# An estimate on the non-real spectrum of a singular indefinite Sturm-Liouville operator 

Jussi Behrndt ${ }^{1}$, Bernhard Gsell ${ }^{1}$, Philipp Schmitz ${ }^{2, *}$, and Carsten Trunk ${ }^{2}$<br>${ }^{1}$ Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria<br>${ }^{2}$ Institut für Mathematik, Technische Universität Ilmenau, PF 100565, 98694 Ilmenau, Germany

It will be shown with the help of the Birman-Schwinger principle that the non-real spectrum of the singular indefinite SturmLiouville operator $\operatorname{sgn}(\cdot)\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}+q\right)$ with a real potential $q \in L^{1} \cap L^{2}$ is contained in a circle around the origin with radius $\|q\|_{L^{1}}^{2}$.

## 1 Introduction and main result

Consider the operators

$$
\begin{equation*}
A_{0} f=\operatorname{sgn}(\cdot)\left(-f^{\prime \prime}\right) \quad \text { and } \quad A f:=A_{0} f+\operatorname{sgn}(\cdot) q f=\operatorname{sgn}(\cdot)\left(-f^{\prime \prime}+q f\right), \quad f \in H^{2}(\mathbb{R}), \tag{1}
\end{equation*}
$$

in $L^{2}(\mathbb{R})$, where $q \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ is a real function with $\lim _{x \rightarrow \pm \infty} q(x)=0$. Note that $q$ is a relatively compact perturbation of $A_{0}$ (cf. Theorem 11.2.11 in [10]). The operator $A\left(\right.$ and $\left.A_{0}\right)$ is neither symmetric nor self-adjoint with respect to the usual scalar product in $L^{2}(\mathbb{R})$, but symmetric and self-adjoint with respect to the indefinite inner product

$$
[f, g]:=\int_{\mathbb{R}} \operatorname{sgn}(x) f(x) \overline{g(x)} \mathrm{d} x, \quad f, g \in L^{2}(\mathbb{R}),
$$

and the essential spectrum is given by $\sigma_{\text {ess }}(A)=\sigma_{\text {ess }}\left(A_{0}\right)=\sigma\left(A_{0}\right)=\mathbb{R}$; cf. [9] and Corollary 4.4 in [2]. It is well known that the operator $A$ may have non-real spectrum, see e.g. [5]. The main objective of this note is to prove the following theorem.

Theorem 1.1 Let $q \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ with $\lim _{x \rightarrow \pm \infty} q(x)=0$. Then the non-real spectrum of $A$ consists only of isolated eigenvalues and every non-real eigenvalue $\lambda$ of $A$ satisfies $|\lambda| \leq\|q\|_{L^{1}}^{2}$.

This result improves the bounds in [6] for certain potentials and is based on the techniques in [1]. For further bounds on the non-real spectrum of indefinite Sturm-Liouville operators we refer to [4] for the case of a bounded potential $q$ and [3,7,8,11-13] for the regular case.

## 2 Proof of Theorem 1.1

Lemma 2.1 For every $\lambda \in \mathbb{C}^{+}$the resolvent of $A_{0}$ is an integral operator of the form

$$
\left[\left(A_{0}-\lambda\right)^{-1} g\right](x)=\int_{\mathbb{R}} K_{\lambda}(x, y) g(y) \mathrm{d} y, \quad g \in L^{2}(\mathbb{R})
$$

with a kernel function $K_{\lambda}$ which is bounded by $\left|K_{\lambda}(x, y)\right| \leq|\lambda|^{-\frac{1}{2}}$.
Proof. For $\lambda \in \mathbb{C}^{+}$consider the solutions $u, v$ of the differential equation $-\operatorname{sgn}(\cdot) f^{\prime \prime}=\lambda f$ defined by

$$
u(x)=\left\{\begin{array}{ll}
e^{i \sqrt{\lambda} x}, & x \geq 0, \\
\bar{\alpha} e^{\sqrt{\lambda} x}+\alpha e^{-\sqrt{\lambda} x}, & x<0,
\end{array} \quad \text { and } \quad v(x)= \begin{cases}\alpha e^{i \sqrt{\lambda} x}+\bar{\alpha} e^{-i \sqrt{\lambda} x}, & x \geq 0, \\
e^{\sqrt{\lambda} x}, & x<0,\end{cases}\right.
$$

where $\alpha=\frac{1-i}{2}$. For a non-real $\lambda$ we define $\sqrt{\lambda}$ as the principle value of the square root, so that, $\operatorname{Re} \sqrt{\lambda}>0$ and $\operatorname{Im} \sqrt{\lambda}>0$ for $\lambda \in \mathbb{C}^{+}$. As the Wronskian determinant equals $2 \alpha \sqrt{\lambda}$ these two solutions are linearly independent. Moreover, for all $x \in \mathbb{R}$ the restrictions $\left.u\right|_{(x, \infty)}$ and $\left.v\right|_{(-\infty, x)}$ are square integrable functions. One verifies that for $g \in L^{2}(\mathbb{R})$

$$
\begin{equation*}
\left(T_{\lambda} g\right)(x):=\frac{1}{2 \alpha \sqrt{\lambda}}\left(u(x) \int_{-\infty}^{x} v(y) \operatorname{sgn}(y) g(y) \mathrm{d} y+v(x) \int_{x}^{\infty} u(y) \operatorname{sgn}(y) g(y) \mathrm{d} y\right) \tag{2}
\end{equation*}
$$

[^0]is a solution of $-\operatorname{sgn}(\cdot) f^{\prime \prime}-\lambda f=g$. It remains to show that $T_{\lambda}$ is a bounded operator in $L^{2}(\mathbb{R})$. Rearranging the terms in (2) one sees that $\left(T_{\lambda} g\right)(x)=(2 \alpha \sqrt{\lambda})^{-1} \int_{\mathbb{R}}\left(k_{1}(x, y)+k_{2}(x, y)\right) g(y) \mathrm{d} y$ for $g \in L^{2}(\mathbb{R})$ with
\[

k_{1}(x, y):=\left\{$$
\begin{array}{ll}
\alpha e^{i \sqrt{\lambda}(x+y)}, & x>0, y>0, \\
-e^{\sqrt{\lambda}(i x+y)}, & x>0, y<0, \\
e^{\sqrt{\lambda}(x+i y)}, & x<0, y>0, \\
-\bar{\alpha} e^{\sqrt{\lambda}(x+y)}, & x<0, y<0,
\end{array}
$$ \quad and \quad k_{2}(x, y):= $$
\begin{cases}\bar{\alpha} e^{i \sqrt{\lambda}|x-y|}, & x>0, y>0 \\
0, & x>0, y<0 \\
0, & x<0, y>0 \\
-\alpha e^{-\sqrt{\lambda}|x-y|}, & x<0, y<0\end{cases}
$$\right.
\]

We have $k_{1} \in L^{2}\left(\mathbb{R}^{2}\right)$. Calculating the resolvents of the self-adjoint operator $-\mathrm{d}^{2} / \mathrm{d} x^{2}$ at the points $\pm \lambda$ (cf. Satz 11.26 in [14]) yields

$$
\int_{\mathbb{R}} k_{2}(x, y) g(y) \mathrm{d} y= \pm 2 \alpha \sqrt{\lambda}\left[\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \mp \lambda\right)^{-1}\left(\mathbf{1}_{\mathbb{R}^{ \pm}} g\right)\right](x), \quad g \in L^{2}(\mathbb{R}), \quad x \in \mathbb{R}^{ \pm},
$$

where $\mathbf{1}_{\mathbb{R}^{+}}$and $\mathbf{1}_{\mathbb{R}^{-}}$denote the characteristic functions of the positive and negative half-lines, respectively. Hence, $T_{\lambda}$ is a bounded operator in $L^{2}(\mathbb{R})$ and $\left(A_{0}-\lambda\right)^{-1}=T_{\lambda}$. It is easy to see that the sum $k_{1}+k_{2}$ is bounded by $2|\alpha|=\sqrt{2}$. Defining $K_{\lambda}(x, y):=\frac{1}{2 \alpha \sqrt{\lambda}}\left(k_{1}(x, y)+k_{2}(x, y)\right)$ completes the proof.

Proof of Theorem 1.1. We assume $\|q\|_{L^{1}} \neq 0$ as otherwise there are no non-real eigenvalues of $A$. Since the operator $A$ is a self-adjoint operator with respect to $[\cdot, \cdot]$ the point spectrum of $A$ is symmetric with respect to the real line and hence it suffices to consider an eigenvalue $\lambda \in \mathbb{C}^{+}$with corresponding eigenfunction $f \in \operatorname{dom}(A)=H^{2}(\mathbb{R})$. Note, that $f$ is bounded, since $f \in H^{2}(\mathbb{R})$. As $A f=\lambda f$ we have in terms of the unperturbed operator $A_{0}$

$$
\begin{equation*}
\left(A_{0}-\lambda\right) f=-\operatorname{sgn}(\cdot) q f \in L^{2}(\mathbb{R}) \tag{3}
\end{equation*}
$$

Setting $q^{\frac{1}{2}}(x):=\operatorname{sgn}(q(x))|q(x)|^{\frac{1}{2}}$ we have $|q|^{\frac{1}{2}} q^{\frac{1}{2}}=q$, and hence (3) and $\lambda \in \rho\left(A_{0}\right)$ yield

$$
g:=q^{\frac{1}{2}} f=-q^{\frac{1}{2}}\left(A_{0}-\lambda\right)^{-1}\left(\operatorname{sgn}(\cdot)|q|^{\frac{1}{2}} q^{\frac{1}{2}} f\right)=-q^{\frac{1}{2}}\left(A_{0}-\lambda\right)^{-1}\left(\operatorname{sgn}(\cdot)|q|^{\frac{1}{2}} g\right)
$$

Here the boundedness of $f$ implies $g \in L^{2}(\mathbb{R})$. Now with Lemma 2.1 we estimate

$$
\begin{aligned}
\|g\|_{L^{2}}^{2} & =\int_{\mathbb{R}}|g(x)| \cdot\left|\left(-q^{\frac{1}{2}}\left(A_{0}-\lambda\right)^{-1}\left(\operatorname{sgn}(\cdot)|q|^{\frac{1}{2}} g\right)\right)(x)\right| \mathrm{d} x \\
& \leq \int_{\mathbb{R}}\left|q^{\frac{1}{2}}(x) g(x)\right| \int_{\mathbb{R}}\left|K_{\lambda}(x, y)\right|\left|q^{\frac{1}{2}}(y) g(y)\right| \mathrm{d} y \mathrm{~d} x \\
& \leq|\lambda|^{-\frac{1}{2}}\left(\int_{\mathbb{R}}\left|q^{\frac{1}{2}}(x) g(x)\right| \mathrm{d} x\right)^{2} \leq|\lambda|^{-\frac{1}{2}}\|g\|_{L^{2}}^{2} \int_{\mathbb{R}}\left|q^{\frac{1}{2}}(x)\right|^{2} \mathrm{~d} x=|\lambda|^{-\frac{1}{2}}\|g\|_{L^{2}}^{2}\|q\|_{L^{1}} .
\end{aligned}
$$

Since $g$ is non-trivial the estimate $|\lambda| \leq\|q\|_{L^{1}}^{2}$ follows.

## References

[1] A. A. Abramov, A. Aslanyan, and E. B. Davies, J. Phys. A, Math. Gen. 34, 57-72 (2001).
[2] J. Behrndt and F. Philipp, J. Differ. Equations 248, 2015-2037 (2010).
[3] J. Behrndt, S. Chen, F. Philipp, and J. Qi, Proc. R. Soc. Edinb., Sect. A, Math. 144, 1113-1126 (2014).
[4] J. Behrndt, F. Philipp, and C. Trunk, Math. Ann. 357, 185-213 (2013).
[5] J. Behrndt, Q. Katatbeh, and C. Trunk, Proc. Amer. Math. Soc. 137, 3787-3806 (2009).
[6] J. Behrndt, P. Schmitz, and C. Trunk, Proc. Appl. Math. Mech. 16, 881-882 (2016).
[7] S. Chen and J. Qi, J. Spectr. Theory 4, 53-63 (2014).
[8] S. Chen, J. Qi, and B. Xie, Proc. Amer. Math. Soc. 144, 547-559 (2016).
[9] B. Ćurgus and B. Najman, Proc. Amer. Math. Soc. 123, 1125-1128 (1995).
[10] E. B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2007).
[11] X. Guo, H. Sun, and B. Xie, Electron. J. Qual. Theory Differ. Equ. 2017, 1-14 (2017).
[12] M. Kikonko and A. B. Mingarelli, J. Differ. Equations 261, 6221-6232 (2016).
[13] J. Qi and B. Xie, J. Differ. Equations 255, 2291-2301 (2013).
[14] J. Weidmann, Lineare Operatoren in Hilberträumen. Teil I: Grundlagen (B. G. Teubner, Wiesbaden, 2000).


[^0]:    * Corresponding author: e-mail philipp.schmitz@tu-ilmenau.de, phone +493677693634, fax +493677693270

