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Linear fractional transformations of Stieltjes functions
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Linear fractional transformations of Stieltjes (and inverse Stieljes) functions, which appear naturally in the extension theory
of nonnegative symmetric operators with defect one in Hilbert spaces, are investigated.

Copyright line will be provided by the publisher

1 Nevanlinna, Stieltjes, and inverse Stieltjes functions

The class of Nevanlinna functions is intimately connected with selfadjoint operators and relations in Hilbert spaces, and
therefore plays a key role in spectral analysis. For instance, the set of Titchmarsh-Weyl coefficients of real trace-normed 2× 2
canonical systems on a halfline coincide with the class of Nevanlinna functions. Recall that a scalar function Q is said to be a
Nevanlinna function, Q ∈ N, if it admits an integral representation of the form

Q(λ) = α+ βλ+

∫
R

(
1

s− λ
− s

s2 + 1

)
dσ(s),

∫
R

dσ(s)

s2 + 1
<∞, λ ∈ C \ R, (1)

where α ∈ R, β ≥ 0, and σ is a nondecreasing function on R. Various subclasses of Nevanlinna functions have been
studied in the past, e.g. Stieltjes and inverse Stieltjes functions in connection with spectral problems for strings in [3–5],
and other slightly more general classes in connection with nonnegative symmetric operators in [1]. Recall that a Nevanlinna
function Q belongs to the Stieltjes class S (inverse Stieltjes class S−1) if and only if Q is holomorphic and nonnegative
(nonpositive, respectively) on (−∞, 0). It is clear that Q ∈ S if and only if −1/Q ∈ S−1. Moreover, Q ∈ S ∪ S−1 if
and only if Q ∈ N and Q is holomorphic on (−∞, 0) without zeros there. Alternatively, Q ∈ S (Q ∈ S−1) if and only if
Q(λ), λQ(λ) ∈ N (Q(λ), Q(λ)/λ ∈ N, respectively). The Stieltjes and inverse Stieltjes class can also be characterized via
integral representations; cf. [5].

2 Linear fractional transformations of Stieltjes functions

The linear fractional transformations Qτ , τ ∈ R ∪ {∞}, of a Nevanlinna function Q are defined by

Qτ (λ) =
Q(λ)− τ
1 + τQ(λ)

, τ ∈ R, and Q∞(λ) = −1/Q(λ), τ =∞. (2)

It is not difficult to see that Qτ is a Nevanlinna function for all τ ∈ R ∪ {∞}. Moreover, notice that (Qη)τ = Qs where
s = (η + τ)/(1 − ητ) with η, τ ∈ R ∪ {∞}; in particular, the class of functions {Qτ : τ ∈ R ∪ {∞}} is stable under
composition of transformations in (2).

Now assume that Q is holomorphic on (−∞, 0) except for finitely many points, as is the case for Q ∈ S ∪ S−1. Then the
possibly improper limits of Q at −∞ and 0 exist, they are denoted by b and L:

b := lim
λ↓−∞

Q(λ) ∈ R ∪ {−∞} and L := lim
λ↑0

Q(λ) ∈ R ∪ {+∞}. (3)

Lemma 2.1 Let Q be a nonconstant Nevanlinna function and let Qτ be given by (2), τ ∈ R ∪ {∞}. Then:

(i) If Q is holomorphic on (−∞, 0), then b < L and Qτ has precisely one zero and one pole on (−∞, 0) if and only if

b < τ < −1/L ≤ 0 or 0 ≤ −1/b < τ < L.

(ii) IfQ is holomorphic on (−∞, 0) except for one point a, thenQτ is holomorphic on (−∞, 0) and has no zeros on (−∞, 0)
if and only if

−∞ < L ≤ τ ≤ −1/b < 0 or 0 < −1/L ≤ τ ≤ b <∞. (4)
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P r o o f. (i) Since Q is nonconstant and holomorphic on (−∞, 0) the integral representation (1) yields that Q is strictly
increasing on (−∞, 0) and takes on all values between b and L uniquely. Hence (2) shows that Qτ has a zero on (−∞, 0) for
b < τ < L and a pole on (−∞, 0) for b < −1/τ < L. These inequalities can hold simultaneously only if b < 0 < L in which
case −1/L ≤ 0 ≤ −1/b. Now the assertion follows by considering the cases b < 0 < −1/τ < L and b < −1/τ < 0 < L.

(ii) If (4) holds or Qτ ∈ S ∪ S−1 for some τ , then −∞ < L < b <∞. Now proceed as in (i) with the interval (L, b).

The next results concern the linear fractional transforms Qτ of a Stieltjes function.
Proposition 2.2 Let Q ∈ S be a nonconstant Stieltjes function and let Qτ be given by (2), τ ∈ R ∪ {∞}. Then b and L

satisfy the inequality 0 ≤ b < L ≤ ∞ (so that also −∞ ≤ −1/b < −1/L ≤ 0) and the following statements hold:

(i) Qτ ∈ S if and only if −1/L ≤ τ ≤ b;

(ii) Qτ ∈ S−1 if and only if τ ≤ −1/b, τ ≥ L, or τ =∞;

(iii) Qτ has a (unique) zero and no poles on (−∞, 0) if and only if b < τ < L;

(iv) Qτ has a (unique) pole and no zeros on (−∞, 0) if and only if −1/b < τ < −1/L.

In particular, Q (and−Q−1) is the only functionQτ in (2) belonging to S (S−1, respectively) if and only if b = 0 and L =∞.

P r o o f. (iii) & (iv) The function Qτ has a (unique) zero in (−∞, 0) if and only if b < τ < L, and Qτ has a (unique)
pole in (−∞, 0) if and only if −1/b < τ < −1/L (cf. the proof of Lemma 2.1). Since the inequalities b < τ < L and
−1/b < τ < −1/L cannot hold simultaneously, (iii) and (iv) follow.

(i) & (ii) (⇒) If Qτ ∈ S or Qτ ∈ S−1, then, in particular, Qτ has no zero and is holomorphic on (−∞, 0). Thus, by (iii)
& (iv), τ 6∈ (b, L) and τ 6∈ (−1/b,−1/L). For −1/L ≤ τ ≤ b the values of Qτ on (−∞, 0) are positive and for τ ≤ −1/b,
τ ≥ L, and τ =∞ the values of Qτ on (−∞, 0) are negative. (⇐) This implication follows with similar arguments.

The next theorem shows under which conditions a Nevanlinna function Q possesses a transformation Qτ in the Stieltjes or
inverse Stieltjes class. In view of Lemma 2.1 only Nevanlinna functions that are holomorphic on (−∞, 0), or have at most
one pole on (−∞, 0) and satisfy −∞ < L < 0 < b <∞, have to be considered.

Recall that a symmetric scalar function Q which is meromorphic on C \ R, is said to belong to the class of generalized
Nevanlinna functions with κ ∈ N negative squares, Q ∈ Nκ, if its Nevanlinna kernel has κ negative squares; see, e.g. [6].
Note that, if Q ∈ S (Q ∈ S−1) then λQ(λ) ∈ N and, moreover, Q(λ)/λ ∈ N1 (Q(λ)/λ ∈ N and λQ(λ) ∈ N1).

Theorem 2.3 LetQ be a nonconstant Nevanlinna function which is holomorphic on (−∞, 0) except for possibly one point,
in which case it is assumed that −∞ < L < 0 < b <∞. Then the following statements are equivalent:

(i) there exists η ∈ R ∪ {∞} such that Qη ∈ S, or equivalently, there exists η ∈ R ∪ {∞} such that Qη ∈ S−1;

(ii) if Qτ , τ ∈ R ∪ {∞}, in (2) has a zero (pole) on (−∞, 0), then it does not have a pole (zero) on (−∞, 0);

(iii) if Q is holomorphic and has a zero on (−∞, 0), then −∞ < −1/L ≤ b < 0; and if Q is not holomorphic on (−∞, 0),
then −∞ < L ≤ −1/b < 0;

(iv) λQτ (λ) ∈ N ∪N1 and Qτ (λ)/λ ∈ N ∪N1 for all τ ∈ R ∪ {∞}.
P r o o f. (i)⇒ (ii) This follows from Proposition 2.2.

(ii)⇒ (iii) If Q has a zero on (−∞, 0) and −∞ < b < 0 < L < ∞, then Q∞ has a pole on (−∞, 0) and the corresponding
limits L∞ = −1/L and b∞ = −1/b satisfy −∞ < L∞ < 0 < b∞ < ∞; and conversely. On the other hand, if Q is
holomorphic on (−∞, 0) and b < −1/L ≤ 0, then by Lemma 2.1 the transformationQη , b < η < −1/L, has a pole and a zero
on (−∞, 0). This contradiction together with the inequalities −∞ < b < 0 < L < ∞ implies that −∞ < −1/L ≤ b < 0.
These inequalities are equivalent to −∞ < L∞ ≤ −1/b∞ < 0 for the limits of Q∞. Hence, (iii) holds.
(iii) ⇒ (i) If Q has neither a zero nor a pole on (−∞, 0), then Q ∈ S ∪ S−1. If Q is not holomorphic on (−∞, 0) and
−∞ < L ≤ −1/b < 0, then Lemma 2.1 shows that QL ∈ S ∪ S−1. If Q is holomorphic with a zero on (−∞, 0)
and −∞ < −1/L ≤ b < 0, then Q∞ has a pole and the corresponding limits L∞ = −1/L and b∞ = −1/b satisfy
−∞ < L∞ ≤ −1/b∞ < 0. Thus, (Q∞)L∞ ∈ S ∪ S−1 again by Lemma 2.1.
(ii)⇔ (iv) This follows from the fact that λQ(λ), Q(λ)/λ ∈ N ∪N1 if and only if Q is holomorphic on (−∞, 0) except for
at most one point in which case it does not have a zero on (−∞, 0); cf. [2, Theorem 4.5 & Remark 4.7].
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