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Abstract. We provide a limiting absorption principle for self-adjoint realiza-

tions of Dirac operators with electrostatic and Lorentz scalar δ-shell interac-
tions supported on regular compact surfaces. Then we show completeness of

the wave operators and give a representation formula for the scattering matrix.

1. Introduction

The Dirac operator is one of the main mathematical objects in relativistic quan-
tum mechanics. Knowledge of its spectral properties leads to the understanding of
the behavior of spin- 1

2 particles like electrons in the corresponding physical system.
Moreover, the Dirac operator and its spectral properties play an important role in
the analysis of graphene type materials.

Since the spectral analysis of Dirac operators with strongly localized potentials
is a challenging problem, such potentials are often replaced in mathematical physics
by singular δ-type potentials. This idea was successfully applied in nonrelativistic
quantum mechanics, see, e.g., [3, 8, 14, 18, 23, 24, 30] and the references therein, and
in the recent years also in the relativistic setting. In this paper we study singular
perturbations of the free Dirac operator A0 acting in L2(R3;C4) ∼= L2(R3)4, which
are formally given by

Aη,τ = A0 + (ηI4 + τβ)δΓ , β :=

(
I2 0
0 −I2

)
;

see Section 2.2 and Section 3 below for the precise definition and the main properties
of the appearing objects. Here In denotes the identity in Cn,n, and δΓ is the
tempered distribution supported on the closed bounded C2-surface Γ and acting
on a test function ϕ as δΓ(ϕ) :=

∫
Γ
ϕ(x) dσ(x). The two δ-perturbation terms with

strengths η, τ ∈ R define the electrostatic shell interaction ηI4δΓ and the Lorentz
scalar shell interaction τβδΓ, respectively.

Singular perturbations of the Dirac operator have been introduced first in [25],
where the one dimensional Dirac operator with point interactions is considered,
see also [3, 19, 21, 36, 41] for more results on Dirac operators with point interac-
tions in R. Shell interactions supported on a sphere in R3 were then introduced
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in [22] by using the one-dimensional results and a decomposition to spherical har-
monics. This problem has been recently reconsidered in [4, 5, 6], where in the case
of a C2-surface the self-adjointness and several properties of Dirac operators with
electrostatic δ-perturbations are derived. An alternative construction of Dirac op-
erators with electrostatic and Lorentz scalar δ-shell interactions was proposed in
[9] and further developed in [10, 11]. This approach is based on the method of
quasi boundary triples, originally introduced in [13] for the study of elliptic par-
tial differential operators. Quasi boundary triples allow to define distributional
perturbations supported on subsets of zero measure, or more general singular per-
turbations, as extensions of a symmetric restriction of an unperturbed operator.
This approach easily adapts to the case of Dirac operators since, in contrast to
form methods, no semi-boundedness is required. Next, the fundamental spectral
properties of Aη,τ under various assumptions on the parameters η and τ were stud-
ied in [10, 26, 33, 34], see also [12, 37] for results in the two-dimensional case, and the
usage as a model for Dirac operators with strongly localized potentials is justified
in some situations in [31] by an approximation result. It is also worth mentioning
that, modelling δ-shell interactions for the Dirac operator, a relevant role is played
by the parameter η2− τ2; depending on the critical condition η2− τ2 = 4 (so fixed
by our choice of physical units), unexpected spectral effects arise. While the works
mentioned before consider the non-critical case η2 − τ2 6= 4, the critical regime has
been recently investigated in [11, 35] and also in [12].

While, as mentioned above, the spectral properties of Aη,τ were investigated,
there are hardly no results on scattering theory. Only the existence and complete-
ness of the wave operators was shown in the case of electrostatic δ-shell interactions
(τ = 0) in [9] under C∞-smoothness assumptions on the surface Γ; this result was
extended in [10, Proposition 4.7] for combinations of electrostatic and scalar po-
tentials. For this reason, we are concerned in this work with the direct scattering
problem for the couple (Aη,τ , A0). As in most of the above mentioned papers, we
consider the three dimensional case; nevertheless, using the results from the recent
paper [12] we expect that our approach should also work in space dimension two. In
the present paper, we prove completeness for the scattering couple (Aη,τ , A0) and
provide a representation formula for the corresponding scattering matrix. More
precisely, it will be shown that the wave operators

W±(Aη,τ , A0) := s- lim
t→±∞

eitAη,τ e−itA0

exist in L2(R3)4 and that their ranges coincide with the absolutely continuous
subspace of the perturbed operator Aη,τ . Our method to prove completeness of
the wave operators (borrowed from [30], see Theorem 2.8 there) requires estimates
which follow from the limiting absorption principle. Thus our first goal (and our
first main result) in the present paper is to provide a limiting absorption principle
for Aη,τ in Theorem 3.6. Due to the lack of semiboundedness this property does not
follow directly from the general results in [30]. In this paper we prove the limiting
absorption principle by exploiting, besides the limiting absorption principle for A0

and Krĕın’s resolvent formula

(Aη,τ − z)−1 = (A0 − z)−1 −GzΛη,τz G∗z̄
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as in [30], some specific properties of the family of operators Λη,τz provided in [11].
The limit resolvent at λ ∈ R then turns out to have the same structure

Rη,τ,±λ = lim
ε↘0

(Aη,τ − (λ± iε))−1 = R0,±
λ −G±z Λη,τ,±λ G∓∗λ .

Once existence and completeness for the wave operators is achieved, we can define
the scattering operator Sη,τ := W+(Aη,τ , A0)∗W−(Aη,τ , A0) and (the physically
relevant) scattering matrix Sη,τ (λ) via

Sη,τ (λ)(F0f)(λ) = (F0Sη,τf)(λ),

where F0 is the unitary map which diagonalizes the free Dirac operator A0. In our
second main result Theorem 4.4 we provide a representation formula for Sη,τ (λ) in

terms of the limit operators Λη,τ,+λ appearing in the resolvent formula above. In
order to get such a representation, we follow the same scheme as in [30, Section 4]:
Birman-Yafaev stationary scattering theory for the resolvent couple (−Rη,τµ ,−R0

µ)
and Kato-Birman invariance principle. We also refer the reader to [1, 15, 16, 17] for
a closely related approach to scattering theory in the context of extension methods
and Krĕın’s resolvent formula. Moreover, for a comprehensive list of references on
the limiting absorption principle for Dirac operators with regular potentials we refer
to [20].

The paper is organized as follows: In Section 2 we recall the definition of weighted
Sobolev spaces, the limiting absorption principle for the free Dirac operator, and we
study some families of operators which are related to the resolvent of the free Dirac
operator. Section 3 focuses on the rigorous definition and the spectral properties of
Aη,τ ; here the main result is the limiting absorption principle for Aη,τ . Finally, in
Section 4 we prove completeness for the scattering couple (Aη,τ , A0) and provide a
formula for the scattering matrix.

Notations. By C± we denote the upper and lower complex half plane, respectively.
Let X and Y be Hilbert spaces. We use for n ∈ N the notation Xn := X ⊗ Cn;
the elements of Xn are vectors with entries in X. Next B(X,Y ) is the set of all
bounded and everywhere defined operators from X to Y . The anti-dual operator
of A ∈ B(X,Y ) is denoted by A∗ and maps from Y ′ to X ′. If A is a closed
operator, then domA and ranA denote the domain of definition and the range of A,
respectively. If A is self-adjoint, then we denote by res(A), σ(A), σp(A), σdisc(A),
σess(A), and σac(A) the resolvent set, the spectrum, the point, the discrete, the
essential, and the absolutely continuous spectrum of A, respectively. For z ∈ res(A)
we often write Rz := (A − z)−1. Finally, for an open set Ω ⊂ R3 the L2-based
Sobolev spaces of order s ∈ R are denoted by Hs(Ω), while the Sobolev space on a
sufficiently regular surface Γ are denoted by Hs(Γ).

2. Preliminaries

In this section we collect some preliminary material which is needed to formu-
late and prove the limiting absorption principle for Dirac operators with singular
interactions in Section 3. We recall the definitions of weighted Sobolev spaces, the
free Dirac operator A0, and provide a limiting absorption principle for its resolvent.
We also discuss some auxiliary operators associated to the resolvent of A0 which
are crucial to study the Dirac operator Aη,τ with a δ-potential.
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2.1. Weighted Sobolev spaces. In the formulation of the limiting absorption
principle weighted L2-spaces L2

w(R3) and weighted Sobolev spaces Hs
w(R3) play an

important role. The definition of these spaces below follows for indices s ∈ N0

the classical one in [2] and is extended to general s ∈ R via interpolation; cf. [40,
page 245] and also [32, Appendix B].

Definition 2.1. Let 〈x〉 := (1 + |x|2)1/2 and w ∈ R. Then we define the weighted
L2-space by

L2
w(R3) :=

{
f ∈ S ′(R3) : 〈x〉wf ∈ L2(R3)

}
with norm

‖f‖2L2
w(R3) :=

∫
R3

(1 + |x|2)w|f(x)|2dx.

The weighted Sobolev spaces of order l ∈ N0 are defined by

H l
w(R3) =

{
f ∈ L2

w(R3) : Dαf ∈ L2
w(R3)∀α ∈ N3

0, |α| ≤ l
}
,

where Dα denotes the weak derivative (of order α ∈ N3
0), and equipped with the

norms

‖f‖2Hlw(R3) =
∑
|α|≤l

‖Dαf‖2L2
w(R3).

If t0 < t1 are two natural numbers, θ ∈ (0, 1), and s = (1 − θ)t0 + θt1, then we
define Hs

w(R3) (and a Hilbert space norm) via interpolation

Hs
w(R3) :=

[
Ht0
w (R3), Ht1

w (R3)
]
θ
,

and for s < 0 we set Hs
w(R3) := (H−s−w(R3))′ equipped with the corresponding norm.

Next, we state several known results on the trace operator which enter in the
construction of singular perturbations of the free Dirac operator. Let Ω ⊂ R3 be
an open and bounded C2-domain, i.e. Γ = ∂Ω is a closed bounded surface of class
C2. We denote

Ω− = Ω, Ω+ = R3 \ Ω.

The lateral traces on Γ are defined on C∞(Ω±)4 by γ±0 u± := u±|Γ. These extend

to bounded surjective maps γ±0 ∈ B
(
H1/2+s(Ω±)4, Hs(Γ)4

)
, s ∈ (0, 3

2 ], see, e.g.,
[32, Theorem 3.37]. The trace on Γ is defined as the mean value

γ0 :=
1

2

(
γ+

0 + γ−0
)

and will be viewed as a bounded operator from either Hs+1/2(R3)4 or Hs+1/2(R3 \
Γ)4 to Hs(Γ)4 for s ∈ (0, 3

2 ]; from the context it will be clear on which space γ0 is
defined. Since Γ is a bounded set it is also clear that γ0 is bounded as an operator

defined on the weighted spaces H
s+1/2
w (R3)4, more precisely, we have

γ0 ∈ B
(
Hs+1/2
w (R3)4, Hs(Γ)4

)
, s ∈

(
0, 3

2

]
, w ∈ R,

and for the anti-dual operator it follows

γ∗0 ∈ B
(
H−s(Γ)4, H

−s−1/2
−w (R3)4

)
, s ∈

(
0, 3

2

]
, w ∈ R; (2.1)

here γ∗0 is defined by (γ∗0ϕ)(f) = (ϕ, γ0f)H−s(Γ)4×Hs(Γ)4 for ϕ ∈ H−s(Γ)4, f ∈
H
s+1/2
w (R3)4, and (·, ·)H−s(Γ)4×Hs(Γ)4 denotes the extension of the L2-scalar prod-

uct to the dual pair H−s(Γ)4 ×Hs(Γ)4.
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2.2. The limiting absorption principle for the free Dirac operator. In this
section we recall the definition of the free Dirac operator and how the limiting
absorption principle for its resolvent can be proved. Many of the mapping properties
below can be shown in (weighted) Sobolev spaces Hs

w(R3)4 for any s ∈ R, but for
simplicity we state them just for those s which are needed later in our applications.
Let σj ∈ C2,2, j = 1, 2, 3, denote the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and αj , β ∈ C4,4, j = 1, 2, 3, the Dirac matrices

αj =

(
0 σj
σj 0

)
, β =

(
I2 0
0 −I2

)
,

where In is the identity in Cn,n. We will often use for x = (x1, x2, x3) ∈ R3 the
notations α · x = α1x1 + α2x2 + α3x3 and α · ∇ = α1∂1 + α2∂2 + α3∂3.

In the units ~ = c = 1 the Dirac operator A0 for a free relativistic particle of
mass m = 1 is the unbounded self-adjoint operator in L2(R3)4 defined by

A0 = −i
3∑
j=1

αj∂j + β, domA0 = H1(R3)4. (2.2)

Its spectrum is

σ(A0) = σac(A0) = (−∞,−1] ∪ [1,∞)

and one has σp(A0) = ∅. The operator A0 in (2.2) can also be viewed as an operator
from H1(R3)4 to L2(R3)4, where it is also bounded, so A0 ∈ B(H1(R3)4, L2(R3)4).
For z ∈ res (A0) the operator A0 − z ∈ B(H1(R3)4, L2(R3)4) is bijective, and by
duality one also has that A0−z ∈ B(L2(R3)4, H−1(R3)4) is bijective for z ∈ res (A0).
Hence, by interpolation

A0 − z ∈ B
(
H−s+1(R3)4, H−s(R3)4

)
, s ∈ [0, 1], z ∈ res (A0) , (2.3)

is bijective. Setting R0
z := (A0 − z)−1

, z ∈ res (A0), we obtain the following lemma.

Lemma 2.2. For s ∈ [0, 1] the map

z → R0
z ∈ B

(
H−s(R3)4, H−s+1(R3)4

)
is holomorphic on res(A0) = C \

(
(−∞,−1] ∪ [1,∞)

)
.

Proof. Fix s ∈ [0, 1] and z0 ∈ res(A0), and let z ∈ Bδ(z0) with δ > 0 sufficiently
small. From the identity

R0
z =

(
1−R0

z0 (z − z0)
)−1

R0
z0

it follows that the family {R0
z : z ∈ Bδ(z0)} is uniformly bounded with respect to

the norm in B(H−s(R3)4, H−s+1(R3)4). Now the resolvent identity

R0
z −R0

z0 = (z − z0)R0
zR

0
z0 (2.4)

implies first that the map z → R0
z is continuous in z0 ∈ res(A0) with values in

B(H−s(R3)4, H−s+1(R3)4). In a second step (2.4) implies that z → R0
z is holomor-

phic with values in B(H−s(R3)4, H−s+1(R3)4). �
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It is not difficult to check that the Dirac operator in (2.2) is bounded as an
operator from H l+1

w (R3)4 to H l
w(R3)4 for l ∈ N0 and w ∈ R, in particular,

A0 ∈ B
(
H l+1
w (R3)4, H l

w(R3)4
)
, w ∈ R, l = 0, 1.

By duality, one has A0 ∈ B(H−l−w(R3)4, H−l−1
−w (R3)4) for l = 0, 1 and w ∈ R, and

hence A0 ∈ B(H−lw (R3)4, H−l−1
w (R3)4) for l = 0, 1 and w ∈ R. Interpolation yields

A0 ∈ B
(
H−s+1
w (R3)4, H−sw (R3)4

)
, w ∈ R, s ∈ [−1, 1], (2.5)

in analogy with (2.3). This property extends to all s ∈ R, but only s ∈ [−1, 1] is
needed here.

Next we provide some properties of the resolvent of A0 and its limit behaviour
when z tends from C± to the continuous spectrum. In particular, it turns out that
the resolvent z 7→ R0

z extends continuously to λ± i0, λ ∈ (−∞,−1)∪ (1,∞), in the
weaker topology of B(H−sw (R3)4, H−s+1

−w (R3)4) for w > 1/2.

Proposition 2.3. The resolvent R0
z of the free Dirac operator A0 in (2.2) has the

following properties.

(i) For w ∈ R and s ∈ [0, 1] we have R0
z ∈ B(H−sw (R3)4, H−s+1

w (R3)4), z ∈
res(A0).

(ii) For w > 1/2 and s ∈ [0, 1] the limits

R0,±
λ := lim

ε↘0
R0
λ±iε , λ ∈ (−∞,−1) ∪ (1,∞) ,

exist in B(H−sw (R3)4, H−s+1
−w (R3)4) and the maps

z 7→ R0,±
z :=

{
R0
z, z ∈ C \ ((−∞,−1] ∪ [1,∞)),

R0,±
λ , z = λ ∈ (−∞,−1) ∪ (1,∞),

(2.6)

are continuous from C± \{−1, 1} to B(H−sw (R3)4, H−s+1
−w (R3)4). Moreover,

each limit R0,±
λ defines a right inverse of (A0 − λ), i.e.

(A0 − λ)R0,±
λ = I4.

The proof of Proposition 2.3 below is making use of the mapping properties
of the resolvent of the Laplacian. More precisely, let −∆ denote the self-adjoint
Laplace operator in L2(R3) defined on H2(R3) and

r0
z := (−∆− z)−1

, z ∈ C \ [0,∞).

We first recall some known mapping properties of r0
z .

Lemma 2.4. The resolvent r0
z of the free Laplacian −∆ has the following proper-

ties.

(i) For w ∈ R and s ∈ [0, 2] we have r0
z ∈ B(H−sw (R3), H−s+2

w (R3)), z ∈
C \ [0,∞).

(ii) For w > 1/2 and s ∈ [0, 2] the limits

r0,±
λ := lim

ε↘0
r0
z→λ±iε , λ > 0,

exist in B(H−sw (R3), H−s+2
−w (R3)) and the maps

z 7→ r0,±
z :=

{
r0
z , z ∈ C \ [0,∞),

r0,±
λ , z = λ ∈ (0,∞),
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are continuous from C± \ {0} to B(H−sw (R3), H−s+2
−w (R3)). Moreover, each

limit r0,±
λ defines a right inverse of (−∆− λ), i.e.

(−∆− λ) r0,±
λ = I1.

Proof. (i) By [29, equation (4.8)] we have

r0
z ∈ B

(
L2
w(R3), H2

w(R3)
)
, w ∈ R, z ∈ C \ [0,∞), (2.7)

(alternatively, (2.7) can be proved starting from the obvious unweighted estimate
‖f‖H2(R3) ≤ C ‖(−∆ + z)f‖L2(R3) and then passing to the weighted one by using

[2, estimate (A.17)]). Thus, by duality we conclude r0
z ∈ B(H−2

w (R3), L2
w(R3)) and

hence, by interpolation r0
z ∈ B(H−sw (R3), H−s+2

w (R3)) for all s ∈ [0, 2], w ∈ R, and
z ∈ C \ [0,∞).

Assertion (ii) can be shown in the same way as item (i) using [28, Theorem 18.3],
see also [2, Theorem 4.1], for s = 0, duality for s = −2, and an interpolation
argument for s ∈ (−2, 0). �

Proof of Proposition 2.3. For z ∈ res (A0) we make use of the identity (see, e.g. [7,
eq. (1.3)])

(A0 − z) (A0 + z) = (−∆ + 1− z2)I4,

which leads to

R0
z = (A0 + z) r0

(z2−1)I4.

Note that z ∈ (−∞,−1)∪ (1,∞) if and only if (z2− 1) > 0. Now assertions (i)-(ii)
follow from items (i)-(ii) in Lemma 2.4 and (2.5). �

Finally, we consider the symmetric restriction S of A0 to H1
0 (R3 \ Γ)4, that is,

S = −i
3∑
j=1

αj∂j + β, domS =
{
f ∈ H1(R3)4 : γ0f = 0

}
.

In Section 3 we define Dirac operators Aη,τ with δ-interactions as self-adjoint ex-
tensions of S. It can be shown that the adjoint S∗ has the form

domS∗ =
{
f = f+ ⊕ f− ∈ L2(Ω+)4 ⊕ L2(Ω−)4 : α · ∇f± ∈ L2(Ω±)4

}
,

S∗f = (−iα · ∇+ β)f+ ⊕ (−iα · ∇+ β)f−,
(2.8)

where the derivatives are understood in the distributional sense, cf. [11, Proposi-
tion 3.1]. In the next lemma we recall a result on the extension of the trace maps
γ±0 from [35, Proposition 2.1], see also [11, Lemma 4.3]. In the formulation of the
result we use for a function f ∈ L2(R3)4 the notation f± = f � Ω±.

Lemma 2.5. The trace map

γ±0 : H1(R3 \ Γ)4 = H1(Ω+)4 ⊕H1(Ω−)4 → H1/2(Γ)4, γ±0 (f+ ⊕ f−) = f±|Γ,

extends by continuity to

γ±0 ∈ B
(
domS∗, H−1/2(Γ)4

)
,

where domS∗ is equipped the graph norm of S∗.
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2.3. Auxiliary maps and estimates. In this section we study the operator func-
tions Gz and Mz given by

Gz = R0
zγ
∗
0 and Mz = γ0Gz, z ∈ res(A0). (2.9)

These operators play a crucial role in our construction in the next section. In what
follows, we discuss their mapping properties and their limit behaviour, when the
spectral parameter z ∈ C± approaches the continuous spectrum.

Proposition 2.6. For the operators Gz in (2.9) the following is true.

(i) For all z1, z2 ∈ res(A0)

Gz1 −Gz2 = (z1 − z2)R0
z1Gz2 = (z1 − z2)R0

z2Gz1

holds.
(ii) The map z → Gz ∈ B(H−1/2(Γ)4, L2(R3)4) is holomorphic on res(A0).

(iii) For w > 1/2 the limits

G±λ := lim
ε↘0

Gλ±iε, λ ∈ (−∞,−1) ∪ (1,∞), (2.10)

exist in B(H−1/2(Γ)4, L2
−w(R3)4), one has

G±λ = R0,±
λ γ∗0 ∈ B

(
H−1/2(Γ)4, L2

−w(R3)4
)
,

and the maps

z 7→ G±z :=

{
Gz, z ∈ C \ ((−∞,−1] ∪ [1,∞)),

G±λ , z = λ ∈ (−∞,−1) ∪ (1,∞),
(2.11)

are continuous from C± \ {−1, 1} to B(H−1/2(Γ)4, L2
−w(R3)4).

(iv) For any open and bounded set I ⊂ R with I ⊂ R \ {−1, 1}

sup
(λ,ε)∈I×(0,1)

√
ε ‖Gλ±iε‖H−1/2(Γ)4,L2(R3)4 <∞ (2.12)

holds.
(v) The dual G∗z ∈ B(L2(R3)4, H1/2(Γ)4) of Gz is given by

G∗z : L2(R3)4 → H1/2(Γ)4, G∗zf = γ0R
0
z̄f,

and the map res(A0) 3 z 7→ G∗z̄ is holomorphic in B(L2(R3)4, H1/2(Γ)4).
(vi) For w > 1/2 the limits

(G±λ )∗ := lim
ε↘0

(Gλ±iε)
∗, λ ∈ (−∞,−1) ∪ (1,∞), (2.13)

exist in B(L2
w(R3)4, H1/2(Γ)4), one has

(G±λ )∗ = γ0R
0,∓
λ ∈ B

(
L2
w(R3)4, H1/2(Γ)4

)
,

and the maps

z 7→ (G±z )∗ :=

{
G∗z, z ∈ C \ ((−∞,−1] ∪ [1,∞)),

(G±λ )∗, z = λ ∈ (−∞,−1) ∪ (1,∞),

are continuous from C∓ \ {−1, 1} to B(L2
w(R3)4, H1/2(Γ)4).
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Proof. Item (i) is a simple consequence of the definition of Gz in (2.9) and the
resolvent identity.

(ii) By Lemma 2.2 applied for s = 1 the map z 7→ R0
z ∈ B(H−1(R3)4, L2(R3)4)

is holomorphic. Together with (2.1) for w = 0 and s = 1/2 we conclude (ii).

(iii) For w > 1/2, s ∈ [0, 1], and λ ∈ (−∞,−1) ∪ (1,∞) the limits R0,±
λ =

limε↘0Rλ±iε exist in B(H−1
w (R3)4, L2

−w(R3)4) according to Proposition 2.3 (ii),
again applied with s = 1. From (2.1) with s = 1/2 we conclude that the limits

G±λ = lim
ε↘0

Gλ±iε = lim
ε↘0

R0
λ±iεγ

∗
0

exist in B(H−1/2(Γ)4, L2
−w(R3)4) and one has

G±λ = R0,±
λ γ∗0 ∈ B

(
H−1/2(Γ)4, L2

−w(R3)4
)
, w > 1/2.

Therefore, the continuity in (2.11) is a simple consequence of (2.6) for s = 1.

(iv) The claim is a consequence of the limiting absorption principle for Gz. It
follows from the estimate (3.16) in [30] and (2.6).

(v)-(vi) The claims follow directly from (ii) and (iii) by duality. �

Next, we discuss the operators Mz which are formally given by (2.9).

Proposition 2.7. For the operators Mz in (2.9) the following is true.

(i) For all z ∈ res(A0) one has Mz ∈ B(H−1/2(Γ)4).
(ii) For all z1, z2 ∈ res(A0)

Mz1 −Mz2 = (z1 − z2)G∗z̄1Gz2 = (z1 − z2)G∗z̄2Gz1

holds.
(iii) The map z →Mz ∈ B(H−1/2(Γ)4) is holomorphic on res(A0).
(iv) The limits

M±λ := lim
ε↘0

Mλ±iε, λ ∈ (−∞,−1) ∪ (1,∞), (2.14)

exist in B(H−1/2(Γ)4) and the maps

z 7→M±z :=

{
Mz, z ∈ C \ ((−∞,−1] ∪ [1,∞)),

M±λ , z = λ ∈ (−∞,−1) ∪ (1,∞),

are continuous from C± \ {−1, 1} to B(H−1/2(Γ)4).
(v) The operator M2

z − 1
4I4 gives rise to a bounded operator

M2
z −

1

4
I4 : H−1/2(Γ)4 → H1/2(Γ)4.

(vi) The operator βMz +Mzβ gives rise to a bounded operator

βMz +Mzβ : H−1/2(Γ)4 → H1/2(Γ)4.

Proof. (i) Let S∗ be given by (2.8) and fix z ∈ res(A0). From Proposition 2.6 (v)
we obtain kerG∗z = ran(S − z̄). Moreover, as ranG∗z = H1/2(Γ)4 is closed also
ranGz is closed and hence

ranGz =
(
kerG∗z

)⊥
= ker(S∗ − z).
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Since the graph norm of S∗ and the L2(R3)4 norm are equivalent on ker(S∗ − z)
we conclude

Gz ∈ B
(
H−1/2(Γ)4,domS∗

)
,

when domS∗ is equipped the graph norm of S∗. With the extension of the trace
operator γ0 = 1

2 (γ+
0 + γ−0 ) from Lemma 2.5 the claim of (i) follows.

(ii)-(iv) follow directly from Proposition 2.6.

(v) is shown in [11, Proposition 4.4], see also Remark 2.8 below.

(vi) follows from the discussion before [10, Proposition 2.1] and [32, Theo-
rem 6.11]. �

Remark 2.8. It is worth to mention that the operators Gz and Mz defined by (2.9)

coincide with the maps γ̃(z) and M̃(z) introduced in [11, Proposition 4.4]. In fact,

for Gz and γ̃(z) this follows as their duals coincide; for Mz and M̃(z) this follows
from their definitions in (2.9) and [11, Proposition 4.4].

3. Dirac operators with electrostatic and Lorentz scalar δ-shell
interactions

In this section we recall the definition and some of the basic properties of Dirac
operators which are coupled with a combination of electrostatic and Lorentz scalar
δ-shell potentials, as they were treated, e.g., in [5, 9, 10]. Let ν be the unit normal
vector field at Γ pointing outwards of Ω+. We define for η, τ ∈ R the operator

Aη,τf := (−iα · ∇+ β)f+ ⊕ (−iα · ∇+ β)f−,

domAη,τ :=
{
f = f+ ⊕ f− ∈ domS∗ :

− i(α · ν)(γ+
0 f − γ

−
0 f) = 1

2 (ηI4 + τβ)(γ+
0 f + γ−0 f)

}
,

(3.1)

with S∗ in (2.8) and γ±0 denotes the trace operator from Lemma 2.5. In the next
proposition we recall in the case of non-critical interaction strengths η2 − τ2 6= 4
the qualitative spectral properties and a resolvent formula for the operator Aη,τ ;
cf. [10, Lemma 3.3, Theorem 3.4, and Theorem 4.1] or [9, Theorem 4.4]. We do not
discuss the case of critical interaction strengths η2 − τ2 = 4 here. In this situation
the spectral properties of Aη,τ are different from the non-critical case; cf. [11, 35].

Proposition 3.1. Let η, τ ∈ R such that η2− τ2 6= 4 and let Gz and Mz be defined
as in (2.9). Then the operator Aη,τ in (3.1) is self-adjoint in L2(R3)4 and the
following is true.

(i) σess(Aη,τ ) = σess(A0) = (−∞,−1] ∪ [1,∞).
(ii) z ∈ σdisc(Aη,τ ) if and only if −1 ∈ σ((ηI4 + τβ)Mz).

(iii) For z ∈ res(Aη,τ ) the operator I4 + (ηI4 + τβ)Mz is boundedly invertible in

H−1/2(Γ)4 and with

Λη,τz := (I4 + (ηI4 + τβ)Mz)
−1

(ηI4 + τβ) ∈ B
(
H−1/2(Γ)

)
(3.2)

one has the resolvent formula

Rη,τz := (Aη,τ − z)−1 = R0
z −GzΛη,τz G∗z̄. (3.3)

(iv) The discrete spectrum of Aη,τ in (−1, 1) is finite.
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Remark 3.2. One can show that a generic function in domS∗ does not possess
any positive Sobolev regularity near Γ. However, in the non-critical case η2−τ2 6= 4
it was shown in [10, Theorem 3.4] that domAη,τ ⊂ H1(Ω+)4 ⊕H1(Ω−)4.

In the following proposition we discuss the existence of embedded eigenvalues.

Proposition 3.3. Let η, τ ∈ R such that η2 − τ2 6= 4, let Aη,τ be defined by (3.1),
and assume that Ω+ is connected.

(i) If η2 − τ2 6= ±4, then Aη,τ has no embedded eigenvalues in (−∞,−1) ∪
(1,∞).

(ii) If η2 − τ2 = −4, then Aη,τ has a discrete set of embedded eigenvalues in
(−∞,−1) ∪ (1,∞) which may only accumulate at ±∞.

Proof. Assertion (i) can be shown in the same way as [5, Theorem 3.7]; cf. the
discussion after this result. To get the result from item (ii) we note first that for
η2 − τ2 = −4 one has the decoupling

Aη,τ = Bη,τ (Ω+)⊕Bη,τ (Ω−),

where Bη,τ (Ω±) is a self-adjoint Dirac operator acting in L2(Ω±)4 with suitable
boundary conditions on Γ; cf. [10, Lemma 3.1]. One can show in the same way as
in [5, Theorem 3.7] that Bη,τ (Ω+) has no eigenvalues in (−∞,−1) ∪ (1,∞). On
the other hand, according to Remark 3.2 the domain of definition of Bη,τ (Ω−) is
contained in H1(Ω−)4, which implies that the resolvent of Bη,τ (Ω−) is compact.
Hence Bη,τ (Ω−) and thus also Aη,τ have a discrete set of eigenvalues in (−∞,−1)∪
(1,∞) possibly accumulating at ±∞. �

The map Λη,τz appearing in the Krĕın type resolvent formula in Proposition 3.1
will be important for our later analysis. In the following proposition we discuss some
basic properties of Λη,τz ; in particular, we extend the limiting absorption principle
for Mz from Proposition 2.7 to Λη,τz . This will be a key ingredient to show the
limiting absorption principle for Aη,τ in Theorem 3.6.

Proposition 3.4. Let η, τ ∈ R such that η2 − τ2 6= 4 and let Λη,τz , z ∈ res(Aη,τ ),
be defined by (3.2). Then the following assertions are true.

(i) For z1, z2 ∈ res(Aη,τ ) the relation

Λη,τz1 − Λη,τz2 = (z2 − z1)Λη,τz1 G
∗
z̄1Gz2Λη,τz2

holds.
(ii) Viewing Λη,τz as an operator in B(H1/2(Γ)4, H−1/2(Γ)4), one has (Λη,τz )∗ =

Λη,τz̄ .
(iii) The map z 7→ Λη,τz ∈ B(H−1/2(Γ)4) is analytic on res (A0) \ σdisc(Aη,τ ).
(iv) There exists a closed set N∞ ⊂ (−∞,−1) ∪ (1,∞) with Lebesgue measure

zero such that the limits

Λη,τ,±λ := lim
ε↘0

Λη,τλ±iε (3.4)

exist in B(H−1/2(Γ)4) for all λ ∈ ((−∞,−1) ∪ (1,∞)) \ N∞ and the maps

z 7→ Λη,τ,±z :=

{
Λη,τz , z ∈ C \

(
(−∞,−1] ∪ [1,∞) ∪ σdisc(Aη,τ )

)
,

Λη,τ,±λ , z = λ ∈ ((−∞,−1) ∪ (1,∞)) \ N∞,

are continuous from C± \ (σdisc(Aη,τ ) ∪N∞) to B(H−1/2(Γ)4).
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Proof. (i) We introduce the notation B := ηI4 + τβ. Using the resolvent identity
and Proposition 2.7 (ii) we get

Λη,τz1 − Λη,τz2 = (I4 +BMz1)−1B − (I4 +BMz2)−1B

= (I4 +BMz1)−1B(Mz2 −Mz1)(I4 +BMz2)−1B = (z2 − z1)Λη,τz1 G
∗
z̄1Gz2Λη,τz2 ,

which is the claimed result.

(ii) follows from the fact that M̂z := M∗z ∈ B(H1/2(Γ)4) is given by the re-

striction M̂z = Mz̄ � H1/2(Γ)4; cf. [11, Proposition 4.4 (ii)] and also Remark 2.8.

In fact, together with Proposition 3.1 (iii) this implies that I4 + (ηI4 + τβ)M̂z is
boundedly invertible in H1/2(Γ)4 and hence, we have for ϕ,ψ ∈ H1/2(Γ)4 that(

Λη,τz ϕ,ψ
)
H−1/2(Γ)4×H1/2(Γ)4

=
(
(I4 + (ηI4 + τβ)Mz)

−1(ηI4 + τβ)ϕ,ψ
)
H−1/2(Γ)4×H1/2(Γ)4

=
(
(I4 + (ηI4 + τβ)M̂z̄)

−1(ηI4 + τβ)ϕ,ψ
)
H1/2(Γ)4×H−1/2(Γ)4

=
(
ϕ, (ηI4 + τβ) (I4 +Mz̄(ηI4 + τβ))

−1
ψ
)
H1/2(Γ)4×H−1/2(Γ)4

=
(
ϕ, (I4 + (ηI4 + τβ)Mz̄)

−1(ηI4 + τβ)ψ
)
H1/2(Γ)4×H−1/2(Γ)4

=
(
ϕ,Λη,τz̄ ψ

)
H1/2(Γ)4×H−1/2(Γ)4 ,

which is the claim of this item.

(iii) First we show that the identity

(I4 + (ηI4 + τβ)Mz) (I4 − (ηI4 + τβ)Mz) = I4 −
1

4
(η2 − τ2)I4 −Kz (3.5)

holds with a compact operator Kz in H−1/2(Γ)4. To prove (3.5) we note that

I4 − (ηI4 + τβ)Mz = I4 −Mz(ηI4 − τβ) +K1,z

with

K1,z := Mz(ηI4 − τβ)− (ηI4 + τβ)Mz = −τ(Mzβ + βMz).

Since H1/2(Γ)4 is compactly embedded in H−1/2(Γ)4 it follows from Proposi-
tion 2.7 (vi) that K1,z is a compact operator in H−1/2(Γ)4. Hence, also

K2,z := (I4 + (ηI4 + τβ)Mz)K1,z

is compact in H−1/2(Γ)4. Thus, we have

(I4 + (ηI4 + τβ)Mz) (I4 − (ηI4 + τβ)Mz)

= (I4 + (ηI4 + τβ)Mz) (I4 −Mz(ηI4 − τβ)) +K2,z

= I4 − (ηI4 + τβ)(Mz)
2(ηI4 − τβ) + τ(βMz +Mzβ) +K2,z

= I4 −
1

4
(η2 − τ2)I4 −Kz

with

Kz := (ηI4 + τβ)

(
(Mz)

2 − 1

4

)
(ηI4 − τβ)− τ(βMz +Mzβ)−K2,z,

which is compact in H−1/2(Γ)4 by Proposition 2.7 (v)-(vi). This shows (3.5).
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By Proposition 3.1 (iii) and (3.5) we have for z ∈ res(Aη,τ ) ∩ res(A−η,−τ ) that

(I4 − (ηI4 + τβ)Mz)
−1

(I4 + (ηI4 + τβ)Mz)
−1

=

(
I4 −

1

4
(η2 − τ2)I4 −Kz

)−1

belongs to B(H−1/2(Γ)4). Moreover, the map I4 − 1/4(η2 − τ2)I4 −Kz is analytic
in res(A0) due to the analyticity of Mz shown in Proposition 2.7 (iii) and Kz is
compact in H−1/2(Γ)4. Therefore, the analytic Fredholm theorem [38, Theorem
VI.14] implies that

z 7→
(
I4 −

1

4
(η2 − τ2)I4 −Kz

)−1

is analytic in B(H−1/2(Γ)4) for z ∈ res (A0) \ (σdisc(Aη,τ ) ∪ σdisc(A−η,−τ ) ∪ N0),

where N0 is a discrete set in res(A0). Since z 7→Mz ∈ B(H−1/2(Γ)4) is analytic on
res (A0) by Proposition 2.7, we conclude from

Λη,τz = (I4 − (ηI4 + τβ)Mz)

(
I4 −

1

4
(η2 − τ2)I4 −Kz

)−1

(ηI4 + τβ) (3.6)

that z 7→ Λη,τz ∈ B(H−1/2(Γ)4) is analytic on res(A0)\(σdisc(Aη,τ )∪σdisc(A−η,−τ )∪
N0). Finally, by Proposition 3.1 and analyticity this extends to all z ∈ res (A0) \
σdisc(Aη,τ ).

(iv) Note first that the limit properties of z 7→Mz for z = λ± iε and ε↘ 0 with
λ ∈ (−∞,−1) ∪ (1,∞) extend to

z 7→ Tz := I4 −
1

4
(η2 − τ2)I4 −Kz.

More precisely, it follows from Proposition 2.7 and (3.5) that

T±λ := lim
ε↘0

Tλ±iε ∈ B
(
H−1/2(Γ)4

)
, λ ∈ (−∞,−1) ∪ (1,∞).

It is also clear from the considerations above that Tz depends analytically on z ∈
res (A0), that Tz has a bounded inverse for z ∈ C \R, and that Tz can be extended
to the mappings

z 7→ T±z :=

{
Tz, z ∈ C \ ((−∞,−1] ∪ [1,∞)),

T±λ , z = λ ∈ (−∞,−1) ∪ (1,∞),

which are continuous from C± \ {−1, 1} to B(H−1/2(Γ)4), see Proposition 2.7 (iv).
Therefore, [39, Theorem 9.10.2] implies that there exists a set N∞ ⊂ (−∞,−1) ∪
(1,∞) with Lebesgue measure zero such that (T±λ )−1 ∈ B(H−1/2(Γ)4) for λ ∈
(−∞,−1) ∪ (1,∞) \ N∞. Next, let λ ∈ ((−∞,−1) ∪ (1,∞)) \ N∞ be fixed. Then
we have for a small δ

T±λ+δ = T±λ
(
I4 + (T±λ )−1(T±λ+δ − T

±
λ )
)
. (3.7)

With the continuity of z 7→ T±z and the Neumann formula we deduce from this
that the set σdisc(Aη,τ ) ∪ σdisc(A−η,−τ ) ∪N0 ∪N∞, on which T±z is not invertible,

is closed. With a similar consideration as in (3.7) with δ ∈ C± we find that

z 7→ (T±z )−1 =

{
(Tz)

−1, z ∈ res (A0) \ (σdisc(Aη,τ ) ∪ σdisc(A−η,−τ ) ∪N0),

(T±λ )−1, z = λ ∈ ((−∞,−1) ∪ (1,∞)) \ N∞,
(3.8)

is continuous in B(H−1/2(Γ)4).
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Now, it is clear from the above considerations that N∞ is closed and with the
help of item (iii), (3.6), (3.8), and Proposition 2.7 (iv) we find that Λη,τ,±z in (3.4)
is continuous from C±\(σdisc(Aη,τ )∪N∞) to B(H−1/2(Γ)4). This finishes the proof
of this proposition. �

Remark 3.5. By Proposition 3.4 (i)-(ii) the map Λη,τz defined in (3.2) satisfies
the relations (2.6) and (2.7) in [30] and so, Aη,τ fits into the framework of [30,
Section 2]. In particular, (3.3) corresponds to formula (2.10) in [30]; note that the
resolvents in [30] have a different sign than in this paper.

Combining the Krĕın type resolvent formula from Proposition 3.1 with Proposi-
tion 2.6 and Proposition 3.4 we get the limiting absorption principle for Aη,τ .

Theorem 3.6. Let η, τ ∈ R such that η2− τ2 6= 4 and let Aη,τ be defined by (3.1).
Then there exists a closed set N ⊂ R \ {−1, 1} with Lebesgue measure zero such
that for all λ ∈ R \ (N ∪ {−1, 1}) and w > 1

2 the limits

Rη,τ,±λ := lim
ε↘0

(
Aη,τ − (λ± iε)

)−1

exist in the topology of B(L2
w(R3)4, L2

−w(R3)4), and they are explicitly given by

Rη,τ,±λ = R0,±
λ −G±λΛη,τ,±λ (G∓λ )∗,

where G±λ , (G∓λ )∗, and Λη,τ,±λ are defined as in (2.10), (2.13), and (3.4), respec-
tively.

Proof. Recall first that R0,±
λ ∈ B(L2

w(R3)4, H1
−w(R3)4) by Proposition 2.3 (ii) for

s = 0 and λ ∈ R \ {−1, 1}, and hence, in particular, R0,±
λ ∈ B(L2

w(R3)4, L2
−w(R3)4)

for λ ∈ R\{−1, 1}. Next, we have (G∓λ )∗ ∈ B(L2
w(R3)4, H1/2(Γ)4) for λ ∈ R\{−1, 1}

by Proposition 2.6 (vi) and hence also (G∓λ )∗ ∈ B(L2
w(R3)4, H−1/2(Γ)4). Since

Λη,τ,±λ ∈ B(H−1/2(Γ)4) for λ ∈ R \ (σdisc(Aη,τ ) ∪ N∞ ∪ {−1, 1}) by Proposi-

tion 3.4 (iv) and G±λ ∈ B(H−1/2(Γ)4, L2
−w(R3)4) for λ ∈ R \ {−1, 1} by Propo-

sition 2.6 (iii) the assertion follows with the closed set N = σdisc(Aη,τ )∪N∞; note
that σdisc(Aη,τ ) is finite by Proposition 3.1 (iv). �

4. The Scattering Matrix

In this section we calculate the scattering matrix for the couple (Aη,τ , A0), where
η, τ ∈ R are fixed such that η2 − τ2 6= 4 and Aη,τ is defined by (3.1). First, we
show the existence and completeness of the wave operators. We remark that their
existence and completeness for smooth surfaces Γ is shown in [10, Proposition 4.7],
but we give a proof which also holds for C2-surfaces Γ.

Theorem 4.1. The scattering couple (Aη,τ , A0) is complete, that is, the strong
limits

W±(Aη,τ , A0) := s- lim
t→±∞

eitAη,τ e−itA0 ,

W±(A0, Aη,τ ) := s- lim
t→±∞

eitA0e−itAη,τP η,τac ,

exist everywhere in L2(R3)4, and

ran(W±(Aη,τ , A0)) = (L2(R3)4)η,τac , ran(W±(A0, Aη,τ )) = L2(R3)4 ,
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and W±(Aη,τ , A0)∗ = W±(A0, Aη,τ ) hold; here P η,τac denotes the orthogonal projec-
tor onto the absolutely continuous subspace (L2(R3)4)η,τac relative to Aη,τ .

Proof. Let N ⊂ R \ {−1, 1} be as in Theorem 3.6 and let I ⊂ R \ (N ∪ {−1, 1}) be
open and bounded with I ⊂ R \ (N ∪ {−1, 1}). Then, by Proposition 2.6 (iv)

sup
(λ,ε)∈I×(0,1)

√
ε ‖Gλ±iε‖H−1/2(Γ)4,L2(R3)4 <∞

holds and the continuity of Λη,τ,±z from Proposition 3.4 (iv) and the fact that
H1/2(Γ)4 is continuously embedded in H−1/2(Γ)4 imply

sup
(λ,ε)∈I×(0,1)

‖Λη,τλ±iε‖H1/2(Γ)4,H−1/2(Γ)4 <∞ .

Hence, the existence and completeness of the wave operators follows from [30,
Theorem 2.8] and Remark 3.5. �

Remark 4.2. (i) Whenever the set N∞ in Proposition 3.4 (iv) is discrete, then,
proceeding as in [2, Theorem 6.1], the limiting absorption principle provided in
Theorem 3.6 implies absence of singular continuous spectrum and hence asymptotic
completeness for the scattering couple (Aη,τ , A0).
(ii) In the so-called confinement case η2 − τ2 = −4 the δ-potential is impenetrable,
i.e. the operator Aη,τ decouples in the form Aη,τ = Bη,τ (Ω+) ⊕ Bη,τ (Ω−), where
Bη,τ (Ω±) are self-adjoint operators in L2(Ω±)4; cf. [5, Section 5], [10, Lemma 3.1],
or the proof of Proposition 3.3. This orthogonal decoupling extends to the corre-
sponding semigroups e±itAη,τ in the definition of the wave operators and the scat-
tering operator Sη,τ below; for related considerations on the semigroup associated to
Aη,τ in the confinement case we also refer to [5, Section 5]. Since Ω− is a bounded
C2-domain the spectrum of Bη,τ (Ω−) is discrete and hence the absolutely contin-
uous spectra of Aη,τ and Bη,τ (Ω+) coincide. Therefore, for the scattering process
only the operator Bη,τ (Ω+) in the exterior domain Ω+ is relevant.

The above theorem allows to define the unitary scattering operator in L2(R3)4

by

Sη,τ := W+(Aη,τ , A0)∗W−(Aη,τ , A0) .

To construct the associated scattering matrix, we introduce for any λ ∈ R with
|λ| > 1

L2
(λ)(S

2)4 :=

{
ψλ ∈ L2(S2)4 :

1

2

(
I4 +

√
λ2 − 1α · ξ + β

λ

)
ψλ(ξ) = ψλ(ξ) for a.e. ξ ∈ S2

}
and for any w > 1/2,

F0 : L2
w(R3)4 →

∫ ⊕
|λ|>1

L2
(λ)(S

2)4
√
λ2 − 1 |λ| dλ , F0f(λ) = f̃λ , (4.1)

where the function f̃λ ∈ L2
(λ)(S

2)4 is defined by

f̃λ(ξ) :=
1

2

(
I4 +

√
λ2 − 1α · ξ + β

λ

)
f̂(
√
λ2 − 1 ξ),
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and f̂ denotes the Fourier transform of f . Note that f̃λ is well-defined, as f̂ ∈
Hw(R3)4 for f ∈ L2

w(R3)4 and hence, since w > 1
2 , f̂ has a trace on

√
λ2 − 1S2.

The map F0 extends to a unitary map on L2(R3)4, denoted by the same symbol,

which diagonalizes A0, i.e., (F0A0f)(λ) = λ f̃λ; see, e.g., [27, Section 3.2]. Then
the scattering matrix is defined by

Sη,τ (λ) : L2
(λ)(S

2)4 → L2
(λ)(S

2)4, Sη,τ (λ)f̃λ = (F0Sη,τf)(λ).

In order to compute the scattering operator Sη,τ and the associated scattering
matrix Sη,τ (λ) we use the Birman-Kato invariance principle

W±(Aη,τ , A0) = W±(−Rη,τµ ,−R0
µ)

for some fixed µ ∈ (−1, 1) ∩ ρ(Aη,τ ), and so, by defining

Sµη,τ := W+(−Rη,τµ ,−R0
µ)∗W−(−Rη,τµ ,−R0

µ)

we have

Sη,τ = Sµη,τ . (4.2)

Below, we prove that all these objects associated to the scattering pair (−Rη,τµ ,−R0
µ)

exist. We note again, that the resolvents in [30] have a different sign as in this paper.
Following the strategy developed [30, Section 4], we use the Birman-Yafaev station-
ary scattering theory from [42] to provide the scattering matrix for the scattering
couple (−Rη,τµ ,−R0

µ).

In the following let µ ∈ (−1, 1) ∩ ρ(Aη,τ ) be fixed. One verifies that the unitary
operator Fµ0 which diagonalizes −R0

µ is

Fµ0 f(λ) = f̃µλ :=
1

λ
f̃µ−1/λ , λ 6= 0 ,

∣∣∣∣µ− 1

λ

∣∣∣∣ > 1.

In the next preparatory lemma we compute the scattering matrix for the scattering
couple (−Rη,τµ ,−R0

µ).

Lemma 4.3. The strong limits

W±(−Rη,τµ ,−R0
µ) := s- lim

t→±∞
e−itR

η,τ
µ eitR

0
µ

exist everywhere in L2(R3)4. Moreover, for any λ 6= 0 such that µ− 1
λ ∈ R \ (N ∪

[−1, 1]), the scattering matrix Sµη,τ (λ) for the pair (−Rη,τµ ,−R0
µ) is given by

Sµη,τ (λ) = I4 − 2πiLµλΛη,τµ
(
I4 −G∗µ

(
−Rη,τµ − (λ+ i0)

)−1
GµΛη,τµ

)
(Lµλ)∗ , (4.3)

where

Lµλ : H−1/2(Γ)4 → L2
(µ−1/λ)(S

2)4 , Lµλφ :=
1

λ
(F0Gµφ)(µ− 1/λ) .

Proof. We follow the same arguments as in the proof of [30, Theorem 4.1]. By
−Rη,τµ = −R0

µ + GµΛη,τµ G∗µ, we can use [42, Theorem 4’, page 178]; for that, we
notice that the maps denoted there by G and V correspond to our G∗µ and Λη,τµ ,

respectively 1, and that (Λη,τµ )∗ = Λη,τµ for our choice of a real µ, when Λη,τµ is viewed

as an operator in B(H1/2(Γ)4, H−1/2(Γ)4), see Proposition 3.4 (ii). Moreover, the

1In fact, in the assumptions in [42, Theorem 4’, page 178] one has V = V∗ in the same Hilbert
space G. However, one verifies that also more general perturbations of the form G∗VG with

V : G1 → G−1 in a rigging G1 ⊂ G ⊂ G−1 can be treated.
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maps B(z) and Z0(λ;G) appearing in [42, Theorem 4’, page 178] are in our situation
B(z) = G∗µ(−Rη,τµ − z)−1Gµ and Z0(λ;G)φ = (Fµ0 Gµφ)(λ) = Lµλφ, φ ∈ H−1/2(Γ)4.

Let us check that the assumptions required in [42, Theorem 4’, page 178] are
satisfied. First, since G∗µ ∈ B(L2(R3)4, H1/2(Γ)4), the operator G∗µ is |R0

µ|1/2-
bounded. To proceed, we note that the relations (which follow from the resolvent
identity)(
−R0

µ − z
)−1

= −1

z

(
I4 −

1

z
R0
µ− 1

z

)
,
(
−Rη,τµ − z

)−1
= −1

z

(
I4 −

1

z
Rη,τ
µ− 1

z

)
,

(4.4)
and the limiting absorption principles for A0 and Aη,τ (see Proposition 2.3 and
Theorem 3.6) imply that the limits(

−R0
µ − (λ± i0)

)−1
:= lim

ε↘0

(
−R0

µ − (λ± iε)
)−1

for λ 6= 0, µ− 1
λ 6= ±1, and(
−Rη,τµ − (λ± i0)

)−1
:= lim

ε↘0

(
−Rη,τµ − (λ± iε)

)−1

for λ 6= 0, µ− 1
λ ∈ R \ (N ∪ {−1, 1}), exist in B(L2

w(R3), L2
−w(R3)). Therefore, the

limits

lim
ε↘0

G∗µ(−R0
µ − (λ± iε))−1 , lim

ε↘0
G∗µ(−Rη,τµ − (λ± iε))−1 ,

and

lim
ε↘0

G∗µ(−Rη,τµ − (λ± iε))−1Gµ

exist. Thus, to get the claimed result we need to check the validity of the remaining
assumption in [42, Theorem 4’, page 178], namely that G∗µ is weakly-R0

µ smooth,
i.e., by [42, Lemma 2, page 154],

sup
0<ε<1

ε ‖G∗µ(−R0
µ − (λ± iε))−1‖2L2(R3)4,H1/2(Γ)4 ≤ cλ <∞ , a.e. λ .

By (4.4), this is a consequence of

sup
0<δ<1

δ ‖G∗µR0
µ− 1

λ±iδ
‖2L2(R3)4,H1/2(Γ)4 ≤ Cλ <∞ , a.e. λ . (4.5)

To show (4.5), we compute for z ∈ C \ R

‖G∗µR0
z‖L2(R3)4,H1/2(Γ)4 = ‖γ0R

0
µR

0
z‖L2(R3)4,H1/2(Γ)4

= ‖γ0R
0
zR

0
µ‖L2(R3)4,H1/2(Γ)4

= ‖R0
µ(γ0R

0
z)
∗‖H−1/2(Γ)4,L2(R3)4

≤ ‖R0
µ‖L2(R3)4,L2(R3)4‖Gz̄‖H−1/2(Γ)4,L2(R3)4 .

With the help of (2.12) the last calculation shows that (4.5) is indeed true. Thus,
by [42, Theorem 4’, page 178], the limits (4.3) exist everywhere in L2(R3)4 and the
corresponding scattering matrix is given by (4.3). �

With the invariance principle and Lemma 4.3 it is now possible to compute the
scattering matrix for the pair (Aη,τ , A0).
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Theorem 4.4. The scattering matrix

Sη,τ (λ) : L2
(λ)(S

2)4 → L2
(λ)(S

2)4 , λ ∈ R \ (N ∪ [−1, 1]) ,

for the scattering couple (Aη,τ , A0) has the representation

Sη,τ (λ) = I4 − 2πiLλΛη,τ,+λ L∗λ , (4.6)

where Lλ : H−1/2(Γ)4 → L2
(λ)(S

2)4 acts on any φ ∈ L2(Γ)4 as

Lλφ(ξ) :=
1

2

(
I4 +

√
λ2 − 1α · ξ + β

λ

)
1

(2π)3/2

∫
Γ

e−i
√
λ2−1 ξ·xφ(x) dσ(x) .

Proof. Recall that by Theorem 4.1, Lemma 4.3, and by Birman-Kato invariance
principle (4.2), one has

Sη,τ = Sµη,τ .

To get the representation in (4.6), we note first that (Fµ0 g)(λ) = 1
λ (F0g)(µ− 1

λ ) im-

plies (F0g)(λ) = (µ−λ)−1(Fµ0 g)((µ−λ)−1). Hence, we conclude with the invariance
principle for any f ∈ L2(R3)4

Sη,τ (λ)f̃λ = (F0Sη,τf)(λ) = (F0S
µ
η,τf)(λ)

= (µ− λ)−1(Fµ0 S
µ
η,τf)((µ− λ)−1) = Sµη,τ ((µ− λ)−1)f̃λ,

that means (see also [42, Equation (14), Section 6, Chapter 2])

Sη,τ (λ) = Sµη,τ ((−λ+ µ)−1) . (4.7)

Next, using (4.4), Proposition 3.1 (iii), Proposition 2.6 (i), and Proposition 3.4 (i)
we compute for z ∈ C \ R

Λη,τµ
(
I4 −G∗µ

(
−Rη,τµ − z

)−1
GµΛη,τµ

)
= Λη,τµ

(
I4 +

1

z
G∗µ

(
I4 −

1

z
Rη,τ
µ− 1

z

)
GµΛη,τµ

)
= Λη,τµ

(
I4 +

1

z
G∗µ

(
Gµ −

1

z
R0
µ− 1

z
Gµ +

1

z
Gµ− 1

z
Λη,τ
µ− 1

z

G∗µ− 1
z̄
Gµ

)
Λη,τµ

)
= Λη,τµ +

1

z
Λη,τµ G∗µ

(
Gµ− 1

z
Λη,τµ +

1

z
Gµ− 1

z
Λη,τ
µ− 1

z

G∗µ− 1
z̄
GµΛη,τµ

)
= Λη,τµ +

1

z
Λη,τµ G∗µ

(
Gµ− 1

z
Λη,τµ +Gµ− 1

z

(
Λη,τ
µ− 1

z

− Λη,τµ
))

= Λη,τµ +
1

z
Λη,τµ G∗µGµ− 1

z
Λη,τ
µ− 1

z

= Λη,τ
µ− 1

z

.

Using this identity with z = λ ± iε for µ − 1
λ ∈ R \ N and considering the limit

ε↘ 0 we deduce with Proposition 3.4, Theorem 3.6, and (4.4)

Λη,τµ
(
I4 −G∗µ

(
−Rη,τµ − (λ+ i0)

)−1
GµΛη,τµ

)
= Λη,τ,+

µ− 1
λ

.

Therefore, by Lemma 4.3 we have

Sµη,τ (λ) = I4 − 2πiLµλΛη,τ,+
µ− 1

λ

(Lµλ)∗ . (4.8)

Thus (4.6) follows from (4.8), equation (4.7), and by setting Lλ := −Lµ(−λ+µ)−1

(note that the minus sign does not change the final result, as Lλ appears only
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in products with L∗λ). Let us finally calculate the explicit action of Lλ by using

the definition of the map F0 from (4.1). Since (F0R
0
µf)(λ) = (λ − µ)−1f̃λ and

Gµ = R0
µγ
∗
0 we have for φ ∈ L2(Γ)4

Lλφ(ξ) = (λ− µ)((F0R
0
µγ
∗
0φ)(λ))(ξ)

=
1

2

(
I4 +

√
λ2 − 1α · ξ + β

λ

)
γ̂∗0φ(

√
λ2 − 1 ξ)

=
1

2

(
I4 +

√
λ2 − 1α · ξ + β

λ

)
1

(2π)3/2

∫
Γ

e−i
√
λ2−1 ξ·xφ(x) dσ(x) .

This completes the proof of Theorem 4.4. �
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[18] J. Brasche, P. Exner, Yu. Kuperin, P. Šeba. Schrödinger operators with singular interactions.

J. Math. Anal. Appl. 184 112–139, 1994.
[19] V. Budyika, M. Malamud, A. Posilicano. Nonrelativistic limit for 2p × 2p-Dirac operators

with point interactions on a discrete set. Russ. J. Math. Phys. 24(4), 426–435, 2017.



20 J. BEHRNDT, M. HOLZMANN, A. MANTILE, AND A. POSILICANO

[20] A. Carey, F. Gesztesy, J. Kaad, G. Levitina, R. Nichols, D. Potapov, F. Sukochev. On the

global limiting absorption principle for massless Dirac operators. Ann. Henri Poincaré 19,
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