Convergence of 2D-Schrödinger operators with local scaled short-range interactions to a Hamiltonian with infinitely many δ-point interactions

Jussi Behrndt ${ }^{1, *}$, Markus Holzmann ${ }^{1}$, and Vladimir Lotoreichik ${ }^{1}$
${ }^{1}$ Institute of Computational Mathematics, Graz University of Technology, 8010, Graz, Austria

We prove, that a Hamiltonian with infinitely many δ-point interactions in the plane can be approximated in the norm resolvent sense by a family of Schrödinger operators with regular, local scaled short-range potentials. Similar well known results from the 1 D and the 3D case are complemented thereby.
(c) 2014 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Introduction and main result

Let $\Lambda:=\left\{y_{l}\right\} \subset \mathbb{R}^{2}$ be an at most countable set of points satisfying $\inf \left\{\left|y_{l}-y_{k}\right|: y_{l}, y_{k} \in \Lambda, y_{l} \neq y_{k}\right\}>0$, let $\alpha: \Lambda \rightarrow \mathbb{R} \cup\{\infty\}, y_{l} \mapsto \alpha_{l}$ (where $\alpha_{l}=\infty$ means that there is no interaction at y_{l}) and set $\Lambda_{\mathbb{R}}:=\left\{y_{l} \in \Lambda: \alpha_{l} \in \mathbb{R}\right\}$. Then, a Schrödinger operator $-\Delta_{\alpha, \Lambda}$ with δ-interactions supported on Λ and coupling α can be defined via the resolvent

$$
\left(-\Delta_{\alpha, \Lambda}-\lambda\right)^{-1}=(-\Delta-\lambda)^{-1}+\sum_{y_{k}, y_{l} \in \Lambda_{\mathbb{R}}}\left[\Gamma_{\alpha, \Lambda_{\mathbb{R}}}(\lambda)\right]_{k l}^{-1}\left(\cdot, \overline{G_{\lambda}\left(\cdot-y_{l}\right)}\right) G_{\lambda}\left(\cdot-y_{k}\right), \quad \lambda \in \mathbb{C} \backslash \mathbb{R},
$$

where $-\Delta$ denotes the free Laplacian, $G_{\lambda}(x)=\frac{i}{4} H_{0}^{(1)}(\sqrt{\lambda}|x|)$ is the integral kernel of its resolvent with $\operatorname{Im} \sqrt{\lambda} \geq 0$ and a Hankel function $H_{0}^{(1)}$ of first kind and order zero, and with the operator $\Gamma_{\alpha, \Lambda_{\mathbb{R}}}(\lambda)$ acting in $\ell^{2}\left(\Lambda_{\mathbb{R}}\right)$, which is defined as

$$
\Gamma_{\alpha, \Lambda_{\mathbb{R}}}(\lambda)=\left[\left(\alpha_{k}-\frac{1}{2 \pi}\left(\gamma-\ln \frac{\sqrt{\lambda}}{2 i}\right)\right) \delta_{k l}-\tilde{G}_{\lambda}\left(y_{k}-y_{l}\right)\right]_{y_{k}, y_{l} \in \Lambda_{\mathbb{R}}} \quad \text { with } \quad \tilde{G}_{\lambda}(x)= \begin{cases}G_{\lambda}(x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

and the Euler-Mascheroni constant γ, cf. [1, Chapter III.4].
Our main goal in this note is to prove, that $-\Delta_{\alpha, \Lambda}$ can be approximated in the norm resolvent sense by a sequence of Schrödinger operators of the form

$$
H_{\varepsilon, \Lambda}:=-\Delta+\sum_{y_{l} \in \Lambda} \frac{\mu_{l}\left((\ln \varepsilon)^{-1}\right)}{\varepsilon^{2}} V_{l}\left(\frac{\cdot-y_{l}}{\varepsilon}\right), \quad \varepsilon>0
$$

Here, $\left\{V_{l}\right\}$ is a set of potentials such that there exists a compactly supported function $V \in L^{1+\beta}\left(\mathbb{R}^{2}\right)$ for some $\beta>0$ satisfying $\left|V_{l}(x)\right| \leq|V(x)|$ for almost all $x \in \mathbb{R}^{2}$ and all l and $\left\{\mu_{l}\right\}$ is a set of uniformly bounded real valued functions defined in a neighbourhood of 0 of the form $\mu_{l}(x)=\mu_{l, 1} x+\mu_{l, 2} x^{2}+o\left(x^{2}\right)$. One can show, that under these assumptions $H_{\varepsilon, \Lambda}$ defines a self-adjoint operator in the form sense for $\varepsilon>0$ sufficiently small.

Let us write $u_{l}(x)=\left|V_{l}(x)\right|^{1 / 2}$ and $v_{l}(x)=\operatorname{sign}\left[V_{l}(x)\right]\left|V_{l}(x)\right|^{1 / 2}$ and define the Hilbert-Schmidt operator T_{l} via its integral kernel $T_{l}(x, y)=u_{l}(x) \ln |x-y| v_{l}(y)$. Now, our main result reads as follows:

Theorem 1.1 Define the coupling α as

$$
\alpha_{l}= \begin{cases}\frac{\mu_{l, 2}}{4 \pi^{2}}\left(u_{l}, v_{l}\right)+\frac{1}{2 \pi\left(u_{l}, v_{l}\right)^{2}}\left(T_{l} u_{l}, v_{l}\right), & \text { if }\left(u_{l}, v_{l}\right) \neq 0 \text { and } \mu_{l, 1}=\frac{2 \pi}{\left(u_{l}, v_{l}\right)}, \\ \infty, & \text { otherwise } .\end{cases}
$$

Then, the family of operators $H_{\varepsilon, \Lambda}$ converges to $-\Delta_{\alpha, \Lambda}$ in the norm resolvent sense, i.e. $\left(H_{\varepsilon, \Lambda}-\lambda\right)^{-1} \rightarrow\left(-\Delta_{\alpha, \Lambda}-\lambda\right)^{-1}$ in the operator norm for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$, as $\varepsilon \rightarrow 0+$.

We would like to mention here, that similar approximation results are known in the one- and in the three-dimensional case for finitely and for infinitely many points y_{l} (see [1] and the references therein), but in two dimensions this is only known for the one center case $[1,2]$.

2 Proof of Theorem 1.1

Let $\lambda \in \mathbb{C} \backslash \mathbb{R}$. Similar as in [3], where the approximation of a Hamiltonian with infinitely many δ-point potentials in \mathbb{R}^{3} was investigated, one verifies that the resolvent of $H_{\varepsilon, \Lambda}$ is given by

$$
\left(H_{\varepsilon, \Lambda}-\lambda\right)^{-1}=(-\Delta-\lambda)^{-1}-A_{\varepsilon}(\lambda)\left[1+\left(1+D_{\varepsilon}(\lambda)\right)^{-1} B_{\varepsilon}(\lambda) E_{\varepsilon}(\lambda)\right]^{-1}\left(1+D_{\varepsilon}(\lambda)\right)^{-1} B_{\varepsilon}(\lambda) C_{\varepsilon}(\lambda)
$$

[^0]with the bounded linear operators $A_{\varepsilon}(\lambda): \bigoplus_{y_{\epsilon} \in \Lambda} L^{2}\left(\mathbb{R}^{2}\right)=: \mathscr{H} \rightarrow L^{2}\left(\mathbb{R}^{2}\right), B_{\varepsilon}(\lambda), D_{\varepsilon}(\lambda), E_{\varepsilon}(\lambda): \mathscr{H} \rightarrow \mathscr{H}$ and $C_{\varepsilon}(\lambda): L^{2}\left(\mathbb{R}^{2}\right) \rightarrow \mathscr{H}$, which are defined as
\[

$$
\begin{aligned}
& A_{\varepsilon}(\lambda)\left[f_{l}\right]_{l}=\sum_{y_{l} \in \Lambda} \int_{\mathbb{R}^{2}} G_{\lambda}\left(\cdot-\varepsilon y-y_{l}\right) v_{l}(y) f_{l}(y) \mathrm{d} y,\left[C_{\varepsilon}(\lambda) f\right]_{k}=\left[u_{k} \int_{\mathbb{R}^{2}} G_{\lambda}\left(\varepsilon \cdot-y+y_{k}\right) f(y) \mathrm{d} y\right]_{k}, \\
& {\left[B_{\varepsilon}(\lambda)\left[f_{l}\right]_{l}\right]_{k}=\left[\mu_{k}\left((\ln \varepsilon)^{-1}\right) f_{k}\right]_{k},\left[E_{\varepsilon}(\lambda)\left[f_{l}\right]_{l}\right]_{k}=\left[\sum_{y_{k} \neq y_{l} \in \Lambda} u_{k} \int_{\mathbb{R}^{2}} G_{\lambda}\left(\varepsilon(\cdot-y)+y_{k}-y_{l}\right) v_{l}(y) f_{l}(y) \mathrm{d} y\right]_{k},} \\
& {\left[D_{\varepsilon}(\lambda)\left[f_{l}\right]_{l}\right]_{k}=\left[\mu_{k}\left((\ln \varepsilon)^{-1}\right) u_{k} \int_{\mathbb{R}^{2}} G_{\lambda}(\varepsilon(\cdot-y)) v_{k}(y) f_{k}(y) \mathrm{d} y\right]_{k} .}
\end{aligned}
$$
\]

First, we check convergence of $A_{\varepsilon}(\lambda)$ and $C_{\varepsilon}(\lambda)$. The natural candidates for their limits $A(\lambda)$ and $C(\lambda)$ are

$$
A(\lambda)\left[f_{l}\right]_{l}=\sum_{y_{l} \in \Lambda} \int_{\mathbb{R}^{2}} G_{\lambda}\left(\cdot-y_{l}\right) v_{l}(y) f_{l}(y) \mathrm{d} y, \quad[C(\lambda) f]_{k}=\left[u_{k} \int_{\mathbb{R}^{2}} G_{\lambda}\left(y-y_{k}\right) f(y) \mathrm{d} y\right]_{k} .
$$

In order to prove, that $C_{\varepsilon}(\lambda)$ converges to $C(\lambda)$ in the operator norm, we compute for $f \in L^{2}\left(\mathbb{R}^{2}\right)$

$$
\begin{aligned}
\|\left(C_{\varepsilon}(\lambda)\right. & -C(\lambda)) f \|^{2}=\sum_{y_{k} \in \Lambda} \int_{\mathbb{R}^{2}}\left|u_{k}(x) \int_{\mathbb{R}^{2}}\left(G_{\lambda}\left(y-y_{k}\right)-G_{\lambda}\left(\varepsilon x-y+y_{k}\right)\right) f(y) \mathrm{d} y\right|^{2} \mathrm{~d} x \\
& \leq \int_{\mathbb{R}^{2}}|V(x)| \int_{\mathbb{R}^{2}}\left|G_{\lambda}(y)-G_{\lambda}(y-\varepsilon x)\right|^{2} e^{\operatorname{Im} \sqrt{\lambda}|y|} \mathrm{d} y \mathrm{~d} x \int_{\mathbb{R}^{2}} \sum_{y_{k} \in \Lambda} e^{-\operatorname{Im} \sqrt{\lambda}\left|y-y_{k}\right|}|f(y)|^{2} \mathrm{~d} y \leq c(\varepsilon)\|f\|^{2},
\end{aligned}
$$

where we used the Cauchy-Schwarz inequality and then the translation invariance of the Lebesgue measure. Because of $G_{\lambda}(z) \sim \frac{i}{4} \sqrt{2 /(\pi z)} e^{i\left(z-\frac{\pi}{2}\right)}$ for $|z| \rightarrow \infty$, it follows from the dominated convergence theorem that

$$
\int_{\mathbb{R}^{2}}|V(x)| \int_{\mathbb{R}^{2}}\left|G_{\lambda}(y)-G_{\lambda}(y-\varepsilon x)\right|^{2} e^{\operatorname{Im} \sqrt{\lambda}|y|} \mathrm{d} y \mathrm{~d} x \rightarrow 0
$$

Moreover, due to our assumptions on Λ, it holds that $\sum e^{-\operatorname{Im} \sqrt{\lambda}\left|y-y_{k}\right|}$ is uniformly bounded in y, as the sum can be estimated by a convergent geometric series. Hence, $c(\varepsilon) \rightarrow 0$ and thus $C_{\varepsilon}(\lambda) \rightarrow C(\lambda)$. A similar argument shows $A_{\varepsilon}(\lambda)^{*} \rightarrow A(\lambda)^{*}$ and hence $A_{\varepsilon}(\lambda) \rightarrow A(\lambda)$. Next, it follows from the well-known analysis of the one-center case [1,2], that $\left(1+D_{\varepsilon}(\lambda)\right)^{-1} B_{\varepsilon}(\lambda) \rightarrow$ $K(\lambda)$, where the components of the diagonal operator $K(\lambda)$ are

$$
K_{k}(\lambda) f=-4 \pi^{2}\left\{2 \pi\left(u_{k}, v_{k}\right)^{2}\left[\ln \frac{\sqrt{\lambda}}{2 i}-\gamma\right]+\mu_{k, 2}\left(u_{k}, v_{k}\right)^{3}+2 \pi\left(T_{k} u_{k}, v_{k}\right)\right\}^{-1}\left(f, v_{k}\right) u_{k}
$$

if $\left(u_{k}, v_{k}\right) \neq 0$ and $\mu_{k, 1}=\frac{2 \pi}{\left(u_{k}, v_{k}\right)}$, and $K_{k}(\lambda)=0$ otherwise. It remains to analyze the convergence of $E_{\varepsilon}(\lambda)$. The natural candidate for the limit is

$$
\left[E(\lambda)\left[f_{l}\right]_{l}\right]_{k}=\left[\sum_{y_{k} \neq y_{l} \in \Lambda} u_{k} G_{\lambda}\left(y_{l}-y_{k}\right)\left(f_{l}, v_{l}\right)\right]_{k} .
$$

In order to show $E_{\varepsilon}(\lambda) \rightarrow E(\lambda)$, we use the estimate $\|T\|^{2} \leq \sup _{l} \sum_{k}\left\|T_{k l}\right\| \cdot \sup _{k} \sum_{l}\left\|T_{k l}\right\|$, which holds for any $T=\left[T_{k l}\right]$ which is bounded and everywhere defined in \mathscr{H}. Therefore, it is sufficient to prove

$$
\sup _{l} \sum_{y_{l} \neq y_{k}}\left(\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|V_{k}(x)\right| \cdot\left|G_{\lambda}\left(\varepsilon(y-x)+y_{l}-y_{k}\right)-G_{\lambda}\left(y_{l}-y_{k}\right)\right|^{2} \cdot\left|V_{l}(y)\right| \mathrm{d} y \mathrm{~d} x\right)^{1 / 2} \rightarrow 0,
$$

which can be shown using the far field behavior $G_{\lambda}(z) \sim \frac{i}{4} \sqrt{2 /(\pi z)} e^{i\left(z-\frac{\pi}{2}\right)}$ as $|z| \rightarrow \infty$ and the dominated convergence theorem. Finally, a straightforward, but tedious computation yields

$$
\lim _{\varepsilon \rightarrow 0}\left(H_{\varepsilon, \Lambda}-\lambda\right)^{-1}=(-\Delta-\lambda)^{-1}-A(\lambda)[1+K(\lambda) E(\lambda)]^{-1} K(\lambda) C(\lambda)=\left(-\Delta_{\alpha, \Lambda}-\lambda\right)^{-1} .
$$

Acknowledgements The authors thank S. Albeverio, P. Exner and F. Gesztesy for fruitful discussions and literature hints. Moreover, we gratefully acknowledge financial support by the Austrian Science Fund (FWF), project P 25162-N26.

References

[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2nd edition with appendix by P. Exner (AMS Chelsea Publishing, Providence, RI, 2005).
[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, J. Reine Angew. Math. 380, 87 (1987).
[3] H. Holden, R. Høegh-Krohn, and S. Johannesen, Ann. Inst. H. Poincaré Phys. Théor. 41, 335 (1984).

[^0]: * Corresponding author: e-mail behrndt@tugraz.at, phone +43 (316) 873-8127, fax +43 (316) 873-8621

