
Boundary relations, unitary colligations, and
functional models

Jussi Behrndt, Seppo Hassi and Henk de Snoo

Dedicated to Ilppo Simo Louhivaara on the occasion of his eightieth birthday

Abstract. Recently a new notion, the so-called boundary relation, has been in-
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operator-valued Nevanlinna functions and they are closely connected with the
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the main consequences a functional model for Nevanlinna families is obtained
from a variant of the functional model of L. de Branges and J. Rovnyak for
Schur functions. Here the model space is a reproducing kernel Hilbert space
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symmetric operator. This operator gives rise to a boundary relation such that
the given Nevanlinna family is realized as the corresponding Weyl family.
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1. Introduction

In this paper the interplay between the recent concepts of boundary relations and
their Weyl families and the somewhat more classical notions of unitary colligations
and their transfer functions is investigated. The concepts of boundary relations
and corresponding Weyl families were introduced in [22], as generalizations of the
notions of (ordinary and generalized) boundary triplets and their Weyl functions
introduced and comprehensively studied by V.A. Derkach and M.M. Malamud in
[25, 26]; see also [18, 31, 28, 40, 41]. Boundary triplets and Weyl functions play
an important role in the theory of symmetric operators and the spectral analysis
of their selfadjoint extensions; applications range from spectral theory of ordinary
and partial differential operators to boundary value problems, perturbation theory,
scattering theory and moment problems, see, e.g., [8, 9, 18, 19, 24, 25, 26, 28, 29].

The present paper is written in the language of linear relations, i.e., multi-
valued linear operators, since it is more general and often much more convenient
to work with linear relations instead of linear operators. These objects are natural
for many reasons in the present context, e.g., the Cayley transform of a unitary
colligation is in general not a selfadjoint operator but a selfadjoint relation, the
transfer function induces a relation-valued function, and the symmetric operators
which are extended are often not densely defined, so that the selfadjoint extensions
and the adjoint need not be operators.

For the convenience of the reader the definitions of boundary relations and
Weyl families from [22, 23] are briefly recalled.

Definition 1.1. Let S be a closed symmetric relation in a Hilbert space H and let H
be an auxiliary Hilbert space. A linear relation Γ from H2 = H×H to H2 = H×H
is said to be a boundary relation for S∗ if:

(i) T = domΓ is dense in S∗ and the identity

(f ′, g)H − (f, g′)H = (h′, k)H − (h, k′)H, (1.1)

holds for every {f̂ , ĥ}, {ĝ, k̂} ∈ Γ, where f̂ = {f, f ′}, ĝ = {g, g′} ∈ H2 and

ĥ = {h, h′}, k̂ = {k, k′} ∈ H2;

(ii) if {ĝ, k̂} ∈ H2 ×H2 satisfies (1.1) for every {f̂ , ĥ} ∈ Γ, then {ĝ, k̂} ∈ Γ.

The Weyl family associated to a boundary relation Γ is the abstract analogue
of the classical Titchmarsh-Weyl coefficient or m-function in Sturm-Liouville the-
ory. Roughly speaking the values of the Weyl family are the images of the defect
spaces of T under Γ.

Definition 1.2. The Weyl family M(λ), λ ∈ C \ R, of S corresponding to the
boundary relation Γ : H2 → H2 is defined by

M(λ) =
{
ĥ ∈ H2 : {f̂λ, ĥ} ∈ Γ for some f̂λ = {fλ, λfλ} ∈ H2

}
. (1.2)

If the values M(λ), λ ∈ C \ R, are operators in H, then one speaks of a
Weyl function instead of a Weyl family. It follows directly from the definition
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that a Weyl family is a Nevanlinna family, that is, a holomorphic relation-valued
function symmetric with respect to the real line and whose values on C+ (C−)
are maximal dissipative (maximal accumulative, respectively) linear relations, cf.,
Definition 3.1. Conversely it was shown in [22] with the help of the Naimark
dilation theorem that each Nevanlinna family can be realized as a Weyl family of
some boundary relation in an abstract model space.

The present paper offers a new approach to boundary relations and their
Weyl families. The underlying idea is that the Weyl family M(λ) and a certain

selfadjoint relation Ã in H×H induced by the boundary relation Γ : H2 → H2 are
connected via the Cayley transform with an operator-valued Schur function Θ in H
and a unitary colligation U in H×H with Θ as the corresponding transfer function.
Several operator and function theoretic facts concerning this connection between
Nevanlinna families and operator-valued Schur functions are established and ex-
pressed via explicit formulas. In particular, it is shown how these basic observations
provide simple characterizations of various subclasses of the Nevanlinna families,
e.g., operator-valued Nevanlinna functions with boundedly invertible imaginary
part, and special types of boundary relations, e.g., ordinary boundary triplets.
Furthermore, the realization of Schur functions in terms of unitary colligations
gives rise to a simple alternative approach to the realization of Nevanlinna fami-
lies as Weyl families of boundary relations. In particular, it is shown how a variant
of the functional model of L. de Branges and J. Rovnyak (see [14, 15]) for Schur
functions leads to a functional model for Nevanlinna families. The model space
is a reproducing kernel Hilbert space in which multiplication by the independent
variable is the closed simple symmetric operator which gives rise to the boundary
relation. The operator of multiplication by the independent variable in the con-
text of reproducing kernel Hilbert spaces of scalar entire functions was already
considered by L. de Branges in [10, 11, 12, 13] for meromorphic scalar Nevanlinna
functions.

The outline of the paper is as follows. In Section 2 some useful facts on linear
operators and relations in Hilbert spaces are recalled. Section 3 deals with the
notions of Schur functions, Nevanlinna families and Nevanlinna pairs. The connec-
tions between these objects are investigated and the corresponding reproducing
kernel Hilbert spaces are introduced. The realization of a Schur function as the
transfer function of a unitary colligation is explained in Section 4; the original de
Branges-Rovnyak model in terms of a matrix kernel and vector functions on D

is translated into a model with functions defined on D ∪ D∗; cf., [3]. In Section 5
the connection between the Weyl family of a boundary relation and the transfer
function of an associated unitary colligation is investigated by means of the Cayley
transform. The realization of a given Nevanlinna family as the Weyl family of a
boundary relation in a reproducing kernel Hilbert space can be found in Section 6.
Moreover, it is shown that for the special classes of strict and uniformly strict
Nevanlinna functions whose values are bounded linear operators the results in the
present paper reduce to the ones obtained in [26, 33, 37, 38].
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Recently the realization in terms of a functional model was also announced
by V.A. Derkach in the International Conference on Modern Analysis and Ap-
plications in Odessa, Ukraine (2007), see [20], where different methods have been
used. Furthermore it should be mentioned that several operator representations of
so-called generalized Nevanlinna families and functions (generalized in the sense
that they possess a finite number of negative squares) exist in the literature. A
treatment along the lines of the present paper requires the introduction of bound-
ary relations in the context of indefinite spaces, cf., [7]. This topic will be treated
elsewhere.

2. Preliminaries

2.1. Linear relations in Hilbert spaces

Let H and K be Hilbert spaces whose scalar products are denoted by (·, ·). A
(closed) linear relation T from H to K is a (closed) linear subspace of the Cartesian

product space H × K. The elements of T are pairs denoted by f̂ = {f, f ′} ∈ T ,
f ∈ H, f ′ ∈ K. For a linear relation T from H to K the domain, kernel, range, and
the multi-valued part are defined as

domT = { f ∈ H : {f, f ′} ∈ T }, kerT = { f ∈ H : {f, 0} ∈ T },

ranT = { f ′ ∈ K : {f, f ′} ∈ T }, mulT = { f ′ ∈ K : {0, f ′} ∈ T },

respectively. The inverse of T is a relation from K to H defined by

T−1 =
{
{f ′, f} : {f, f ′} ∈ T

}
.

The sum T1 + T2 and component-wise sum T1 +̂ T2 of two linear relations T1 and
T2 from H to K are defined by

T1 + T2 =
{
{f, g + k} : {f, g} ∈ T1, {f, k} ∈ T2

}
,

T1 +̂ T2 =
{
{f + h, g + k} : {f, g} ∈ T1, {h, k} ∈ T2

}
,

respectively. Closed linear operators from H to K will be identified with closed
linear relations via their graphs. The linear space of everywhere defined bounded
linear operators from H into K will be denoted by B(H,K) and by B(H) if H = K.
The resolvent set ρ(T ) of a closed linear relation T in H is the set of all λ ∈ C

such that (T − λ)−1 ∈ B(H). Often T − λ is simply called boundedly invertible
and it is then tacitly assumed that the inverse is defined on the whole space. For
λ ∈ ρ(T ) one has the following identity

T =
{
{(T − λ)−1h, (I + λ(T − λ)−1)h} : h ∈ H

}
. (2.1)

The spectrum σ(T ) of T is the complement of ρ(T ) in C.
A linear relation T in H is accumulative (dissipative) if Im (f ′, f) ≤ 0

(Im (f ′, f) ≥ 0, respectively) holds for all {f, f ′} ∈ T . The relation T is said
to be maximal accumulative (maximal dissipative) if T is accumulative (dissipa-
tive) and there exists no proper accumulative (dissipative, respectively) extension
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of T in H. Note that T is maximal accumulative (maximal dissipative) if and only
if T is accumulative (dissipative) and C+ ⊂ ρ(T ) (C− ⊂ ρ(T ), respectively).

Let T be a linear relation from H to K. The adjoint T ∗ of T is a closed linear
relation from K to H defined by

T ∗ :=
{
{g, g′} : (f ′, g) = (f, g′) for all {f, f ′} ∈ T

}
.

This definition obviously extends the usual definition of the adjoint operator. If T
is a closed linear relation in H and λ ∈ C, then ran (T − λ) is closed if and only if
ran (T ∗ − λ̄) is closed. A linear relation T in H is called symmetric (selfadjoint) if
T ⊂ T ∗ (T = T ∗, respectively). It follows from the polarization identity that T is
symmetric if and only if (f ′, f) ∈ R for all {f, f ′} ∈ T .

For each linear relation T in the Hilbert space H and each λ ∈ C the
eigenspace Nλ(T ) is defined by Nλ(T ) = ker(T − λ). Corresponding to this
eigenspace is the following subset of T :

N̂λ(T ) =
{
{f, f ′} ∈ T : f ∈ Nλ(T )

}
.

Now let T be a closed symmetric relation in H. If A is an intermediate extension
of T , i.e. T ⊂ A ⊂ T ∗, with a nonempty resolvent set, then

T ∗ = A +̂ N̂λ(T ∗), direct sum,

holds for all λ ∈ ρ(A). In particular, since for λ ∈ C+ (λ ∈ C−) the relation
A = T +̂ Nλ̄(T ∗) is maximal accumulative (maximal dissipative, respectively),
this leads to von Neumann’s decomposition of a closed symmetric relation T :

T ∗ = T +̂ N̂λ(T ∗) +̂ Nλ̄(T ∗), λ ∈ C \ R, direct sum.

For a fixed µ ∈ C \ R the Cayley transform Cµ(T ) of any linear relation T in H is
defined by

Cµ(T ) :=
{
{f ′ − µf, f ′ − µ̄f} : {f, f ′} ∈ T

}
; (2.2)

the corresponding inverse Cayley transform of a linear relation V in H is given by
{
{h′ − h, µh′ − µ̄h} : {h, h′} ∈ V

}
. (2.3)

Clearly the Cayley transform preserves closedness; and Cµ(T ) maps ran (T − µ)
onto ran (T − µ̄). Furthermore, the identity

‖f ′ − µ̄f‖2 − ‖f ′ − µf‖2 = 4(Imµ) Im (f ′, f), f, f ′ ∈ H, (2.4)

is straightforward to check. If µ ∈ C+, the identity (2.4) shows that Cµ(T ) is a
expansive, contractive, isometric, or unitary operator if and only if T is a dissipa-
tive, accumulative, symmetric, or selfadjoint relation, respectively. Moreover, T is
maximal dissipative or maximal accumulative if and only if Cµ(T ) is a expansive
or contractive operator, which is defined on H.
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2.2. Some results for bounded linear operators

Let H be a Hilbert space and let T ∈ B(H). The following lemma lists some simple
useful results.

Lemma 2.1. Let H be a Hilbert space, let T ∈ B(H), and let λ ∈ C. Then for
|λ| ≥ ‖T‖:

(i) ker(T − λ) = ker(T ∗ − λ̄) ⊂ ker(T ∗T − |λ|2) ∩ ker(TT ∗ − |λ|2);
(ii) ran (T−λ) = ran (T ∗−λ̄) (and ran (T−λ) is closed if and only if ran (T ∗−λ̄)

is closed)
(iii) the following conditions are equivalent: ran (T − λ) = H, ran (T ∗ − λ̄) = H,

(T − λ)−1 ∈ B(H), and (T ∗ − λ̄)−1 ∈ B(H).

Moreover, for all λ 6= 0 one has:

(iv) ker(T ∗T − |λ|2) = {0} if and only if ker(TT ∗ − |λ|2) = {0};
(v) ran (T ∗T − |λ|2) is closed if and only if ran (TT ∗ − |λ|2) is closed;
(vi) (T ∗T − |λ|2)−1 ∈ B(H) if and only if (TT ∗ − |λ|2)−1 ∈ B(H).

Proof. (i) Let h ∈ ker(T − λ). Since ‖T ∗‖ ≤ |λ̄|, it follows that

0 ≤
(
(T ∗ − λ̄)h, (T ∗ − λ̄)h

)
= (T ∗h, T ∗h) − (λ̄h, λ̄h) ≤ 0,

and, hence, h ∈ ker(T ∗− λ̄). Thus ker(T −λ) ⊂ ker(T ∗− λ̄). The reverse inclusion
ker(T ∗ − λ̄) ⊂ ker(T − λ) holds by symmetry. The inclusion in (i) is obvious.

(ii) This follows by taking orthogonal complements in the identity in (i).
(iii) It suffices to note the following. If ran (T−λ) = H, then ker(T ∗−λ̄) = {0},

but then ker(T − λ) = {0} by (i). It follows from the closed graph theorem that
(T − λ)−1 ∈ B(H).

(iv), (v), & (vi) The following identities are easily verified:

A : = |λ|

(
T |λ|
|λ| T ∗

)
=

(
|λ| 0
T ∗ I

)(
I 0
0 |λ|2 − T ∗T

)(
T |λ|
I 0

)
,

A∗ = |λ|

(
T ∗ |λ|
|λ| T

)
=

(
|λ| 0
T I

)(
I 0
0 |λ|2 − TT ∗

)(
T ∗ |λ|
I 0

)
.

(2.5)

For λ 6= 0 the first and the last factors of the products on the righthand side of (2.5)
are bounded with bounded inverse. Therefore, kerA = {0}, ranA is closed, or A is
boundedly invertible if and only if ker(|λ|2−T ∗T ) = {0}, ran (|λ|2−T ∗T ) is closed,
or |λ|2 − T ∗T is boundedly invertible, respectively. Analogously, kerA∗ = {0},
ranA∗ is closed, or A∗ is boundedly invertible if and only if ker(|λ|2−TT ∗) = {0},
ran (|λ|2 − TT ∗) is closed, or |λ|2 − TT ∗ is boundedly invertible, respectively.
Finally, it remains to observe that kerA = {0} if and only if kerA∗ = {0} (due to
the special structure of A), ranA is closed if and only if ranA∗ is closed, and A is
boundedly invertible if and only A∗ is boundedly invertible, respectively. �

Some more useful facts for an operator T ∈ B(H) which will be used in the
following are:

kerTT ∗ = kerT ∗, kerT ∗T = kerT, (2.6)
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ranTT ∗, ranT ∗T, ranT, and ranT ∗ are closed simultaneously, (2.7)

TT ∗ is boundedly invertible if and only if ranT = H, (2.8)

T ∗T is boundedly invertible if and only if ranT ∗ = H. (2.9)

For the sake of completeness the following useful result from [26] is recalled.

Lemma 2.2. Let X and Y be Banach spaces, let M be a closed linear subspace of
X, and let P ∈ B(X,Y) be surjective. Then the image PM is closed in Y if and
only if the sum M + N is closed in X, where N := kerP .

3. Schur functions and Nevanlinna families

3.1. Schur functions, Nevanlinna families, and Nevanlinna pairs

Let H be a Hilbert space and let Θ(z) be an B(H)-valued Schur function, i.e.,
z 7→ Θ(z) ∈ B(H) is a holomorphic function defined on the open unit disc D =
{z ∈ C : |z| < 1} such that ‖Θ(z)‖ ≤ 1, z ∈ D. A Schur function Θ(z) will be
extended to the exterior D∗ = {z ∈ C ∪ {∞} : |z| > 1} of the unit disc in the
closed complex plane C ∪ {∞} by

Θ(z) := Θ(1/z̄)∗, z ∈ D
∗, (3.1)

cf., [27], [3, p. 112]. Here the following conventions 1/∞ = 0 and 1/0 = ∞ will be
used, so that in particular Θ(∞) = Θ(0)∗.

Let Θ(z) be an B(H)-valued Schur function defined on D ∪ D∗ as in (3.1).
For a fixed µ ∈ C+ define the function z by

z(λ) =
λ− µ

λ− µ̄
, (3.2)

so that z maps the upper halfplane C+ onto D and C− onto D∗. The argument λ in
the mapping z will often be suppressed. It follows that the family M(λ), λ ∈ C\R

of linear relations defined by

M(λ) =

{
{ {(I − Θ(z))f, (µΘ(z) − µ̄)f} : f ∈ H}, λ ∈ C+,

{ {(I − Θ(z))f, (µ̄Θ(z) − µ)f} : f ∈ H}, λ ∈ C−,
(3.3)

is a so-called Nevanlinna family in the sense of the next definition.

Definition 3.1. A family M(λ), λ ∈ C \ R, of linear relations in H is said to be a
Nevanlinna family in H if

(i) M(λ) is maximal dissipative (maximal accumulative) for λ ∈ C+ (λ ∈ C−);
(ii) M(λ̄) = M(λ)∗ for λ ∈ C \ R;
(iii) for some, and hence for all, ν ∈ C+ (ν ∈ C−) the B(H)-valued function

λ 7→ (M(λ) + ν)−1 is holomorphic on C+ (C−, respectively).
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If the Schur function Θ(z) and the Nevanlinna family M(λ) are connected
via (3.3), then Θ(z) can be recovered from M(λ) as follows

Θ(z) =

{
I − (µ− µ̄)(M(λ) + µ)−1, λ ∈ C+,

I − (µ̄− µ)(M(λ) + µ̄)−1, λ ∈ C−,
(3.4)

and Θ(z) satisfies (3.1). In fact, every Nevanlinna family M(λ) defines via (3.4) a
Schur function Θ(z), so that M(λ) can be represented by (3.3).

Definition 3.2. A pair {Φ(λ),Ψ(λ)} of B(H)-valued functions is said to be a
Nevanlinna pair1 in H if Φ(λ) and Ψ(λ) are holomorphic on C \ R and

(i) (Imλ)Im (Ψ(λ)Φ(λ)∗) ≥ 0 for all λ ∈ C \ R;
(ii) Ψ(λ)Φ(λ̄)∗ = Φ(λ)Ψ(λ̄)∗ for all λ ∈ C \ R;
(iii) (Ψ(λ)+ νΦ(λ))−1 ∈ B(H) for some or, equivalently, for all λ ∈ C±, ν ∈ C±.

Two Nevanlinna pairs {Φ(λ),Ψ(λ)} and {Φ′(λ),Ψ′(λ)} are said to be equivalent
when

Φ′(λ) = χ(λ)Φ(λ) and Ψ′(λ) = χ(λ)Ψ(λ), λ ∈ C \ R, (3.5)

where χ(λ) is an B(H)-valued holomorphic operator function on C \ R, such that
χ(λ)−1 ∈ B(H) for all λ ∈ C \ R. A Nevanlinna pair {Φ(λ),Ψ(λ)} is said to be
symmetric if

Φ(λ) = Φ(λ̄)∗ and Ψ(λ) = Ψ(λ̄)∗, λ ∈ C \ R. (3.6)

Let {Φ(λ),Ψ(λ)} be a Nevanlinna pair in the Hilbert space H and define the
family M(λ) in H by

M(λ) =
{
{f, f ′} : Φ(λ)f + Ψ(λ)f ′ = 0

}

=
{
{Ψ(λ̄)∗g,−Φ(λ̄)∗g} : g ∈ H

}
.

(3.7)

Then M(λ) is a Nevanlinna family. If {Φ′(λ),Ψ′(λ)} is a second Nevanlinna pair in
H such that (3.7) holds with Φ(λ) and Ψ(λ) replaced by Φ′(λ) and Ψ′(λ), respec-
tively, then the Nevanlinna pairs {Φ(λ),Ψ(λ)} and {Φ′(λ),Ψ′(λ)} are equivalent.
Equivalent Nevanlinna pairs determine via (3.7) the same Nevanlinna family.

Let µ ∈ C+ and let M(λ) be a Nevanlinna family in H. Then the pair
{A(λ), B(λ)} defined by

A(λ) :=

{
(M(λ) + µ)−1, λ ∈ C+,

(M(λ) + µ̄)−1, λ ∈ C−,
(3.8)

B(λ) :=

{
I − µ(M(λ) + µ)−1, λ ∈ C+,

I − µ̄(M(λ) + µ̄)−1, λ ∈ C−,
(3.9)

1Note that Definition 3.2 differs slightly from the definition of Nevanlinna pairs used for instance

in [21, 26]: {Φ(λ),Ψ(λ)} is a Nevanlinna pair as in Definition 3.2 if and only if {eΦ(λ), eΨ(λ)},

where eΦ(λ) := Ψ(λ)∗ and eΨ(λ) := −Φ(λ)∗, is a Nevanlinna pair in the sense of [21, Definition
2.2].
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is a Nevanlinna pair in H, which is symmetric. It follows that

M(λ) =
{
{A(λ)g,B(λ)g} : g ∈ H

}
, (3.10)

cf., (2.1). Thus, every Nevanlinna family M(λ) can be represented in the forms
(3.7), (3.10) where the Nevanlinna pair can be taken to be symmetric.

If the Nevanlinna family M(λ) is represented in the form (3.10) by means of
a symmetric Nevanlinna pair {A(λ), B(λ)}, then the transformation in (3.4) takes
the form

Θ(z) =

{
(B(λ) + µ̄A(λ))(B(λ) + µA(λ))−1, λ ∈ C+,

(B(λ) + µA(λ))(B(λ) + µ̄A(λ))−1, λ ∈ C−,
(3.11)

and (3.1) holds. Conversely, if Θ(z) is a Schur function extended to D∗ via (3.1),
then the formula (3.3) gives rise to a Nevanlinna pair {A(λ), B(λ)} in H of the
form

A(λ) := I − Θ(z), λ ∈ C \ R, B(λ) :=

{
µΘ(z) − µ̄, λ ∈ C+,

µ̄Θ(z) − µ, λ ∈ C−,
(3.12)

and the pair {A(λ), B(λ)} satisfies the symmetry property (3.6).
In the special case that the Nevanlinna family M(λ) is an B(H)-valued

Nevanlinna function it is clear that {I,M(λ)} is a symmetric Nevanlinna pair.

3.2. Schur and Nevanlinna kernels and their associated reproducing kernel Hilbert
spaces

Let K(w, z) be a kernel defined on D×D, D ⊂ C, with values in a Hilbert space K.
Recall the following notions, cf., [3, p. 6]. The kernel K(w, z) is said to be hermitian
if

K(w, z)∗ = K(z, w), w, z ∈ D.

If D is an open subset, the hermitian kernel K(w, z) is said to be holomorphic if it
is holomorphic in z for each fixed w and holomorphic in w̄ for each fixed z. The
kernel K(w, z) is said to be nonnegative, if for any finite set of points w1, . . . , wn

in D and vectors f1, . . . fn ∈ K, the hermitian matrix
(
(K(wj , wi)fj , fi)

)n
i,j=1

is nonnegative. Schur functions and Nevanlinna pairs generate in a natural way
kernels which are hermitian, holomorphic, and nonnegative.

Let Θ(z) be an B(H)-valued Schur function defined on the unit disc D. The
corresponding 2 × 2 operator matrix kernel DΘ(w, z) is defined by

DΘ(w, z) =

(
I−Θ(z)Θ(w)∗

1−zw̄
Θ(z)−Θ(w̄)

z−w̄
Θ(z̄)∗−Θ(w)∗

z−w̄
I−Θ(z̄)∗Θ(w̄)

1−zw̄

)
, z, w ∈ D. (3.13)

The kernel DΘ(w, z) is hermitian, holomorphic, and moreover nonnegative, see
[39]. Let D(Θ) be the reproducing kernel Hilbert space associated with the Schur
kernel in (3.13). It consists of (H⊕H)-valued holomorphic vector functions on D
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obtained as the closed linear span of functions z 7→ DΘ(w, z)F , w ∈ D, F ∈ H⊕H,
which is provided with the scalar product determined by
〈
DΘ(w, ·)F,DΘ(v, ·)G

〉
:=
(
DΘ(w, v)F,G

)
, F,G ∈ H ⊕H, w, v ∈ D. (3.14)

The H⊕H-valued functions Φ ∈ D(Θ) satisfy the reproducing kernel property

〈Φ(·),DΘ(w, ·)F 〉 = (Φ(w), F ), F ∈ H ⊕H, w ∈ D. (3.15)

Now let Θ(z) be an B(H)-valued Schur function extended to D ∪ D∗ as in
(3.1). The corresponding Schur kernel SΘ(w, z) on (D ∪ D∗) × (D ∪ D∗) is defined
by

SΘ(w, z) :=





1−Θ(z)Θ(w)∗

1−zw̄ , w ∈ D, z ∈ D,
Θ(z)−Θ(w)∗

1/z−w̄ , w ∈ D, z ∈ D∗,
Θ(z)−Θ(w)∗

z−1/w̄ , w ∈ D∗, z ∈ D,
1−Θ(z)Θ(w)∗

1−1/(zw̄) , w ∈ D∗, z ∈ D∗.

(3.16)

The kernel SΘ(·, ·) is hermitian, holomorphic, and nonnegative, see [39]. Let S(Θ)
be the reproducing kernel Hilbert space associated with the Schur kernel in (3.16).
It consists of H-valued holomorphic vector functions on D ∪ D∗ obtained as the
closed linear span of functions z 7→ SΘ(w, z)f , w ∈ D ∪ D∗, f ∈ H, which is
provided with the scalar product determined by

〈
SΘ(w, ·)f, SΘ(v, ·)g

〉
:=
(
SΘ(w, v)f, g

)
, f, g ∈ H, w, v ∈ D ∪ D

∗. (3.17)

The functions ϕ ∈ S(Θ) satisfy the reproducing kernel property

〈ϕ(·), SΘ(w, ·)f〉 = (ϕ(w), f), h ∈ H, w ∈ D ∪ D
∗. (3.18)

The elements of D(Θ) and S(Θ) can be identified: the function F (z) ∈ D(Θ)
corresponds to the function f(z) ∈ S(Θ), as follows

F (z) =

(
h(z)
k(z)

)
, z ∈ D, and f(z) =

{
h(z), z ∈ D,

k(1/z̄), z ∈ D∗,
(3.19)

cf., [3, pp. 112–113].

Let {A(λ), B(λ)} be a symmetric Nevanlinna pair in H. The corresponding
Nevanlinna kernel NA,B(ξ, λ) on (C+ ∪ C−) × (C+ ∪ C−) is defined by

NA,B(ξ, λ) :=
B(λ)A(ξ)∗ −A(λ)B(ξ)∗

λ− ξ̄
, λ, ξ ∈ C+ ∪ C−, ξ 6= λ̄. (3.20)

Let the Schur function Θ(z) be connected with the Nevanlinna pair {A(λ), B(λ)}
via (3.12). Then the corresponding Schur kernel SΘ(w, z) and the Nevanlinna ker-
nel NA,B(ξ, λ) are connected via

SΘ(w, z) = r(λ)NA,B(ξ, λ)r(ξ)∗, λ, ξ ∈ C+ ∪ C−, ξ 6= λ̄ (3.21)
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where z = (λ− µ)/(λ− µ̄) and w = (ξ − µ)/(ξ − µ̄) and

r(λ) =

{
(λ− µ̄)/(µ− µ̄), λ ∈ C+,

(λ− µ)/(µ̄− µ), λ ∈ C−.
(3.22)

Hence, the kernel NA,B(ξ, λ) is hermitian, holomorphic, and nonnegative. The
corresponding reproducing kernel Hilbert space will be denoted by H(A,B). If the
pair {I,M(λ)} is an B(H)-valued Nevanlinna function the notation H(M) will
be used instead of H(I,M). The space H(A,B) consists of H-valued holomorphic
vector functions on C+ ∪ C− obtained as the closed linear span of functions λ 7→
NA,B(ξ, λ)f , ξ ∈ C+ ∪ C−, f ∈ H, which is provided with the scalar product
determined by

〈
NA,B(ξ, ·)f,NA,B(λ, ·)g

〉
:=
(
NA,B(ξ, λ)f, g

)
, f, g ∈ H, ξ, λ ∈ C+ ∪ C−.

(3.23)

The functions ϕ ∈ H(A,B) satisfy the reproducing kernel property

〈ϕ(·),NA,B(ξ, ·)f〉 = (ϕ(ξ), f), f ∈ H, ξ ∈ C+ ∪ C−. (3.24)

Assume that {A′(λ), B′(λ)} is a symmetric Nevanlinna pair in H which is equiv-
alent to {A(λ), B(λ)} in the sense of (3.5). Then

NA′,B′(ξ, λ) = χ(λ)NA,B(ξ, λ)χ(ξ)∗

and if 〈·, ·〉A′,B′ and 〈·, ·〉A,B denote the scalar products in H(A′, B′) and H(A,B),
respectively, then

〈χϕ, χψ〉A′,B′ = 〈ϕ, ψ〉A,B (3.25)

holds for all functions ϕ, ψ ∈ H(A,B). In particular a function ϕ belongs to H(A,B)
if and only if the function χϕ belongs to H(A′, B′). Hence, multiplication by χ is
a unitary mapping from H(A,B) onto H(A′, B′).

Multiplication by the function r in (3.22) is a unitary mapping from the
Hilbert space H(A,B) onto the Hilbert space S(Θ). That is, for ϕ ∈ H(A,B) the
function

Φ(z) = r(λ)ϕ(λ), λ ∈ C \ R,

belongs to S(Θ), ‖Φ‖S(Θ) = ‖ϕ‖H(A,B), and every element Φ ∈ S(Θ) can be
written in this way with some ϕ ∈ H(A,B).

3.3. Some connections between Nevanlinna families and Schur functions

Let M(λ) be a Nevanlinna family in H and let Θ(z) be a Schur function such
that (3.3), (3.4) hold. Then the Nevanlinna pair {A(λ), B(λ)} given by (3.12)
is symmetric. Various subspaces involving M(λ) will be expressed in terms of
{A(λ), B(λ)} and Θ(z).

Lemma 3.3. Let M(λ) be a Nevanlinna family in the Hilbert space H and let Θ(z)
be a Schur function such that (3.3), (3.4) hold, and let {A(λ), B(λ)} be the Nevan-
linna pair given by (3.12). Then for λ ∈ C \ R:
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(i) mulM(λ) = {B(λ)g : A(λ)g = 0 };
(ii) kerM(λ) = {A(λ)g : B(λ)g = 0 };
(iii) { {B(λ)f −A(λ)f ′ : {f, f ′} ∈M(λ) +̂M(λ)∗ } = ran (I − Θ(z)Θ(z)∗);
(iv) M(λ) ∩M(λ)∗ = { {A(λ̄)g,B(λ̄)g} : g ∈ ker(I − Θ(z)Θ(z)∗) };
(v) ker(M(λ) −M(λ)∗) = {A(λ̄)g : g ∈ ker(I − Θ(z)Θ(z)∗) };
(vi) ker(M(λ)−1 −M(λ)−∗) = {B(λ̄)g : g ∈ ker(I − Θ(z)Θ(z)∗) }.

Proof. (i) & (ii) These statements follow directly from (3.10).
(iii) By (3.3) and (3.12) one has M(λ) = {{A(λ)g,B(λ)g} : g ∈ H}, λ ∈

C \ R. Thus by expressing the elements in the graph of M(λ) as column vectors,
one has

M(λ) +̂M(λ)∗ = ran

(
A(λ) A(λ̄)
B(λ) B(λ̄)

)
, λ ∈ C \ R, (3.26)

since M(λ)∗ = M(λ̄). On the other hand, using the symmetry of the Nevanlinna
pair {A(λ), B(λ)} and (3.12) leads to

(
B(λ) −A(λ)

)(A(λ) A(λ̄)
B(λ) B(λ̄)

)
=
(
0 B(λ)A(λ̄) −A(λ)B(λ̄)

)

= ±(µ− µ̄)
(
0 (I − Θ(z)Θ(z)∗)

)
,

(3.27)

for λ ∈ C±, respectively. The stated identity is immediate from (3.26) and (3.27).
(iv) According to (iii) g ∈ ker(I − Θ(z)Θ(z)∗) if and only if for all {f, f ′} ∈

M(λ) +̂M(λ)∗ one has

0 = (B(λ)f −A(λ)f ′, g) = (f,B(λ̄)g) − (f ′, A(λ̄)g).

This means that {A(λ̄)g,B(λ̄)g} ∈ (M(λ) +̂M(λ)∗)∗ = M(λ) ∩M(λ)∗.
(v) & (vi) The assertions on ker(M(λ)−M(λ)∗) and ker(M(λ)−1−M(λ)−∗),

λ ∈ C \ R, are immediate from part (iii). �

Proposition 3.4. Let M(λ) be a Nevanlinna family in the Hilbert space H and let
Θ(z) be a Schur function such that (3.3), (3.4) hold. Then for λ ∈ C \ R:

(i) mulM(λ) = ker(I − Θ(z));

(ii) kerM(λ) =

{
ker(µ̄/µ− Θ(z)), λ ∈ C+,

ker(µ/µ̄− Θ(z)), λ ∈ C−;

(iii) M(λ) ∩M(λ)∗ = {0} if and only if ker(I − Θ(z)Θ(z)∗) = {0};
(iv) M(λ) +̂M(λ)∗ is closed if and only if ran (I − Θ(z)Θ(z)∗) is closed;
(v) M(λ) +̂M(λ)∗ = H×H if and only if ran (I − Θ(z)Θ(z)∗) = H.

Proof. (i) & (ii) These statements follow from (i) & (ii) of Lemma 3.3 and (3.12).
(iii) Let {A(λ), B(λ)} be the Nevanlinna pair given by (3.12). Then the state-

ment is clear from Lemma 3.3 (iv), since kerA(λ̄)∩kerB(λ̄) = {0} by the property
(iii) in Definition 3.2.

(iv) For a fixed λ ∈ C \ R consider in H×H the closed subspace M = M(λ̄)
and let

P =
(
B(λ) −A(λ)

)
: H×H → H;
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see Lemma 3.3 (iii). The property (iii) in Definition 3.2 implies that P is sur-
jective. Moreover, the symmetry of {A(λ), B(λ)} and (3.7) show that N =
kerP = M(λ), while it follows from (3.27) that PM = ran (I − Θ(z)Θ(z)∗).
Therefore, by Lemma 2.2 ran (I − Θ(z)Θ(z)∗) is closed in H if and only if
M +̂ N = M(λ)∗ +̂M(λ) is closed in H×H.

(v) This statement is obtained by combining the assertions in (iii) and (iv).
�

4. Unitary colligations and Schur functions

4.1. Unitary colligations and transfer functions

A unitary colligation consists of a pair of Hilbert spaces H and H and a unitary
operator U ∈ B(H ⊕H),

U =

(
T F
G H

)
:

(
H

H

)
→

(
H

H

)
, (4.1)

where T ∈ B(H), F ∈ B(H,H), G ∈ B(H,H) and H ∈ B(H) are contractions; cf.,
[3, 16]. The unitarity of U is equivalent to the conditions

T ∗T +G∗G = I, F ∗T +H∗G = 0, F ∗F +H∗H = I, (4.2)

and

TT ∗ + FF ∗ = I, GT ∗ +HF ∗ = 0, GG∗ +HH∗ = I. (4.3)

Note that in particular

ker(I − T ∗T ) = kerG, ker(I − TT ∗) = kerF ∗,
ker(I −H∗H) = kerF, ker(I −HH∗) = kerG∗.

(4.4)

Some basic properties of the operators T , F , G, and H will be now collected.

Lemma 4.1. Let U ∈ B(H ⊕ H) be a unitary colligation as in (4.1) and let ζ ∈
T = { ξ ∈ C : |ξ| = 1 }. Then:

(i) kerF ∗ = T (kerG), kerG = T ∗(kerF ∗) and, moreover, (ζ − T )(kerG) =
(ζ̄ − T ∗)(kerF ∗);

(ii) kerG∗ = H(kerF ), kerF = H∗(kerG∗) and, moreover, (ζ − H)(kerF ) =
(ζ̄ −H∗)(kerG∗);

(iii) ker(ζ −H) = ker(ζ̄ −H∗) ⊂ kerF ∩ kerG∗ and ran (ζ −H) = ran (ζ̄ −H∗);
(iv) kerF ∗ = {0} if and only if kerG = {0} and kerG∗ = {0} if and only if

kerF = {0};
(v) the ranges ranG, ranG∗, ranF , and ranF ∗ are closed simultaneously;
(vi) ranG∗ = H if and only if ranF = H, and ranF ∗ = H if and only if ranG =

H.

Proof. (i) The second identity in (4.2) shows that Gϕ = 0 implies F ∗Tϕ = 0, i.e.,
Tϕ ∈ kerF ∗. Conversely, if F ∗k = 0, then the first two identities in (4.3) yield
k = TT ∗k while GT ∗k = 0, so that k ∈ T (kerG). This proves kerF ∗ = T (kerG).
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The proof of the second assertion is similar. As to the third identity: if ϕ ∈ kerG,
then k = Tϕ ∈ kerF ∗ and (ζ − T )ϕ = ζT ∗Tϕ− Tϕ = ζ(T ∗ − ζ̄)k, which implies
that (ζ − T )(kerG) ⊂ (ζ̄ − T ∗)(kerF ∗). The reverse inclusion follows in a similar
manner.

(ii) The proof is completely analogous to that in part (i).

(iii) This is an immediate consequence of Lemma 2.1 and (4.4).

(iv) The statement follows from (4.4) and part (iv) of Lemma 2.1.

(v) In view of (4.2) ranG∗ is closed if and only if ran (I − T ∗T ) is closed, or
equivalently, if and only if ran (I − TT ∗) is closed; see Lemma 2.1 (v). In view of
(4.3) the last assertion is equivalent to ranF is closed. The remaining equivalences
are due to ranG (ranF ) is closed if and only if ranG∗ (ranF ∗, respectively) is
closed.

(vi) This is obtained by combining the assertions in parts (iv) and (v). �

The transfer function Θ(z) of the unitary colligation (4.1) is defined by

Θ(z) := H + zG(I − zT )−1F, z ∈ D. (4.5)

It is clear that Θ(z) is an B(H)-valued holomorphic function on D and a straight-
forward computation using (4.2)-(4.3) shows

I − Θ(z)Θ(w)∗

1 − zw̄
= G(I − zT )−1(I − w̄T ∗)−1G∗, z, w ∈ D. (4.6)

Thus ‖Θ(z)‖ = ‖Θ(z)∗‖ ≤ 1, z ∈ D, and therefore Θ(z) is a Schur function. If
Θ(z) is extended to D∗ by (3.1), then

Θ(z) = H∗ + 1
zF

∗
(
I − 1

zT
∗
)−1

G∗, z ∈ D
∗, (4.7)

and

I − Θ(z)Θ(w)∗

1 − 1/(zw̄)
= F ∗

(
I − 1

zT
∗
)−1(

I − 1
w̄T
)−1

F, z, w ∈ D
∗. (4.8)

In fact, it follows from (4.2) and (4.3) that the nonnegative kernel (3.16) is given
by

SΘ(w, z) =





G(I − zT )−1(I − w̄T ∗)−1G∗, w ∈ D, z ∈ D,

F ∗(I − z−1T ∗)−1(I − w̄T ∗)−1G∗, w ∈ D, z ∈ D
∗,

G(I − zT )−1(I − w̄−1T )−1F, w ∈ D∗, z ∈ D,

F ∗(I − z−1T ∗)−1(I − w̄−1T )−1F, w ∈ D∗, z ∈ D∗.

The unitary colligation U in (4.1) is said to be closely connected if

H = span
{
(I − wT )−1Ff, (I − λT ∗)−1G∗g : w, λ ∈ D, f, g ∈ H

}
. (4.9)
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The symmetry property (3.1) gives the following analogues for (4.6) and (4.8):

I − Θ(z)∗Θ(w)

1 − z̄w
= F ∗(I − z̄T ∗)−1(I − wT )−1F, z, w ∈ D,

I − Θ(z)∗Θ(w)

1 − 1/(z̄w)
= G

(
I − 1

z̄T
)−1(

I − 1
wT

∗
)−1

G∗, z, w ∈ D
∗.

(4.10)

Observe also that the transfer function Θ(z) is connected with the coresolvent of
U and U∗ via

PH(I − zU)−1 ↾H = (I − zΘ(z))−1, z ∈ D,

PH

(
I − 1

zU
∗
)−1

↾H =
(
I − 1

z Θ(z)
)−1

, z ∈ D
∗.

(4.11)

The unitary colligation U in (4.1) induces for each ζ ∈ T the operators V (ζ)
and V∗(ζ) in the Hilbert space H defined by

V (ζ) =
{
{h, Th+ Ff} : h ∈ H, f ∈ H, Gh+Hf = ζf

}
, (4.12)

and

V∗(ζ) =
{
{h, T ∗h+G∗f} : h ∈ H, f ∈ H, F ∗h+H∗f = ζ̄f

}
, (4.13)

respectively. Observe that V (ζ) is a restriction of U and V∗(ζ) is a restriction of
U∗. Lemma 4.1 (iii) shows that mulV (ζ) = mulV∗(ζ) = {0}. The operators V (ζ)
and V∗(ζ) will play an important role in some considerations that follow.

Lemma 4.2. Let ζ ∈ T. The operators V (ζ) and V∗(ζ) are isometric in H. If
ran (ζ −H) is closed or, equivalently, ran (ζ̄ −H∗) is closed, then V (ζ) and V∗(ζ)
are unitary, and V∗(ζ) = V (ζ)∗. In particular, if ran (ζ−H) = H or, equivalently,
ran (ζ̄ −H∗) = H, then

V (ζ) = T + F (ζ −H)−1G, V∗(ζ) = T ∗ +G∗(ζ̄ −H∗)−1F ∗. (4.14)

Proof. It is a consequence of the operator in (4.1) being unitary, that the restricted
operators V (ζ) and V∗(ζ) in (4.12) and (4.13) are isometric. If, in particular,
ran (ζ − H) = H or, equivalently, ran (ζ̄ − H∗) = H, it follows from Lemma 4.1
(iii) and the definition that (4.14) holds. Hence V∗(ζ) = V (ζ)∗, which also shows
that each of these operators is unitary in this case.

Now consider the general case, where ran (ζ − H) or, equivalently by
Lemma 4.1 (iii), ran (ζ̄ −H∗) is only assumed to be closed. It is clear that

L := ker(ζ −H) = ker(ζ̄ −H∗),

cf., Lemma 4.1 (iii), is an invariant subspace for H and H∗. Furthermore,
Lemma 4.1 (iii) implies L ⊂ kerF and ranG ⊂ ran (ζ − H) = H ⊖ L = L⊥.
Therefore, if PL, PL⊥ denote the orthogonal projections in H onto L and L⊥,
respectively, then the unitary colligation U ∈ B(H⊕H) in (4.1) can be written as

U =




T F ↾L⊥ 0
PL⊥G PL⊥H ↾L⊥ 0

0 0 PLH ↾L


 :




H

L⊥

L


→




H

L⊥

L


 .
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Clearly PLH ↾L is unitary in L and

U ′ =

(
T F ↾L⊥

PL⊥G PL⊥H ↾L⊥

)
:

(
H

L⊥

)
→

(
H

L⊥

)

is a unitary colligation in H ⊕ L⊥. Let V ′(ζ) and V ′
∗(ζ) be the operators induced

by U ′; compare (4.12) and (4.13). By the first part of the proof V ′(ζ) and V ′
∗(ζ)

are unitary in H and V ′
∗(ζ) = V ′(ζ)∗ holds. Lemma 4.1 (iii) implies V ′(ζ) = V (ζ)

and V ′
∗(ζ) = V∗(ζ) and hence also the operators V (ζ) and V∗(ζ) are unitary in H

and satisfy V∗(ζ) = V (ζ)∗. �

Observe, that V (z) = T + zF (I − zH)−1G, z ∈ D, can be interpreted as the
transfer function associated to the unitary colligation (4.1), after interchanging the
roles of the underlying Hilbert spaces H and H; cf., (4.5). Likewise the function
V∗(z) = T ∗ +G∗(z−H∗)−1F ∗, z ∈ D

∗, can be seen as an extension of V (z) to the
exterior D∗; cf., (4.7). If ζ ∈ T and ran (ζ −H) (or ran (ζ̄ − H∗)) is closed, then
V (ζ) and V∗(ζ) still admit representations analogous to those in (4.14):

V (ζ) = T + F (ζ −H)(−1)G, V∗(ζ) = T ∗ +G∗(ζ̄ −H∗)(−1)F ∗,

where the inverse stands for the (Moore-Penrose type) generalized inverse:

B(−1) =
{
{g, f} : {f, g} ∈ B, f ⊥ kerB

}
.

Proposition 4.3. Let Θ(z) be the transfer function of the unitary colligation in
(4.1) and let ζ ∈ T. Then:

(i) ker(ζ − Θ(z)) = ker(ζ̄ − Θ(z)∗) =

{
ker(ζ −H) = ker(ζ̄ −H∗), z ∈ D,

ker(ζ̄ −H) = ker(ζ −H∗), z ∈ D
∗;

(ii) ran (ζ − Θ(z)) is closed if and only if

{
ran (ζ −H) is closed, z ∈ D,

ran (ζ̄ −H) is closed, z ∈ D∗;

(iii) ran (ζ − Θ(z)) = H if and only if

{
ran (ζ −H) = H, z ∈ D,

ran (ζ̄ −H) = H, z ∈ D∗;

(iv) ker(I − Θ(z)Θ(z)∗) =

{
kerG∗, z ∈ D,

kerF, z ∈ D∗;

(v) ker(I − Θ(z)∗Θ(z)) =

{
kerF, z ∈ D,

kerG∗, z ∈ D
∗;

(vi) ran (I − Θ(z)Θ(z)∗)
1

2 =

{
ranG, z ∈ D,

ranF ∗, z ∈ D∗;

(vii) ran (I − Θ(z)∗Θ(z))
1

2 =

{
ranF ∗, z ∈ D,

ranG, z ∈ D∗;

(viii) the ranges ran (I − Θ(z)Θ(z)∗), ran (I − Θ(w)∗Θ(w)), z, w ∈ D ∪ D∗, ranG,
and ranF ∗ are closed simultaneously;
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(ix) the equalities ran (I − Θ(z)Θ(z)∗) = H, ran (I − Θ(w)∗Θ(w)) = H, z, w ∈
D ∪ D∗, ranG = H, and ranF ∗ = H hold simultaneously.

Proof. (i) The equalities ker(ζ −Θ(z)) = ker(ζ̄ −Θ(z)∗), z ∈ D ∪ D∗, and ker(ζ −
H) = ker(ζ̄−H∗), ker(ζ̄−H) = ker(ζ−H∗) follow from Lemma 2.1, cf., Lemma 4.1
(iii).

Let z ∈ D. Then ker(ζ −H) ⊂ kerF implies ker(ζ −H) ⊂ ker(ζ −Θ(z)), cf.,
(4.5). Conversely, let h ∈ ker(ζ − Θ(z)) = ker(ζ̄ − Θ(z)∗) for some z ∈ D. Then
(4.6) implies (I − z̄T ∗)−1G∗h = 0, i.e., G∗h = 0 and by taking the adjoint in (4.5)
h ∈ ker(ζ̄ −H∗) follows.

For z ∈ D∗ the assertion follows in a similar way from (4.7) and (4.8).
(ii) Due to (i) L = ker(ζ−H) (M = ker(ζ̄−H)) is a reducing subspace for H

and Θ(z) for z ∈ D (z ∈ D
∗, respectively). Moreover, by Lemma 4.1 (iii) L,M ⊂

kerF ∩ kerG∗, in particular, ranG ⊂ H⊖L,H⊖M. Hence, by decomposing the
unitary colligation U in (4.1) and its transfer function in (4.5) and (4.7) according
to H = (H⊖L)⊕L (H = (H⊖M)⊕M, respectively) as in the proof of Lemma 4.2,
the assertion in (ii) reduces to the statement in part (iii), which is proved in the
next item.

(iii) For z = 0 the assertion is trivial, since Θ(0) = H. Fix ζ ∈ T and
z ∈ D \ {0}, and consider

A :=

(
1
z − T −F
−G ζ −H

)
= L

(
1
z − T 0

0 ζ − Θ(z)

)
R, (4.15)

where

L =

(
I 0

−G( 1
z − T )−1 I

)
and R =

(
I −( 1

z − T )−1F
0 I

)

are bounded and boundedly invertible operators. Hence A is boundedly invertible
if and only if ζ − Θ(z) is boundedly invertible. Now, if ran (ζ − Θ(z)) = H, then
by (i) ker(ζ − Θ(z)) = {0} and hence A is boundedly invertible. In particular,
(−G ζ −H) : H ⊕H → H is surjective and since

0 ≤ GG∗ + (ζ −H)(ζ −H)∗ = 2(I − Re ζ̄H)

also I−Re ζ̄H is boundedly invertible; cf., (2.8). Consequently I−ζ̄H is boundedly
invertible, since its real part I−Re ζ̄H is a boundedly invertible positive operator.
Thus, ran (ζ −H) = H.

Conversely, if ran (ζ − H) = H, then by Lemma 4.2 the operator V (ζ) in
(4.12) is unitary and satisfies (4.14). Thus 1

z − V (ζ) is boundedly invertible and
therefore also A in (4.15) is boundedly invertible, so that ran (ζ − Θ(z)) = H.

For z ∈ D∗ it follows from (i) and (3.1) that ran (ζ −Θ(z)) = H holds if and
only if

H = ran (ζ̄ − Θ(z)∗) = ran
(
ζ̄ − Θ( 1

z̄ )
)

holds. Hence ran (ζ − Θ(z)) = H, z ∈ D∗, if and only if ran (ζ̄ −H) = H.
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(iv) & (vi) It follows from (4.6) that

I − Θ(z)Θ(z)∗ = (1 − zz̄)G(I − zT )−1(I − z̄T ∗)−1G∗, z ∈ D. (4.16)

Since T is contractive (4.16) shows that

ran (I − Θ(z)Θ(z)∗)
1

2 = ranG(I − zT )−1 = ranG, z ∈ D.

Similarly (4.8) implies that

I − Θ(z)Θ(z)∗ = (1 − 1/(zz̄))F ∗
(
I − 1

zT
∗
)−1(

I − 1
z̄T
)−1

F, z ∈ D
∗. (4.17)

Hence, ran (I − Θ(z)Θ(z)∗)
1

2 = ranF ∗ for z ∈ D
∗. To get the formula in (iv) for

ker(I − Θ(z)Θ(z)∗), z ∈ D ∪ D∗, take orthogonal complements in (vi).
(v) & (vii) Apply (3.1) and parts (iv) and (vi), respectively; see also (4.10).

(viii) Clearly, ran (I−Θ(z)Θ(z)∗) is closed if and only if ran (I−Θ(z)Θ(z)∗)
1

2

is closed; see (2.7). Therefore, the assertion is obtained from Lemma 4.1 (v) and
the formulas in parts (vi) and (vii).

(ix) For this apply Lemma 4.1 (vi) and the formulas in parts (vi) and (vii). �

4.2. A functional model for Schur functions

Each B(H)-valued Schur function Θ(z) can be realized as the transfer function of
a unitary colligation U of the form (4.1). The de Branges-Rovnyak model provides
a unitary colligation via the reproducing kernel space D(Θ). However, for the
present purposes it is more convenient to use the reproducing kernel space S(Θ)
for the extended Schur function Θ(z). The following theorem can be obtained via
an identification with the de Branges-Rovnyak model as in (3.19); whereas the de
Branges-Rovnyak model is in terms of functions on D the present model concerns
functions defined on D ∪ D∗. For the convenience of the reader a direct proof will
be given.

Theorem 4.4. Let Θ(z) be an B(H)-valued Schur function and let S(Θ) be the
corresponding reproducing kernel Hilbert space. Then

U =

(
T F
G H

)
:

(
S(Θ)
H

)
→

(
S(Θ)
H

)
, (4.18)

is a closely connected unitary colligation, such that the operators T , F , G, and H
have the representation

(Th)(z) :=

{
1
z (h(z) − h(0)), z ∈ D,
1
zh(z) − Θ(z)h(0), z ∈ D∗,

(Ff)(z) :=

{
1
z (Θ(z) − Θ(0))f, z ∈ D,

(I − Θ(z)Θ(0))f, z ∈ D∗,

Gh := h(0),

Hf := Θ(0)f,

(4.19)

for elements h ∈ S(Θ) and f ∈ H. The transfer function of U coincides with the
function Θ(z) on D.
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The formulas in (4.19) for z = 0 can be interpreted via limit values due to
holomorphy of h(z) and Θ(z) at z = 0. Observe that for w ∈ D and h ∈ S(Θ) the
definition of the operator T in Theorem 4.4 implies

(
(I − wT )−1h

)
(z) =

{
zh(z)−wh(w)

z−w , z ∈ D,
h(z)−Θ(z)wh(w)

1−w/z , z ∈ D∗,
(4.20)

and

(
(I − wT )−1Th

)
(z) =

{
h(z)−h(w)

z−w , z ∈ D,
h(z)/z−Θ(z)h(w)

1−w/z , z ∈ D∗.
(4.21)

In particular, with f ∈ H (4.20) gives rise to the useful formula

(
(I − wT )−1Ff

)
(z) =

{
Θ(z)−Θ(w)

z−w f, z ∈ D,
I−Θ(z)Θ(w)

1−w/z f, z ∈ D∗.
(4.22)

Proof. The proof of Theorem 4.4 consists of four steps. First it will be verified
that U in (4.18) is well defined and the adjoints of the operators T , F , G, and
H in (4.19) will be calculated. In the second step it will be proved that U is a
unitary operator in the Hilbert space S(Θ) ⊕H and in the third step the closely
connectedness of U will be shown. In the last step it will be checked that Θ(z) is
the transfer function of U .

Step 1. By the definition of the Hilbert space S(Θ) the functions of the form

z 7→ h(z) := SΘ(w, z)f + SΘ( 1
w , z)f̃ , z ∈ D ∪ D

∗, (4.23)

where w ∈ D \ {0}, f, f̃ ∈ H, span a dense subset in S(Θ); see (3.16). A straight-
forward calculation using (3.16) shows that

(Th)(z) = w̄SΘ(w, z)f + 1
w̄SΘ( 1

w , z)f̃ − SΘ(∞, z)
(
Θ(w)∗f + 1

w̄ f̃
)

(4.24)

holds for all z ∈ D∪D∗ and hence T is well defined on the dense subspace spanned
by linear combinations of functions of the form (4.23). Moreover, for h as in (4.23)
one verifies the relation

〈Th, Th〉 = 〈h, h〉 − (h(0), h(0)) ≤ 〈h, h〉 (4.25)

with the help of (4.24) and the reproducing kernel property. This implies that T
in (4.19) is a well defined contraction on S(Θ). Moreover (Ff)(z) = SΘ(∞, z)f
implies F ∈ B(H,S(Θ)), G ∈ B(S(Θ),H) follows also from (4.25) and H ∈ B(H)
is clear. Therefore U in (4.18) is a well defined operator in B(S(Θ) ⊕H).

Next the adjoint of the operators T , F , G, and H in (4.19) will be calculated.
First of all, by definition Θ(∞) = Θ(0)∗, so thatH∗ = Θ(∞). In order to determine
the adjoint G∗ ∈ B(H,S(Θ)) of G let g ∈ H and let h be as in (4.23). Then

(Gh, g) = (h(0), g) =
(
SΘ(w, 0)f, g

)
+
(
SΘ( 1

w , 0)f̃ , g
)

=
(
f, (I − Θ(w)Θ(0)∗)g

)
+
(
f̃ , 1

w

(
Θ( 1

w ) − Θ(0)∗
)
g
)
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and on the other hand

(Gh, g) = 〈h,G∗g〉 = (f, (G∗g)(w)) +
(
f̃ , (G∗g)( 1

w )
)

holds for arbitrary f, f̃ ∈ H. Therefore G∗ is given by

(G∗g)(z) =

{
(I − Θ(z)Θ(∞))g, z ∈ D,

z(Θ(z) − Θ(∞))g, z ∈ D∗,
g ∈ H. (4.26)

Similarly, for a function h as in (4.23) and g ∈ H one verifies

〈Fg, h〉 =
(

1
w (Θ(w) − Θ(0))g, f

)
+
((
I − Θ( 1

w )Θ(0)
)
g, f̃
)

=
(
g, SΘ(w,∞)f + SΘ( 1

w ,∞)f̃
)

= (g, h(∞))

and therefore

F ∗h = h(∞), h ∈ S(Θ). (4.27)

It remains to calculate T ∗ ∈ B(S(Θ)). For this, let again h be as in (4.23) and let

k(z) = SΘ(λ, z)g + SΘ( 1
λ , z)g̃, z ∈ D ∪ D

∗, (4.28)

where λ ∈ D \ {0} and g, g̃ ∈ H. By inserting h from (4.23) into

〈Th, k〉 =
(

1
λ (h(λ) − h(0)), g

)
+
(
λh( 1

λ ) − Θ( 1
λ )h(0), g̃

)

and making use of the identities

wSΘ(λ,w) − Θ(w)SΘ(λ,∞) =
(

1
λ (SΘ(w, λ) − SΘ(w, 0))

)∗
,

1
w

(
SΘ(λ, 1

w ) − SΘ(λ,∞)
)

=
(

1
λ

(
SΘ( 1

w , λ) − SΘ( 1
w , 0)

))∗
,

wSΘ( 1
λ , w) − Θ(w)SΘ( 1

λ ,∞) =
(
λSΘ(w, 1

λ ) − Θ( 1
λ)SΘ(w, 0)

)∗
,

1
w

(
SΘ( 1

λ ,
1
w ) − SΘ( 1

λ ,∞)
)

=
(
λSΘ( 1

w ,
1
λ) − Θ( 1

λ )SΘ( 1
w , 0)

)∗
,

it follows that

〈Th, k〉 =
(
f, wk(w) − Θ(w)k(∞)

)
+
(
f̃ , 1

w

(
k( 1

w ) − k(∞)
))
.

On the other hand

〈Th, k〉 = 〈h, T ∗k〉 = (f, (T ∗k)(w)) +
(
f̃ , (T ∗k)( 1

w )
)

and therefore T ∗ is given by

(T ∗k)(z) =

{
zk(z) − Θ(z)k(∞), z ∈ D,

z(k(z) − k(∞)), z ∈ D
∗,

k ∈ S(Θ). (4.29)
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Step 2. In order to check that U is unitary it is sufficient to verify the identities
(4.2)-(4.3). For h ∈ S(Θ) it follows from (4.19), (4.29), (4.27) and (4.26) that

(TT ∗h)(z) =

{
1
z (zh(z) − Θ(z)h(∞) + Θ(0)h(∞)), z ∈ D,

h(z) − h(∞) + Θ(z)Θ(0)h(∞), z ∈ D
∗,

(FF ∗h)(z) =

{
1
z (Θ(z) − Θ(0))h(∞), z ∈ D,

(I − Θ(z)Θ(0))h(∞), z ∈ D∗,

and

(T ∗Th)(z) =

{
h(z) − h(0) + Θ(z)Θ(∞)h(0), z ∈ D,

z( 1
zh(z) − Θ(z)h(0) + Θ(∞)h(0)), z ∈ D∗,

(G∗Gh)(z) =

{
(I − Θ(z)Θ(∞))h(0), z ∈ D,

z(Θ(z) − Θ(∞))h(0), z ∈ D∗,

hold, and this immediately implies TT ∗ + FF ∗ = T ∗T +G∗G = I. Furthermore,

HF ∗h = −GT ∗h = Θ(0)h(∞), H∗Gh = −F ∗Th = Θ(∞)h(0),

and

GG∗f +HH∗f = (I − Θ(0)Θ(∞))f + Θ(0)Θ(∞)f = f,

F ∗Ff +H∗Hf = (I − Θ(∞)Θ(0))f + Θ(∞)Θ(0)f = f,

for all h ∈ S(Θ) and f ∈ H. Therefore the identities (4.2)-(4.3) hold and U is a
unitary operator in S(Θ) ⊕H.

Step 3. In this step it will be shown that U is closely connected. For λ ∈ D,
k ∈ S(Θ), and g ∈ H it is not difficult to check the formulas

(
(I − λT ∗)−1k

)
(z) =

{
k(z)−λΘ(z)k(1/λ)

1−zλ , z ∈ D,
k(z)/z−λk(1/λ)

λ−1/w , z ∈ D∗,

and

(
(I − λT ∗)−1G∗g

)
(z) = SΘ(λ̄, z)g =

{
I−Θ(z)Θ(1/λ)

1−zλ g, z ∈ D,
Θ(z)−Θ(1/λ)

1/z−λ g, z ∈ D∗.
(4.30)

Then (4.22) and (4.30) imply

span
{
(I − wT )−1Ff, (I − λT ∗)−1G∗g : w, λ ∈ D, f, g ∈ H

}

= span
{
z 7→ SΘ( 1

w̄ , z)f, z 7→ SΘ(λ̄, z)g : w, λ ∈ D, f, g ∈ H
}

= S(Θ).

Step 4. It remains to check that the transfer function of U is given by Θ(z). Let
w ∈ D. Then for z ∈ D and f ∈ H according to (4.22)

(
(I − wT )−1Ff

)
(z) =

Θ(z) − Θ(w)

z − w
f
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holds and therefore

Hf + wG(I − wT )−1Ff = Θ(0)f + w
Θ(0) − Θ(w)

−w
f = Θ(w)f, w ∈ D.

This completes the proof of Theorem 4.4. �

4.3. Some consequences for Nevanlinna families

Let M(λ) be a Nevanlinna family in H and let Θ(z) be a Schur function such that
(3.3), (3.4) hold. From the fact that Θ(z) can be realized as the transfer function of
a unitary colligation as in Theorem 4.4 and from Proposition 4.3 it follows that the
expressions in Lemma 3.3 have certain natural invariance properties with respect
to λ. In particular, the following statements hold.

Proposition 4.5. Let M(λ) be a Nevanlinna family in H and let Θ(z) be a Schur
function such that (3.3), (3.4) hold. Then for λ ∈ C \ R:

(i) mulM(λ) = ker(I −H);
(ii) kerM(λ) = ker(µ̄/µ−H);
(iii) domM(λ) is closed if and only if ran (I −H) is closed;
(iv) ranM(λ) is closed if and only if ran (µ̄/µ−H)) is closed;
(v) M(λ)∩M(λ)∗ = {0} if and only if kerG∗ = {0} or, equivalently, kerF = {0};
(vi) M(λ) +̂ M(λ)∗ is closed if and only if ranG or, equivalently, ranF ∗ is closed;
(vii) M(λ) +̂ M(λ)∗ = H2 if and only if ranG = H or, equivalently, ranF ∗ = H;
(viii) ker(M(λ) −M(λ)∗) = (I −H∗)(kerG∗) = (I −H)(kerF );
(ix) ker(M(λ)−1 −M(λ)−∗) = (µ/µ̄−H∗)(kerG∗) = (µ̄/µ−H)(kerF ).

Proof. The statements (i)–(vii) are immediate from Propositions 3.4, 4.3 by using
(3.3) and Theorem 4.4.

(viii) It follows from Lemma 3.3 (v), Proposition 4.3 (iv), (3.12), and (4.5)
that for z ∈ D,

ker
(
M(λ) −M(λ)∗

)
= (I − Θ(z)∗) kerG∗ = (I −H∗) kerG∗.

Similarly for z ∈ D∗ one obtains ker(M(λ) −M(λ)∗) = (I − H) kerF . Finally,
according to Lemma 4.1 (ii) these two subspaces coincide.

(xi) The proof is completely analogous with the previous item. �

This proposition shows that the various expressions involving M(λ) are in-
dependent of λ ∈ C \ R. Such invariance properties were obtained in a different
manner in [22]. Since mulM(λ) is independent of λ ∈ C \ R, the Nevanlinna family
M(λ) can be decomposed into the direct orthogonal sum of a Nevanlinna family
M0(λ) of densely defined operators in H0 := H ⊖ mulM(λ) and the relation
M∞ = {0} × mulM(λ),

M(λ) = M0(λ) ⊕M∞, λ ∈ C \ R. (4.31)

In particular, M(λ) is an operator function if and only if domM(λ) is dense for
some, and hence for all, λ ∈ C \ R. In this case M(λ) will be called a Nevanlinna
function. The following definition can be found in [22].
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Definition 4.6. A Nevanlinna family M(λ), λ ∈ C \ R, in H is said to be strict if
M(λ)∩M(λ)∗ = {0} for some, and hence for all, λ ∈ C \ R. A Nevanlinna family
M(λ), λ ∈ C \ R, in H is said to be uniformly strict if M(λ) +̂ M(λ)∗ = H2 for
some, and hence for all, λ ∈ C \ R.

Since M∞ ⊂ M(λ) ∩M(λ)∗ it follows that a strict Nevanlinna family M(λ)
is a Nevanlinna function. Furthermore, if M(λ) is uniformly strict, then M(λ) is
automatically a B(H)-valued Nevanlinna function. This was shown in [22] and is
also implied by later considerations. Note that a B(H)-valued Nevanlinna function
M(λ) is strict (uniformly strict) if and only if 0 6∈ σp(ImM(λ)) (0 ∈ ρ(ImM(λ)),
respectively) for some, and hence for all, λ ∈ C \ R.

5. Boundary relations and unitary colligations

5.1. A characterization of boundary relations via selfadjoint relations

Let S be a closed symmetric relation in H and let Γ ⊂ H2 × H2, domΓ = T , be
a boundary relation for S∗, cf., Definition 1.1. Then Γ is necessarily closed and
S = kerΓ holds. The boundary relation Γ is said to be minimal if

H = span
{

Nλ(T ) : λ ∈ C+ ∪ C−

}
(5.1)

holds, where Nλ(T ) = ker(T −λ). Since Nλ(T ) is dense in Nλ(S∗), it follows that
Γ is minimal if and only if S is simple. In this case S is automatically an operator
without eigenvalues. Recall the following important result from [22].

Proposition 5.1. A relation Γ from H2 to H2 with ker Γ = S is a boundary relation
for S∗ if and only if

Ã :=

{{(
f
h

)(
f ′

−h′

)}
:

{(
f
f ′

)(
h
h′

)}
∈ Γ

}
(5.2)

is a selfadjoint relation in H⊕H. Moreover, Γ is minimal in the sense of (5.1) if

and only if Ã is minimal with respect to H:

H ⊕H = span
{
H, (Ã− λ)−1H : λ ∈ C \ R

}
. (5.3)

Therefore every selfadjoint relation Ã in H ⊕ H with S = Ã ∩ H2 yields a
boundary relation for S∗ and vice versa. Hence for a given symmetric relation S
there always exists a Hilbert space H and a boundary relation Γ ⊂ H2×H2 for S∗.
Note that Γ is not unique. Moreover, if H2 and H2 are equipped with the Krĕın
space inner products (JH·, ·) and (JH·, ·), where

JH =

(
0 −iIH
iIH 0

)
and JH =

(
0 −iIH
iIH 0

)
,

then the linear relation Γ from H2 to H2 is a boundary relation for S∗ if and only
if Γ is a unitary relation from (H2, (JH·, ·)) to (H2, (JH·, ·)) and ker Γ = S holds,
cf. [22].
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It is easy to see that the Weyl family M(λ) of S corresponding to the bound-

ary relation Γ in Definition 1.2 and the selfadjoint relation Ã in (5.2) are connected
via

PH

(
Ã− λ

)−1
↾ H = −

(
M(λ) + λ

)−1
, λ ∈ C \ R, (5.4)

a correspondence, which can be regarded as the analogue of the relation (4.11).
Associated with a boundary relation Γ are the linear relations Γ0 and Γ1 from

H2 to H defined by

Γ0 :=
{
{f̂ , h} : {f̂ , ĥ} ∈ Γ, f̂ = {f, f ′}, ĥ = {h, h′}

}
⊂ H2 ×H (5.5)

and

Γ1 :=
{
{f̂ , h′} : {f̂ , ĥ} ∈ Γ, f̂ = {f, f ′}, ĥ = {h, h′}

}
⊂ H2 ×H. (5.6)

It follows immediately from Definition 1.1 (i) that the relations A0 := ker Γ0 and
A1 := ker Γ1 are symmetric in H, and, moreover, that S ⊂ Ai, i = 0, 1. Note that
if ρ(Ai) 6= ∅, then

T = Ai +̂ N̂λ(T ), direct sum, λ ∈ ρ(Ai), i = 0, 1. (5.7)

Remark 5.2. At this stage it is convenient to recall the following definition. Let
S be a closed symmetric relation in H with equal, not necessarily finite, defect
numbers. An ordinary boundary triplet {H,Γ0,Γ1} for S∗ consists of a Hilbert
space H and two linear mappings Γ0,Γ1 : S∗ → H such that Γ := (Γ0,Γ1) : S∗ →
H×H is surjective and the abstract Green’s identity

(f ′, g) − (f, g′) = (Γ1f̂ ,Γ0ĝ) − (Γ0f̂ ,Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗. See [28] for the original definition for
densely defined symmetric operators and [25] for the case of nondensely defined
operators. The corresponding Weyl function is defined by

Γ1f̂λ = M(λ)Γ0f̂λ, fλ ∈ N̂λ(S∗), λ ∈ C \ R, (5.8)

cf., [25, 26]. In order to see the connection between boundary triplets and bound-
ary relations, let Γ be a boundary relation for S∗ with Weyl family M(λ). Then,
according to [22], the following statements are equivalent:

(i) ran Γ = H2;
(ii) Γ = (Γ0,Γ1) is an ordinary boundary triplet for S∗;
(iii) M(λ) is uniformly strict.

These equivalences will be further explored in the present section.

5.2. Boundary relations and unitary colligations

Let H and H be Hilbert spaces and let µ ∈ C+ be fixed. The Cayley transform in

(2.2) provides via U = Cµ(Ã) a one-to-one correspondence between all selfadjoint

relations Ã in H ⊕H and all unitary colligations U ∈ B(H ⊕H) as in (4.1):

U =

(
T F
G H

)
=

{{(
h
f

)
,

(
Th+ Ff
Gh+Hf

)}
: h ∈ H, f ∈ H

}
. (5.9)
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Recall that the operators T ∈ B(H), F ∈ B(H,H), G ∈ B(H,H), and H ∈ B(H)

have the properties (4.2)–(4.3). Let the selfadjoint relation Ã and the unitary col-

ligation U in (5.9) be connected via the Cayley transform: U = Cµ(Ã). According

to (2.3) the selfadjoint relation Ã admits the representation

Ã =

{{(
(T − I)h+ Ff
Gh+ (H − I)f

)
,

(
(µT − µ̄)h+ µFf
µGh+ (µH − µ̄)f

)}
: h ∈ H, f ∈ H

}
, (5.10)

or, since U is unitary, equivalently,

Ã =

{{(
(I − T ∗)h−G∗f
−F ∗h+ (I −H∗)f

)
,

(
(µ− µ̄T ∗)h− µ̄G∗f
−µ̄F ∗h+ (µ− µ̄H∗)f

)}
: h ∈ H, f ∈ H

}
.

(5.11)

Lemma 5.3. Let the selfadjoint relation Ã and the unitary colligation U in (5.9) be

connected via the Cayley transform: U = Cµ(Ã). Then Ã is minimal in the sense
of (5.3) if and only if U is closely connected in the sense of (4.9).

Proof. Use (5.10) to determine PH(Ã− λ)−1H for λ ∈ C+. Note that

(µ− λ)Ff + (µ− λ)Th+ (λ− µ̄)h = 0, λ ∈ C+,

is equivalent to h = z(I − zT )−1Ff , z = (λ− µ)/(λ− µ̄). Therefore

PH(Ã− λ)−1H = span
{
Ff + z(T − I)(I − zT )−1Ff : f ∈ H

}

= span
{
(I − zT )−1Ff : f ∈ H

} (5.12)

for all λ ∈ C+. Similarly, use (5.11) to determine PH(Ã−λ)−1H for λ ∈ C−. Here

(λ− µ̄)G∗f + (λ− µ̄)T ∗h+ (µ− λ)h = 0, λ ∈ C−,

is equivalent to h = z−1(I − z−1T ∗)−1G∗f . Thus

PH(Ã− λ)−1H = span
{
−G∗f + z−1(I − T ∗)(I − z−1T ∗)−1G∗f : f ∈ H

}

= span
{
(I − z−1T ∗)−1G∗f : f ∈ H

}

(5.13)

for all λ ∈ C−. Now (5.12) and (5.13) imply

span
{
PH(Ã− λ)−1H : λ ∈ C \ R

}

= span
{

ran (I − zT )−1F, ran (I − wT ∗)−1G∗ : z, w ∈ D
}
.

Therefore the conditions (5.3) and (4.9) are equivalent. �

Let Ã be a selfadjoint relation in H⊕H. Define the relation Γ from H2 to H2

by

Γ :=

{{(
ϕ
ϕ′

)
,

(
ψ
ψ′

)}
:

{(
ϕ
ψ

)
,

(
ϕ′

−ψ′

)}
∈ Ã

}
, (5.14)
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cf., (5.2). Furthermore, define the relations T and S in H by

T = domΓ and S = kerΓ = Ã ∩ H2. (5.15)

The relations Γ, T , and S will now be expressed in terms of the unitary colligation

U = Cµ(Ã) in (5.9). In view of (5.10), (5.11) Γ in (5.14) has the representation

Γ =

{{(
(T − I)h+ Ff

(µT − µ̄)h+ µFf

)
,

(
Gh+ (H − I)f

−µGh− (µH − µ̄)f

)}
: h ∈ H, f ∈ H

}
(5.16)

or, equivalently,

Γ =

{{(
(I − T ∗)h−G∗f

(µ− µ̄T ∗)h− µ̄G∗f

)
,

(
−F ∗h+ (I −H∗)f
µ̄F ∗h− (µ− µ̄H∗)f

)}
: h ∈ H, f ∈ H

}
.

(5.17)

The relation T = domΓ has the representation

T =
{
{(T − I)h+ Ff, (µT − µ̄)h+ µFf} : h ∈ H, f ∈ H

}
, (5.18)

or, equivalently,

T =
{
{(I − T ∗)h−G∗f, (µ− µ̄T ∗)h− µ̄G∗f} : h ∈ H, f ∈ H

}
. (5.19)

Finally, the relation S = Ã ∩ H2 has the representation

S =
{
{(T − I)h, (µT − µ̄)h} : h ∈ kerG

}
, (5.20)

or, equivalently,

S =
{
{(I − T ∗)h, (µ− µ̄T ∗)h} : h ∈ kerF ∗

}
. (5.21)

All these representations will be used in the proof of the following theorem.

Theorem 5.4. Let the selfadjoint relation Ã and the unitary colligation U in (5.9)

be connected via the Cayley transform: U = Cµ(Ã). Let Γ be defined by (5.14) and
let T and S be defined by (5.15). Let µ ∈ C+ and let z(λ) be as in (3.2). Then the
following statements hold:

(i) The relation S = Ã ∩ H2 is closed and symmetric, and the linear relation
T = domΓ is dense in S∗, so that S∗ = T and S = T ∗.

(ii) The defect space Nλ(T ) = ker(T − λ), λ ∈ C \ R, is given by

Nλ(T ) =

{
ran (I − zT )−1F, λ ∈ C+,

ran (I − z−1T ∗)−1G∗, λ ∈ C−.

(iii) The relation Γ in (5.14) is a boundary relation for S∗. It is minimal (or,

equivalently, S is simple) if and only if the unitary colligation in U = Cµ(Ã)

in (5.9) is closely connected, i.e., Ã is minimal in the sense of (5.3).

(iv) If Θ(z) is the transfer function of the unitary colligation U = Cµ(Ã), then
the Weyl family M(λ) corresponding to the boundary relation Γ is given by
(3.3). In particular, M(λ) is a Nevanlinna family.
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Proof. (i) holds by Proposition 5.1. However, for the convenience of the reader a

short direct proof which makes use of the unitarity of U = Cµ(Ã) will be presented.
It follows from the identity T ∗T +G∗G = I that S is symmetric:

((µT − µ̄)h, (T − I)h) ∈ R, h ∈ kerG.

It is straightforward to verify that {k, l} ∈ T ∗ if and only if

T ∗(l − µ̄k) = l − µk and F ∗(l − µ̄k) = 0. (5.22)

Since the colligation (4.1) is unitary, it follows from (4.2) and (5.22) that S ⊂ T ∗.
To see the reverse inclusion, let {k, l} ∈ T ∗. By the second condition in (5.22) it
follows that l − µ̄k = Th with h ∈ kerG; cf., Lemma 4.1 (i). But then (4.2) and
the first condition in (5.22) imply that l − µk = h. Hence,

(µ− µ̄)k = (T − I)h, (µ− µ̄)l = (µT − µ̄)h,

and now (5.20) shows that {k, l} ∈ S. Therefore, S = T ∗ and (i) is proven.
(ii) It follows from (5.18) that an element (T−I)h+Ff belongs to ker(T −λ)

if and only if

(µT − µ̄)h+ µFf = λ(T − I)h+ λFf.

For λ ∈ C+ this is equivalent to

h = z(I − zT )−1Ff (5.23)

and therefore

(T − I)h+ Ff = (1 − z)(I − zT )−1Ff, λ ∈ C+,

i.e., Nλ(T ) = span {(1 − z(λ)T )−1Ff : f ∈ H} for λ ∈ C+. Likewise, it follows
from (5.19) that (I − T ∗)h−G∗f belongs to ker(T − λ), λ ∈ C−, if and only if

h = z−1(I − z−1T ∗)−1G∗f, λ ∈ C−. (5.24)

This implies the remaining assertions in (ii).
(iii) It follows from Proposition 5.1 that Γ in (5.16) is a boundary relation for

S∗. In view of (4.9) and item (ii) Γ is minimal if and only if U is closely connected,

or equivalently, by Lemma 5.3 if and only if Ã is minimal with respect to H.
(iv) According to part (ii) of the proof an element

{
(T − I)h+ Ff, (µT − µ̄)h+ µFf

}
∈ T

belongs to N̂λ(T ), λ ∈ C+, if and only if (5.23) holds. Hence for λ ∈ C+ the
definitions of the Weyl family in (1.2) and the transfer function in (4.5) together
with the form of the boundary relation Γ in (5.16) imply that

M(λ) =
{
{(I − Θ(z))f, (µΘ(z) − µ̄)f} : f ∈ H

}
, λ ∈ C+.

A similar calculation based on (5.24) and (5.17) shows that for λ ∈ C− the Weyl
family M(λ) is given by the second row in (3.3). �
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5.3. Some observations concerning boundary relations

The representations of the boundary relation Γ in (5.16) and (5.17) will be useful.
First the multi-valued part mul Γ of Γ will be described in terms of the unitary
colligation in (5.9).

Lemma 5.5. The multi-valued part mul Γ is given by

mul Γ =

{(
(H − I)f

(µ̄− µH)f

)
: f ∈ kerF

}
=

{(
(I −H∗)f

(µ̄H∗ − µ)f

)
: f ∈ kerG∗

}
.

Proof. The definition of Γ in (5.16) implies
(

Gh+ (H − I)f
−µGh− (µH − µ̄)f

)
∈ mul Γ

if and only if (T − I)h+Ff = 0 and (µT − µ̄)h+ µFf = 0, and this is equivalent
to h = 0 and f ∈ kerF . Similarly (5.17) implies the second equality. �

The relations Γ0 and Γ1 were defined in (5.5) and (5.6). The representations
of the boundary relation Γ in (5.16) and (5.17) lead to representations for Γ0 and
Γ1:

Γ0 =

{{(
(T − I)h+ Ff

(µT − µ̄)h+ µFf

)
, Gh+ (H − I)f

}
: h ∈ H, f ∈ H

}

=

{{(
(I − T ∗)h−G∗f

(µ− µ̄T ∗)h− µ̄G∗f

)
,−F ∗h+ (I −H∗)f

}
: h ∈ H, f ∈ H

}
,

(5.25)

Γ1 =

{{(
(T − I)h+ Ff

(µT − µ̄)h+ µFf

)
,−µGh− (µH − µ̄)f

}
: h ∈ H, f ∈ H

}

=

{{(
(I − T ∗)h−G∗f

(µ− µ̄T ∗)h− µ̄G∗f

)
, µ̄F ∗h− (µ− µ̄H∗)f

}
: h ∈ H, f ∈ H

}
.

(5.26)

The representations of the corresponding kernels A0 = kerΓ0 and A1 = kerΓ1

follow from (5.25) and (5.26), respectively:

A0 =
{
{(T − I)h+ Ff, (µT − µ̄)h+ µFf} : Gh+ (H − I)f = 0

}

=
{
{(T ∗ − I)h+G∗f, (µ̄T ∗ − µ)h+ µ̄G∗f} : F ∗h+ (H∗ − I)f = 0

}
,

(5.27)

A1 =
{
{(T − I)h+ Ff, (µT − µ̄)h+ µFf} : µGh+ (µH − µ̄)f = 0

}

=
{
{(T ∗ − I)h+G∗f, (µ̄T ∗ − µ)h+ µ̄G∗f} : µ̄F ∗h+ (µ̄H∗ − µ)f = 0

}
.

(5.28)

The next result identifies the Cayley transforms of the relations A0 and A1 in
(5.27) and (5.28). For this purpose, recall the definition of the isometric operators
V (ζ) and V∗(ζ), ζ ∈ T, in (4.12) and (4.13).
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Lemma 5.6. Let µ ∈ C+. Then the Cayley transforms of A0 and A1 are given by

Cµ(A0) = V (1), Cµ̄(A0) = V∗(1), (5.29)

and by

Cµ(A1) = V (µ̄/µ), Cµ̄(A1) = V∗(µ̄/µ). (5.30)

5.4. Special boundary relations

Various subclasses of the class of Weyl families have been characterized in terms of
the boundary relation in [22]. Here the connection with the corresponding unitary

colligation is explored. Let the selfadjoint relation Ã and the unitary colligation

U in (5.9) be connected via the Cayley transform U = Cµ(Ã), where µ ∈ C+. Let
Γ be defined by (5.14) and let T and S be defined by (5.15). Let M(λ) and Θ(z)
be connected via (3.3) and (3.4), where z(λ) is as in (3.2).

Proposition 5.7. The following statements are equivalent:

(i) mul Γ = {0} or, equivalently, ran Γ is dense;
(ii) kerF = {0} or, equivalently, kerG∗ = {0};
(iii) M(λ) is strict for some, and hence for all, λ ∈ C \ R.

Proof. (i) ⇔ (ii) This follows immediately from Lemma 5.5.
(ii) ⇔ (iii) This holds by Proposition 4.5 (v). �

Observe, that the equivalence (i) ⇔ (iii) was proved in a different manner in
[22, Proposition 4.5]. Similar comments hold for the next two propositions; see in
particular [22, Propositions 4.15, 4.16 and Corollary 4.17]. For completeness, full
proofs are presented here using the present approach.

Proposition 5.8. The following statements are equivalent:

(i) ran Γ0 is closed and A0 = ker Γ0 is selfadjoint;
(ii) ran (I −H) is closed;
(iii) the operator part M0(λ) in (4.31) is bounded.

In this case ran Γ0 = domM(λ) for all λ ∈ C \ R.

Proof. (i) ⇔ (ii) If A0 is selfadjoint then T = A0 +̂ N̂λ(T ) holds for all λ ∈ ρ(A0);

see (5.7). This implies that ran Γ0 = Γ0(N̂λ(T )) = domM(λ). This subspace is
closed if and only if ran (I −H) is closed by Proposition 4.5 (iii). Thus, (i) implies
(ii).

Conversely, assume that ran (I −H) is closed. Then by Lemma 4.2 the iso-
metric operator V (1) is unitary and Lemma 5.6 shows that its inverse Cayley
transform A0 is selfadjoint. Moreover, the first part of the proof shows that ran Γ0

is closed.
(ii) ⇔ (iii) By Proposition 4.5 (iii) domM(λ) is closed if and only if ran (I−H)

is closed. In view of (4.31) this means that the operator part M0(λ) of M(λ) is a
closed bounded operator on domM(λ). �
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In the next proposition bounded Nevanlinna functions are characterized. The
equivalence between (ii) and (iii) goes back to [17]; the equivalence between (i) and
(iii) is known from [22].

Proposition 5.9. The following statements are equivalent:

(i) ran Γ0 = H and A0 = kerΓ0 is selfadjoint;
(ii) ran (I −H) = H or, equivalently, (I −H)−1 ∈ B(H);
(iii) domM(λ) = H or, equivalently, M(λ) ∈ B(H), for some, and hence for all,

λ ∈ C \ R.

Proof. It follows from (i) and (iii) in Proposition 4.5 that domM(λ) = H if and
only if ran (I −H) = H. Hence, the result is obtained from Proposition 5.8. �

Proposition 5.10. The following statements are equivalent:

(i) domΓ is closed or, equivalently, ran Γ is closed;
(ii) ranG is closed or, equivalently, ranF ∗ is closed;
(iii) M(λ) +̂ M(λ)∗ is closed for some, and hence for all, λ ∈ C \ R;
(iv) Nλ(T ) is closed for some, and hence for all, λ ∈ C \ R.

Proof. (i) ⇔ (ii) It follows directly from the description of Γ in (5.16) that T =
domΓ is closed if and only if ranF is closed; and that ran Γ is closed if and only
if ranG is closed. Now apply Lemma 4.1 (v).

(ii) ⇔ (iii) This holds by Proposition 4.5 (vi).
(ii) ⇔ (iv) By Theorem 5.4 (ii) Nλ(T ) is closed for λ ∈ C+ (λ ∈ C−) if

and only if ranF (ranG∗, respectively) is closed. It remains to apply Lemma 4.1
(v). �

Again the equivalence (i) ⇔ (iii) was established in a different manner in [22,
Lemma 4.4]. By combining Propositions 5.7 and 5.8 one obtains

Corollary 5.11. The following statements are equivalent:

(i) ran Γ is dense, ran Γ0 is closed, and A0 = kerΓ0 is selfadjoint;
(ii) (I −H)−1 ∈ B(H) and kerF = {0} or, equivalently, kerG∗ = {0};
(iii) M(λ) is strict and belongs to B(H).

The next result describes the situation of an ordinary boundary triplet, cf.,
Remark 5.2. It is obtained here by combining Propositions 5.7 and 5.10; see also
Proposition 4.5 (vii).

Corollary 5.12. The following statements are equivalent:

(i) ran Γ = H2;
(ii) ranG = H, or equivalently, ranF ∗ = H;
(iii) M(λ) is uniformly strict (and belongs to B(H)) for some, and hence for all,

λ ∈ C \ R.

In the case that M(λ) ∈ B(H), λ ∈ C \ R, one obtains the following operator
representation, which is based on the unitary colligation in (4.1) and the operator
V (1) in Lemma 4.2.
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Proposition 5.13. If any of the conditions in Proposition 5.9 is satisfied, then the
Weyl function M(λ) ∈ B(H) has the following representation:

M(λ) = M(µ)∗ + (µ− µ̄)(I −H∗)−1F ∗
(
I − zV (1)

)−1
F (I −H)−1. (5.31)

Here the unitary operator V (1) = T + F (I − H)−1G is the Cayley transform of
the selfadjoint relation A0 = ker Γ0, V (1) = Cµ(A0), so that

M(λ) = M(µ)∗ + (I −H∗)−1F ∗(λ− µ̄)
(
I + (λ− µ)(A0 − λ)−1

)
F (I −H)−1.

(5.32)

Proof. It follows from the description of M(λ) in (3.3) that for λ ∈ C+

M(λ) −M(µ)∗ = (H∗ − I)−1(µ̄H∗ − µ) − (µΘ(z) − µ̄)(Θ(z) − I)−1

= (µ− µ̄)(I −H∗)−1
(
H∗Θ(z) − I

)
(Θ(z) − I)−1

= −(µ− µ̄)(I −H∗)−1F ∗(I − zT )−1F (Θ(z) − I)−1,

(5.33)

where the last identity is obtained by using (4.2). Note that

(Θ(z) − I)−1 = −
(
I − z(I −H)−1G(I − zT )−1F

)−1
(I −H)−1. (5.34)

Now the term (I − zT )−1F in (5.33) will be rewritten. By the definition of V (1)

I − zV (1) = I − zT − zF (I −H)−1G

=
(
I − zF (I −H)−1G(I − zT )−1

)
(I − zT ),

so that

(I − zV (1))(I − zT )−1 = I − zF (I −H)−1G(I − zT )−1.

Hence

(I − zV (1))(I − zT )−1F =
(
I − zF (I −H)−1G(I − zT )−1

)
F

= F
(
I − z(I −H)−1G(I − zT )−1F

)
.

(5.35)

Now, combine (5.33), (5.34), and (5.35) to obtain (5.31).
In order to obtain (5.32), note that it follows from (5.27) that

A0 − λ =
{

(V (1) − I)h, (λ− µ̄)(I − z(λ)V (1))h} : h ∈ H
}
,

which leads to

(µ− µ̄)(I − z(λ)V (1))−1 = (λ− µ̄)
(
I + (λ− µ)(A0 − λ)−1

)
. (5.36)

Now (5.32) is obtained by substituting (5.36) in (5.31). �

6. Boundary relations and Nevanlinna families

The connection between boundary relations and their Weyl families on the one
hand, and unitary colligations and their transfer functions on the other hand is now
used in conjunction with the realization of Schur functions as transfer functions
via the de Branges-Rovnyak model.
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6.1. A functional model for Nevanlinna families

It will be shown that each Nevanlinna family can be realized as the Weyl family
of the multiplication operator in a reproducing kernel Hilbert space H(A,B) and
a certain boundary relation for its adjoint.

Theorem 6.1. Let M(λ) be a Nevanlinna family in H, let {A(λ), B(λ)} be a sym-
metric Nevanlinna pair such that M(λ) = {{A(λ)g,B(λ)g} : g ∈ H}, λ ∈ C \ R,
and let H(A,B) be the corresponding reproducing kernel Hilbert space. Then:

(i) the linear relation

S =
{
{ϕ, ψ} ∈ H(A,B)2 : ψ(λ) = λϕ(λ)

}
(6.1)

is a closed simple symmetric operator in H(A,B);
(ii) the linear relation

T =
{
{ϕ, ψ} ∈ H(A,B)2 : ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2, c1, c2 ∈ H

}

is dense in S∗;
(iii) the linear relation

Γ =

{{(
ϕ
ψ

)
,

(
c2
−c1

)}
: {ϕ, ψ} ∈ T

}
(6.2)

is a minimal boundary relation for S∗ whose Weyl family is equal to M .

Proof. The proof involves a reduction via the Cayley transform to the case of
Schur functions. It consists of several steps. In the following µ ∈ C+ is fixed.

Step 1. To the Nevanlinna family M associate a Schur function Θ via the
formula (3.4), so that M can be recovered from Θ via (3.3). It suffices to prove
Theorem 6.1 for the case that the Nevanlinna pair {A,B} is given by (3.12).
In fact, if {A′, B′} is a second symmetric Nevanlinna pair representing M then
there exists an B(H)-valued function χ, χ(λ)−1 ∈ B(H), λ ∈ C \ R, such that
A′(λ) = χ(λ)A(λ) and B′(λ) = χ(λ)B(λ). Then the considerations in Section 3.2
(see (3.25)) imply that S′ = {{ϕ′, ψ′} ∈ H(A′, B′) : ψ′(λ) = λϕ′(λ)} is a closed
simple symmetric operator in H(A′, B′) if and only if S in (6.1) is a closed simple
symmetric operator in H(A,B). Similarly,

T ′ =
{
{ϕ′, ψ′} ∈ H(A′, B′)2 : ψ′(λ) − λϕ′(λ) = A′(λ)c1 +B′(λ)c2, c1, c2 ∈ H

}

is dense in S′∗ if and only if T in (ii) is dense in S∗, and

Γ′ =

{{(
ϕ′

ψ′

)
,

(
c2
−c1

)}
: {ϕ′, ψ′} ∈ T ′

}

is a minimal boundary relation for S′∗ if and only if Γ in (6.2) is a minimal
boundary relation for S∗ in (6.1). Furthermore, the corresponding Weyl families
coincide.
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Let S(Θ) be the reproducing kernel Hilbert space corresponding to the Schur
function Θ in (3.4) and let

U =

(
T F
G H

)
:

(
S(Θ)
H

)
→

(
S(Θ)
H

)

be the closely connected unitary colligation constructed in Theorem 4.4 such that
Θ is the transfer function of U . In the following the linear relations in (5.20)
and (5.18) will be denoted by SS(Θ) and TS(Θ) instead of S and T , respectively.
Making use of the particular form of the operators T , F , G, and H in Theorem 4.4
it follows that the elements

{
{(T − I)h+ Ff, (µT − µ̄)h+ µFf} : h ∈ S(Θ), f ∈ H

}

belonging to TS(Θ) have the form

(
(T − I)h+ Ff

)
(z) =

{
h(z)−h(0)

z − h(z) + Θ(z)−Θ(0)
z f, z ∈ D,

1
zh(z) − Θ(z)h(0) − h(z) + (I − Θ(z)Θ(0)) f, z ∈ D∗,

and(
(µT − µ̄)h+ µFf

)
(z)

=

{
µh(z)−h(0)

z − µ̄h(z) + µΘ(z)−Θ(0)
z f, z ∈ D,

µ 1
zh(z) − µΘ(z)h(0) − µ̄h(z) + µ (I − Θ(z)Θ(0)) f, z ∈ D∗.

The elements {(T − I)h, (µT − µ̄)h}, h ∈ kerG, in the closed symmetric relation
SS(Θ) satisfy h(0) = 0 and they have the form

(
(T − I)h

)
(z) =

h(z)

z
− h(z), z ∈ D ∪ D

∗,

(
(µT − µ̄)h

)
(z) = µ

h(z)

z
− µ̄h(z), z ∈ D ∪ D

∗.

Step 2. Let {A,B} be the Nevanlinna pair in (3.12), let ϕ, ψ ∈ H(A,B) and
assume that

ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2, λ ∈ C \ R, (6.3)

holds for some c1, c2 ∈ H. Then define

Φ(z) := r(λ)ϕ(λ), Ψ(z) := r(λ)ψ(λ), z =
λ− µ

λ− µ̄
, (6.4)

where r is the unitary mapping from H(A,B) onto S(Θ) from (3.22). It will be
shown that the formula

(
(I − T )Ψ

)
(z) +

(
(µT − µ̄)Φ

)
(z) =

(
F (c1 − µc2)

)
(z) (6.5)

holds for all z ∈ D ∪ D∗.
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In fact, for z ∈ D (6.3), (6.4), (3.12), together with r(λ) in (3.22) imply

(z − 1)Ψ(z) − (µ̄z − µ)Φ(z) = (Θ(z) − I)c1 − (µΘ(z) − µ̄)c2, z ∈ D. (6.6)

For a fixed w ∈ D (6.6) becomes

(w − 1)Ψ(w) − (µ̄w − µ)Φ(w) = (Θ(w) − I)c1 − (µΘ(w) − µ̄)c2. (6.7)

Subtract (6.7) from (6.6) and divide by z − w. This gives

Θ(z) − Θ(w)

z − w
(c1 − µc2) =

zΨ(z) − wΨ(w)

z − w
−

Ψ(z) − Ψ(w)

z − w

− µ̄
zΦ(z) − wΦ(w)

z − w
+ µ

Φ(z) − Φ(w)

z − w

(6.8)

for z ∈ D. Observe that with the help of (4.20), (4.21), and (4.22) the equation
(6.8) can be written as

(
(I − wT )−1F (c1 − µc2)

)
(z)

=
(
(I − wT )−1Ψ

)
(z) −

(
(I − wT )−1TΨ

)
(z)

− µ̄
(
(I − wT )−1Φ

)
(z) + µ

(
(I − wT )−1TΦ

)
(z)

(6.9)

for z ∈ D. Multiplication of (6.9) by I − wT from the left yields (6.5) for z ∈ D.
Now assume that z ∈ D∗. Then (6.3), (6.4), and (3.22) imply that

(
1 − 1

z

)
Ψ(z) −

(
µ̄− µ 1

z

)
Φ(z) = (I − Θ(z))c1 + (µ̄Θ(z) − µ)c2, z ∈ D

∗. (6.10)

Now multiply (6.7) by Θ(z), z ∈ D
∗, subtract this from (6.10), and divide by

1 − w/z. This gives

I − Θ(z)Θ(w)

1 − w/z
(c1 − µc2) =

Ψ(z) − Θ(z)wΨ(w)

1 − w/z
−
z−1Ψ(z) − Θ(z)Ψ(w)

1 − w/z

− µ̄
Φ(z) − Θ(z)wΦ(w)

1 − w/z
+ µ

z−1Φ(z) − Θ(z)Φ(w)

1 − w/z
(6.11)

and, again, (4.20), (4.21), and (4.22) yield (6.9) for z ∈ D
∗. Hence (6.5) holds for

z ∈ D∗.
Step 3. In this step it will be verified that the relation T coincides with

r−1TS(Θ) and that S = r−1SS(Θ).

In order to check r−1TS(Θ) ⊂ T , define

ϕ(λ) := r−1(λ)
(
(T − I)h+ Ff

)
(z), λ ∈ C\R,

ψ(λ) := r−1(λ)
(
(µT − µ̄)h+ µFf

)
(z), λ ∈ C\R,

where z = (λ−µ)/(λ− µ̄). Making use of the specific form of these elements from
step 1 a straightforward calculation shows that

ψ(λ) − λϕ(λ) =

{
(µ− µ̄)(h(0) − (Θ(z) − Θ(0))f), λ ∈ C+

(µ̄− µ)(Θ(z)h(0) − (I − Θ(z)Θ(0))f), λ ∈ C−.
(6.12)
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On the other hand, setting

c1 := µh(0) + (µΘ(0) − µ̄)f and c2 = h(0) + (Θ(0) − I)f

one verifies easily that A(λ)c1+B(λ)c2 coincides with the right hand side of (6.12).
Therefore ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2, which shows that r−1TS(Θ) ⊂ T .

In order to verify the reverse inclusion, let ϕ, ψ ∈ H(A,B) and assume that

ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2, λ ∈ C\R,

for some c1, c2 ∈ H. Set Φ(z) = r(λ)ϕ(λ) and Ψ(z) = r(λ)ψ(λ), cf., (6.4), and
define the function h on D ∪ D∗ and the vector f ∈ H by

h(z) :=
Ψ(z) − µΦ(z)

µ− µ̄
, z ∈ D ∪ D

∗, f :=
c1 − µc2
µ− µ̄

. (6.13)

Then h ∈ S(Θ) and by means of (6.5) it is easy to see that

Φ(z) =
(
(T − I)h

)
(z) + (Ff)(z), Ψ(z) =

(
(µT − µ̄)h

)
(z) + µ(Ff)(z), (6.14)

so that {Φ,Ψ} ∈ TS(Θ) and hence T ⊂ r−1TS(Θ).

Therefore T = r−1TS(Θ). The proof of the identity S = r−1SS(Θ) is similar
but simpler: if fact, in the formulas given above one can put f = 0, h(0) = 0 in the
proof of the first inclusion, and c1 = c2 = 0 in the proof of the reverse inclusion, in
which case the function h in (6.13) satisfies h(0) = 0. Finally, apply Theorem 5.4
(i) to see that S = T ∗ and S∗ = T hold.

Step 4. It remains to show that Γ in (6.2) is a minimal boundary relation for
S∗ such that M is the associated Weyl family.

Let {ϕ, ψ} ∈ T , that is, ϕ, ψ ∈ H(A,B) and

ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2

for some c1, c2 ∈ H, let {Φ,Ψ} ∈ TS(Θ), Φ(z) = r(λ)ϕ(λ), Ψ(z) = r(λ)ψ(λ), and
let h ∈ S(Θ) and f ∈ H be as in (6.13) such that (6.14) holds. Then

Gh+ (H − I)f = h(0) + (Θ(0) − I)f

=
1

µ− µ̄
r(µ)

(
ψ(µ) − µϕ(µ)

)
+ (Θ(0) − I)f = c2

and

−µGh− (µH − µ̄)f = −c1,

and the fact that (5.16) is a boundary relation for S∗

S(Θ) implies that Γ in (6.2) is a

boundary relation for S∗. Furthermore, Γ is minimal since U is closely connected,
cf., Theorem 4.4 and Theorem 5.4 (iii).

Now assume that {ϕ, ψ} ∈ N̂w(T ) for some w ∈ C \ R, i.e., ψ(λ) = wϕ(λ),
λ ∈ C \ R. Then there exist c1, c2 ∈ H such that

(w − λ)ϕ(λ) = A(λ)c1 +B(λ)c2, λ ∈ C \ R.
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This implies that A(w)c1 +B(w)c2 = 0 and together with the symmetry property
A(w̄)∗ = A(w), B(w̄)∗ = B(w) of the Nevanlinna pair one concludes that the Weyl
family MΓ(w) corresponding to the boundary relation Γ belongs to
{
{c2,−c1} : A(w)c1 +B(w)c2 = 0

}
=
{
{A(w)g,B(w)g} : g ∈ H

}
= M(w),

i.e., MΓ(w) ⊂ M(w) holds for all w ∈ C \ R. By taking adjoints and using the
symmetry property of Nevanlinna families (see Definition 3.1 (ii)) one gets the
reverse inclusion MΓ(w̄) ⊃ M(w̄), w ∈ C \ R. Therefore equality prevails here.
This completes the proof of Theorem 6.1. �

6.2. Some special cases

There are several consequences and special cases concerning the model established
in Theorem 6.1. First the multi-valued part of Γ, described also via the unitary
colligation in Lemma 5.5, is expressed in terms of the above model.

Corollary 6.2. Let M(λ), {A(λ), B(λ)}, λ ∈ C \ R, and Γ be as in Theorem 6.1.
Then

mul Γ =

{(
A(λ̄)g
B(λ̄)g

)
: g ∈ ker NA,B(λ, λ)

}
= M(λ) ∩M(λ)∗. (6.15)

In particular, M is a strict Nevanlinna function if and only if kerNA,B(λ, λ) = {0}.

Proof. The second equality in (6.15) is immediate from Lemma 3.3 (iv) and the
identity (3.21). It follows from (6.2) that

mul Γ =

{(
c2
−c1

)
: A(λ)c1 +B(λ)c2 = 0, c1, c2 ∈ H, λ ∈ C \ R

}
.

The symmetry propoerty of the Nevanlinna pair together with (3.7) implies
{c2,−c1} ∈M(λ) for all λ ∈ C \ R and hence

mul Γ ⊂M(λ) ∩M(λ̄) = M(λ) ∩M(λ)∗.

The inclusion M(λ) ∩ M(λ)∗ ⊂ mul Γ follows directly from the basic identities
(1.1) and (1.2).

According to Proposition 5.7 M is strict if and only if mul Γ = {0}. Hence
the last statement is obtained from (6.15). �

The equality mul Γ = M(λ) ∩ M(λ)∗ in Corollary 6.2 has been proved
also in [22, Lemma 4.1]. Observe that by (3.21), (3.16) and Proposition 4.3 (iii)
ker NA,B(λ, λ) is constant on each halfplane C+ and C−, but in general
ker NA,B(λ, λ) 6= kerNA,B(λ̄, λ̄), λ ∈ C \ R. However, according to Corollary 6.2

{(
A(λ̄)g
B(λ̄)g

)
: g ∈ ker NA,B(λ, λ)

}

does not depend on λ ∈ C \ R and it coincides with mul Γ.
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Next the special case that M(λ) ∈ B(H), λ ∈ C \ R, will be characterized. It
follows from Theorem 6.1 that Γ0 in (5.5) is given by

Γ0 =

{{(
ϕ
ψ

)
, c2

}
: {ϕ, ψ} ∈ T

}

where T is as in (ii) of Theorem 6.1. Hence,

ran Γ0 =
{
c2 ∈ H : ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2, ϕ, ψ ∈ H(A,B), c1 ∈ H

}
,

and the symmetric extension A0 = ker Γ0 of S is given by

A0 = ker Γ0 =
{
{ϕ, ψ} ∈ H(A,B)2 : ψ(λ) − λϕ(λ) = A(λ)c1, c1 ∈ H

}
. (6.16)

An application of Proposition 5.9 now leads to the following corollary.

Corollary 6.3. Let M(λ), {A(λ), B(λ)} and Γ be as in Theorem 6.1. Then M(λ)
is an B(H)-valued Nevanlinna function if and only if

H =
{
c2 ∈ H : ψ(λ) − λϕ(λ) = A(λ)c1 +B(λ)c2, ϕ, ψ ∈ H(A,B), c1 ∈ H

}

and the relation A0 = kerΓ0 in (6.16) is selfadjoint.

Assume that the Nevanlinna family M(λ) is an B(H)-valued Nevanlinna
function. In this case the Nevanlinna pair {I,M(λ)} is chosen and the reproducing
kernel Hilbert space is H(M), cf., Section 3.2. Then Theorem 6.1 reads as follows.

Corollary 6.4. Let M(λ) be an B(H)-valued Nevanlinna function. Then:

(i) the linear relation S = {{ϕ, ψ} ∈ H(M)2 : ψ(λ) = λϕ(λ)} is a closed simple
symmetric operator in H(M);

(ii) the linear relation

T =
{
{ϕ, ψ} ∈ H(M)2 : ψ(λ) − λϕ(λ) = c1 +M(λ)c2, c1, c2 ∈ H

}

is dense in S∗ and A0 = {{ϕ, ψ} ∈ H(M)2 : ψ(λ)− λϕ(λ) = c1, c1 ∈ H} is a
selfadjoint extension of S in H(M);

(iii) the linear relation Γ in (6.2) is a minimal boundary relation for S∗ with
corresponding Weyl function M(λ).

It is well known that strict (uniformly strict) B(H)-valued Nevanlinna func-
tions can be realized as Weyl functions of generalized boundary triplets (ordinary
boundary triplets, respectively), cf., [22, 25, 26]. For these functions Theorem 6.1
and the above considerations yield the following corollary.

Corollary 6.5. Let M(λ) be a strict (uniformly strict) B(H)-valued Nevanlinna
function and let T and Γ be as in Corollary 6.4. Then {H,Γ0,Γ1}, where

Γ0{ϕ, ψ} = c2 and Γ1{ϕ, ψ} = −c1, {ϕ, ψ} ∈ T ,

is a generalized boundary triplet (ordinary boundary triplet, respectively) for S∗.
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Proof. If M(λ) ∈ B(H) is strict, then mul Γ = {0}, ran Γ0 = H, and A0 =
ker Γ0 is selfadjoint; see Proposition 5.7, Proposition 5.9 and Corollary 5.11. This
means that (see [26, Definition 6.1], [22, Definition 5.6]) {H,Γ0,Γ1} is a generalized
boundary triplet for S∗. If M is uniformly strict, then according to Corollary 5.12
Γ = {Γ0,Γ1} is surjective and hence {H,Γ0,Γ1} is an ordinary boundary triplet
for S∗. �

6.3. Some historical remarks

A functional model for bounded uniformly strict operator-valued Nevanlinna func-
tions as Q-functions of symmetric and selfadjoint operators or relations in Hilbert
spaces goes back to M.G. Krĕın, H. Langer, and B. Textorius [32, 33, 34, 35, 36, 37].
This model was given by means of the so-called ε-method. The notion ofQ-function
“coincides” with the present terminology of Weyl function associated with an or-
dinary boundary triplet for symmetric operators or relations. The notion of ordi-
nary boundary triplet was extended in [26] to the notion of generalized boundary
triplet which in terms of Weyl functions now corresponds to strict B(H)-valued
Nevanlinna functions M , that is, 0 /∈ σp(ImM(λ)) holds for some, and hence for
all, λ ∈ C \ R. The operator representation of bounded, not necessarily strict,
Nevanlinna functions can be found in [17, 30, 37], see also Proposition 5.9 and
Corollary 6.3. Functional models in terms of reproducing kernel spaces have been
considered in several papers, see, e.g., [1, 4, 5, 6]

Recall that an B(H)-valued Nevanlinna function M(λ) admits the integral
representation

M(λ) = α+ βλ+

∫

R

(
1

t− λ
−

t

1 + t2

)
dΣ(t), (6.17)

where α, β ∈ B(H) are selfadjoint, β ≥ 0, and Σ(t) is a nondecreasing B(H)-
valued function satisfying

∫
R
(1 + t2)−1dΣ(t) ∈ B(H). In [26] V.A. Derkach and

M.M. Malamud in their treatment of ordinary boundary triplets use the integral
representation (6.17) to construct a model in the orthogonal sum of L2(R,Σ) and
a space which takes care of the linear term βλ. With the help of Stieltjes transform
they also obtain a representation in terms of a reproducing kernel Hilbert space
analogous to that in Corollary 6.5, cf. [2]. Their considerations are valid for the
case of matrix-valued Nevanlinna functions; for the operator-valued case see the
more recent treatment given in [38].

Assume that M(λ), λ ∈ C+, is a family of maximal dissipative relations in a
Hilbert space H, such that for some, and hence for all, ν ∈ C+ the B(H)-valued
function λ 7→ (M(λ) + ν)−1 ∈ H is holomorphic on C+. Then

Θ(z) = I − (µ− µ̄)(M(λ) + µ)−1, λ ∈ C+,

where z = (λ−µ)/(λ−µ̄), is a Schur function defined on D. It is now possible to use
the coisometric representation for such a Schur function, cf., [3]. Its counterpart is
an operator representation of M(λ) in the upper halfplane. The scalar version of
such results can be found in [35, 36].
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[40] A.V. Štraus, ”Characteristic functions of linear operators”, Izv. Akad. Nauk SSSR
Ser. Mat, 24 (1960), 43–74 (Russian) (English translation: Amer. Math. Soc. Transl.,
(2) 40 (1964), 1-37).
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