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An estimate on the non-real spectrum of a singular indefinite
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It will be shown with the help of the Birman-Schwinger principle that the non-real spectrum of the singular indefinite Sturm-
Liouville operator sgn(·)(−d2/dx2 + q) with a real potential q ∈ L1 ∩ L2 is contained in a circle around the origin with
radius ‖q‖2L1 .
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1 Introduction and main result

Consider the operators

A0f = sgn(·)(−f ′′) and Af := A0f + sgn(·)qf = sgn(·)
(
− f ′′ + qf

)
, f ∈ H2(R), (1)

in L2(R), where q ∈ L1(R) ∩ L2(R) is a real function with limx→±∞ q(x) = 0. Note that q is a relatively compact
perturbation of A0 (cf. Theorem 11.2.11 in [10]). The operator A (and A0) is neither symmetric nor self-adjoint with respect
to the usual scalar product in L2(R), but symmetric and self-adjoint with respect to the indefinite inner product

[f, g] :=

∫

R
sgn(x)f(x)g(x) dx, f, g ∈ L2(R),

and the essential spectrum is given by σess(A) = σess(A0) = σ(A0) = R; cf. [9] and Corollary 4.4 in [2]. It is well known
that the operatorAmay have non-real spectrum, see e.g. [5]. The main objective of this note is to prove the following theorem.

Theorem 1.1 Let q ∈ L1(R)∩L2(R) with limx→±∞ q(x) = 0. Then the non-real spectrum of A consists only of isolated
eigenvalues and every non-real eigenvalue λ of A satisfies |λ| ≤ ‖q‖2L1 .

This result improves the bounds in [6] for certain potentials and is based on the techniques in [1]. For further bounds
on the non-real spectrum of indefinite Sturm-Liouville operators we refer to [4] for the case of a bounded potential q and
[3, 7, 8, 11–13] for the regular case.

2 Proof of Theorem 1.1

Lemma 2.1 For every λ ∈ C+ the resolvent of A0 is an integral operator of the form

[
(A0 − λ)−1g

]
(x) =

∫

R
Kλ(x, y)g(y) dy, g ∈ L2(R),

with a kernel function Kλ which is bounded by |Kλ(x, y)| ≤ |λ|−
1
2 .

P r o o f. For λ ∈ C+ consider the solutions u, v of the differential equation − sgn(·)f ′′ = λf defined by

u(x) =

{
ei
√
λx, x ≥ 0,

αe
√
λx + αe−

√
λx, x < 0,

and v(x) =

{
αei
√
λx + αe−i

√
λx, x ≥ 0,

e
√
λx, x < 0,

where α = 1−i
2 . For a non-real λ we define

√
λ as the principle value of the square root, so that, Re

√
λ > 0 and Im

√
λ > 0

for λ ∈ C+. As the Wronskian determinant equals 2α
√
λ these two solutions are linearly independent. Moreover, for all

x ∈ R the restrictions u|(x,∞) and v|(−∞,x) are square integrable functions. One verifies that for g ∈ L2(R)

(Tλg)(x) :=
1

2α
√
λ

(
u(x)

∫ x

−∞
v(y) sgn(y)g(y) dy + v(x)

∫ ∞

x

u(y) sgn(y)g(y) dy

)
(2)
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860 Section 23: Applied operator theory

is a solution of − sgn(·)f ′′ − λf = g. It remains to show that Tλ is a bounded operator in L2(R). Rearranging the terms in
(2) one sees that (Tλg)(x) = (2α

√
λ)−1

∫
R (k1(x, y) + k2(x, y)) g(y) dy for g ∈ L2(R) with

k1(x, y) :=





αei
√
λ(x+y), x > 0, y > 0,

−e
√
λ(ix+y), x > 0, y < 0,

e
√
λ(x+iy), x < 0, y > 0,

−αe
√
λ(x+y), x < 0, y < 0,

and k2(x, y) :=





αei
√
λ|x−y|, x > 0, y > 0,

0, x > 0, y < 0,

0, x < 0, y > 0,

−αe−
√
λ|x−y|, x < 0, y < 0.

We have k1 ∈ L2(R2). Calculating the resolvents of the self-adjoint operator −d2/dx2 at the points ±λ (cf. Satz 11.26
in [14]) yields

∫

R
k2(x, y)g(y) dy = ±2α

√
λ

[(
− d2

dx2
∓ λ
)−1

(1R±g)

]
(x), g ∈ L2(R), x ∈ R±,

where 1R+ and 1R− denote the characteristic functions of the positive and negative half-lines, respectively. Hence, Tλ is a
bounded operator in L2(R) and (A0 − λ)−1 = Tλ. It is easy to see that the sum k1 + k2 is bounded by 2|α| =

√
2. Defining

Kλ(x, y) :=
1

2α
√
λ

(
k1(x, y) + k2(x, y)

)
completes the proof.

Proof of Theorem 1.1. We assume ‖q‖L1 6= 0 as otherwise there are no non-real eigenvalues of A. Since the operator A
is a self-adjoint operator with respect to [·, ·] the point spectrum of A is symmetric with respect to the real line and hence it
suffices to consider an eigenvalue λ ∈ C+ with corresponding eigenfunction f ∈ dom(A) = H2(R). Note, that f is bounded,
since f ∈ H2(R). As Af = λf we have in terms of the unperturbed operator A0

(A0 − λ)f = − sgn(·)qf ∈ L2(R). (3)

Setting q
1
2 (x) := sgn

(
q(x)

)
|q(x)| 12 we have |q| 12 q 1

2 = q, and hence (3) and λ ∈ ρ(A0) yield

g := q
1
2 f = −q 1

2 (A0 − λ)−1
(
sgn(·)|q| 12 q 1

2 f
)
= −q 1

2 (A0 − λ)−1
(
sgn(·)|q| 12 g

)
.

Here the boundedness of f implies g ∈ L2(R). Now with Lemma 2.1 we estimate

‖g‖2L2 =

∫

R
|g(x)| ·

∣∣∣
(
−q 1

2 (A0 − λ)−1
(
sgn(·)|q| 12 g

))
(x)
∣∣∣ dx

≤
∫

R

∣∣∣q 1
2 (x)g(x)

∣∣∣
∫

R
|Kλ(x, y)|

∣∣∣q 1
2 (y)g(y)

∣∣∣ dy dx

≤ |λ|− 1
2

(∫

R

∣∣∣q 1
2 (x)g(x)

∣∣∣ dx
)2

≤ |λ|− 1
2 ‖g‖2L2

∫

R

∣∣∣q 1
2 (x)

∣∣∣
2

dx = |λ|− 1
2 ‖g‖2L2 ‖q‖L1 .

Since g is non-trivial the estimate |λ| ≤ ‖q‖2L1 follows.
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