=1 of Li(u) are the principal curvatures of Σ and do not depend on the choice of the

parametrization, see [27, Definition 3.46]. In particular, the quantity det(1−tLi(u)) for t ∈ R, which will appear
later frequently, is independent of the parametrization and will also be denoted by det(1− tW (x)). Furthermore,
the eigenvalues of W (x) depend continuously on x ∈ Σ, as the entries of Li depend continuously on u ∈ Ui (see
the text after Definition 3.10 in [27]) and ϕi : Ui → Σ ∩ Vi is a homeomorphism.

Next, we discuss a convenient definition of an integral for functions defined on theC2-hypersurface Σ. For this
fix a parametrization {ϕi, Ui, Vi}i∈I of Σ as in Definition 2.1 with a finite index set I and choose a partition of
unity subordinate to {Vi}i∈I , that is a family of functions χi : Rd → [0, 1], i ∈ I , with the following properties:

(i) χi ∈ C∞(Rd) for all i ∈ I;

(ii) suppχi ⊂ Vi for all i ∈ I;

(iii)
∑
i∈I χi(x) = 1 for any x ∈ Σ.

Note that some of the functions χi, i ∈ I , are not compactly supported, if Σ is unbounded.
A function f : Σ→ C is said to be measurable (integrable), if

Ui 3 u 7→ χi(ϕi(u))f(ϕi(u))

is measurable (integrable, respectively) for all i ∈ I . If f : Σ → C is integrable, we define the integral of f
over Σ as ∫

Σ

f(x)dσ(x) :=
∑
i∈I

∫
Ui

χi(ϕi(u))f(ϕi(u))
√

detGi(u)du, (2.2)

where du := dΛd−1(u) denotes the usual (d− 1)-dimensional Lebesgue measure on Ui and Gi(u) is the matrix
of the first fundamental form given in (2.1). The measure σ in (2.2) coincides with the canonical Hausdorff
measure on Σ which is independent of the parametrization of Σ; cf. [28, Appendix C.8]. Therefore, the above
definition of the integral does not depend on the parametrization of Σ and the choice of the partition of unity. We
denote the space of (equivalence classes of) square integrable functions f : Σ→ C with respect to σ by L2(Σ).

Next, we introduce layer neighborhoods of a C2-hypersurface Σ and we impose some additional conditions
on Σ in Hypothesis 2.3 below. For this it is useful to define the functions

ιϕi : Ui × R→ Rd, ιϕi(u, t) := ϕi(u) + tν(ϕi(u)), i ∈ I. (2.3)

The Jacobian matrix of ιϕi , i ∈ I , is given by the d× d matrix

(Dιϕi)(u, t) =
(
(Dϕi)(u)(1− tLi(u)) ν(ϕi(u))

)
and the absolute value of the determinant of this matrix can be expressed as∣∣det

(
(Dιϕi)(u, t)

)∣∣ =
∣∣det(1− tLi(u))

∣∣√detGi(u); (2.4)

cf. [29, Section 2] and [14, Section 3]. We will also make use of the mapping

ιΣ : Σ× R→ Rd, ιΣ(xΣ, t) := xΣ + tν(xΣ), (2.5)

and layer neighborhoods Ωβ of Σ of the form

Ωβ := ιΣ(Σ× (−β, β)), β > 0. (2.6)

We employ the following hypothesis for the hypersurface Σ.
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Hypothesis 2.3 Let Σ ⊂ Rd be an orientable C2-hypersurface with parametrization {ϕi, Ui, Vi}i∈I . Assume
that there exists β > 0 such that

(a) the restriction of the mapping ιΣ on Σ× (−β, β) is injective;

(b) there is a constant η ∈ (0, 1) such that det(1−tW (xΣ)) ∈ (1−η, 1+η) for all xΣ ∈ Σ and all t ∈ (−β, β);

(c) there exists a constant c > 0 such that the mappings ιϕi in (2.3) satisfy∣∣ιϕi(u, t)− ιϕi(v, s)∣∣2 ≥ c2 (|u− v|2 + |s− t|2
)

for all u, v ∈ Ui, s, t ∈ (−β, β) and all i ∈ I .

All the assumptions of Hypothesis 2.3 are satisfied for the boundary of a compact and simply connected C2-
domain; see Appendix B. We also mention that a similar set of assumptions was imposed in [10, Section 4].
In the next proposition it will be shown that item (c) in Hypothesis 2.3 implies that the eigenvalues of W are
uniformly bounded on Σ. In particular, this shows that (b) in Hypothesis 2.3 is then automatically satisfied if
β > 0 is small enough.

Proposition 2.4 Let Σ ⊂ Rd be an orientable C2-hypersurface and assume that item (c) in Hypothesis 2.3
holds. Then the eigenvalues of the matrix of the Weingarten map are uniformly bounded on Σ.

P r o o f. Let β > 0 be as in Hypothesis 2.3 (c) and suppose that the eigenvalues of the Weingarten map are not
uniformly bounded. Then for some i ∈ I there exists u ∈ Ui and an eigenvalue µ of Li(u) such that |µ| > β−1.
Choose a sequence (sn) ⊂ (−β, β) such that s−1

n are not eigenvalues of Li(u) and sn → µ−1. Then

det(1− snLi(u)) 6= 0 and det(1− snLi(u))→ 0

and as Gi(u) is positive definite and has uniformly bounded values by Definition 2.1 (e), the same holds for
det(1− snLi(u))

√
detGi(u), that is,

detDιϕi(u, sn) 6= 0 and detDιϕi(u, sn)→ 0;

cf. (2.4). From Dι−1
ϕi (ιϕi(u, sn)) = (Dιϕi(u, sn))−1 we conclude

detDι−1
ϕi (ιϕi(u, sn)) =

1

detDιϕi(u, sn)
→∞. (2.7)

On the other hand, by Hypothesis 2.3 (c) the mapping ι−1
ϕi is Lipschitz continuous on ιϕi(Ui × (−β, β)) and

hence ‖Dι−1
ϕi ‖ is bounded; this contradicts (2.7).

In the next example we provide a C2-hypersurface which does not satisfy Hypothesis 2.3; here a curve in R2

with unbounded curvature at “infinity” is discussed.
Example 2.5 Consider the curve

ϕ : R→ R2, u 7→
(

u∫ u
0

sin(t2)dt

)
,

and observe that ϕ(R) is an orientable C2-hypersurface in R2 with parametrization {ϕ,R,R2}. If we fix the unit
normal vector field by

ν(u) =
1

(1 + sin2(u2))1/2

(
− sin(u2)

1

)
,

then the corresponding 1× 1-matrix of the Weingarten map is given by

L(u) =
2u cos(u2)

(1 + sin2(u2))3/2
.

Clearly, L is unbounded and hence, item (b) in Hypothesis 2.3 is not satisfied.
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Under Hypothesis 2.3, the mapping ιΣ in (2.5) is bijective from Σ × (−β, β) onto Ωβ . This allows us to
identify functions f supported on Ωβ with functions f̃ defined on Σ× (−β, β) via the natural identification

f(x) = f(ιΣ(xΣ, t)) = f̃(xΣ, t), x = ιΣ(xΣ, t), xΣ ∈ Σ, t ∈ (−β, β).

Subsequently, L1(Ωβ) is equipped with the d-dimensional Lebesgue measure Λd and L1(Σ × (−β, β)) is
equipped with the measure σ × Λ1. In the next proposition it is shown that L1(Ωβ) and L1(Σ × (−β, β))
can be identified and a useful change of variables formula is provided.

Proposition 2.6 Let Σ ⊂ Rd be an orientable C2-hypersurface, assume that Hypothesis 2.3 is satisfied and
let Ωβ be as in (2.6). Then the following assertions are true.

(i) Let ιβ := ιΣ|Σ×(−β,β). Then, there exist constants 0 < c1 ≤ c2 < +∞ such that

c1‖f‖L1(Ωβ) ≤ ‖f ◦ ιβ‖L1(Σ×(−β,β)) ≤ c2‖f‖L1(Ωβ), f ∈ L1(Ωβ).

In particular, f ∈ L1(Ωβ) if and only if f ◦ ιβ ∈ L1(Σ× (−β, β)).

(ii) For f ∈ L1(Ωβ) the identity∫
Ωβ

f(x)dx =

∫
Σ

∫ β

−β
f(xΣ + tν(xΣ)) det(1− tW (xΣ))dtdσ(xΣ)

holds, where W is the Weingarten map associated to Σ.

P r o o f. Let {ϕi, Ui, Vi}i∈I be a parametrization of Σ with a finite index set I , let {χi}i∈I be a partition of
unity subordinate to the covering {Vi}i∈I and set

χ̃i(x) := χi(xΣ), i ∈ I,

for x = ιβ(xΣ, t) = xΣ + tν(xΣ) ∈ Ωβ with xΣ ∈ Σ and t ∈ (−β, β). The family {χ̃i}i∈I satisfies∑
i∈I

χ̃i(x) = 1 for all x ∈ Ωβ (2.8)

due to the properties of the partition of unity {χi}i∈I .
Let f ∈ L1(Ωβ), let ιϕi be as in (2.3) and let Ωi,β := ιϕi(Ui × (−β, β)). Using (2.8) we get∫

Ωβ

f(x)dx =

∫
Ωβ

∑
i∈I

χ̃i(x)f(x)dx =
∑
i∈I

∫
Ωi,β

χ̃i(x)f(x)dx.

Making the substitution x = ιϕi(u, t), i ∈ I , in each summand of the last formula, we get with the aid of (2.4)∫
Ωβ

f(x)dx =
∑
i∈I

∫
Ui

∫ β

−β
χ̃i(ιϕi(u, t))f(ιϕi(u, t)) det(1− tLi(u))

√
detGi(u)dtdu.

Using χ̃i(ιϕi(u, t)) = χi(ϕi(u)), (2.2) and ιϕi(u, t) = ιβ(ϕi(u), t), we end up with∫
Ωβ

f(x)dx =

∫ β

−β

∫
Σ

f(ιβ(xΣ, t)) det(1− tW (xΣ))dσ(xΣ)dt.

Together with Hypothesis 2.3 (b) this formula implies assertions (i) and (ii).
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2.2 Schrödinger operators with δ-interactions on hypersurfaces

In this section we recall a representation for the resolvent of the self-adjoint Schrödinger operatorAδ,α in L2(Rd)
with a δ-interaction supported on the C2-hypersurface Σ. As in [10] the operator Aδ,α is defined via the corre-
sponding quadratic form with the help of the first representation theorem [25, Theorem VI 2.1]; the functions in
the domain of Aδ,α then satisfy the typical δ-type boundary conditions on Σ, see, e.g., [7, Theorem 3.3]. In the
following Aδ,α is the unique self-adjoint operator in L2(Rd) associated to the form aδ,α in (2.9); cf. (1.1).

Lemma 2.7 Let Σ ⊂ Rd be a C2-hypersurface, assume that Hypothesis 2.3 is satisfied and let α ∈ L∞(Σ)
be a real valued function. Then the symmetric sesquilinear form

aδ,α[f, g] :=
(
∇f,∇g

)
L2(Rd;Cd)

−
∫

Σ

α f |Σ g|Σ dσ, dom aδ,α := H1(Rd), (2.9)

is densely defined, closed and bounded from below in L2(Rd); here f |Σ, g|Σ denote the traces of functions
f, g ∈ H1(Rd) on Σ.

P r o o f. First, we note that Lemma A.3 (i) together with [24, Theorem VII 2, Remark VI 1] (see also [24,
Section VIII 1.1]) imply that for 1

2 < s ≤ 1 there is a bounded trace operator from Hs(Rd) to L2(Σ). In
particular, the form aδ,α in (2.9) is well defined. Moreover, since H1(Rd) is dense in L2(Rd), the form aδ,α is
densely defined in L2(Rd).

Subsequently, fix some s ∈
(

1
2 , 1
)

and cs > 0 such that ‖f |Σ‖L2(Σ) ≤
√
cs‖f‖Hs(Rd) for all f ∈ H1(Rd).

Let ε > 0 and use [23, Theorem 3.30] or [38, Satz 11.18 e)] to see that there exists a C(ε) > 0 such that

|(αf |Σ, f |Σ)L2(Σ)| ≤ ‖α‖∞‖f |Σ‖2L2(Σ)

≤ cs‖α‖∞‖f‖2Hs(Rd)

≤ cs‖α‖∞
(
ε‖f‖2H1(Rd) + C(ε)‖f‖2L2(Rd)

)
.

(2.10)

Thus, for sufficiently small ε > 0 the form f 7→ (αf |Σ, f |Σ) on H1(Rd) is relatively bounded with respect
to the closed and nonnegative form f 7→ (∇f,∇f)L2(Rd;Cd) on H1(Rd) with bound smaller than one. Then
by [25, Theorem VI 1.33] the form aδ,α in (2.9) is closed and bounded from below.

Next, we provide a formula for the resolvent of the Schrödinger operatorAδ,α. For this purpose some notations
are required. The free Laplace operator in L2(Rd) with domain H2(Rd) is denoted by −∆; it is clear that −∆
coincides with Aδ,0 (α ≡ 0) in the above lemma. The spectrum of −∆ is given by σ(−∆) = [0,∞). For
λ ∈ (−∞, 0) ⊂ ρ(−∆) we define the function

Gλ(x) :=
1

(2π)d/2

(
|x|√
−λ

)1−d/2

Kd/2−1

(√
−λ|x|

)
, x ∈ Rd \ {0}, (2.11)

where Kd/2−1 denotes a modified Bessel function of the second kind and order d2 − 1, see [1] for the definition
and the properties of these functions. Then,

(R(λ)f)(x) :=
(
(−∆− λ)−1f

)
(x) =

∫
Rd
Gλ(x− y)f(y)dy;

cf. [36, Section 7.4]. Next we define for λ ∈ (−∞, 0) integral operators γ(λ), M(λ) and provide the integral
representation for the adjoint of γ(λ)

γ(λ) :L2(Σ)→ L2(Rd), (γ(λ)ξ)(x) :=

∫
Σ

Gλ(x− yΣ)ξ(yΣ)dσ(yΣ); (2.12a)

M(λ) :L2(Σ)→ L2(Σ), (M(λ)ξ)(xΣ) :=

∫
Σ

Gλ(xΣ − yΣ)ξ(yΣ)dσ(yΣ); (2.12b)

γ(λ)∗ :L2(Rd)→ L2(Σ), (γ(λ)∗f)(xΣ) =

∫
Rd
Gλ(xΣ − y)f(y)dy. (2.12c)
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For our later considerations the resolvent formula in the next theorem is particularly useful. In the proof of item (a)
and later in Section 3 the Schur test for integral operators will be used frequently, see, e.g., [25, Example III 2.4]
or [38, Satz 6.9].

Theorem 2.8 Let Σ ⊂ Rd be a C2-hypersurface which satisfies Hypothesis 2.3 and let α ∈ L∞(Σ) be a real
valued function. Then the following statements are true.

(a) For λ ∈ (−∞, 0) the operators γ(λ),M(λ) and γ(λ)∗ in (2.12) are bounded and everywhere defined.

(b) There exists a λ0 < 0 such that 1 − αM(λ) admits a bounded and everywhere defined inverse for all
λ ∈ (−∞, λ0). These λ belong to ρ(Aδ,α) and it holds

(Aδ,α − λ)−1 = R(λ) + γ(λ)
(
1− αM(λ)

)−1
αγ(λ)∗.

P r o o f. (a) Let λ ∈ (−∞, 0). In order to prove that γ(λ) is well defined and bounded we use the Schur test.
In fact, from Proposition A.4 (i) and Proposition A.2 (i) we obtain

‖γ(λ)‖2 ≤ sup
x∈Rd

∫
Σ

∣∣Gλ(x− yΣ)
∣∣dσ(yΣ) · sup

yΣ∈Σ

∫
Rd

∣∣Gλ(x− yΣ)
∣∣dx <∞.

In a similar way one can show that M(λ) and γ(λ)∗ are bounded.
Item (b) is essentially a variant of [10, Lemma 2.3]. In fact, let us define for Borel setsB ⊂ Rd the measurem

by

m(B) := σ(B ∩ Σ), (2.13)

where σ is the measure in (2.2). Then m(Rd \ Σ) = 0, the spaces L2(Rd;m) and L2(Σ) can be identified and
for f ∈ L1(Σ) one has∫

Σ

f(xΣ)dσ(xΣ) =

∫
Rd
f̃(x) dm(x),

where f̃ is some extension of f onto the m-null set Rd \Σ. Moreover, the estimate (2.10) shows that the measure
m in (2.13) satisfies [10, eq. (2.1)] (with γ = −α). Now it is easy to see that the integral operators γ(λ), M(λ),
and γ(λ)∗ in (2.12) can be identified with the operators Rm dx(i

√
−λ), Rmm(i

√
−λ) and Rdxm(i

√
−λ) in [10],

respectively. The assertion in item (b) follows from [10, Lemma 2.3 (ii) and (iii)].

3 Approximation of Aδ,α by Schrödinger operators with regular potentials

In this section we prove Theorem 1.1, the main result of this paper. First, in Section 3.1 we recall briefly the
definitions of the layer neighborhoods, the scaled potentials and the associated Hamiltonians Hε from the intro-
duction, and we derive a resolvent formula for Hε which is convenient in the convergence analysis. Section 3.2
contains the main part of the proof of Theorem 1.1. It is efficient to prove Theorem 1.1 for the special caseQ = 0
first; all technical estimates in Appendix A and all preparatory steps in Sections 3.1 and 3.2 are tailormade for
this case. The general case Q 6= 0 is treated with a simple perturbation argument in the last step of the proof of
Theorem 1.1. Finally, in Section 3.3 we discuss some connections between the spectral properties of Hε and of
Aδ,α that follow from Theorem 1.1.

3.1 Preliminary considerations on Hε

Let d ≥ 2 and Σ ⊂ Rd be a C2-hypersurface which satisfies Hypothesis 2.3. Then the mapping ιΣ in (2.5) is
injective on Σ × (−β, β) for some (in the following fixed) β > 0 as in Hypothesis 2.3. Recall the definition of
the layer Ωε from (2.6) for ε ∈ (0, β], fix a real valued potential V ∈ L∞(Rd) with suppV ⊂ Ωβ and consider
the scaled potentials

Vε(x) =

{
β
ε V
(
xΣ + β

ε tν(xΣ)
)
, if x = xΣ + tν(xΣ) ∈ Ωε,

0, else,
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where ν is the continuous unit normal vector field on Σ. Observe that Vβ = V and suppVε ⊂ Ωε. The associated
self-adjoint Schrödinger operators are given by

Hεf = −∆f − Vεf, domHε = H2(Rd). (3.1)

Our main objective in this section is to derive the resolvent formula for Hε in Proposition 3.3 which turns
out to be particularly convenient for our convergence analysis. We start with the standard factorization of the
potentials Vε = vεuε, where

uε : L2(Rd)→ L2(Ωε), (uεf)(x) := |Vε(x)|1/2f(x), x ∈ Ωε, (3.2)

and

vε : L2(Ωε)→ L2(Rd), (vεh)(x) :=

{
signVε(x)|Vε(x)|1/2h(x), x ∈ Ωε,

0, else.
(3.3)

Recall that for λ ∈ ρ(−∆) = C \ [0,∞) the resolvent of−∆ is denoted by R(λ) = (−∆−λ)−1. The following
proposition contains a first auxiliary resolvent formula for Hε.

Proposition 3.1 Let Hε be defined as in (3.1) and let uε, vε and R(λ) be given as above. Then the following
assertions are true.

(i) For all λ ∈ C \ [0,∞) with 1 ∈ ρ(uεR(λ)vε) one has λ ∈ ρ(Hε) and

(Hε − λ)−1 = R(λ) +R(λ)vε (1− uεR(λ)vε)
−1
uεR(λ).

(ii) For all M ∈ (0, 1) there exists λM < 0 such that

‖uεR(λ)vε‖ ≤M

holds for all ε ∈ (0, β] and λ < λM . In particular, for these λ the results from (i) apply and hence
(−∞, λM ) ⊂ ρ(Hε) for all ε ∈ (0, β].

P r o o f. (i) Let λ ∈ C \ [0,∞) be such that 1 ∈ ρ(uεR(λ)vε). Note that λ is not an eigenvalue of Hε, as
otherwise 1 ∈ σp(uεR(λ)vε); cf. [9, Lemma 1]. Next, we define the operator

T (λ) := R(λ) +R(λ)vε (1− uεR(λ)vε)
−1
uεR(λ).

This operator is well defined and bounded, as 1 ∈ ρ(uεR(λ)vε). Using Vε = vεuε we conclude that

(Hε − λ)T (λ)f =
(
−∆− λ− vεuε

)
T (λ)f

= f + vε (1− uεR(λ)vε)
−1
uεR(λ)f − vεuεR(λ)f

− vε(1− 1 + uεR(λ)vε) (1− uεR(λ)vε)
−1
uεR(λ)f

= f + vε (1− uεR(λ)vε)
−1
uεR(λ)f − vεuεR(λ)f

− vε (1− uεR(λ)vε)
−1
uεR(λ)f + vεuεR(λ)f

= f

holds for any f ∈ L2(Rd). Hence, (Hε − λ) is bijective, which implies that λ ∈ ρ(Hε), and

(Hε − λ)−1 = T (λ) = R(λ) +R(λ)vε (1− uεR(λ)vε)
−1
uεR(λ).

This proves assertion (i).
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(ii) Let λ ∈ (−∞, 0) and recall that R(λ) can be expressed by R(λ)f =
∫
Rd Gλ(· − y)f(y)dy with Gλ as

in (2.11). Let M ∈ (0, 1) be fixed. Using the Schur test and that the absolute value of the integral kernel of
uεR(λ)vε is symmetric, we find that∥∥uεR(λ)vε

∥∥ ≤ sup
x∈Ωε

∫
Ωε

|Vε(x)|1/2|Gλ(x− y)||Vε(y)|1/2dy ≤ β

ε
‖V ‖L∞ sup

x∈Ωε

∫
Ωε

|Gλ(x− y)|dy.

Hence, the claimed result follows from Proposition A.4 (ii), as this shows the existence of a number λM < 0
such that

β

ε
‖V ‖L∞

∫
Ωε

|Gλ(x− y)|dy ≤M

for any x ∈ Ωε, all λ < λM and any ε ∈ (0, β].

Next, we transform the resolvent formula from Proposition 3.1 into another one, which is more convenient for
the convergence analysis. This requires several preparatory steps. Recall that for an interval I ⊂ R the space
L2(Σ× I) is equipped with the product measure σ×Λ1 of the Hausdorff measure on Σ and the one-dimensional
Lebesgue measure. Define the functions u, v ∈ L∞(Σ× (−1, 1)) by

u(xΣ, t) := |βV (xΣ + βtν(xΣ))|1/2 and v(xΣ, t) := sign
(
V (xΣ + βtν(xΣ))

)
· u(xΣ, t). (3.4)

The following operators are essential to state a convenient resolvent formula for Hε. We define for ε ∈ [0, β]
and λ ∈ (−∞, 0) the integral operators Aε(λ) : L2(Σ × (−1, 1)) → L2(Rd), Bε(λ) : L2(Σ × (−1, 1)) →
L2(Σ× (−1, 1)) and Cε(λ) : L2(Rd)→ L2(Σ× (−1, 1)) as

(Aε(λ)Ξ)(x) :=

∫
Σ

∫ 1

−1

Gλ(x− yΣ − εsν(yΣ))v(yΣ, s) (3.5a)

· det(1− εsW (yΣ))Ξ(yΣ, s)dsdσ(yΣ);

(Bε(λ)Ξ)(xΣ, t) := u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ)) (3.5b)

· v(yΣ, s) det(1− εsW (yΣ))Ξ(yΣ, s)dsdσ(yΣ);

(Cε(λ)f)(xΣ, t) := u(xΣ, t)

∫
Rd
Gλ(xΣ + εtν(xΣ)− y)f(y)dy. (3.5c)

In order to investigate the properties of Aε(λ), Bε(λ) and Cε(λ), we introduce several auxiliary operators. For
ε ∈ (0, β] define the embedding operator

Iε : L2(Σ× (−ε, ε))→ L2(Ωε), (IεΦ)(xΣ + tν(xΣ)) := Φ(xΣ, t). (3.6)

It follows from Hypothesis 2.3 (b) and Proposition 2.6 that the operator Iε is bounded, everywhere defined and
bijective. Its inverse is given by

I−1
ε : L2(Ωε)→ L2(Σ× (−ε, ε)), (I−1

ε h)(xΣ, t) = h(xΣ + tν(xΣ)).

Furthermore, we consider the scaling operator

Sε : L2(Σ× (−1, 1))→ L2(Σ× (−ε, ε)), (SεΞ)(xΣ, t) :=
1√
ε

Ξ

(
xΣ,

t

ε

)
. (3.7)

The operator Sε is unitary and its inverse is

S−1
ε : L2(Σ× (−ε, ε))→ L2(Σ× (−1, 1)), (S−1

ε Φ)(xΣ, t) =
√
εΦ(xΣ, εt).

In the next lemma some properties of Aε(λ), Bε(λ) and Cε(λ) are provided.
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Lemma 3.2 Let λ ∈ (−∞, 0) and let ε ∈ (0, β]. Moreover, let the operators uε, vε, Iε and Sε be defined by
(3.2), (3.3), (3.6) and (3.7), respectively, and let the integral operators Aε(λ), Bε(λ) and Cε(λ) be as in (3.5).
Then the following assertions are true.

(i) It holds

Aε(λ) = R(λ)vεIεSε and Cε(λ) = S−1
ε I−1

ε uεR(λ).

In particular, the operators Aε(λ) and Cε(λ) are bounded and everywhere defined.

(ii) It holds

Bε(λ) = S−1
ε I−1

ε uεR(λ)vεIεSε.

Moreover, for any M ∈ (0, 1) there exists λM < 0 such that ‖Bε(λ)‖ ≤M for all λ ∈ (−∞, λM ) and all
ε ∈ (0, β]. In particular,Bε(λ) is bounded and everywhere defined and for λ < λM the operator 1−Bε(λ)
has a bounded and everywhere defined inverse.

P r o o f. Let ε ∈ (0, β] and λ ∈ (−∞, 0) be fixed.
(i) We show the two formulae Aε(λ) = R(λ)vεIεSε and Cε(λ) = S−1

ε I−1
ε uεR(λ). The operators Aε(λ) and

Cε(λ) are then automatically bounded and everywhere defined, as the operators Sε, Iε as well as their inverses,
uε, vε and R(λ) have these properties.

Let Ξ ∈ L2(Σ× (−1, 1)). By the definitions of Iε and Sε it holds that

(IεSεΞ)(yΣ + sν(yΣ)) =
1√
ε

Ξ
(
yΣ,

s

ε

)
.

Furthermore, the definitions of vε and v (see (3.4)) imply for any h ∈ L2(Ωε) that

(vεh) (yΣ + sν(yΣ)) =
1√
ε

signV

(
yΣ +

β

ε
sν(yΣ)

) ∣∣∣∣βV (yΣ +
β

ε
sν(yΣ)

)∣∣∣∣1/2 h (yΣ + sν(yΣ))

=
1√
ε
v
(
yΣ,

s

ε

)
h (yΣ + sν(yΣ))

for a.e. (yΣ, s) ∈ Σ× (−ε, ε). Using the transformation Ωε 3 y = yΣ + sν(yΣ) 7→ (yΣ, s) ∈ Σ× (−ε, ε) and
Proposition 2.6 we find that

(
R(λ)vεIεSεΞ

)
(x) =

∫
Rd
Gλ(x− y)(vεIεSεΞ)(y)dy

=

∫
Σ

∫ ε

−ε
Gλ(x− yΣ − sν(yΣ))

1

ε
(vΞ)

(
yΣ,

s

ε

)
det(1− sW (yΣ))dsdσ(yΣ)

=

∫
Σ

∫ 1

−1

Gλ(x− yΣ − εrν(yΣ))v (yΣ, r) det(1− εrW (yΣ))Ξ (yΣ, r) drdσ(yΣ)

= (Aε(λ)Ξ)(x).

(3.8)

Since this is true for a.e. x ∈ Rd, the first formula of item (i) is shown.
Next, we show the assertion on Cε(λ). A simple calculation yields that

(S−1
ε I−1

ε uεg)(xΣ, t) =
√
ε(I−1

ε uεg)(xΣ, εt)

=
√
ε · 1√

ε

∣∣∣∣βV (xΣ +
β

ε
εtν(xΣ)

)∣∣∣∣1/2 g(xΣ + εtν(xΣ))

= u(xΣ, t)g(xΣ + εtν(xΣ))

(3.9)
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for any g ∈ L2(Rd) and a.e. (xΣ, t) ∈ Σ× (−1, 1). Using (3.9), we find that

(S−1
ε I−1

ε uεR(λ)f)(xΣ, t) = u(xΣ, t)

∫
Rd
Gλ(xΣ + εtν(xΣ)− y)f(y)dy = (Cε(λ)f)(xΣ, t)

for all f ∈ L2(Rd) and a.e. (xΣ, t) ∈ Σ× (−1, 1). Thus, the second formula is shown as well.
(ii) Using (3.9) and (3.8) we get that(

S−1
ε I−1

ε uεR(λ)vεIεSεΞ
)
(xΣ, t) = u(xΣ, t)

(
R(λ)vεIεSεΞ

)
(xΣ + εtν(xΣ))

= u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ + εtν(xΣ)− yΣ − εrν(yΣ))

· v (yΣ, r) det(1− εrW (yΣ))Ξ (yΣ, r) drdσ(yΣ)

= (Bε(λ)Ξ)(xΣ, t).

Therefore, we obtain the desired formula in item (ii). In particular, this formula implies that Bε(λ) is bounded
and everywhere defined.

Let M ∈ (0, 1) be fixed. Note that Iε and I−1
ε are uniformly bounded for all ε ∈ (0, β] by Proposition 2.6

and Hypothesis 2.3 (b). Furthermore, recall that Sε is unitary. Hence, using Proposition 3.1 (ii) we find that

‖Bε(λ)‖ =
∥∥S−1

ε I−1
ε uεR(λ)vεIεSε

∥∥ ≤ ∥∥S−1
ε

∥∥ · ∥∥I−1
ε

∥∥ · ∥∥uεR(λ)vε
∥∥ · ‖Iε‖ · ‖Sε‖ ≤M

for all λ < 0 with |λ| sufficiently large and all ε ∈ (0, β].

After all these preparatory steps it is simple to transform the resolvent formula for Hε from Proposition 3.1
into another one which is more convenient for the convergence analysis.

Proposition 3.3 Let Hε be defined as in (3.1) and let Aε(λ), Bε(λ) and Cε(λ) be as in (3.5). Then there
exists a λ0 < 0 such that (−∞, λ0) ⊂ ρ(Hε) and

(Hε − λ)−1 = R(λ) +Aε(λ)
(
1−Bε(λ)

)−1
Cε(λ)

for all ε ∈ (0, β] and λ < λ0.

P r o o f. Let the operators uε, vε, Iε, Sε be defined as in (3.2), (3.3), (3.6) and (3.7), respectively. Choose
λ0 < 0 such that 1− uεR(λ)vε and 1− Bε(λ) are boundedly invertible for any λ < λ0 and all ε ∈ (0, β] (such
a λ0 exists by Proposition 3.1 and Lemma 3.2). Then, it holds by Proposition 3.1 and Lemma 3.2 that

(Hε − λ)−1 = R(λ) +R(λ)vε (1− uεR(λ)vε)
−1
uεR(λ)

= R(λ) +Aε(λ)S−1
ε I−1

ε

(
1− IεSεBε(λ)S−1

ε I−1
ε

)−1 IεSεCε(λ)

= R(λ) +Aε(λ) (1−Bε(λ))
−1
Cε(λ),

which proves the statement of this proposition.

3.2 Proof of Theorem 1.1

The main idea to prove Theorem 1.1 is to consider first the special case Q = 0. In this situation we have to
show that the family of operators Hε converges in the norm resolvent sense to Aδ,α, as ε → 0+. Because
of Theorem 2.8 and Proposition 3.3 it is sufficient to investigate the convergence of Aε(λ), Bε(λ) and Cε(λ)
separately. This is done in the following lemma. In the proof we make use of the integral estimates in Appendix A
and we frequently use the Schur test for integral operators; cf. [25, Example III 2.4] or [38, Satz 6.9]. The general
case Q 6= 0 follows then by a simple perturbation argument.
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Lemma 3.4 Let λ ∈ (−∞, 0) and let Aε(λ), Bε(λ) and Cε(λ) be defined as in (3.5). Then there exists a
constant c = c(d, λ,Σ, V ) > 0 such that for all sufficiently small ε > 0 the following estimates hold:

‖Aε(λ)−A0(λ)‖, ‖Cε(λ)−C0(λ)‖ ≤ cε
(
1 + | ln ε|

)1/2
, ‖Bε(λ)−B0(λ)‖ ≤ cε

(
1 + | ln ε|

)
.

P r o o f. First, we provide an estimate related to the Weingarten map W (yΣ). Let µ1(yΣ), . . . , µd−1(yΣ)
be the eigenvalues of the matrix of W (yΣ), which are independent of the parametrization of Σ and uniformly
bounded on Σ; cf. Proposition 2.4. This implies for yΣ ∈ Σ, s ∈ (−1, 1) and ε ∈ (0, 1) the existence of a
constant c1 > 0 such that

Dε(yΣ, s) := |1− det(1− εsW (yΣ))| =

∣∣∣∣∣1−
d−1∏
k=1

(1− εsµk(yΣ))

∣∣∣∣∣ ≤ c1ε. (3.10)

Fix λ ∈ (−∞, 0). In order to find an estimate for ‖Aε(λ)−A0(λ)‖, we introduce for ε > 0 the auxiliary integral
operator Âε(λ) : L2(Σ× (−1, 1))→ L2(Rd) by(

Âε(λ)Ξ
)
(x) :=

∫
Σ

∫ 1

−1

Gλ(x− yΣ − εsν(yΣ))v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ).

The quantities ‖Aε(λ)− Âε(λ)‖ and ‖Âε(λ)−A0(λ)‖ are estimated separately for sufficiently small ε > 0. To
estimate ‖Âε(λ)−Aε(λ)‖ we introduce the functions F̃A1,ε : Rd → [0,∞] and F̂A1,ε : Σ× (−1, 1)→ [0,∞] by

F̃A1,ε(x) :=

∫
Σ

∫ 1

−1

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s)
∣∣Dε(yΣ, s)dsdσ(yΣ),

F̂A1,ε(yΣ, s) :=

∫
Rd

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s)
∣∣Dε(yΣ, s)dx.

With the aid of (3.10), Proposition A.5 (i) and Proposition A.2 (ii), we find that

sup F̃A1,ε ≤ cA,1ε and sup F̂A1,ε ≤ cA,1ε

with a constant cA,1 = cA,1(d, λ,Σ, V ) > 0. Using these bounds and the Schur test we obtain∥∥Âε(λ)−Aε(λ)
∥∥2 ≤

(
sup F̃A1,ε

)
·
(

sup F̂A1,ε
)
≤ c2A,1ε2. (3.11)

To estimate ‖Âε(λ) − A0(λ)‖, we introduce the functions F̃A2,ε : Rd → [0,∞] and F̂A2,ε : Σ × (−1, 1) → [0,∞]
by

F̃A2,ε(x) :=

∫
Σ

∫ 1

−1

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣dsdσ(yΣ),

F̂A2,ε(yΣ, s) :=

∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣dx.
We find with the help of Proposition A.9 (i) and Proposition A.6 that

sup F̃A2,ε ≤ cA,2ε(1 + | ln ε|) and sup F̂A2,ε ≤ cA,2ε

with a constant cA,2 = cA,2(d, λ,Σ, V ) > 0. Using these bounds and the Schur test we get∥∥Âε(λ)−A0(λ)
∥∥2 ≤

(
sup F̃A2,ε

)
·
(

sup F̂A2,ε
)
≤ c2A,2ε2(1 + | ln ε|). (3.12)

Combining the estimates (3.11), (3.12) and applying the triangle inequality for the operator norm, we conclude
that there exists a constant cA = cA(d, λ,Σ, V ) > 0 such that∥∥Aε(λ)−A0(λ)

∥∥ ≤ ∥∥Aε(λ)− Âε(λ)
∥∥+

∥∥Âε(λ)−A0(λ)
∥∥

≤ cA,1ε+ cA,2ε(1 + | ln ε|)1/2

≤ cAε
(
1 + | ln ε|

)1/2
.
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Next, we analyze the convergence of Bε(λ). For this purpose, we introduce for ε > 0 the auxiliary operator
B̂ε(λ) : L2(Σ× (−1, 1))→ L2(Σ× (−1, 1)) as

(
B̂ε(λ)Ξ

)
(xΣ, t) := u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ +εtν(xΣ)−yΣ−εsν(yΣ))v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ).

As in the analysis of convergence ofAε(λ), we separately prove the estimates for ‖Bε(λ)−B̂ε(λ)‖ and ‖B̂ε(λ)−
B0(λ)‖, which yield then the claimed convergence result. To estimate ‖Bε(λ) − B̂ε(λ)‖, we introduce the
functions F̃B1,ε, F̂

B
1,ε : Σ× (−1, 1)→ [0,∞] by

F̃B1,ε(xΣ, t) :=

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)
∣∣Dε(yΣ, s)dsdσ(yΣ),

F̂B1,ε(yΣ, s) :=

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)
∣∣Dε(yΣ, s)dtdσ(xΣ).

Using (3.10) and Proposition A.5 (ii), we get

sup F̃B1,ε ≤ cB,1ε and sup F̂B1,ε ≤ cB,1ε

with a constant cB,1 = cB,1(d, λ,Σ, V ) > 0. Employing these bounds and again applying the Schur test we
obtain that ∥∥Bε(λ)− B̂ε(λ)

∥∥2 ≤
(

sup F̃B1,ε
)
·
(

sup F̂B1,ε
)
≤ c2B,1ε2. (3.13)

To estimate ‖B̂ε(λ)−B0(λ)‖ we introduce the auxiliary function FB2,ε : Σ× (−1, 1)→ [0,∞] as

FB2,ε(xΣ, t) :=

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ+εtν(xΣ)−yΣ−εsν(yΣ))−Gλ(xΣ−yΣ)

)
v(yΣ, y)

∣∣dsdσ(yΣ).

Using that the absolute value of the integral kernel of B̂ε(λ) − B0(λ) is symmetric and applying Proposi-
tion A.9 (ii), we obtain with the help of the Schur test that∥∥B̂ε(λ)−B0(λ)

∥∥ ≤ supFB2,ε ≤ cB,2ε
(
1 + | ln ε|

)
(3.14)

with a constant cB,2 = cB,2(d, λ,Σ, V ) > 0. Putting together the estimates in (3.13), (3.14) and employing the
triangle inequality, we eventually deduce that there is a constant cB = cB(d, λ,Σ, V ) > 0 such that

‖Bε(λ)−B0(λ)‖ ≤
∥∥Bε(λ)− B̂ε(λ)

∥∥+
∥∥B̂ε(λ)−B0(λ)

∥∥
≤ cB,1ε+ cB,2ε

(
1 + | ln ε|

)
≤ cBε

(
1 + | ln ε|

)
.

Finally, we analyze the convergence of Cε(λ). Using again the Schur test, Proposition A.9 (i) and Proposi-
tion A.6 we find∥∥Cε(λ)− C0(λ)

∥∥2 ≤ sup
y∈Rd

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− y)−Gλ(xΣ − y)

)∣∣ dtdσ(xΣ)

· sup
(xΣ,t)∈Σ×(−1,1)

∫
Rd

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− y)−Gλ(xΣ − y)

)∣∣ dy
≤ cCε2

(
1 + | ln ε|

)
with a constant cC = cC(d, λ,Σ, V ) > 0. Setting c := max{cA, cB , cC}, the claimed result of this lemma
follows.
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Theorem 2.8, Proposition 3.3 and Lemma 3.4 contain the essential ingredients to prove Theorem 1.1. In the
first two steps of the proof the special case Q = 0 is discussed, the general situation is treated in the last step.

Proof of Theorem 1.1. For λ < 0 and ε ∈ [0, β] the operators Aε(λ), Bε(λ) and Cε(λ) are defined as
in (3.5).

Step 1: First, we prove that (1 − B0(λ))−1 exists and is bounded and everywhere defined for λ < 0 with |λ|
sufficiently large. Let M ∈ (0, 1) be fixed and choose λM < 0 such that ‖Bε(λ)‖ ≤M for any λ < λM and all
ε ∈ (0, β]; recall that such a λM exists by Lemma 3.2 (ii). Hence, the operators (1−Bε(λ))−1 are bounded and
everywhere defined for λ < λM and ε ∈ (0, β], and it holds

∥∥(1−Bε(λ))−1
∥∥ ≤ 1

1−M
. (3.15)

Because of (3.15) and Lemma 3.4, we can apply [25, Theorem IV 1.16], which yields that 1−B0(λ) is boundedly
invertible. Moreover, for λ < λM we conclude from [25, Theorem IV 1.16] and (3.15) that

∥∥(1−Bε(λ))−1 − (1−B0(λ))−1
∥∥ ≤ ‖(1−Bε(λ))−1‖2

1− ‖Bε(λ)−B0(λ)‖‖(1−Bε(λ))−1‖
‖Bε(λ)−B0(λ)‖

≤ c1ε
(
1 + | ln ε|

)
holds for all ε > 0 sufficiently small and a constant c1 = c1(d, λ,Σ, V ) > 0.

Step 2: From Proposition 3.3, Lemma 3.4 and the estimates in Step 1 we obtain∥∥(Hε − λ)−1 −
(
R(λ) +A0(λ)(1−B0(λ))−1C0(λ)

)∥∥
=
∥∥Aε(λ)(1−Bε(λ))−1Cε(λ)−A0(λ)(1−B0(λ))−1C0(λ)

∥∥ ≤ c2ε(1 + | ln ε|
)

with a constant c2 = c2(d, λ,Σ, V ) > 0. It remains to verify that

R(λ) +A0(λ)(1−B0(λ))−1C0(λ) = (Aδ,α − λ)−1, (3.16)

where α ∈ L∞(Σ) is defined as in the theorem,

α(xΣ) =

∫ β

−β
V (xΣ + sν(xΣ))ds.

In order to show (3.16) let u and v be given by (3.4), introduce the bounded operators Û : L2(Σ) → L2(Σ ×
(−1, 1)) and V̂ : L2(Σ× (−1, 1))→ L2(Σ) by

(Ûξ)(xΣ, t) := u(xΣ, t)ξ(xΣ) and
(
V̂ Ξ
)
(xΣ) :=

∫ 1

−1

v(xΣ, s)Ξ(xΣ, s)ds

defined almost everywhere, and note that V̂ Û is the multiplication operator with α in L2(Σ). Furthermore, recall
the definition of the bounded operators γ(λ), M(λ) and the formula for γ(λ)∗ from (2.12); cf. Theorem 2.8.
Then, we observe that

(A0(λ)Ξ)(x) =

∫
Σ

∫ 1

−1

Gλ(x− yΣ)v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ)

=

∫
Σ

Gλ(x− yΣ)

(∫ 1

−1

v(yΣ, s)Ξ(yΣ, s)ds

)
dσ(yΣ)

=
(
γ(λ)V̂ Ξ

)
(x)
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for any Ξ ∈ L2(Σ× (−1, 1)) and a.e. x ∈ Rd. Thus, we conclude A0(λ) = γ(λ)V̂ . In a similar way, one finds
that

(B0(λ)Ξ)(xΣ, t) = u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ − yΣ)v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ)

= u(xΣ, t)

∫
Σ

Gλ(xΣ − yΣ)

(∫ 1

−1

v(yΣ, s)Ξ(yΣ, s)ds

)
dσ(yΣ)

=
(
ÛM(λ)V̂ Ξ

)
(xΣ, t)

for any Ξ ∈ L2(Σ × (−1, 1)) and a.e. (xΣ, t) ∈ Σ × (−1, 1), which implies B0(λ) = ÛM(λ)V̂ . Finally, one
sees that

(C0(λ)f)(xΣ, t) = u(xΣ, t)

∫
Rd
Gλ(xΣ − y)f(y)dy =

(
Ûγ(λ)∗

)
(xΣ, t)

for all f ∈ L2(Rd) and a.e. (xΣ, t) ∈ Σ× (−1, 1), which implies C0(λ) = Ûγ(λ)∗. Thus, we get

lim
ε→0

(Hε − λ)−1 = R(λ) +A0(λ)
(
1−B0(λ)

)−1
C0(λ)

= R(λ) + γ(λ)V̂
(
1− ÛM(λ)V̂

)−1
Ûγ(λ)∗.

(3.17)

Since α = V̂ Û we conclude from

V̂
(

1− ÛM(λ)V̂
)−1

Û =
(
1− V̂ ÛM(λ)

)−1
V̂ Û =

(
1− αM(λ)

)−1
α

and (3.17) together with Theorem 2.8 that

lim
ε→0+

(Hε − λ)−1 = R(λ) + γ(λ)
(
1− αM(λ)

)−1
αγ(λ)∗ = (Aδ,α − λ)−1.

This completes the proof of Theorem 1.1 in the case Q = 0.
Step 3: Let Q ∈ L∞(Rd) be real valued and let λ ∈ R be such that λ < λM − ‖Q‖L∞ . Then λ is smaller

than the lower bound of the operators Aδ,α +Q and Hε +Q for all ε ∈ (0, β]. Using the formula

(Hε +Q− λ)−1 =
(

1− (Hε +Q− λ)−1Q
)

(Hε − λ)−1,

we compute

(Hε +Q− λ)−1 − (Aδ,α +Q− λ)−1

=
[
(Hε +Q− λ)−1(Aδ,α +Q− λ)− 1

]
(Aδ,α +Q− λ)−1

=
[
(Hε +Q− λ)−1 −

(
1− (Hε +Q− λ)−1Q

)
(Aδ,α − λ)−1

]
(Aδ,α − λ)(Aδ,α +Q− λ)−1

=
(
1− (Hε +Q− λ)−1Q

)[
(Hε − λ)−1 − (Aδ,α − λ)−1

](
1−Q(Aδ,α +Q− λ)−1

)
.

This implies∥∥(Hε +Q− λ)−1 − (Aδ,α +Q− λ)−1
∥∥

≤
∥∥1− (Hε +Q− λ)−1Q

∥∥ · ∥∥(Hε − λ)−1 − (Aδ,α − λ)−1
∥∥ · ∥∥1−Q(Aδ,α +Q− λ)−1

∥∥.
Since the norm

∥∥1 − (Hε + Q − λ)−1Q
∥∥ is uniformly bounded in ε, the result of Step 2 yields the desired

claim.
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3.3 Consequences for the spectra of Hε and Aδ,α

In this section we discuss how Theorem 1.1 can be used to deduce certain spectral properties of Hε from those
of Aδ,α and vice versa.

First, the approximation result in Theorem 1.1 combined with the results in [7, 16, 18] on the existence of
geometrically induced bound states for Schrödinger operators with δ-interactions supported on curves and sur-
faces can be used to show the existence of such bound states also for the operators with regular potentials (in the
approximating sequence) provided that the potential well is sufficiently “narrow” and “deep”. This application is
motivated by Open Problem 7.1 in the review paper [15]. In order to formulate the respective claims we introduce
several geometric notions. We say that the hypersurface Σ ⊂ Rd, d ≥ 2, is a local deformation of the hypersur-
face Σ̃ ⊂ Rd, if Σ 6= Σ̃ and if there exists a compact set K ⊂ Rd such that Σ \K = Σ̃ \K. Furthermore, we
introduce for θ ∈ (0, π/2) the broken line L ⊂ R2 and the infinite circular conical surface C ⊂ R3 by

L :=
{

(x, y) ∈ R2 : y = cot(θ)|x|
}
, C :=

{
(x, y, z) ∈ R3 : z = cot(θ)

√
x2 + y2

}
.

Proposition 3.5 Let Σ ⊂ Rd be as in Definition 2.1 such that Hypothesis 2.3 holds and assume that Σ satisfies
one of the following assumptions.

(a) d = 2 and Σ is a local deformation of a straight line;

(b) d = 2 and Σ is a local deformation of a broken line;

(c) d = 3 and Σ is a C4-smooth local deformation of a plane, which admits a global natural parametrization
in the sense of [13, Section 2-3, Definition 2];

(d) d = 3 and Σ is a local deformation of an infinite circular conical surface.

Let the layer Ωβ ⊂ Rd be as in (2.6) and let V ∈ L∞(Rd) be real valued with suppV ⊂ Ωβ . Assume
that α ∈ L∞(Σ) associated to V as in Theorem 1.1 is a positive constant, which in case (c) is assumed to be
sufficiently large. Then for all sufficiently small ε > 0 the self-adjoint operator Hε in (3.1) has a non-empty
discrete spectrum below the threshold of its essential spectrum.

P r o o f. As there is no danger of confusion, we denote the value of the constant positive function α ∈ L∞(Σ)
by α as well. First, recall that by Theorem 1.1 the self-adjoint operators Hε converge in the norm resolvent sense
to the self-adjoint lower-semibounded operator Aδ,α as ε→ 0+.

Next, in all the cases it is known that σess(Aδ,α) = [−α2/4,∞); cf. [6, Theorems 4.2 and 4.10] and [7,
Theorem 3.3]. Moreover, Proposition 3.1 implies that the operators Hε are bounded from below uniformly in
ε ∈ (0, β]. Hence, the result [38, Satz 9.24 a)] yields

inf σess(Hε)→ −α2/4, ε→ 0 + . (3.18)

Moreover, in all the cases it is known that σd(Aδ,α) ∩ (−∞,−α2/4) 6= ∅; cf. [16, Theorem 5.2] for (a), (b),
[18, Theorem 4.3] for (c) and [7, Theorem 3.3] for (d). Choose now a finite interval (a, b) ⊂ (−∞,−α2/4)
with a, b ∈ ρ(Aδ,α) such that σd(Aδ,α) ∩ (a, b) 6= ∅. By (3.18) we get for all sufficiently small ε > 0 that
inf σess(Hε) > b.

Eventually, it follows from [38, Satz 2.58 a) and Satz 9.24 b)] that for all sufficiently small ε > 0 the dimen-
sions of the spectral subspaces of Hε corresponding to (a, b) are equal to the dimension of the spectral subspace
of Aδ,α corresponding to the same interval; i.e.

dim ranEHε((a, b)) = dim ranEAδ,α((a, b)) > 0. (3.19)

Since b < inf σess(Hε), this implies the claimed result.

In the next proposition we show that Schrödinger operators with potential wells supported in curved periodic
strips have gaps in their spectra under reasonable assumptions. This proposition can be proven in a similar way
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as Proposition 3.5. It suffices to combine a result [17, Corollary 2.2] on the existence of gaps in the negative
spectrum for the Schrödinger operator with a strong δ-interaction supported on a periodic curve with the main
result of this paper and with standard statements on spectral convergence. Note that a similar idea was earlier
used in a different, albeit related context in [39].

Proposition 3.6 Let Σ ⊂ R2 be as in Definition 2.1 such that Hypothesis 2.3 holds. Suppose that Σ is
parametrized via the tuple {ϕ,R,R2} with |ϕ′| ≡ 1. For ϕ(s) = (ϕ1(s), ϕ2(s)) define the signed curvature of Σ
by κ := ϕ′′1ϕ

′
2 − ϕ′1ϕ′′2 . Assume that Σ is not a straight line and that κ satisfies the following conditions.

(a) κ ∈ C2(R);

(b) κ(s+ L) = κ(s) for some L > 0 and all s ∈ R;

(c)
∫ L

0
κ(s)ds = 0;

(d)
∣∣ ∫ T

0
κ(s)ds

∣∣ < π/2 for all T ∈ [0, L].

Let Ωβ ⊂ R2 be as in (2.6) and let V ∈ L∞(Rd) be real valued with suppV ⊂ Ωβ . Assume that α ∈ L∞(Σ)
associated to V as in Theorem 1.1 is a sufficiently large positive constant. Then for all sufficiently small ε > 0
the self-adjoint operator Hε in (3.1) has at least one spectral gap in the interval (−∞, 0).

One can also use Theorem 1.1 to obtain spectral results for Aδ,α from those of Hε. To illustrate this idea, we
show in the following example that for d ≥ 3 the operator Aδ,α does not have any negative bound states if Σ is a
sphere with radius R > 0 and if α ∈ (0, d−2

R ) is a constant. The same result is also contained in [5, Theorem 2.3]
for d = 3 and in [4, Theorem 4.1] for arbitrary d ≥ 3. The proofs there are of a different nature than ours.

Example 3.7 Let d ≥ 3, R > 0 and Σ = ∂B(0, R). Let α ∈ (0, d−2
R ) be fixed. Let q ∈ C∞0 (R+) be

non-negative with supp q ⊂ (R/2, 3R/2) such that∫ 3R/2

R/2

q(r)dr = α.

Define the radially symmetric potential V ∈ L∞(Rd) by V (x) := q(|x|), x ∈ Rd. Furthermore, define the
scaled potentials Vε and the operatorsHε as in the Introduction with β = R/2 and ε ∈ (0, R/2]. By Theorem 1.1
the operators Hε converge in the norm resolvent sense to Aδ,α as ε → 0+. For any ε ∈ (0, R/2] the potential
Vε is also radially symmetric and we get with the help of Lebesgue’s dominated convergence theorem that for
qε(|x|) := Vε(x)

lim
ε→0+

∫ ∞
0

rqε(r)dr = lim
ε→0+

∫ ε

−ε
(R+ r)

R

2ε
q

(
R+

Rr

2ε

)
dr

= lim
ε→0+

∫ 3R/2

R/2

(
2εz

R
+R− 2ε

)
q(z)dz

= αR < d− 2.

Hence, using Bargmann’s estimate [33, Theorem 3.2], we obtain that Hε has no negative eigenvalues for all
sufficiently small ε > 0. Because of Theorem 1.1 and [38, Satz 9.24 a)] it follows that Aδ,α has no negative
eigenvalues as well.

A Estimates related to Green’s function

In this appendix we provide estimates for integrals that contain Green’s function

Gλ(x) =
1

(2π)d/2

(
|x|√
−λ

)1−d/2

Kd/2−1

(√
−λ|x|

)
, x ∈ Rd \ {0}, d ≥ 2, (A.1)

from (2.11). The estimates are formulated in a way such that they can be applied directly in the main part of
the paper. We note that some of the estimates below are known, but exact references are difficult to find in the
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mathematical literature. Therefore, in order to keep this paper self-contained we also provide complete proofs
of standard estimates as, e.g., in Proposition A.1. Throughout this appendix we assume that Σ is an orientable
C2-hypersurface which satisfies Hypothesis 2.3, and we denote by ν the continuous unit normal vector field of Σ.

In the first preliminary proposition we discuss the asymptotics of Gλ and ∇Gλ.
Proposition A.1 Let λ ∈ (−∞, 0) and let Gλ be as in (A.1). Then there exists a constant R = R(d) > 0

such that the following assertions hold.

(i) There is a constant c = c(d) such that for all |x| ≤ R√
−λ

∣∣Gλ(x)
∣∣ ≤ {c(1 +

∣∣ ln (√−λ|x|)∣∣), if d = 2,

c|x|2−d, if d ≥ 3,

holds. Moreover, there exists a constant C = C(d) such that for all |x| > R√
−λ it holds

∣∣Gλ(x)
∣∣ ≤ C ( |x|√

−λ

)1−d/2

e−
√
−λ|x|.

In particular, Gλ ∈ L1(Rd).

(ii) The function Rd \ {0} 3 x 7→ Gλ(x) is continuously differentiable. Furthermore, there exist constants
c = c(d, λ) and C = C(d, λ) such that for all |x| ≤ R√

−λ∣∣∇Gλ(x)
∣∣ ≤ c|x|1−d

is true and for all |x| > R√
−λ it holds∣∣∇Gλ(x)

∣∣ ≤ Ce−√−λ|x|.
In particular,∇Gλ ∈ L1(Rd;Cd).

P r o o f. (i) Due to the asymptotic behavior of Kd/2−1, see [1, Section 9.6 and 9.7], there exist R = R(d) > 0
and constants C1, C2, C3 > 0 such that for any p ∈ (0, R]

|Kd/2−1(p)| ≤

{
C1(1 + | ln p|), if d = 2,

C2p
1−d/2, if d ≥ 3,

(A.2)

is satisfied and for any p > R

|Kd/2−1(p)| ≤ C3e
−p (A.3)

holds. Hence, the claimed asymptotics follow from the definition of Gλ. It is not difficult to check that these
asymptotics imply Gλ ∈ L1(Rd).

(ii) Recall first that the mapping C \ (−∞, 0] 3 z 7→ Kν(z) is holomorphic by [1, Section 9.6]. Therefore,
Rd \ {0} 3 x 7→ Gλ(x) is continuously differentiable and we obtain

∇Gλ(x) =
1

(2π)d/2
x

|x|

((
1− d

2

)
|x|−d/2
√
−λ1−d/2Kd/2−1

(√
−λ|x|

)
+
√
−λ
(
|x|√
−λ

)1−d/2

K ′d/2−1

(√
−λ|x|

)) (A.4)

for d ≥ 3 and

∇Gλ(x) =
1

2π

x

|x|
√
−λK ′0

(√
−λ|x|

)
(A.5)
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in the case d = 2. Since

K ′d/2−1(z) = Kd/2(z) +
d− 2

2z
Kd/2−1(z) (A.6)

by [1, eq. 9.6.26] we conclude from (A.2) that for d ≥ 3 and |x| ≤ R√
−λ∣∣K ′d/2−1

(√
−λ|x|

)∣∣ ≤ ∣∣Kd/2

(√
−λ|x|

)∣∣+
d− 2

2
√
−λ|x|

∣∣Kd/2−1

(√
−λ|x|

)∣∣
≤ C4|x|−d/2 + C5

d− 2

2
√
−λ|x|

|x|1−d/2

≤ C6|x|−d/2

holds with some constant C6 = C6(d, λ) > 0. It is easy to see that the same estimate is also true in the case
d = 2. Hence, (A.2), (A.4) and (A.5) yield

|∇Gλ(x)| ≤ C7

(
|x|−d/2

∣∣∣Kd/2−1

(√
−λ|x|

)∣∣∣+ |x|1−d/2
∣∣∣K ′d/2−1

(√
−λ|x|

)∣∣∣) ≤ c|x|1−d.
In the same way, using (A.3), (A.4), (A.5), and (A.6) one finds for all |x| ≥ R√

−λ that

∣∣∇Gλ(x)
∣∣ ≤ Ce−√−λ|x|

holds with some constant C = C(d, λ) > 0. Finally, it is not difficult to check that the asymptotics of ∇Gλ
imply ∇Gλ ∈ L1(Rd;Cd).

We start now with the estimates which are needed to show Lemma 3.4. The first proposition in this context is
only based on the integrability of Gλ; cf. Proposition A.1 (i).

Proposition A.2 Let Σ be a C2-hypersurface which satisfies Hypothesis 2.3 and let λ ∈ (−∞, 0). Then the
following statements are true.

(i) There exists a constant C = C(d, λ) > 0 such that

sup
yΣ∈Σ

∫
Rd
|Gλ(x− yΣ)|dx ≤ C.

(ii) Let ψ ∈ L∞(Σ× (−1, 1)) and let ε ∈ (0, β]. Then there exists a constant C = C(d, λ, ψ) > 0 such that

sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)
∣∣dx ≤ C.

P r o o f. We only prove item (ii), assertion (i) can be shown in the same way. For (yΣ, s) ∈ Σ× (−1, 1) fixed
we have ∫

Rd

∣∣Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)
∣∣dx ≤ ‖ψ‖L∞ ∫

Rd

∣∣Gλ(x)
∣∣dx ≤ C

with some constant C = C(d, λ, ψ). This is the claimed result.

The following lemma contains an auxiliary estimate associated to the hypersurface Σ. Recall that σ denotes
the Hausdorff measure and Λd is the d-dimensional Lebesgue measure.

Lemma A.3 Let Σ be a C2-hypersurface which satisfies Hypothesis 2.3. Then the following assertions are
true.
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(i) There exists a constant C̃1 = C̃1(d,Σ) > 0 such that for any r0 > 0 and any x ∈ Rd it holds

σ(Σ ∩B(x, r0)) ≤ C̃1r
d−1
0 .

(ii) Let ε ∈ (0, β] and let Ωε be as in (2.6). Then there exists a constant C̃2 = C̃2(d,Σ) > 0 such that for any
r0 > 0 and any x ∈ Rd it holds

Λd(Ωε ∩B(x, r0)) ≤ C̃2εr
d−1
0 .

P r o o f. (i) By the definition of the measure σ we have

σ(Σ ∩B(x, r0)) =

∫
Σ∩B(x,r0)

dσ(xΣ) =
∑
i∈I

∫
ϕ−1
i (Σ∩B(x,r0))

χi(ϕi(u))
√

detGi(u)du;

cf. (2.2). Assume thatϕ−1
i (Σ∩B(x, r0)) 6= ∅, let ui ∈ ϕ−1

i (Σ∩B(x, r0)) be fixed and let u ∈ ϕ−1
i (Σ∩B(x, r0))

be arbitrary. Using Hypothesis 2.3 (c) we obtain

c|u− ui| ≤ |ϕi(u)− ϕi(ui)| ≤ |ϕi(u)− x|+ |x− ϕi(ui)| ≤ 2r0.

Hence, it follows ϕ−1
i (Σ ∩B(x, r0)) ⊂ B(ui, 2r0/c), which implies

σ(Σ ∩B(x, r0)) =
∑
i∈I

∫
ϕ−1
i (Σ∩B(x,r0))

χi(ϕi(u))
√

detGi(u)du

≤ C1

∑
i∈I

∫
ϕ−1
i (Σ∩B(x,r0))

du

≤ C1

∑
i∈I

∫
B(ui,2r0/c)

du ≤ C̃1r
d−1
0 ,

where we have used that detGi is uniformly bounded and that the index set I is finite by assumption.
(ii) Using Proposition 2.6 (ii) and Hypothesis 2.3 (b) we find

Λd(Ωε ∩B(x, r0)) =

∫
Ωε∩B(x,r0)

dy

=

∫
Ωε

1Ωε∩B(x,r0)(y)dy

=

∫
Σ

∫ ε

−ε
1Ωε∩B(x,r0)(yΣ + sν(yΣ)) det(1− sW (yΣ))dsdσ(yΣ)

≤ C2

∫
Σ

∫ ε

−ε
1Ωε∩B(x,r0)(yΣ + sν(yΣ))dsdσ(yΣ).

Let ιϕi be given by (2.3). Using the definition of the measure σ and the fact that detGi is uniformly bounded by
assumption, it follows

Λd(Ωε ∩B(x, r0)) ≤ C2

∫
Σ

∫ ε

−ε
1Ωε∩B(x,r0)(yΣ + sν(yΣ))dsdσ(yΣ)

= C2

∑
i∈I

∫
Ui

∫ ε

−ε
χi(ϕi(u))1Ωε∩B(x,r0)(ιϕi(u, s))

√
detGi(u)dsdu

≤ C3

∑
i∈I

∫
Ui

∫ ε

−ε
1Ai(u, s)dsdu,
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where Ai := ι−1
ϕi (Ωε ∩ B(x, r0)) ⊂ Ui × (−ε, ε) and hence 1Ai = 1Ωε∩B(x,r0) ◦ ιϕi . Assume Ai 6= ∅, let

(ui, t) ∈ Ai be fixed and let (u, s) ∈ Ai be arbitrary. Using Hypothesis 2.3 (c) we find

c|u− ui| ≤ c
(
|u− ui|2 + (s− t)2

)1/2
≤ |ϕi(u) + sν(ϕi(u))− ϕi(ui)− tν(ϕi(ui))|
≤ |ϕi(u) + sν(ϕi(u))− x|+ |x− ϕi(ui)− tν(ϕi(ui))|
< 2r0.

Therefore, we obtain Ai ⊂ B(ui, 2r0/c)× (−ε, ε), which yields

Λd(Ωε ∩B(x, r0)) ≤ C3

∑
i∈I

∫
Ui

∫ ε

−ε
1Ai(u, s)dsdu

≤ C3

∑
i∈I

∫
B(ui,2r0/c)

∫ ε

−ε
dsdu

= C̃2εr
d−1
0 .

The next proposition contains two estimates of a similar flavour as in Proposition A.2. The proof is essentially
based on Lemma A.3.

Proposition A.4 Let Σ be a C2-hypersurface which satisfies Hypothesis 2.3 and let λ ∈ (−∞, 0). Then the
following assertions are true.

(i) There is a constant C = C(d, λ,Σ) > 0 such that

sup
x∈Rd

∫
Σ

∣∣Gλ(x− yΣ)
∣∣dσ(yΣ) ≤ C.

Moreover, for any fixed C > 0 there exists λC < 0 such that the above inequality is satisfied for this fixed C
and all λ < λC .

(ii) Let ε ∈ (0, β] and let Ωε be as in (2.6). Then there is a constant M = M(d, λ,Σ) > 0 such that

sup
x∈Rd

∫
Ωε

|Gλ(x− y)|dy ≤Mε.

Moreover, for any fixed M > 0 there exists λM < 0 such that the above inequality is satisfied for this fixed
M , all λ < λM and all ε ∈ (0, β].

P r o o f. (i) Let x ∈ Rd and λ ∈ (−∞, 0) be fixed, let R > 0 be as in Proposition A.1 and set

Σ1 =
{
yΣ ∈ Σ :

√
−λ|x− yΣ| < R

}
and Σ2 =

{
yΣ ∈ Σ :

√
−λ|x− yΣ| > R

}
.

Then we have∫
Σ

|Gλ(x− yΣ)|dσ(yΣ) =

∫
Σ1

|Gλ(x− yΣ)|dσ(yΣ) +

∫
Σ2

|Gλ(x− yΣ)|dσ(yΣ).

In order to find an estimate for the integral over Σ1 observe that∫
Σ1

|Gλ(x− yΣ)|dσ(yΣ) =

∞∑
n=1

∫
An

|Gλ(x− yΣ)|dσ(yΣ),
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where the sets An are defined as

An =
{
yΣ ∈ Σ : 2−n <

√
−λ|x− yΣ|/R < 2−n+1

}
, n ∈ N.

Due to the asymptotics of Gλ in Proposition A.1 (i) we find for yΣ ∈ An that

|Gλ(x− yΣ)| ≤

{
C1

(
1 + n ln 2

)
, if d = 2,

C2(−λ)d/2−1 ·
(
2d−2

)n
, if d ≥ 3.

Hence, we get in the case d ≥ 3 that∫
Σ1

|Gλ(x− yΣ)|dσ(yΣ) =

∞∑
n=1

∫
An

|Gλ(x− yΣ)|dσ(yΣ)

≤
∞∑
n=1

C2(−λ)d/2−1 ·
(
2d−2

)n ∫
An

dσ(yΣ).

Using that An ⊂ B
(
x,R · 2−n+1/

√
−λ
)
, we can employ Lemma A.3 (i) and get∫

Σ1

|Gλ(x− yΣ)|dσ(yΣ) ≤ C3(−λ)d/2−1
∞∑
n=1

(
2d−2

)n · (R · 2−n+1/
√
−λ
)d−1

≤ C4(−λ)−1/2
∞∑
n=1

2−n

= C4(−λ)−1/2.

(A.7)

Note that similar estimates are also true in the case d = 2, as for yΣ ∈ An it holds

|Gλ(x− yΣ)| ≤ C1

(
1 + n ln 2

)
≤ C5

(
1 + 2n/2

)
≤ 2C52n/2.

Finally, we derive an estimate for the integral over Σ2. For this purpose we decompose the integral as follows∫
Σ2

|Gλ(x− yΣ)|dσ(yΣ) =

∞∑
n=1

∫
Bn

|Gλ(x− yΣ)|dσ(yΣ),

where the sets Bn are given by

Bn =
{
yΣ ∈ Σ : R+ n− 1 <

√
−λ|x− yΣ| < R+ n

}
, n ∈ N.

Using the asymptotics of Gλ for large arguments from Proposition A.1 (i) we find for yΣ ∈ Bn that

∣∣Gλ(x− yΣ)
∣∣ ≤ C6

(
|x− yΣ|√
−λ

)1−d/2

e−
√
−λ|x−yΣ| ≤ C7(−λ)d/2−1e−(R+n−1).

Since Bn ⊂ B
(
x, (R+ n)/

√
−λ
)
, we can employ Lemma A.3 (i) and get that∫

Σ2

|Gλ(x− yΣ)|dσ(yΣ) =

∞∑
n=1

∫
Bn

|Gλ(x− yΣ)|dσ(yΣ)

≤
∞∑
n=1

C7(−λ)d/2−1e−(R+n−1)

∫
Bn

dσ(yΣ)

≤ C8(−λ)−1/2
∞∑
n=1

e−n(R+ n)d−1

= C9(−λ)−1/2.

(A.8)
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The estimates (A.7) and (A.8) yield now the claimed bounds. In particular, by choosing λ < 0 with |λ| sufficiently
large the constant C := (C4 + C9)(−λ)−1/2 becomes arbitrarily small.

(ii) The proof of this statement is similar to the one of assertion (i). The difference is to replace Σ by the
layer Ωε and to use Lemma A.3 (ii) instead of Lemma A.3 (i).

The next result is a consequence of Proposition A.4.
Proposition A.5 Let Σ be a C2-hypersurface satisfying Hypothesis 2.3, let λ ∈ (−∞, 0) and let ε ∈ (0, β].

Then the following statements are true.

(i) Let ψ ∈ L∞(Σ× (−1, 1)). Then there exists a constant C = C(d, λ,Σ, ψ) > 0 such that

sup
x∈Rd

∫
Σ

∫ 1

−1

∣∣Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)
∣∣dsdσ(yΣ) ≤ C.

(ii) Let ω, ψ ∈ L∞(Σ× (−1, 1)). Then there exists a constant C = C(d, λ,Σ, ω, ψ) > 0 such that

sup
(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣ω(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))ψ(yΣ, s)
∣∣dsdσ(yΣ) ≤ C.

P r o o f. Let z ∈ Rd be fixed. According to Hypothesis 2.3 (b) there exists a constant C1 > 0 such that for
any s ∈ (−1, 1) and all yΣ ∈ Σ the estimate

1 ≤ C1 det(1− εsW (yΣ))

holds. Using Proposition 2.6 (ii) and Proposition A.4 (ii) we conclude that there exists a constant C > 0 (inde-
pendent of z) such that∫

Σ

∫ 1

−1

∣∣Gλ(z − yΣ − εsν(yΣ))
∣∣dsdσ(yΣ)

≤ C1

∫
Σ

∫ 1

−1

∣∣Gλ(z − yΣ − εsν(yΣ))
∣∣ det(1− εsW (yΣ))dsdσ(yΣ)

=
C1

ε

∫
Σ

∫ ε

−ε

∣∣Gλ(z − yΣ − rν(yΣ))
∣∣det(1− rW (yΣ))drdσ(yΣ)

=
C1

ε

∫
Ωε

∣∣Gλ(z − y)
∣∣dy

≤ C.

(A.9)

(i) Let x ∈ Rd be fixed. Then it follows from (A.9) (with z = x) that∫
Σ

∫ 1

−1

∣∣Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)
∣∣dsdσ(yΣ)

≤ ‖ψ‖L∞
∫

Σ

∫ 1

−1

∣∣Gλ(x− yΣ − εsν(yΣ))
∣∣dsdσ(yΣ)

≤ C,

where C does not depend on x. This is the claimed result.
(ii) Let xΣ ∈ Σ and t ∈ (−1, 1) be fixed. Then it follows from (A.9) (with z = xΣ + εtν(xΣ)) that∫

Σ

∫ 1

−1

∣∣ω(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))ψ(yΣ, s)
∣∣dsdσ(yΣ)

≤ ‖ω‖L∞‖ψ‖L∞
∫

Σ

∫ 1

−1

∣∣Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))
∣∣dsdσ(yΣ)

≤ C,

where C does not depend on xΣ and t. This completes the proof of Proposition A.5.
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The following estimates are slightly more involved than the previous ones, as from now on also the gradient
ofGλ has to be considered. First, we provide a useful simple argument that is needed for the next results. Assume
that τ ∈ L∞(Rd × Σ× (−1, 1)2;Rd) and that (x, yΣ, s, t) ∈ Rd × Σ× (−1, 1)2 is such that

x− yΣ + εθτ(x, yΣ, s, t) 6= 0

for all θ ∈ [0, 1] and all ε ∈ (0, β]. Since Gλ(y) is differentiable for y 6= 0 (see Proposition A.1 (ii)) it follows
that the mapping [0, 1] 3 θ 7→ Gλ(x− yΣ + εθτ(x, yΣ, s, t)) is differentiable and one has

Gλ(x− yΣ + ετ(x, yΣ, s, t))−Gλ(x− yΣ)

=

∫ 1

0

d

dθ
Gλ(x− yΣ + εθτ(x, yΣ, s, t))dθ

=

∫ 1

0

〈
∇Gλ(x− yΣ + εθτ(x, yΣ, s, t)), ετ(x, yΣ, s, t)

〉
dθ.

Using the Cauchy-Schwarz inequality for vectors in Rd this leads to∣∣Gλ(x− yΣ + ετ(x, yΣ, s, t))−Gλ(x− yΣ)
∣∣

≤ ε‖τ‖L∞
∫ 1

0

|∇Gλ(x− yΣ + εθτ(x, yΣ, s, t))|dθ.
(A.10)

Proposition A.6 Let Σ be a C2-hypersurface which satisfies Hypothesis 2.3, let ψ ∈ L∞(Σ × (−1, 1)) and
let λ ∈ (−∞, 0). Then there exists a constant C = C(d, λ, ψ) > 0 such that for all ε ∈ (0, β] it holds

sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣dx ≤ Cε.
P r o o f. Let yΣ ∈ Σ and s ∈ (−1, 1) be fixed. Since x − yΣ − εsθν(yΣ) 6= 0 for a.e. x ∈ Rd, it follows

from (A.10) (with τ(x, yΣ, s, t) = −sν(yΣ) implying ‖τ‖L∞ = 1)∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣dx
≤ ε‖ψ‖L∞

∫
Rd

∫ 1

0

∣∣∇Gλ(x− yΣ − εsθν(yΣ))
∣∣dθdx.

Now consider the bijective transformation T : Rd × (0, 1)→ Rd × (0, 1) given by(
ξ
φ

)
= T (x, θ) :=

(
x− yΣ − εsθν(yΣ)

θ

)
.

Note that T is differentiable and that its Jacobian matrix is given by

DT (x, θ) =

(
1d −εsν(yΣ)
0 1

)
,

where 1d is the identity matrix in Rd×d. Hence |detDT (x, θ)| = 1 and we conclude that∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣dx
≤ ε‖ψ‖L∞

∫
Rd

∫ 1

0

∣∣∇Gλ(x− yΣ − εsθν(yΣ))
∣∣dθdx

= ε‖ψ‖L∞
∫
Rd

∫ 1

0

∣∣∇Gλ(ξ)
∣∣dφdξ

= ε‖ψ‖L∞
∫
Rd

∣∣∇Gλ(ξ)
∣∣dξ,

where we used in the last step that the integrand was independent of φ. Since the last integral is finite by
Proposition A.1 (ii), the proof is complete.
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The next lemma contains an auxiliary estimate that is needed to prove the final two integral bounds.

Lemma A.7 Let Σ be a C2-smooth hypersurface satisfying Hypothesis 2.3, let λ ∈ (−∞, 0), let r0 > 0 and
let Σ̃ ⊂ Σ be measurable. Then there exists a constant C = C(r0, d, λ,Σ) > 0 such that∫

Σ̃

∫ 1

−1

∣∣∇Gλ(x− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ) ≤ C

for all sufficiently small ε > 0, all θ ∈ (0, 1) and all x ∈ Rd satisfying dist(x, Σ̃) ≥ r0.

P r o o f. Let x ∈ Rd with dist(x, Σ̃) ≥ r0 and θ ∈ (0, 1) be fixed. We are going to show first that∫
Σ̃

∣∣∇Gλ(x− yΣ − εθsν(yΣ))
∣∣dσ(yΣ) ≤ C̃ (A.11)

with C̃ independent of x, s, θ and ε. For this define the sets

An :=
{
yΣ ∈ Σ̃ : r0 + n− 1 < |x− yΣ| < r0 + n

}
, n ∈ N.

Since it holds for ε ≤ r0
2 and all (yΣ, s) ∈ Σ̃× (−1, 1)∣∣x− yΣ − εθsν(yΣ)

∣∣ ≥ |x− yΣ| − ε ≥
r0

2
,

it follows from Proposition A.1 (ii) that for yΣ ∈ An ⊂ Σ̃∣∣∇Gλ(x− yΣ − εθsν(yΣ))
∣∣ ≤ C1e

−
√
−λ|x−yΣ−εθsν(yΣ)|

≤ C2e
−
√
−λ|x−yΣ|

≤ C2e
−
√
−λ(r0+n−1).

Finally, since An ⊂ B(x, r0 + n) we can employ Lemma A.3 (i) and get that∫
Σ̃

∣∣∇Gλ(x− yΣ − εθsν(yΣ))
∣∣dσ(yΣ) =

∞∑
n=1

∫
An

∣∣∇Gλ(x− yΣ − εθsν(yΣ))
∣∣dσ(yΣ)

≤ C2

∞∑
n=1

∫
An

e−
√
−λ(r0+n−1)dσ(yΣ)

≤ C3

∞∑
n=1

e−
√
−λ·n(r0 + n)d−1

= C4.

Thus, the estimate (A.11) is true. Finally, interchanging the order of integration we obtain∫
Σ̃

∫ 1

−1

∣∣∇Gλ(x− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ) ≤

∫ 1

−1

C4ds ≤ C.

This is the claimed result.

The next lemma contains the main tool to prove the final two integral bounds. Here, we apply Lemma A.7 for
Σ̃ = Σ and Σ̃ = Σ \ B(x, r0) with x ∈ Rd. Moreover, we make use of the notation C([0, 1];Rd) for the set of
all continuous vector valued functions defined on the interval [0, 1].
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Lemma A.8 Let Σ be a C2-smooth hypersurface satisfying Hypothesis 2.3 and let λ ∈ (−∞, 0). Then there
exists a constant C = C(d, λ,Σ) > 0 such that for all ε > 0 sufficiently small and all x ∈ C([0, 1];Rd) it holds∫

Σ

∫ 1

−1

∫ 1

0

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dθdsdσ(yΣ) ≤ C

(
1 + | ln ε|

)
.

P r o o f. Let x ∈ C([0, 1];Rd) be fixed and choose r0 > 0. Interchanging the order of integration we get∫
Σ

∫ 1

−1

∫ 1

0

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dθdsdσ(yΣ)

=

∫ 1

0

∫
Σ

∫ 1

−1

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ)dθ.

We are going to find a suitable bound for the integral with respect to ds and dσ. So let θ ∈ (0, 1) be fixed. If
dist(x(θ),Σ) > r0, Lemma A.7 yields immediately that∫

Σ

∫ 1

−1

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ) ≤ C1

for all ε > 0 sufficiently small and thus, the claimed result is true in this case.
If dist(x(θ),Σ) ≤ r0 we split the hypersurface Σ into two disjoint parts

Σ1 := Σ ∩B(x(θ), r0) and Σ2 := Σ \B(x(θ), r0), Σ = Σ1 ∪ Σ2,

and we define the following two auxiliary quantities

Ij(x(θ), θ, ε) :=

∫
Σj

∫ 1

−1

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ), j ∈ {1, 2}.

Hence, it holds that∫
Σ

∫ 1

−1

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ) = I1(x(θ), θ, ε) + I2(x(θ), θ, ε). (A.12)

Again Lemma A.7 implies that I2(x(θ), θ, ε) ≤ C1 for all sufficiently small ε > 0 independent of x(θ) and θ.
It remains to estimate I1(x(θ), θ, ε). Let {ϕi, Ui, Vi}i∈I be a parametrization of Σ as in Definition 2.1.

By (2.2) we get

I1(x(θ), θ, ε) =
∑
i∈I

∫ 1

−1

∫
ϕ−1
i (Σ1)

χi(ϕi(v))
∣∣∇Gλ(x(θ)−ϕi(v)− εθsν(ϕi(v))

)∣∣√detGi(v)dvds,

where {χi}i∈I is a partition of unity subordinate to {Vi}i∈I . Since detGi(v) is bounded by Definition 2.1 (e),
we can continue estimating

I1(x(θ), θ, ε) =
∑
i∈I

∫ 1

−1

∫
ϕ−1
i (Σ1)

χi(ϕi(v))
∣∣∇Gλ(x(θ)− ϕi(v)− εθsν(ϕi(v))

)∣∣√detGi(v)dvds

≤ C2

∑
i∈I

∫ 1

−1

∫
ϕ−1
i (Σ1)

∣∣∇Gλ(x(θ)− ϕi(v)− εθsν(ϕi(v))
)∣∣dvds

≤ C3

∑
i∈I

∫ 1

−1

∫
ϕ−1
i (Σ1)

∣∣x(θ)− ϕi(v)− εθsν(ϕi(v))
∣∣1−ddvds,

(A.13)
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where we used an estimate for |∇Gλ| that follows from Proposition A.1 (ii). It remains to find a suitable bound
for
∣∣x(θ)− ϕi(v)− εθsν(ϕi(v))

∣∣1−d.

Claim. Let i ∈ I with ϕ−1
i (Σ1) 6= ∅ be fixed. Then there exists a constant C̃ = C̃(i,Σ) and parameters

u = u(x(θ), θ, ε, i) ∈ U i and t = t(x(θ), θ, ε, i) ∈ [−1, 1] with the following properties:

(a) for any (v, s) ∈ ϕ−1
i (Σ1)× (−1, 1) it holds

|x(θ)− ϕi(v)− εθsν(ϕi(v))|1−d ≤ C̃(|u− v|d−1 + (εθ|t− s|)d−1)−1;

(b) ϕ−1
i (Σ1) ⊂ B(u, 2r0/c).

Here, c is the same constant as in Hypothesis 2.3 (c). We mention that u and t also depend on d, Σ and r0, but
this is not of importance in the following.

In order to prove the claim, set

h := inf
{
|x(θ)− ϕi(v)− εθsν(ϕi(v))| : (v, s) ∈ ϕ−1

i (Σ1)× (−1, 1)
}
.

Choose a sequence (un, tn) ∈ ϕ−1
i (Σ1)× (−1, 1) such that

|x(θ)− ϕi(un)− εθtnν(ϕi(un))| → h and ϕi(un) + εθtnν(ϕi(un))→ y ∈ Rd;

this is possible since the set {ϕi(v) + εθsν(ϕi(v)) : (v, s) ∈ ϕ−1
i (Σ1) × (−1, 1)} is bounded in Rd. Using

Hypothesis 2.3 (c), we find that

c2
(
|un − um|2 + (εθ)2|tn − tm|2

)
≤ |ϕi(un) + εθtnν(ϕi(un))− ϕi(um)− εθtmν(ϕi(um))|2.

Therefore, (un) and (tn) are Cauchy sequences. Set limun =: u ∈ Ui and lim tn =: t ∈ [−1, 1]. Using a
continuity argument and again Hypothesis 2.3 (c), we find for all v ∈ Ui and all s ∈ (−1, 1) that

c2
(
|u− v|2 + (εθ)2|t− s|2

)
= c2 lim

n→∞

(
|un − v|2 + (εθ)2|tn − s|2

)
≤ lim
n→∞

|ϕi(un) + εθtnν(ϕi(un))− ϕi(v)− εθsν(ϕi(v))|2

= |y − ϕi(v)− εθsν(ϕi(v))|2.

(A.14)

Finally, for v ∈ ϕ−1
i (Σ1) and s ∈ (−1, 1) it holds by the triangle inequality

|y − ϕi(v)− εθsν(ϕi(v))| ≤ |x(θ)− ϕi(v)− εθsν(ϕi(v))|+ |x(θ)− y|
≤ 2|x(θ)− ϕi(v)− εθsν(ϕi(v))|

due to the construction of y. Hence, we get that

|x(θ)− ϕi(v)− εθsν(ϕi(v))| ≥ 1

2
|y − ϕi(v)− εθsν(ϕi(v))|. (A.15)

In particular, this and (A.14) with s = 0 imply that

c|u− v| ≤ c
(
|u− v|2 + (εθt)2

)1/2 ≤ |y − ϕi(v)| ≤ 2|x(θ)− ϕi(v)| ≤ 2r0

and thus, ϕ−1
i (Σ1) ⊂ B(u, 2r0/c). This is item (b) of the claim. Furthermore, using for a, b > 0 the inequality

ad−1 + bd−1 ≤ (a+ b)d−1 ⇔ (a+ b)1−d ≤
(
ad−1 + bd−1

)−1

and equations (A.14) and (A.15) we obtain∣∣x(θ)− ϕi(v)− εθsν(ϕi(v))
∣∣1−d ≤ 2d−1

∣∣y − ϕi(v)− εθsν(ϕi(v))
∣∣1−d

≤ C4

(
|u− v|2 + (εθ)2|t− s|2

)(1−d)/2

≤ C5

(
|u− v|+ εθ|t− s|

)1−d
≤ C5

(
|u− v|d−1 + (εθ|t− s|)d−1

)−1
.
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Thus, also assertion (a) of the claim is true.
Using the result of the above claim, we can continue with the estimate (A.13). Employing a transition to

spherical coordinates and that ϕ−1
i (Σ1) ⊂ B(u, 2r0/c), we get for all sufficiently small ε > 0 that∫ 1

−1

∫
ϕ−1
i (Σ1)

∣∣x(θ)− ϕi(v)− εθsν(ϕi(v))
∣∣1−ddvds

≤ C5

∫ 1

−1

∫
B(u,2r0/c)

(
|u− v|d−1 + (εθ|t− s|)d−1

)−1
dvds

= C6

∫ 1

−1

∫ 2r0/c

0

rd−2
(
rd−1 + (εθ|t− s|)d−1

)−1
drds.

We employ now the substitutions z := rd−1 and ζ := s− t. Note that s, t ∈ [−1, 1] implies ζ ∈ [−2, 2]. Hence,
we get ∫ 1

−1

∫
ϕ−1
i (Σ1)

∣∣x(θ)− ϕi(v)− εθsν(ϕi(v))
∣∣1−ddvds

≤ C6

∫ 1

−1

∫ 2r0/c

0

rd−2
(
rd−1 + (εθ|t− s|)d−1

)−1
drds

≤ C7

∫ 2

−2

∫ (2r0/c)
d−1

0

(
z + (εθ|ζ|)d−1

)−1
dzdζ

= C7

∫ 2

−2

(
ln

((
2r0

c

)d−1

+ (εθ|ζ|)d−1

)
− ln

(
(εθ|ζ|)d−1

))
dζ.

For a fixed r0 > 0 it holds that ln
((

2r0
c

)d−1
+ (εθ|ζ|)d−1

)
≤ C8 independent of θ ∈ (0, 1). Therefore, we

obtain ∫ 1

−1

∫
ϕ−1
i (Σ1)

∣∣x(θ)− ϕi(v)− εθsν(ϕi(v))
∣∣1−ddvds ≤ C9

∫ 2

−2

(
1− ln(εθ|ζ|)

)
dζ

≤ C10

(
1 + | ln ε|+ | ln θ|

)
.

Summing up all i ∈ I , we get

I1(x(θ), θ, ε) ≤ C3

∑
i∈I

∫ 1

−1

∫
ϕ−1
i (Σ1)

∣∣x(θ)− ϕi(v)− εθsν(ϕi(v))
∣∣1−ddvds

≤ C11

(
1 + | ln ε|+ | ln θ|

)
.

Thus, using (A.12) and the last estimate, it follows∫
Σ

∫ 1

−1

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ) = I1(x(θ), θ, ε) + I2(x(θ), θ, ε)

≤ C12

(
1 + | ln ε|+ | ln θ|

)
.

This is the desired estimate, if dist(x,Σ) ≤ r0. Integrating the last estimate with respect to θ we finally obtain∫ 1

0

∫
Σ

∫ 1

−1

∣∣∇Gλ(x(θ)− yΣ − εθsν(yΣ))
∣∣dsdσ(yΣ)dθ

≤ C13

∫ 1

0

(
1 + | ln ε|+ | ln θ|

)
dθ

≤ C14

(
1 + | ln ε|

)
,

which leads to the statement of this lemma.
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In the following proposition we state the last two estimates that are needed to prove our main result. They
follow from Lemma A.8, that is once applied for the case that x(θ) is a constant function and once for x(θ) being
linear affine in θ.

Proposition A.9 Let Σ be a C2-smooth hypersurface satisfying Hypothesis 2.3 and let λ ∈ (−∞, 0).

(i) Let ψ ∈ L∞(Σ× (−1, 1)). Then there exists a constant C = C(d, λ,Σ, ψ) > 0 such that the bound

sup
x∈Rd

∫
Σ

∫ 1

−1

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣dsdσ(yΣ) ≤ Cε
(
1 + | ln ε|

)
holds for all sufficiently small ε > 0.

(ii) Let ω, ψ ∈ L∞(Σ× (−1, 1)). Then there exists a constant C = C(d, λ,Σ, ω, ψ) > 0 such that the bound

sup
(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣ω(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ)
)
ψ(yΣ, s)

∣∣dsdσ(yΣ) ≤ Cε
(
1 + | ln ε|

)
holds for all sufficiently small ε > 0.

P r o o f. (i) Let x ∈ Rd be fixed. We employ (A.10) (with τ(x, yΣ, s, t) = −sν(yΣ) implying ‖τ‖L∞ = 1)
and find that∫

Σ

∫ 1

−1

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣dsdσ(yΣ)

≤ ε‖ψ‖L∞
∫

Σ

∫ 1

−1

∫ 1

0

∣∣∇Gλ(x− yΣ − εθsν(yΣ))
∣∣dθdsdσ(yΣ).

Thus, Lemma A.8 yields the claimed assertion.
(ii) Let (xΣ, t) ∈ Σ × (−1, 1) be fixed. Using (A.10) (with x = xΣ and τ(xΣ, yΣ, s, t) = tν(xΣ) − sν(yΣ)

implying ‖τ‖L∞ ≤ 2) we find that∫
Σ

∫ 1

−1

∣∣ω(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))−Gλ(xΣ − yΣ)

)
ψ(yΣ, s)

∣∣dsdσ(yΣ)

≤ 2ε‖ω‖L∞‖ψ‖L∞
∫

Σ

∫ 1

−1

∫ 1

0

∣∣∇Gλ(xΣ − yΣ + εθ(tν(xΣ)− sν(yΣ))
)∣∣dθdsdσ(yΣ).

Therefore, the claimed statement follows from Lemma A.8 (with x(θ) = xΣ + εθtν(xΣ)).

B Boundaries of bounded C2-domains

In this appendix it is shown that the boundary of a bounded and simply connectedC2-domain is aC2-hypersurface
in the sense of Definition 2.1 that satisfies Hypothesis 2.3. Recall that a bounded C2-domain Ω ⊂ Rd is an open,
bounded and simply connected set with boundary Σ for which there exists a parametrization {Φi, Xi, Yi}i∈I with
a finite index set I satisfying the following conditions:

(a) Xi ⊂ Rd−1 and Yi ⊂ Rd are open sets and Φi : Xi → Yi is a C2-mapping for all i ∈ I;

(b) rankDΦi(u) = d− 1 for all u ∈ Xi and i ∈ I;

(c) Φi(Xi) = Yi ∩ Σ and Φi : Xi → Yi ∩ Σ is a homeomorphism;

(d) Σ ⊂
⋃
i∈I Yi;
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see, e.g. in [30, Chapter 3] for a similar notion. Since Σ is compact it is no restriction to assume that the sets
Yi, i ∈ I , are bounded. In order to prove that Σ is a hypersurface in the sense of Definition 2.1 choose a family
{Vi}i∈I of open sets in Rd such that Vi ⊂ Vi ⊂ Yi and Σ ⊂

⋃
i∈I Vi. Next, set Ui := Φ−1

i (Vi ∩ Σ) ⊂ Xi and
ϕi := Φi|Ui . Then Ui ⊂ Ui ⊂ Xi and {ϕi, Ui, Vi}i∈I satisfies the conditions (a)-(d) above. In addition, each ϕi
is uniformly Lipschitz continuous on Ui, as Ui ⊂ Xi. Therefore, {ϕi, Ui, Vi}i∈I is a parametrization of Σ with
the properties (a)-(e) in Definition 2.1 and hence Σ is a C2-hypersurface.

Moreover, as Ui ⊂ Xi there is a constant C > 0 such that the corresponding first fundamental form in (2.1)
satisfies

detGi(u) ≥ C > 0 (B.1)

for any u ∈ Ui and all i ∈ I . Since the outward unit normal vector field ν is continuous, it is clear that the
hypersurface Σ is orientable.

Recall that the eigenvalues of the Weingarten map depend continuously on xΣ ∈ Σ and, since Σ is compact,
these eigenvalues are bounded. Hence, item (b) of Hypothesis 2.3 is satisfied. It remains to show that (a) and (c)
of Hypothesis 2.3 hold. The following proposition concerns condition (a).

Proposition B.1 Let Ω ⊂ Rd be a bounded and simply connected C2-domain with boundary Σ. Then there
exists β > 0 such that the mapping ιΣ : Σ× R→ Rd in (2.5) is injective on Σ× (−β, β).

P r o o f. Suppose that the claim is false. Then for all n ∈ N there exist xΣ,n, yΣ,n ∈ Σ and sn, tn ∈
(
− 1
n ,

1
n

)
such that (xΣ,n, tn) 6= (yΣ,n, sn) and

xΣ,n + tnν(xΣ,n) = ιΣ(xΣ,n, tn) = ιΣ(yΣ,n, sn) = yΣ,n + snν(yΣ,n). (B.2)

Since Σ is compact we can assume that the sequences (xΣ,n)n and (yΣ,n)n converge to xΣ and yΣ, respectively.
Then, equation (B.2) implies xΣ = yΣ. Let {ϕi, Ui, Vi}i∈I be the parametrization of Σ constructed above and
let ιϕi : Ui × R → Rd be as in (2.3). Since xΣ,n → xΣ and yΣ,n → yΣ = xΣ, there exists N ∈ N and i ∈ I
such that xΣ,n, yΣ,n ∈ Vi for all n ≥ N . Hence, un := ϕ−1

i (xΣ,n) and vn := ϕ−1
i (yΣ,n), n ≥ N , satisfy

ιϕi(un, tn) = ϕi(un) + tnν(ϕi(un)) = ϕi(vn) + snν(ϕi(vn)) = ιϕi(vn, sn)

and it follows that ιϕi is not injective on Ui × (−β, β) for any β > 0. On the other hand, if Gi and Li denote the
matrices representing the first fundamental form and the Weingarten map, then

|detDιϕi(u, t)| = det(1− tLi(u))
√

detGi(u) ≥ C > 0

holds for some C > 0, all u ∈ Ui and all t sufficiently small; cf. (2.4) and (B.1). Now the inverse function
theorem implies that ιϕi is invertible; a contradiction.

Finally, we prove that condition (c) of Hypothesis 2.3 is satisfied for the boundary of a compact and simply
connected C2-smooth domain.

Proposition B.2 Let Ω ⊂ Rd be a bounded and simply connected C2-smooth domain with boundary Σ, let
{ϕi, Ui, Vi}i∈I be the parametrization of Σ as above and let ιϕi be as in (2.3). Then there exist β > 0 and a
constant c > 0 such that for all u, v ∈ Ui, s, t ∈ (−β, β) and all i ∈ I it holds∣∣ιϕi(u, t)− ιϕi(v, s)∣∣2 ≥ c2 (|u− v|2 + |s− t|2

)
.

P r o o f. Let {Φi, Xi, Yi}i∈I be a parametrization of Σ as in the beginning of this appendix, fix i ∈ I and
choose β > 0 and a constant D > 0 such that

det(1− tLi(u)) ≥ D > 0 for all (u, t) ∈ Xi × (−2β, 2β); (B.3)

here Li(u) is the matrix representing the Weingarten map associated to the mapping Φi. As in (2.3) define

ιΦi : Xi × R→ Rd, ιΦi(u, t) := Φi(u) + tν(Φi(u)),
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and consider the open sets

Ω1 := ιϕi(Ui × (−β, β)) and Ω3 := ιΦi(Xi × (−2β, 2β))

in Rd. Since Ω1 ⊂ Ω1 ⊂ Ω3, there exists β1 > 0 such that B(x, 2β1) ⊂ Ω3 for any x ∈ Ω1. Eventually, we need
the open set

Ω2 :=
⋃
x∈Ω1

B(x, β1).

Note that Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω3.
Let u, v ∈ Ui and s, t ∈ (−β, β) be fixed. Set x := ιϕi(u, t) = ιΦi(u, t) and y := ιϕi(v, s) = ιΦi(v, s). We

distinguish two cases: |x− y| < β1 and |x− y| ≥ β1. In the first case, if |x− y| < β1 then y is contained in the
convex set B(x, β1) ⊂ Ω2. It follows from∣∣det

(
(DιΦi)(u, t)

)∣∣ =
∣∣det(1− tLi(u))

∣∣√detGi(s)

(cf. (2.4)), (B.3) and (B.1), which is also true for u ∈ Ω2 with a possibly smaller C, that |detDιΦi(u, t)| ≥
D′ > 0 for all (u, t) ∈ Φ−1

i (Ω2). Hence, there exists a constant C1 > 0 such that

∥∥(Dι−1
Φi

)(z)
∥∥ =

∥∥∥(DιΦi(ι−1
Φi

(z))
)−1
∥∥∥ =

∥∥∥∥∥ 1

detDιΦi(ι
−1
Φi

(z))
adj
[
DιΦi(ι

−1
Φi

(z))
]∥∥∥∥∥ ≤ C1

for all z ∈ Ω2; here adj [·] denotes the adjugate matrix. Hence, we obtain(
|u− v|2 + |s− t|2

)1/2
=
∣∣ι−1

Φi
(y)− ι−1

Φi
(x)
∣∣

=

∣∣∣∣∫ 1

0

d

dξ
ι−1
Φi

(x+ ξ(y − x))dξ

∣∣∣∣
≤
∫ 1

0

∣∣Dι−1
Φi

(x+ ξ(y − x))·(y − x)
∣∣dξ

≤ max
{∥∥Dι−1

Φi
(z)
∥∥ :z ∈ B(x, β1)

}
·|x− y|

≤ C1|ιϕi(u, t)− ιϕi(v, s)|,

which is the claimed result in the case |x− y| < β1.

In the remaining case |x − y| ≥ β1 we set C2 := max{|ι−1
ϕi (z)| : z ∈ Ω1}. Since Ω1 ⊂ Ω3 we conclude

C2 <∞ and

|u− v|2 + |s− t|2 =
∣∣ι−1
ϕi (x)− ι−1

ϕi (y)
∣∣2 ≤ 4C2

2

|x− y|2
|x− y|2 ≤ 4C2

2

β2
1

∣∣ιϕi(u, t)− ιϕi(v, s)∣∣2.
Setting finally

C(i) := min

{
1

C1
,
β1

2C2

}
and c := min

{
C(i) : i ∈ I

}
, the result of this proposition follows.
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