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Abstract. The class of Nevanlinna families consists of R-symmetric holo-
morphic multivalued functions on C \ R with maximal dissipative (maximal
accumulative) values on C+ (C

−
, respectively) and is a generalization of the

class of operator-valued Nevanlinna functions. In this note Nevanlinna families
are realized as Weyl families of boundary relations induced by multiplication
operators with the independent variable in reproducing kernel Hilbert spaces.

1. Introduction

Let H be a Hilbert space and let M be a Nevanlinna function whose values are
bounded linear operators in H, i.e., M is holomorphic on C \ R, M(λ̄) = M(λ)∗

holds for all λ ∈ C \ R, and ImM(λ) is a nonnegative operator for all λ ∈ C+.
If, in addition, ImM(λ), λ ∈ C+, is uniformly positive, then M will be called
uniformly strict. It is well known that a uniformly strict Nevanlinna function M
can be realized as a so-called Q-function of a closed simple symmetric operator S in
a Hilbert space H and a selfadjoint extension of S in H, cf. [9] and [10]. The notion
of Q-function ’coincides’ with the modern concept of Weyl function associated with
an ordinary boundary triplet for symmetric operators or relations.

Recall that an ordinary boundary triplet {H,Γ0,Γ1} for a closed symmetric
operator or relation S with equal deficiency indices in a Hilbert space H con-
sists of a Hilbert space H and two linear mappings Γ0,Γ1 : S∗ → H such that
Γ := (Γ0,Γ1)

⊤ : S∗ → H×H is surjective and the abstract Green’s identity

(f ′, g) − (f, g′) = (Γ1f̂ ,Γ0ĝ) − (Γ0f̂ ,Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗. V.A. Derkach and M.M. Malamud
have supplemented this notion by defining the concept of a Weyl function as an ab-
stract analogon of the classical Titchmarsh-Weyl coefficient in the theory of singular
Sturm-Liouville operators:

M(λ) = Γ
(
N̂λ(S∗)

)
=

{
{Γ0f̂λ,Γ1f̂λ} : f̂λ ∈ N̂λ(S∗)

}
, λ ∈ C \ R,(1.1)

where N̂λ(S∗) = { {f, f ′} ∈ S∗ : f ′ = λf }. It follows that M is a uniformly strict
Nevanlinna function and that conversely every uniformly strict Nevanlinna function
can be realized as the Weyl function of a closed simple symmetric operator S in a
Hilbert space H and an ordinary boundary triplet {H,Γ0,Γ1} for S∗.

In [5] the notions of boundary relations and associated Weyl families were in-
troduced as generalizations of the concepts of (ordinary and generalized) boundary
triplets and their Weyl functions. In contrast to ordinary boundary triplets a
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boundary relation Γ for a symmetric relation S (whose defect numbers may be un-
equal and infinite) is in general only defined on a core T of the adjoint S∗ and the
mapping Γ can be multivalued, see Definition 3.1. The Weyl family M associated
to a boundary relation Γ is defined in a similar way as the Weyl function in (1.1)
and it follows that the Weyl family is a so-called Nevanlinna family, i.e., M is a
holomorphic family of maximal dissipative (in the upper open half plane C+) linear
relations in H, cf. Definition 2.1 below. In [5] it was shown that conversely every
Nevanlinna family can be realized as the Weyl family of a boundary relation in an
abstract model space.

This note concerns an explicit functional model for a Nevanlinna family M . In
this functional model there is a “natural” boundary relation Γ whose Weyl family
is given by M . Here the model space is a reproducing kernel Hilbert space in which
multiplication by the independent variable is a closed simple symmetric operator
S which gives rise to the boundary relation. The operator of multiplication by the
independent variable in the context of reproducing kernel Hilbert spaces of scalar
entire functions was already considered in [3]. For uniformly strict Nevanlinna
functions the model in the present note reduces to the model constructed in [7] (see
also [11]).

The purpose of the present note is to provide a brief introduction to the notions
of boundary relations and corresponding Weyl families and to outline the func-
tional models associated with them. Very recently a similar functional model has
been also obtained with different methods by Derkach in [4]. An essentially wider
analysis involving connections to the reproducing kernel space models for operator-
valued Schur functions and transfer functions of unitary colligations is carried by
the authors in [2]. In that paper also classes of generalizations of boundary triplets
corresponding to special classes of Nevanlinna families (or Nevanlinna functions)
are treated in detail.

2. Preliminaries

2.1. Linear relations in Hilbert spaces. Let H be a Hilbert space with scalar
product (·, ·). In this note (closed) linear relations in H, that is, (closed) linear
subspaces of the Cartesian product H × H are studied. The elements of a linear

relation T will be denoted by f̂ = {f, f ′} ∈ T , f, f ′ ∈ H. For a linear relation
T in H the symbols domT , ker T , ranT , and mulT stand for the domain, kernel,
range, and the multi-valued part, respectively. The inverse relation is defined by
T−1 = {{f ′, f} : {f, f ′} ∈ T}. Closed linear operators in H will be identified with
closed linear relations via their graphs. The linear space of everywhere defined
bounded linear operators in H will be denoted by B(H).

Let S be a linear relation in H. The adjoint S∗ of S is a closed linear relation in
H defined by

S∗ :=
{
{g, g′} : (f ′, g) = (f, g′) for all {f, f ′} ∈ S

}
.

A linear relation S is called symmetric (selfadjoint) if S ⊂ S∗ (S = S∗, respectively).
For a closed symmetric relation S in the Hilbert space H the defect space corre-

sponding to λ ∈ C will be denoted by N̂λ(S∗), N̂λ(S∗) =
{
{f, f ′} ∈ S∗ : f ′ = λf

}
,

so that dom N̂λ(S∗) = ker (S∗ − λ), which will be denoted by Nλ(S∗).
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For a fixed µ ∈ C+ the Cayley transform Cµ(T ) of a linear relation T in H is
defined by

Cµ(T ) :=
{
{f ′ − µf, f ′ − µ̄f} : {f, f ′} ∈ T

}
.

Clearly Cµ(T ) maps ran (T−µ) onto ran (T−µ̄). Furthermore, Cµ(T ) is an isometric
(unitary) operator if and only if T is a symmetric (selfadjoint, respectively) relation.
The inverse Cayley transform of a linear relation V is given by

C(−1)
µ (V ) :=

{
h′ − h, µh′ − µ̄h} : {h, h′} ∈ V

}
.(2.1)

If V is a unitary operator, then the selfadjoint relation A := C
(−1)
µ (V ) in (2.1) is

given by

A =
{
(V − I)h, (µV − µ̄)h} : h ∈ H

}
.

2.2. Nevanlinna families, Nevanlinna pairs, and associated reproducing

kernel Hilbert spaces. Nevanlinna families are a natural generalization of the
class of Nevanlinna functions.

Definition 2.1. A family M = {M(λ) : λ ∈ C \ R} of linear relations in H is said
to be a Nevanlinna family in H if

(i) Im (f ′, f) ≥ 0 for all {f, f ′} ∈ M(λ), λ ∈ C+, and Im (f ′, f) ≤ 0 for all
{f, f ′} ∈M(λ), λ ∈ C−;

(ii) M(λ̄) = M(λ)∗ for all λ ∈ C \ R;
(iii) for some, and hence for all, ν ∈ C+ (ν ∈ C−), the operator function λ 7→

(M(λ) + ν)−1 is B(H)-valued and holomorphic on C+ (C−, respectively).

The multivalued part mulM(λ) of a Nevanlinna family M does not dependent on
λ ∈ C \ R andM can be decomposed into the direct orthogonal sum of a Nevanlinna
family M0 of densely defined operators in H0 := H⊖mulM(λ) and the selfadjoint
relation M∞ = {0} × mulM(λ),

M(λ) = M0(λ) ⊕M∞, λ ∈ C \ R.

In particular, M is an operator function if and only if domM(λ) is dense for some,
and hence for all, λ ∈ C \ R. A Nevanlinna family M = {M(λ) : λ ∈ C \ R} in H
is said to be uniformly strict if M(λ) +̂M(λ)∗ = H2 for some, and hence for all,
λ ∈ C \ R. Here +̂ denotes the componentwise direct sum of linear subspaces in
H2. It turns out that a uniformly strict Nevanlinna family M is automatically a
B(H)-valued Nevanlinna function with 0 ∈ ρ(ImM(λ)) for all λ ∈ C \ R, cf. [5].

Definition 2.2. A pair {Φ,Ψ} of B(H)-valued functions is said to be a Nevanlinna
pair in H if

(i) (Imλ)Im (Ψ(λ)Φ(λ)∗) ≥ 0 for all λ ∈ C \ R;
(ii) Ψ(λ)Φ(λ̄)∗ = Φ(λ)Ψ(λ̄)∗ for all λ ∈ C \ R;
(iii) (Ψ(λ) + νΦ(λ))−1 ∈ B(H) for all λ ∈ C±, ν ∈ C±.

Let {Φ,Ψ} be a Nevanlinna pair. Then

M(λ) :=
{
{f, f ′} : Φ(λ)f + Ψ(λ)f ′ = 0

}
=

{
{Ψ(λ̄)∗g,−Φ(λ̄)∗g} : g ∈ H

}
(2.2)
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is a Nevanlinna family in H. Conversely, if M is a Nevanlinna family in H, then
the pair {A,B} defined by

A(λ) :=

{
(M(λ) + µ)−1, λ ∈ C+,

(M(λ) + µ̄)−1, λ ∈ C−,
B(λ) :=

{
I − µ(M(λ) + µ)−1, λ ∈ C+,

I − µ̄(M(λ) + µ̄)−1, λ ∈ C−,

is a Nevanlinna pair in H which is symmetric, that is,

A(λ) = A(λ̄)∗ and B(λ) = B(λ̄)∗, λ ∈ C \ R.

Moreover, the pair {Φ,Ψ} defined by Φ(λ) := −B(λ) and Ψ(λ) := A(λ), is a
Nevanlinna pair such that (2.2) holds. In other words

M(λ) =
{
{A(λ)g,B(λ)g} : g ∈ H

}
.

In the special case that the Nevanlinna family M is a B(H)-valued Nevanlinna
function it is clear that {I,M} is a symmetric Nevanlinna pair.

Let {A,B} be a Nevanlinna pair in H. The corresponding Nevanlinna kernel on
(C+ ∪ C−) × (C+ ∪ C−) is defined by

KA,B(ξ, λ) :=
B(λ)A(ξ)∗ −A(λ)B(ξ)∗

λ− ξ̄
, λ, ξ ∈ C+ ∪ C−, ξ 6= λ̄,

and KA,B(λ̄, λ) = 0. The kernel KA,B(·, ·) is nonnegative, hermitian and holo-
morphic. The corresponding reproducing kernel Hilbert space will be denoted by
H(A,B). It consists of vector functions which are holomorphic on C \ R, see, e.g.
[1]. If M is a B(H)-valued Nevanlinna function the notation H(M) will be used
instead of H(I,M).

3. Boundary relations and Weyl families

3.1. General definitions and basic properties. The concepts of boundary re-
lations and associated Weyl families were introduced in [5] as a generalization of
the notions of (generalized) boundary triplets and their Weyl functions. In the
following the definitions and some elementary properties of boundary relations and
Weyl families are briefly recalled.

Definition 3.1. Let S be a closed symmetric relation in a Hilbert space H and let
H be an auxiliary Hilbert space. A linear relation Γ ⊂ H2×H2 is called a boundary
relation for S∗ if:

(i) T := domΓ is dense in S∗ and the abstract Green’s identity

(g′, l)H − (g, l′)H = (k′,m)H − (k,m′)H

holds for every {ĝ, k̂}, {l̂, m̂} ∈ Γ;

(ii) if {l̂, m̂} ∈ H2×H2 satisfies the abstract Green’s identity for every {ĝ, k̂} ∈ Γ,

then {l̂, m̂} ∈ Γ;

where ĝ = {g, g′}, l̂ = {l, l′} ∈ H2 and k̂ = {k, k′}, m̂ = {m,m′} ∈ H2.

Let S be a closed symmetric relation in H. If Γ ⊂ H2×H2 is a boundary relation
for S∗, then Γ is necessarily closed and S = ker Γ holds. Moreover, it is not difficult
to see that Γ ⊂ H2 ×H2 with ker Γ = S is a boundary relation for S∗ if and only if

Ã :=

{{(
g
k

) (
g′

−k′

)}
:

{(
g
g′

) (
k
k′

)}
∈ Γ

}
⊂ (H ⊕H) × (H ⊕H)(3.1)
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is a selfadjoint relation in H ⊕H. Therefore every selfadjoint relation Ã in H ⊕H

with S = Ã ∩ H2 yields a boundary relation for S∗ and vice versa, and hence for a
given S there always exists a Hilbert space H and a boundary relation Γ ⊂ H2×H2

for S∗. Note that Γ is not unique.
Let Nλ(T ) = ker (T − λ), λ ∈ C \ R, be the defect space and set

N̂λ(T ) =
{
{gλ, λgλ} : gλ ∈ Nλ(T )

}
, λ ∈ C \ R.

Definition 3.2. The Weyl family M = {M(λ) : λ ∈ C \ R} of S corresponding to
the boundary relation Γ ⊂ H2 ×H2 is defined by

M(λ) := Γ
(
N̂λ(T )

)
=

{
k̂ : {ĝλ, k̂} ∈ Γ, ĝλ = {gλ, λgλ} ∈ N̂λ(T )

}
, λ ∈ C \ R.

If the values M(λ), λ ∈ C \ R, are operators, then M is called a Weyl function.

It is easy to see that the Weyl family M and the selfadjoint relation Ã in (3.1)
are connected via

PH

(
Ã− λ

)−1
↾H= −

(
M(λ) + λ

)−1
, λ ∈ C \ R.(3.2)

This also implies that M is a Nevanlinna family in H, cf. [5]. Conversely every
Nevanlinna family can be interpreted as the Weyl family of a boundary relation,
cf. [5, Theorem 3.9].

Boundary relations extend the concepts of ordinary and generalized boundary
triplets. More precisely, if S is a closed symmetric relation in H and Γ ⊂ H2×H2 is
a boundary relation for S∗ such that ran Γ = H2, or, equivalently, dom Γ = T = S∗,
then {H,Γ0,Γ1} is said to be an ordinary boundary triplet for S∗, see [6, 7] and
[8]. In this case the Weyl family M is a uniformly strict B(H)-valued Nevanlinna
function, see [5, Proposition 5.3].

3.2. Boundary relations, unitary colligations, Weyl families, and transfer

functions. Let H and H be Hilbert spaces, and let Ã be a selfadjoint relation in

H ⊕ H. Then, according to (3.1), Ã gives rise to a boundary relation Γ for the

adjoint of the closed symmetric relation S := Ã ∩ H2 in H. On the other hand, for

a fixed µ ∈ C+, the selfadjoint relation Ã in H⊕H is the inverse Cayley transform

C
(−1)
µ (U) of a unitary operator, more precisely, of a so-called unitary colligation

U ∈ B(H ⊕H),

U =

(
T F
G H

)
=

(
H

H

)
→

(
H

H

)
,(3.3)

that is, Ã admits the representation

Ã =

{{(
(T − I)h+ Ff
Gh+ (H − I)f

)
,

(
(µT − µ̄)h+ µFf
µGh+ (µH − µ̄)f

)}
: h ∈ H, f ∈ H

}
,(3.4)

with T ∈ B(H), F ∈ B(H,H), G ∈ B(H,H), and H ∈ B(H) having the properties

T ∗T +G∗G = I, F ∗T +H∗G = 0, F ∗F +H∗H = I,

TT ∗ + FF ∗ = I, GT ∗ +HF ∗ = 0, GG∗ +HH∗ = I.
(3.5)

The transfer function Θ of the unitary colligation U is defined by

Θ(z) := H + zG(I − zT )−1F, z ∈ D = {w ∈ C : |w| < 1},(3.6)
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and Θ(z) := Θ(1/z̄)∗ for z ∈ D∗ = {w ∈ C ∪ {∞} : |w| > 1}. It is clear that Θ is a
B(H)-valued holomorphic function on D ∪ D

∗ and a straightforward computation
using (3.5) shows that

I − Θ(z)Θ(z)∗ = G(I − zT )−1(1 − zz̄)(I − z̄T ∗)−1G∗ ≥ 0, z ∈ D,

and therefore ‖Θ(z)‖ ≤ 1, z ∈ D ∪ D∗, i.e., Θ is a B(H)-valued Schur function. .
In the next theorem the closed symmetric relation S, the domain T of the bound-

ary relation Γ corresponding to Ã in (3.4), and the Weyl family M associated to Γ
are specified.

Theorem 3.3. Let Ã be a selfadjoint relation in H ⊕ H of the form (3.4). Then
the following statements hold:

(i) S := {{(T − I)h, (µT − µ̄)h} : h ∈ ker G} is a closed symmetric relation in
H and the linear relation

T :=
{
{(T − I)h+ Ff, (µT − µ̄)h+ µFf} : h ∈ H, f ∈ H

}

is dense in S∗, so that S∗ = T , and S = T ∗.
(ii) The defect space Nλ(T ) = ker (T − λ), λ ∈ C \ R, is given by

Nλ(T ) =

{
span {(1 − zT )−1Ff : f ∈ H}, λ ∈ C+,

span {(1 − z−1T ∗)−1G∗f : f ∈ H}, λ ∈ C−,

where z = (λ− µ)/(λ− µ̄).
(iii) A boundary relation Γ for S∗ is defined by

Γ :=

{{(
(T − I)h+ Ff

(µT − µ̄)h+ µFf

)
,

(
Gh+ (H − I)f

−µGh− (µH − µ̄)f

)}
: h ∈ H, f ∈ H

}
.

(iv) If Θ is the transfer function of the unitary colligation U = Cµ(Ã) in (3.3),
then the Weyl family M corresponding to the boundary relation Γ is

M(λ) =

{{
{(I − Θ(z))f, (µΘ(z) − µ̄)f} : f ∈ H

}
, λ ∈ C+,{

{(I − Θ(z))f, (µ̄Θ(z) − µ)f} : f ∈ H
}
, λ ∈ C−.

Proof. (i) It is not difficult to see that S and T coincide with Ã ∩ H2 and P̂HÃ,

where P̂H is the projection of the entries in Ã onto H2. Now [5, Proposition 2.12]
implies (i)

(ii) An element (T − I)h+ Ff belongs to ker (T − λ) if and only if

(µT − µ̄)h+ µFf = λ(T − I)h+ λFf.

For λ ∈ C+ this is equivalent to h = z(I − zT )−1Ff and hence Nλ(T ) is of the
asserted form for λ ∈ C+. Making use of the unitarity of U in (3.3) the relation T
can equivalently be written in the form

T =
{
{(I − T ∗)h−G∗f, (µ− µ̄T ∗)h− µ̄G∗f} : h ∈ H, f ∈ H

}

and a similar argument as above implies Nλ(T ) = span {(1−z−1T ∗)−1G∗f : f ∈ H}
for λ ∈ C−.

(iii) Clearly ker Γ = S, where S is as in part (i). Now the fact that Γ is a

boundary relation for S∗ follows immediately from the selfadjointness of Ã.
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(iv) The definition of the Weyl family and the transfer function in (3.6) together
with the form of the boundary relation Γ in (iii) lead to

M(λ) =
{
{(I − Θ(z))f, (µΘ(z) − µ̄)f} : f ∈ H

}
for λ ∈ C+.

For λ ∈ C− the statement follows from the symmetry property M(λ̄) = M(λ)∗.

If S, T , and Γ are as in Theorem 3.3 then the relations Γ0 and Γ1 are given by

Γ0 =

{{(
(T − I)h+ Ff

(µT − µ̄)h+ µFf

)
, Gh+ (H − I)f

}
: h ∈ H, f ∈ H

}

and

Γ1 =

{{(
(T − I)h+ Ff

(µT − µ̄)h+ µFf

)
,−µGh− (µH − µ̄)f

}
: h ∈ H, f ∈ H

}
,

respectively, and their kernels are symmetric extensions of S given by

A0 =
{
{(T − I)h+ Ff, (µT − µ̄)h+ µFf} : Gh+ (H − I)f = 0

}
,

A1 =
{
{(T − I)h+ Ff, (µT − µ̄)h+ µFf} : µGh+ (µH − µ̄)f = 0

}
.

The special case that the Weyl family M in Theorem 3.3 is a uniformly strict
Nevanlinna function can be characterized in terms of the operators H, F , and G.

Proposition 3.4. Let S ⊂ T and Γ be as in Theorem 3.3 and let M be the Weyl
family corresponding to Γ. Then M is uniformly strict if and only if I−HH∗ = GG∗

is uniformly positive, or equivalently, I − H∗H = F ∗F is uniformly positive. In
this case M(λ) ∈ B(H), λ ∈ C \ R, and ImM(λ) is uniformly positive (uniformly
negative) for all λ ∈ C+ (λ ∈ C−, respectively). Furthermore, {H,Γ0,Γ1} is an
ordinary boundary triplet for S∗.

4. A reproducing kernel Hilbert space model for Nevanlinna families

The following theorem states that each Nevanlinna family can be realized as the
Weyl family of a boundary relation associated with the operator of multiplication
by the independent variable in the reproducing kernel Hilbert space H(A,B); see
also [2], [4].

Theorem 4.1. Let M be a Nevanlinna family in H, let {A,B} be a symmetric
Nevanlinna pair such that M(λ) = {{A(λ)g,B(λ)g} : g ∈ H}, λ ∈ C \ R, and let
H(A,B) be the corresponding reproducing kernel Hilbert space. Then:

(i) the multiplication by the independent variable in H(A,B), that is,

S =
{
{ϕ, ψ} ∈ H(A,B)2 : ψ(λ) = λϕ(λ)

}
,

defines a closed simple symmetric operator in H(A,B);
(ii) the linear relation

T =
{
{ϕ, ψ} ∈ H(A,B)2 : ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2, c1, c2 ∈ H

}

is dense in S∗;
(iii) the linear relation

Γ =

{{(
ϕ
ψ

)
,

(
c2
−c1

)}
: {ϕ, ψ} ∈ T

}

is a boundary relation for S∗ whose Weyl family is M .
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Proof. To the Nevanlinna family M(λ), λ ∈ C \ R, associate the Schur function

Θ(z) =

{
I − (µ− µ̄)(M(λ) + µ)−1, λ ∈ C+,

I − (µ̄− µ)(M(λ) + µ̄)−1, λ ∈ C−,
z =

λ− µ

λ− µ̄
,(4.1)

and define the corresponding Schur kernel SΘ(w, z) on (D ∪ D∗) × (D ∪ D∗) by

SΘ(w, z) :=





1−Θ(z)Θ(w)∗

1−zw̄ , w ∈ D, z ∈ D,
Θ(z)−Θ(w)∗

1/z−w̄ , w ∈ D, z ∈ D∗,
Θ(z)−Θ(w)∗

z−1/w̄ , w ∈ D
∗, z ∈ D,

1−Θ(z)Θ(w)∗

1−1/(zw̄) , w ∈ D∗, z ∈ D∗.

(4.2)

The kernel SΘ(·, ·) is hermitian, holomorphic, and nonnegative, see [12]. Let S(Θ)
be the reproducing kernel Hilbert space associated with the Schur kernel in (4.2).
It follows from [1, Theorem 2.3.1] that

U =

(
T F
G H

)
:

(
S(Θ)
H

)
→

(
S(Θ)
H

)
,

where T , F , G, and H are defined by

(Th)(z) :=

{
1
z (h(z) − h(0)), z ∈ D,
1
zh(z) − Θ(z)h(0), z ∈ D

∗,

(Ff)(z) :=

{
1
z (Θ(z) − Θ(0))f, z ∈ D,

(I − Θ(z)Θ(0))f, z ∈ D∗,

Gh := h(0),

Hf := Θ(0)f,

is a unitary colligation such that the transfer function of U coincides with Θ(z).
The linear relations in Theorem 3.3 (i) in the Hilbert space S(Θ) will now be
denoted by SS(Θ) and TS(Θ) instead of S and T , respectively, and denote by ΓS(Θ)

the boundary relation for S∗

S(Θ) in Theorem 3.3 (iii).

Observe that M can be recovered from (4.1) by

M(λ) =

{
{ {(I − Θ(z))f, (µΘ(z) − µ̄)f} : f ∈ H}, λ ∈ C+,

{ {(I − Θ(z))f, (µ̄Θ(z) − µ)f} : f ∈ H}, λ ∈ C−,

and that this representation of M induces the Nevanlinna pair {A(λ), B(λ)},

A(λ) := I − Θ(z), λ ∈ C \ R, B(λ) :=

{
µΘ(z) − µ̄, λ ∈ C+,

µ̄Θ(z) − µ, λ ∈ C−.
(4.3)

To prove the theorem it is sufficient to consider the reproducing kernel Hilbert space
H(A,B) associated with this special Nevanlinna pair in (4.3). Then the Schur kernel
SΘ(w, z) and the Nevanlinna kernel KA,B(ξ, λ) are connected via

SΘ(w, z) = r(λ)KA,B(ξ, λ)r(ξ)∗, λ, ξ ∈ C+ ∪ C−, ξ 6= λ̄,

where z = (λ− µ)/(λ− µ̄), w = (ξ − µ)/(ξ − µ̄), and

r(λ) =

{
(λ− µ̄)/(µ− µ̄), λ ∈ C+,

(λ− µ)/(µ̄− µ), λ ∈ C−.
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The multiplication by r is a unitary mapping from the reproducing kernel Hilbert
space H(A,B) onto the reproducing kernel Hilbert space S(Θ). Furthermore,
straightforward calculations show that S and T in (i) and (ii) are connected to
SS(Θ) and TS(Θ) via

rS = SS(Θ) and rT = TS(Θ),

respectively. Now, the fact that ΓS(Θ) is a boundary relation for S∗

S(Θ) yields that

Γ in (iii) is a boundary relation for S∗.
It remains to show that the Weyl family MΓ(λ) corresponding to Γ coincides

with the Nevanlinna pair {A(λ), B(λ)} in (4.3). Let w ∈ C \ R and assume that

{ϕ, ψ} ∈ N̂w(T ). Then ψ(λ) = wϕ(λ), λ ∈ C \ R. In view of (ii) this means that

(w − λ)ϕ(λ) = A(λ)c1 +B(λ)c2, c1, c2 ∈ H.

In particular, A(w)c1+B(w)c2 = 0. Now the form of Γ in (iii) implies thatMΓ(w) ⊂{
{c2,−c1} : A(w)c1 + B(w)c2 = 0

}
. By the symmetry property A(w̄)∗ = A(w),

B(w̄)∗ = B(w) of the Nevanlinna pair {A(λ), B(λ)} in (4.3) one has

M(w) =
{
{A(w)g,B(w)g} : g ∈ H

}
=

{
{c2,−c1} : A(w)c1 +B(w)c2 = 0

}
.

Therefore, MΓ(w) ⊂M(w) holds. Since both families are Nevanlinna families, their
maximality property implies the claim MΓ(w) = M(w), w ∈ C \ R.

If the Nevanlinna family M is an B(H)-valued Nevanlinna function, then the
Nevanlinna pair {I,M} can be chosen and the reproducing kernel Hilbert space is
H(M). It is left to the reader to formulate a corollary in this special situation. Fur-
thermore, it is well known that uniformly strict B(H)-valued Nevanlinna functions
can be realized as Weyl functions of ordinary boundary triplets, cf. [6, 7] and [5].
For these classes of Nevanlinna functions Theorem 4.1 yields the following result,
see [7, Proposition 5.3].

Corollary 4.2. Let M be a uniformly strict B(H)-valued Nevanlinna function.
Then S = {{ϕ, ψ} ∈ H(M)2 : ψ(λ) = λϕ(λ)} is a closed simple symmetric operator
in H(M), the linear relation

T =
{
{ϕ, ψ} ∈ H(M)2 : ψ(λ) − λϕ(λ) = c1 +M(λ)c2, c1, c2 ∈ H

}

coincides with S∗, T = S∗, and {H,Γ0,Γ1}, where

Γ0{ϕ, ψ} = c2 and Γ1{ϕ, ψ} = −c1, {ϕ, ψ} ∈ S∗,

is an ordinary boundary triplet for S∗.

The following example formally illustrates Theorem 4.1 and Corollary 4.2 for the
uniformly strict scalar Nevanlinna function M(λ) = tan aλ, where a > 0.

Example 4.3. Let (−a, a), a > 0, be a finite interval and consider in L2((−a, a))
the densely defined maximal first order differential operator (in graph notation)

Tmax =
{
{f, if ′} : f absolutely continuous, f, f ′ ∈ L2((−a, a))

}

generated by i d
dx . The corresponding minimal operator

Tmin =
{
{f, if ′} ∈ Tmax : f(−a) = f(a) = 0

}

is a closed symmetric operator with defect numbers (1, 1) and T ∗
min = Tmax .
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Let La be the reproducing kernel Hilbert space generated by the kernel

K(ξ, λ) =
sin aλ cos aξ̄ − cos aλ sin aξ̄

λ− ξ̄
=

sin a(λ− ξ̄)

λ− ξ̄
,(4.4)

λ, ξ̄ ∈ C \ R. The space La consists of all entire functions of type ≤ a, which are
square integrable on R, cf. [3]. By the Paley-Wiener theorem the mapping

f 7→ ϕ(λ) =

∫ a

−a

eiλtf(t) dt, λ ∈ C,(4.5)

provides an isometric isomorphism from L2((−a, a)) onto La.
Note that the images of Tmin and Tmax under the Fourier transform (4.5) are

given (in graph notation) by

S =
{
{ϕ, ψ} ∈ L2

a : ψ(λ) = λϕ(λ)
}
,

S∗ =
{
{ϕ, ψ} ∈ L2

a : ψ(λ) − λϕ(λ) = c1 cos aλ+ c2 sin aλ, c1, c2 ∈ C
}
.

In terms of the preimage f of ϕ the values c1 and c2 are given by

c1 = i(f(a) − f(−a)) and c2 = −(f(a) + f(−a)).

An interpretation of c1 and c2 in S∗ is that they represent boundary values of the
element {ϕ, ψ} ∈ S∗.

Note that the Nevanlinna pair {cos aλ, sin aλ} is equivalent to the Nevanlinna
function tan aλ. The Nevanlinna kernel in (4.4) transforms accordingly into the
Nevanlinna kernel

N(ξ, λ) =
tan aλ− tan aξ̄

λ− ξ̄
, λ, ξ ∈ C \ R.

Denote the corresponding reproducing kernel Hilbert space by Ca. Then the func-
tion ϕ(λ) belongs to La if and only if the function (cosaλ)−1ϕ(λ) belongs to Ca.
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