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Abstract
We investigate the spectral properties of self-adjoint Schrödinger operators
with attractive δ-interactions of constant strength α > 0 supported on conical
surfaces in 3. It is shown that the essential spectrum is given by

α− +∞[ 4, )2 and that the discrete spectrum is infinite and accumulates to
α− 42 . Furthermore, an asymptotic estimate of these eigenvalues is obtained.

Keywords: Schrödinger operator, delta potential, infinite discrete spectrum

1. Introduction

The purpose of this paper is to analyse the spectrum of the three−dimensional Schrödinger
operator Δ− α θ, with an attractive δ−interaction of constant strength α > 0 supported on the
conical surface

 θ θ π= ∈ = + ∈θ { }x y z z x y: ( , , ) : : cot ( ) , (0, 2).3 2 2

The Schrödinger operator Δ− α θ, is defined via the first representation theorem [17, Theorem
VI.2.1] as the unique self-adjoint operator in L ( )2 3 which is associated with the closed,
densely defined, symmetric and semibounded quadratic form
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a a 
  ∫ψ ψ α ψ σ= − =α αθ

θ
θ   ( )( ) H[ ] d , dom ; (1)

L, ;
2 2

,
1 3

2 3 3

cf [1, 4]. In a short form the main result of this note is the following theorem.

Theorem. For any θ π∈ (0, 2) and α > 0 the essential spectrum of the operator Δ− α θ, is
α− +∞[ 4, )2 , the discrete spectrum is infinite and accumulates to α− 42 .

In addition, we obtain an asymptotic estimate of the eigenvalues of Δ− α θ, lying below
α− 42 , see theorem 3.2. Roughly speaking, the infiniteness of the discrete spectrum is

induced by global geometrical properties of the conical surface θ and is not related to the
singularity at the tip or other local geometrical properties. In fact, the same effect remains
present after a local deformation of θ ; cf theorem 3.3.

Various relations between the geometry and the bound states of quantum systems have
been studied intensively in recent decades (see, e.g. [19]) after it had been realized in [14] that
curvature can give rise to an effective attractive interaction. In addition to systems with a
hard-wall confinement the so-called ‘leaky’ structures attracted attention, see the review paper
[11]. Their advantage is that they make it possible to take quantum tunnelling into account.
The model discussed in this paper can describe, for instance, a structure composed of two
semiconductors: a conical substrate of one material on the top of which we have a thin layer
of the second one, covered by a bulk mass of the former.

The proof of our main result is based on standard techniques in spectral theory of self-
adjoint operators: we construct singular sequences and use Neumann bracketing in the spirit
of [13] to show the assertion on the essential spectrum; for the infiniteness of the discrete
spectrum we employ variational principles. The same approach was applied in [25] in the
context of Schrödinger operators with slowly decaying negative regular potentials, see also
[23, §XIII.3]. Similar arguments were also used in [10, 15] for the closely related question of
infiniteness of the discrete spectrum for the Dirichlet Laplacian in a conical layer, see also
[7, 23, 18, 19, 21] for further progress in this problem. We also point out [6, 9, 12] for related
spectral problems for Schrödinger operators with δ-potentials.

2. Essential spectrum of −Δα;Cθ

In this section we show that the essential spectrum of the operator Δ− α θ, is given by
α− +∞[ 4, )2 . The proof of the inclusion σ Δ α− ⊇ − +∞α θ( ) [ 4, )ess ,

2 makes use of
singular sequences and for the other inclusion a specially chosen Neumann bracketing is used.
A similar type of argument was also employed in [1, 13] for δ and δ′-interactions on broken
lines in the two-dimensional setting.

Theorem 2.1. Let Δ− α θ, be the self-adjoint operator in L ( )2 3 associated to the form (1)
and let α > 0 and θ π∈ (0, 2). Then

σ Δ α− = − +∞α θ( ) [ 4, )ess ,
2

Remark 2.2. For completeness we mention that the above theorem is also valid in the case
θ π= 2, that is, the conical surface is a plane, and the statement can be shown directly via
separation of variables.
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Proof of theorem 2.1 Step 1. We verify the inclusion σ Δ α− ⊇ − +∞α θ( ) [ /4, )ess ,
2 by

constructing singular sequences for the operator Δ− α θ, for every point of the interval
α− +∞[ 4, )2 . Let us start by fixing a function χ ∈ ∞C (1, 2)1 0 such that

χ∥ ∥ = 1, (2)L1 (1,2)2

and a function χ ε ε∈ −∞C ( , )2 0 with some fixed ε θ∈ (0, tan ), which satisfies

χ χ ε⩽ ⩽ = <t t0 1 and ( ) 1 for 2. (3)2 2

Define for all ∈p and ∈n the functions  ω →+:n p,
2 as

ω χ χ α= − ∈ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )s t

n

s

n
ps

t

n
t C( , ):

1
exp (i ) exp

2
n p, 1 2

2

in the coordinate system (s, t) in figure 1. Here +
2 denotes open right half-

plane ∈ >r z r{( , ) : 0}2 .
Note that because of the choice ε θ∈ (0, tan ) we have ω ⊂ +supp n p,

2 for all ∈n and,
moreover, the distances between the z-axis and the supports of ωn p, satisfy

ρ ω= ∈ → +∞ → ∞{ }r r z n: inf : ( , ) supp , . (4)n n p,

By dominated convergence, using (2) and (3), we get

 ∫ ∫

∫ ∫

ω χ χ

χ
α

∥ ∥ =

= → = → ∞

ε

ε
α

ε

ε
α α

−
−

−
−

−∞

∞
−

+
⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

( ) n

s

n
e s

t

n
e t

t

n
e t e t n

1
d d

d d
2

, . (5)

n p L n

n
ps

n

n
t

n

n
t t

,
2

2

1
i

2

2

2

2

2

2 2

We denote by ω ±n p, , the restrictions of ωn p, onto the open subsets

 θ θ= ∈ > = ∈ <+ + − +{ } { }S r z z r S r z z r( , ) : cot and ( , ) : cot2 2

of +
2 . The partial derivatives of ω ±n p, , with respect to s and t are given by

ω χ χ χ

ω χ χ α χ

∂ = ′ +

∂ = ′ ±

α

α α

±
±

±
± ±

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝
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⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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⎠⎟

n n

s

n
e p

s

n
e

t

n
e

n

s

n
e

n

t

n
e

t

n
e

1 1
i ,

1 1

2
.

s n p
ps ps t

t n p
ps t t

, , 1
i

1
i

2 2

, , 1
i

2 2 2 2

Similarly as in (5), using dominated convergence, we get


  

∫ω ω ω α
α

∥ ∥ = ∂ + ∂ → + → ∞
+ +

⎛
⎝⎜

⎞
⎠⎟( )( ) s t p nd d

4

2
, . (6)n p L s n p t n p, ;

2
,

2
,

2 2
2

2 2 2 2

Let us define the sequence of functions  ψ →:n p,
3 as

ψ φ
ω

π
= ∈r z

r z

r
n( , , ):

( , )

2
, , (7)n p

n p
,

,

where the functions  ω →+:n p,
2 are interpreted as rotationally invariant functions on 3 in

the cylindrical coordinate system φr z( , , ). The hypersurface θ separates the Euclidean space
3 into two unbounded Lipschitz domains Ω+ and Ω−, where
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



Ω θ

Ω θ

= ∈ > +

= ∈ < +

+

−

{ }
{ }

x y z z x y

x y z z x y

( , , ) : cot ( ) ,

( , , ) : cot ( ) .

3 2 2

3 2 2

We use the notation ψ ψ= ∣Ω± ±:n p n p, , , . Then ψ Ω∈±
∞

±C ( )n p, , and from (5) we obtain

 
ψ ω

α
∥ ∥ = ∥ ∥ → → ∞

+( ) ( ) n
2

, . (8)n p L n p L,
2

,
2

2 3 2 2

We claim that ψ Δ∈ − α θdom ( )n p, , . For this we still need to check that the boundary
conditions

ψ ψ ψ ψ αψ= ∂ + ∂ =ν ν+ − + −
θ θ θ θ θ

+ −and (9)n p C n p C n p C n p C n p C, , , , , , , , ,

are satisfied; cf [1, Theorem 3.3(i)]. In fact, by the definition of ωn p, we have

ω ω∣ = ∣+ −θ θn p C n p C, , , , , where ωn,p,± are interpreted as rotationally invariant functions on Ω±.

This implies that the first condition (9) holds. Furthermore, one computes

ω ω α χ αω∂ + ∂ = =ν ν+ −
θ θ θ

+ −
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟n

s

n
ps

1
exp (i ) . (10)n p C n p C n p C, , , , 1 ,

The gradient of ψ ±n p, , can be expressed as

  ψ
π

ω ω
π

= +± ± ±
⎛
⎝⎜

⎞
⎠⎟r r

1

2

1

2
,n p n p n p, , , , , ,

where ∇ acts on the functions φ ω↦ ±r z r z( , , ) ( , )n p, , and φ ↦
π

r z( , , )
r

1

2
. Hence, we

obtain

Figure 1. The right half-plane +
2 with the coordinate system (r, z). The ray Γθ emerges

from the origin and constitutes the angle θ π∈ (0, 2) with the z-axis. The coordinate
system (s,t) is associated with Γθ .
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ψ ψ
π

ω ω

ω
π π

π
α ω αψ

∂ + ∂ = ∂ + ∂

+ ∂ + ∂

= =

ν ν ν ν
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+ − + −
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⎛
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⎞
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r
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1

2

1

2
,

n p
C

n p
C

C
n p

C
n p

C

n p
C

C C

C
n p

C n p C

, , , , , , , ,

,

, ,

where (10) was used in the second equality. Thus we have verified (9) and therefore
ψ Δ∈ − α θdom ( )n p, , . Moreover, according to [1, Theorem 3.3(i)] we also have

Δ ψ Δψ Δψ− = − ⊕ −α + −θ ( ) ( ). (11)n p n p n p, , , , , ,

Using the expression for the three-dimensional Laplacian in cylindrical coordinates we find

Δψ ψ ψ− = − ∂ ∂ − ∂± ± ±( )r
r

1
,n p r r n p z n p, , , ,

2
, ,

where the angular term is absent since the functions ψ ±n p, , do not depend on φ. The above
expression can be rewritten as

Δψ ψ ψ ψ− = − ∂ − ∂ − ∂± ± ± ±( )r

1
. (12)n p r n p z n p r n p, ,

2
, ,

2
, , , ,

Next we compute the first and second order partial derivatives of ψ ±n p, , with respect to r:

ψ
ω

π

ω

π

ψ
ω

π

ω

π

ω

π

∂ =
∂

−

∂ =
∂

−
∂

+

±
± ±

±
± ± ±

r r

r r r

2 2 2
,

2 2

3

4 2
. (13)

r n p
r n p n p

r n p
r n p r n p n p

, ,
, , , ,

3 2

2
, ,

2
, , , ,

3 2

, ,

5 2

The last two summands in the expression for ψ∂ ±r n p
2

, , can be estimated in L2-norm as




 




ω

π ρ
ω

ω

π ρ
ω

∂
⩽ ∥ ∥ → → ∞

⩽ ∥ ∥ → → ∞

±

±

+

+

( )
( )

( ) ( )

r
n

r
n

2

1
0, ,

9

16 2

9

16
0, , (14)

r n p

L n

n p L

n p

L n

n p L

, ,

3 2

2

2 , ;
2

, ,

5 2

2

4 ,
2

2 3

2 2 2

2 3

2 2

where we have used (4), (5) and (6). The second order partial derivatives of ψ ±n p, , with respect
to z are

ψ
ω

π
∂ =

∂
±

±

r2
. (15)z n p

z n p2
, ,

2
, ,

Using (13), (14), (15) and the invariance of the Laplacian under rotation of the coordinate
system we obtain that

ψ ψ
π

ω ω−∂ − ∂ = − ∂ + ∂ + → ∞± ± ± ±( )
r

o n
1

2
(1), ; (16)r n p z n p s n p t n p

2
, ,

2
, ,

2
, ,

2
, ,
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here and in the following we understand o (1) in the strong sense with respect to the
corresponding L2-norm. With the help of (13) the norm of the last summand on the right hand
side in (12) can be estimated as

  

ψ ω

π

ω

π

∂
⩽

∂
+

± ± ±

( ) ( ) ( )r r r2 2 2
,

r n p

L

r n p

L

n p

L

, , , ,

3 2

, ,

5 2
2 3 2 3 2 3

and from (14) we conclude



ψ∂
= → ∞

±

( )r
o n(1), .

r n p

L

, ,

2 3

From (12), the latter result and (16) we obtain

Δψ
π

ω ω− = − ∂ + ∂ + → ∞± ± ±( )
r

o n
1

2
(1), . (17)n p s n p t n p, ,

2
, ,

2
, ,

Again using dominated convergence we compute

ω χ χ χ χ

ω

∂ = + ′ −

= − + → ∞

α
±

± ″

±

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟n

t

n
e

n

s

n
e

p

n

s

n
e p

s

n
e

p o n

1 1 2i

(1), , (18)

s n p
t ps ps ps

n p

2
, , 2 2

2 1
i

1
i 2

1
i

2
, ,

and

ω χ χ α χ α χ

α ω

∂ = ″ ± ′ +

= + → ∞

α α α
±

± ± ±

±

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟n

s
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t

n
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n

t

n
e

t

n
e

o n

1 1

4

4
(1), . (19)

t n p
ps t t t

n p

2
, , 1

i
2 2 2 2 2

2

2 2

2

, ,

Finally, employing (11), (17), the definition of ψn p, in (7) and (18), (19) we arrive at

Δ ψ α ψ− = − + + → ∞α θ

⎛
⎝⎜

⎞
⎠⎟ p o n

4
(1), . (20)n p n p, ,

2
2

,

Since the supports of ψ p2 ,k and ψ ′ p2 ,k , ≠ ′k k , are disjoint, the sequence ψ{ }p k2 ,k converges
weakly to zero. Moreover, by (8) we have ψ∥ ∥ >liminf 0p L2 , ( )k 2 3 and hence (20) implies
that ψ{ }p k2 ,k is a singular sequence for the operator Δ− α θ, corresponding to the point

α− + p42 2. Therefore, α σ Δ− + ∈ − α θp/4 ( )2 2
ess , for all ∈p (see, e.g. [3, Theorem

9.1.2] or [24, Proposition 8.11]) and it follows that α σ Δ− + ∞ ⊆ − α θ[ /4, ) ( )2
ess , .

Step 2. In this step we show the inclusion σ Δ α− ⊆ − + ∞α θ( ) [ /4, )ess ,
2 using form

decomposition methods. For sufficiently large ∈n we define three subsets of the closed
half-plane   = ∈ ⩾ ∈+ r z r z: {( , ) : 0, }2 2

 

 

 

π

π

π

= ∈ > < ⊂

= ∈ < < ⊂

= ∈ > ⊂

+ +

+ +

+ +

{ }
{ }
{ }

r s t z s t s n t n

r s t z s t s n t n

r s t z s t t n

: ( ( , ), ( , )) : , ,

: ( ( , ), ( , )) : , ,

: ( ( , ), ( , )) : ,

n

n

n

1 2 2

2 2 2

3 2 2

as shown in figure 2.
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The ray Γθ , which emerges from the origin and constitutes the angle θ with z-axis, is
decomposed into

Γ Γ

Γ Γ

= ∈ >

= ∈ <
θ θ

θ θ

{ }
{ }

r s t z s t s n

r s t z s t s n

: ( ( , ), ( , )) : ,

: ( ( , ), ( , )) : .

n

n

,
1

,
2

The splitting π ={ }n
k

k 1
3 of +

2 induces the splitting of 3 into three domains

Ω φ π φ π= ∈ ∈ ⊂ ={ }r z r z k: ( , , ): ( , ) , [0, 2 ) , 1, 2, 3,n
k

n
k 3

and the splitting of the conical surface θ into two parts

φ Γ φ π

φ Γ φ π

= ∈ ∈ ⊂

= ∈ ∈ ⊂

θ θ θ

θ θ θ

 
 

{ }
{ }

r z r z

r z r z

: ( , , ): ( , ) , [0, 2 ) ,

: ( , , ): ( , ) , [0, 2 ) .

n n

n n

,
1

,
1

,
2

,
2

We agree to denote the restriction of ψ ∈ L ( )2 3 onto Ωn
k with =k 1, 2, 3 by ψk.

Consider the quadratic form

a

a




∑ψ ψ α ψ α ψ

Ω

= ∥ ∥ − ∥ ∣ ∥ − ∥ ∣ ∥

= ⊕

α Ω

α

=

=

θ θ
θ

θ
θ

θ

    

 ( )

( ) ( ) ( )

H

[ ]: ,

dom : .

n

k
k L L L

n
k

n
k

, ,

1

3

;
2

1
2

2
2

, ,
1

3
1

n
k n

n
n

n
2 3 ,

1
2

,
1 ,

2
2

,
2

As in the proof of [1, Proposition 3.1] one verifies that the form aα θ n, , is closed, densely
defined, symmetric and semibounded from below. Hence aα θ n, , induces a self-adjoint
operator Δ− α θ n, , in L ( )2 3 via the first representation theorem [17, Theorem VI.2.1]. The
operator Δ− α θ n, , can be decomposed into an orthogonal sum ⊕ = Hk n k1

3
, of self-adjoint

operators Hn k, in ΩL ( )n
k2 with respect to the orthogonal decomposition

 Ω= ⊕ =L L( ) ( )k n
k2 3

1
3 2 , where Hn,1 and Hn,2 correspond to the quadratic forms

Figure 2. The subsets πn
1, πn

2 and πn
3 of the closed half-plane +

2 .
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
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,1
1 1

,2 2 2 ;
2

2
2

,2
1 2

n
n

n

n
n

n

2 1 3 ,
1

2
,

1

2 2 3 ,
2

2
,

2

respectively, and Hn,3 corresponds to the quadratic form

a a


ψ ψ Ω= ∥ ∥ =
Ω ( )( ) H[ ] , dom .n L n n,3 3 3 ;

2
,3

1 3

n
2 3 3

Let us first estimate the spectrum of Hn,1. For this, note that ∩Ω Ω∞C H( ) ( )n n
1 1 1 is a core

of an,1 and thus it suffices to use functions from this set in the estimates below (see, e.g.
[8, Theorem 4.5.3]). For any ∩ψ Ω Ω∈ ∞C H( ) ( )n n1

1 1 1 normalized as ψ∥ ∥ =Ω 1L1 ( )n
2 1 we

obtain

a ∫ ∫ ∫

∫

∣ ∣

∣ ∣

ψ ψ φ

α ψ φ φ

⩾ ∂

−

π +∞

−

+∞
⎟

⎛
⎝⎜

⎞
⎠

r s t s t t s

r s s s

[ ] ( , ) ( , , ) d d

( , 0) ( , 0, ) d d ,

n
n n

n

t

n

,1 1
0

2

1
2

1
2

where we have used the form of the gradient in cylindrical coordinates and the invariance of
the gradient with respect to rotations of the coordinate system, and the non-negative terms
corresponding to the partial derivatives of ψ1 with respect to φ and s were estimated from
below by zero. Note that for simple geometric reasons we have ⩾ −r s t r s n( , ) ( , ) for all

π∈s t( , ) n
1. Using this observation we get

a ∫ ∫ ∫ψ ψ φ

α ψ φ φ

⩾ − ∂

−
−

π +∞

−

⎛
⎝⎜

⎞
⎠⎟

r s n s t t

r s

r s n
s s

[ ] ( , ) ( , , ) d

( , 0)

( , )
( , 0, ) d d . (21)

n
n n

n

t,1 1
0

2

1
2

1
2

Consider the closed, densely defined, symmetric and semibounded form

b b∫ β= ′ − = −
−

h h t t h H n n[ ] ( ) d (0) , dom (( , )),
n

n 2
2 1

and denote by μ β <n( , 2 ) 0 the lower bound of the spectrum of the associated 1-D
Schrödinger operator on the interval − n n( , ) with Neumann boundary conditions at the
endpoints and attractive δ-interaction of strength β > 0 located at 0. Then

b ∫μ β⩾
−

h n h t t[ ] ( , 2 ) ( ) d
n

n
2

holds for all ∈ −h H n n(( , ))1 and hence (21) can be further estimated as

a ∫ ∫ ∫ψ μ α ψ φ φ⩾
−

−
π +∞

−

⎛
⎝⎜

⎞
⎠⎟

r s

r s n
n r s n s t t s[ ]

( , 0)

( , )
, 2 ( , ) ( , , ) d d d . (22)n

n n

n

,1 1
0

2

1
2

By the definition of πn
1 one has

− = + → ∞
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟r s n r s t

n
n( , ) ( , ) 1

1
, , (23)
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for π∈s t( , ) n
1, where the remainder is uniform in s. Hence, we obtain from (22) and (23)

a ψ μ α⩾ + + → ∞
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ 

n
n

n
n[ ] 1

1
, 2 1

1
, , (24)n,1 1

where we used that

∫ ∫ ∫ ψ φ φ ψ= ∥ ∥ =
π

Ω

+∞

− ( )r s t s t t s( , ) ( , , ) d d d 1.
n n

n

L0

2

1
2

1
2

n
2 1

According to [16, Proposition 2.5] the following estimate

μ β β β β⩾ − − −( )n C n( , 2 )
4

exp
2

2 1
2

holds with some constant >C 0 and n sufficiently large. Hence,

μ α α+ ⩾ − + → ∞
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ 

n
n

n
n1

1
, 2

4

1
, .

2

Plugging the above estimate into (24) we arrive at

a ψ α⩾ − + → ∞
⎛
⎝⎜

⎞
⎠⎟

n
n[ ]

4

1
, .n,1 1

2

Hence, for any ε > 0 there exists a sufficiently large n for which

σ α ε⩾ − −( )Hinf
4

. (25)n,1

2

As ΩH ( )n
1 2 is compactly embedded into ΩL ( )n

2 2 the essential spectrum of Hn,2 is empty.
The operator Hn,3 is non-negative and hence σ ⊆ +∞H( ) [0, )n,3 . Due to the orthogonal
decomposition Δ− = ⊕α =θ Hn k n k, , 1

3
, the property (25) implies that for any ε > 0 there exists

a sufficiently large n for which

σ Δ α ε− ⩾ − −α θ( )inf
4

. (26)ness , ,

2

Finally, we apply a Neumann bracketing argument. Notice that the ordering
a a⩽α αθ θ n, , , holds in the sense of quadratic forms; cf [17, §VI.5]. Hence by [3, Theorem
10.2.4]

σ Δ σ Δ− ⩽ −α αθ θ ( ) ( )inf inf . (27)ness , , ess ,

In view of (27) the estimate (26) implies that for any ε > 0

σ Δ α ε− ⩾ − −α θ( )inf
4

ess ,

2

and thus passing to the limit ε → +0 we arrive at

σ Δ α− ⩾ −α θ( )inf
4

,ess ,

2

which shows the inclusion σ Δ α− ⊆ − +∞α θ( ) [ /4, )ess ,
2 and finishes the proof of theorem

2.1. □
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3. Discrete spectrum of −Δα;Cθ

In this section we show that the discrete spectrum of the self-adjoint operator Δ− α θ, below
the bottom α− 42 of the essential spectrum is infinite for all angles θ π∈ (0, 2) and we
estimate the rate of the convergence of these eigenvalues to α− 42 with the help of variational
principles. The following lemma will be useful.

Lemma 3.1. Let aα θ, be the form in (1). For ω ∈ +H ( )1 2 with compact support
ω ⊂ +supp 2 define the function ψ φ = ω

π
r z( , , ): r z

r

( , )

2
. Then ψ ∈ H ( )1 3 and

a 
  

∫ψ ω ω α ω= ∥ ∥ − ∣ ∣ − ∥ ∣ ∥α Γ Γθ θ θ+ +
 ( ) ( )r

r z r z[ ]
1

4
( , ) d d , (28)

L L, ;
2

2

2 2
2 2 2 2 2

where Γθ is the ray in figure 1.

Proof. First of all observe that

   ∫ ∫ ∫ψ ω
π

φ ω∥ ∥ = = ∥ ∥ < ∞
π

+ +( ) ( )
r z

r
r r z

( , )

2
d d d . (29)

L L
2

0

2 2
2

2 3 2 2

Moreover, we compute

ψ
ω
π

ω
π

ψ
ω
π

∂ =
∂

− ∂ =
∂

r r r r2 2 2
and

2
, (30)r

r
z

z

and setting ρ ω= ∈ >r r z: inf { : ( , ) supp } 0 we obtain


   

  

  

ψ ψ ψ

ω
π

ω
π

ω
π

ω
ρ

ω ω

∥ ∥ = ∥ ∂ ∥ + ∥ ∂ ∥

⩽
∂

+ +
∂

⩽ ∥∂ ∥ + ∥ ∥ + ∥ ∂ ∥ < ∞
+ + +

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

r r r r
2

2
2

2 2 2

2
1

2
. (31)

L r L z L

r

L L

z

L

r L L z L

;
2 2 2

2 2 2

2
2

2 2

2 3 3 2 3 2 3

2 3 2 3 2 3

2 2 2 2 2 2

Hence (29) and (31) imply ψ ∈ H ( )1 3 . Next we substitute ψ in the form aα θ, in (1). It
follows from the form of ψ∂z in (30) and ψ ω∥ ∣ ∥ = ∥ ∣ ∥Γ Γθ θ θ θ

 L L( )
2

( )
2

2 2 that

a
   

   

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

ψ ψ π ψ π α ψ

ψ π ω α ω

= ∣∂ ∣ + ∣∂ ∣ − ∥ ∣ ∥

= ∣∂ ∣ + ∣∂ ∣ − ∥ ∣ ∥

α

Γ Γ

θ θ θ

θ θ

+ +

+ +

  ( )

( )

r r z r r z

r r z r z

[ ] 2 d d 2 d d

2 d d d d . (32)

r z L

r z L

,
2 2 2

2 2 2

2

2

Denote the first integral by ψI . Making use of ψ∂r in (30) we rewrite ψI as

     
∫ ∫ ∫ ∫ ∫ ∫ω ω ωω= ∣∂ ∣ + − ∂ψ

+ + +
( )I r z

r
r z

r
r zd d

1

4
d d

1
Re d d (33)r r

2

2
2

and the last term can be further rewritten as

     
∫ ∫ ∫ ∫ ∫ ∫ωω ω ω∂ = ∂ =

+ + +
( )( )

r
r z

r
r z

r
r z

1
Re d d

1

2
d d

1

2
d d , (34)r r

2
2

2

where we integrated by parts and used the fact that ωsupp is contained in the open half-plane
+

2 . Hence, (33) and (34) imply
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   
∫ ∫ ∫ ∫ω ω= ∣∂ ∣ −ψ

+ +
I r z

r
r zd d

1

4
d d .r

2

2
2

Substituting this expression for the first integral in (32) we obtain (28). □

Now we are ready to formulate and prove our main result on the infiniteness of the
discrete spectrum of Δ− α θ, below the bottom of the essential spectrum for all α > 0 and
θ π∈ (0, 2). Recall that Δ− α θ, is bounded from below, and hence it also follows that the
discrete spectrum has a single accumulation point, namely α− 42 . This result illustrates the
typical phenomenon that curvature induces bound states. The peculiarity in this three-
dimensional system is that the global geometry of the interaction support plays an important
role. We point out that in the case θ π= 2 the conical surface θ coincides with a plane, in
which case it follows by separation of variables that the discrete spectrum is empty.

Theorem 3.2. Let Δ− α θ, be the self-adjoint operator in L ( )2 3 associated to the form (1)
and let α > 0 and θ π∈ (0, 2). Then the discrete spectrum of Δ− α θ, below α− 42 is infinite,
accumulates at α− 42 , and the eigenvalues λ α< − /4k

2 (enumerated in non-decreasing order
with multiplicities taken into account) satisfy the estimate

λ α γ θ⩽ − − ∈
n

k
4

( )
, , (35)k

k

2

4

where γ θ >( ) 0, = ++n n n:k k k1
2 for ∈k , and =n N1 with ∈N sufficiently large.

Proof. Let us pick a function χ ∈ H (0, 1)1 0
1 with χ∥ ∥ = 1L1 (0,1)2 such that

∫χ
θ

χ
∥ ′ ∥ <

∣ ∣t

t
t

1

4 sin

( )
d (36)

L1 (0, 1)
2

2 0

1 1
2

22

holds; [5, Lemma in §1]. Let us fix ε > 0 and choose χ ε ε∈ −∞C ( , )2 0 such that χ⩽ ⩽0 12
and χ =t( ) 12 for ε| | ⩽t 2. In the coordinate system (s, t) in figure 1 we define the sequence
of functions

ω χ χ α= − − ∈ +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )s t

n

s n

n

t

n
t H( , ):

1
exp

2
, (37)n 1 2 2 0

1 2

where the support of ωn satisfies

ω ε ε⊂ + × − ∈n n n n n nsupp [ , ] [ , ], , (38)n
2

in the coordinate system (s, t).
For sufficiently large ∈n the functions ωn satisfy the conditions of lemma 3.1. The

function ωn can also be viewed as a function in r and z; cf figure 1. Then we define

ψ φ
ω

π
= ∈r z

r z

r
n( , , ):

( , )

2
, . (39)n

n

Using lemma 3.1 we compute the values

a





   ∫

ψ α ψ

ω ω α ω α ω

= + ∥ ∥

= ∥ ∥ − ∣ ∣ − ∥ ∣ ∥ + ∥ ∥

α

Γ Γ

θ

θ θ+ + +

 ( )

( ) ( )( )

S

r
r z

: [ ]
4

1

4
d d

4
. (40)

n n n L

n L n n L n L

,

2
2

;
2

2
2 2

2
2

2 3

2 2 2 2 2 2 2
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The choice of χ1 in (36) together with a subtle treatment of the second term in (40) will finally
lead to <S 0n for sufficiently large ∈n . First of all it is not difficult to check the
asymptotics

∫ χ
α

= + → ∞
ε

ε
α

−
− −⎛

⎝⎜
⎞
⎠⎟ ( )t

n
e t e nd

2
, , (41)

n

n
t c n

2

2

∫ χ′ = → ∞
ε

ε
α

−
− −⎛

⎝⎜
⎞
⎠⎟ ( )t

n
e t e nd , , (42)

n

n
t c n

2

2

∫ χ χ′ = → ∞
ε

ε
α

−
− −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )t

n

t

n
e t e nd , , (43)

n

n
t c n

2 2

with some constant >c 0. Using (41) we get

 ∫ ∫α ω α χ χ

α

∥ ∥ = −

= + → ∞

ε

ε
α

+

−
−

−

+

⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( ) n

s n

n
s

t

n
e t

e n

4 4

1
d d

2
, , (44)

n L n

n n

n

n
t

c n

2
2

2

2 1 2

2

2

2

2 2

2

and

 ∫ ∫ω χ χ

α
χ

∥ ∂ ∥ = ′ −

= ∥ ′∥ + → ∞

ε

ε
α

−
−

+

−

+

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( )
t

n
e t

n n

s n

n
s

n
e n

d
1 1

d

2 1
, ,

s n L n

n
t

n

n n

L
c n

2
2

2

4 2 1 2

2

4 1 (0, 1)
2

2 2

2

2

and from (42) and (43) we obtain

 ∫

∫

ω χ

χ α χ

α

∥ ∂ ∥ = −

× ′ −

= + → ∞

ε

ε
α

+

−
−

−

+

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( ) n

s n

n
s

n

t

n

t t

n
e t

e n

1
d

1 sign ( )

2
d

2
, , (45)

t n L n

n n

n

n
t

c n

2
2 1 2

2

2 2

2

2 2

2

that is,


 

ω
α

χ α∥ ∥ = ∥ ′ ∥ + + → ∞−
+

( )( ) n
e n

2 1

2
, . (46)n L L

c n
;

2
4 1 (0, 1)

2
2 2 2 2

It is straightforward to see that

∫α ω α χ α χ α∥ ∣ ∥ = − = ∥ ∥ =Γ Γ

+
θ θ

⎛
⎝⎜

⎞
⎠⎟( ) n

s n

n
sd , (47)n L n

n n

L
2

2 1 2

2

1 (0, 1)
2

2

2

2

and hence it remains to estimate the term


∫ ω| |
+ r n

1

4
2

2 2
in (40). For that we make the following

splitting
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
∫ ∫ ∫ω ω= = +

ε

ε

−

+

+ r
r z r z

r s t
s t s t I J

1

4
( , ) d d

1

4 ( , )
( , ) d d , (48)n

n

n

n

n n

n n n2

2

2

2
2

2

where

∫ ∫ ω=
ε

ε

−

+
I

r s
s t s t:

1

4 ( , 0)
( , ) d d (49)n

n

n

n

n n

n2

2
2

and

∫ ∫ ω= −
ε

ε

−

+ ⎛
⎝⎜

⎞
⎠⎟J

r s t r s
s t s t:

1

4 ( , )

1

4 ( , 0)
( , ) d d .n

n

n

n

n n

n2 2

2
2

The term Jn can be further rewritten as

∫ ∫ ω= − +
ε

ε

−

+
J

r s r s t r s r s t

r s t r s
s t s t

( ( , 0) ( , ))( ( , 0) ( , ))

4 ( , ) ( , 0)
( , ) d d . (50)n

n

n

n

n n

n2 2

2
2

For geometric reasons we have | − | ⩽r s r s t a n( , 0) ( , ) with some ε< ⩽a0 and
>r s t bn( , ) with some >b 0 for all ω∈s t( , ) supp n. We first conclude from (50) that

∫ ∫ ω⩽ + −
ε

ε

−

+
J a n

r s t r s

r s r s t

r s t r s
s t s t

2

4 ( , ) ( , 0)

( , 0) ( , )

4 ( , ) ( , 0)
( , ) d dn

n

n

n

n n

n2 2 2

2
2

and hence

⩽ +
⎛
⎝⎜

⎞
⎠⎟J

a

b n

a

b n
I

2
(51)n n

2

2

follows together with (49). For In we have

∫ ∫

∫ ∫

θ
χ χ

χ

θ
χ

= −

=
∣ ∣

+

ε

ε
α

ε

ε
α

+

−
−

−
−

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

I
n s

s n

n
s

t

n
e t

n

u

u n
u

t

n
e t

1 1

4 sin
d d

1 ( )

4sin ( ) ( 1 )
d d , (52)

n
n

n n

n

n
t

n

n
t

2 2 2 1 2

2

2

2

4 0

1 1

2

2 2 2

2

2

and the choice of χ1 (see (36)) together with monotone convergence yields

∫ ∫χ χ∣ ∣
+

=
∣ ∣

+ → ∞
u

u n
u

u

u
u o n

( )

( 1 )
d

( )
d (1), .

0

1 1
2

2
0

1 1
2

2

Hence we conclude from (41) and (52) that

∫α θ

χ
=

∣ ∣
+ → ∞

⎛
⎝⎜

⎞
⎠⎟I

n

u

u
u o

n
n

2 1 1

4 sin ( )

( )
d

1
, ,n 4 2 0

1 1
2

2 4

and from (51) we find

= → ∞
⎛
⎝⎜

⎞
⎠⎟J o

n
n

1
, .n 4
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It follows that (48) becomes


∫ ∫ω

α θ

χ
∣ ∣ =

∣ ∣
+

+

⎛
⎝⎜

⎞
⎠⎟r

r z r z
n

u

u
u o

n

1

4
( , ) d d

2 1 1

4 sin ( )

( )
d

1
, (53)n2

2

4 2
0

1 1
2

2 42

as → ∞n . Finally, (44), (46), (47) and (53) yield

∫α
χ

χ

θ
= ∥ ′ ∥ −

∣ ∣
+ → ∞

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟S

n

u

u
u o

n
n

2 1 ( )

4 sin ( )
d

1
, , (54)n L4 1 (0, 1)

2

0

1 1
2

2 2 42

for Sn in (40). In view of the above asymptotics and according to (36) there exists ∈N such
that for all ⩾n N we have

γ θ
α

⩽ −S
n

2 ( )
(55)n 4

for some constant γ θ >( ) 0. Let us consider a sequence n{ }k k , where =n N:1 and
= ++n n n:k k k1

2 for ∈k . Then by (38) the measure of ∩ω ωsupp suppn nk l is zero for all
∈k l, , ≠k l, and hence it follows from the definition (39) that the measure of

∩ψ ψsupp suppn nk l
is zero for all ∈k l, , ≠k l, and, in particular, the functions ψnk

are
orthogonal in L ( )2 3 . The space

ψ ψ ψ= ⊂{ } ( )F H: span , ,..., ,k n n n
1 3

k1 2

has dimension k and for an arbitrary ψ ψ= ∑ ∈= a Fl
k

l n k1 l
, ∈al , we get

  
∑ ∑ ∑ψ ψ ω

α
∥ ∥ = ∣ ∣ ∥ ∥ = ∣ ∣ ∥ ∥ ⩽ ∣ ∣

= = =
+( ) ( ) ( )a a a

2
, (56)

L
l

k

l n L
l

k

l n L
l

k

l
2

1

2
2

1

2
2

1

2

l l
2

3
2

3 2 2

where we have also used the estimate


ω∥ ∥ ⩽
α+

n L ( )
2 2

l 2 2 . Employing (55) we obtain

a


∑ ∑ψ α ψ γ θ
α

+ ∥ ∥ = ∣ ∣ ⩽ − ∣ ∣α
= =

θ ( ) a S
n

a[ ]
4

2 ( )
,

L
l

k

l n
k l

k

l,

2

2

1

2

4
1

2

l
2

3

where we have again used that the mutual intersections of the supports of ψ ={ }n l
k

1l
are of

measure zero.
Combining the above estimate with (56) we get

a a







ψ

ψ
α

ψ α ψ

ψ

α γ θ α

∥ ∥
= − +

+ ∥ ∥

∥ ∥

⩽ − − < −

α
α

θ
θ  ( )

( )

( )

( )

n

[ ]

4

[ ] 4

4

( )

4
. (57)

L

L

L

k

,

2

2 ,
2 2

2

2

4

2

2 3

2 3

2 3

Hence, according to [3, Theorem 10.2.3] the operator Δ− α θ, has at least k eigenvalues below
the bottom of the essential spectrum α− 42 . The above construction works for any ∈k , so
that the operator Δ− α θ, has infinitely many eigenvalues below α− 42 . The eigenvalue
estimate (35) follows from [3, Theorem 10.2.3] and (57). □

Let θ π∈ (0, 2) and θ be the conical surface as above. A hypersurface Σ ⊂ 3, which
for some compact set ⊂K 3 satisfies the condition Σ = θK K\ \ and which splits the space
3 into two unbounded Lipschitz domains, is called a local deformation of θ ; cf [1, Section
4.2]. Below we consider the self-adjoint Schrödinger operator Δ− α Σ, with an attractive
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δ-interaction of constant strength α > 0 supported on the Lipschitz hypersurface Σ. This
Schrödinger operator is defined via the closed, densely defined, symmetric and semibounded
quadratic form

a a 
  ∫ψ ψ α ψ σ= − =α Σ

Σ
α Σ ( )( ) H[ ] d , dom . (58)

L, ;
2 2

,
1 3

2 3 3

The assertion on the essential spectrum in the next theorem is a consequence of [1, Theorem
4.7]; the infiniteness of the discrete spectrum can be shown as in the proof of theorem 3.2
using the same functions ψn in (39) and ∈n sufficiently large.

Theorem 3.3. Let θ π∈ (0, 2) and α > 0. Let Σ be a local deformation of the cone θ and
let Δ− α Σ, be the self-adjoint operator in L ( )2 3 associated to (58). Then

σ Δ α− = − +∞α Σ
⎡⎣ )( ) 4, ,ess ,

2

the discrete spectrum below α− 42 is infinite, accumulates at α− 42 , and the eigenvalues
λ α< − /4k

2 (enumerated in non-decreasing order with multiplicities taken into account)
satisfy the estimate

λ α γ θ⩽ − − ∈
n

k
4

( )
, ,k

k

2

4

where γ θ >( ) 0, = ++n n n:k k k1
2 for ∈k , and =n N1 with ∈N sufficiently large.
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