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1. Introduction

In this paper we study a class of abstract λ-dependent boundary value problems
with a local variant of generalized Nevanlinna functions appearing in the boundary
condition. For this let A be a closed symmetric operator or relation with defect
one in a separable Krein space H and let {C, Γ0, Γ1} be a boundary value space
for the adjoint relation A+. We assume that the selfadjoint extension A0 := kerΓ0

of A admits a spectral decomposition into two relations one of which acts in a
Pontryagin space. A selfadjoint relation with this property is called locally of
type π+ (see Definition 3.3). Let τ be a function which can be written as a sum
of a generalized Nevanlinna function and a locally holomorphic function; a so-
called local generalized Nevanlinna function (see Definition 3.1). In Theorem 4.1
we investigate boundary value problems of the following form: For a given h ∈ H
find a vector f̂ =

( f

f ′

)
∈ A+ such that

f ′ − λf = h and τ(λ)Γ0f̂ + Γ1f̂ = 0 (1.1)
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holds. For a suitable λ ∈ C a solution of this boundary value problem can be

obtained with the help of the compressed resolvent of a selfadjoint extension Ã of
A which acts in a larger Krein space H×K, i.e.

f = PH(Ã − λ)−1|H h and f ′ = λf + h

fulfil (1.1). The relation Ã is called a linearization of (1.1). We construct Ã and
investigate its local spectral properties, which are closely connected with the solv-
ability of (1.1), with the help of the coupling method from [8, §5.2] and a pertur-

bation result from [3]. Here we obtain that Ã is locally of type π+.
We briefly describe the contents of this paper. In Section 2 we recall some ba-

sic facts on boundary value spaces and Weyl functions associated with symmetric
relations in Krein spaces. In Section 3 it is shown that a local generalized Nevan-
linna function can be expressed as the Weyl function corresponding to a symmetric
relation and a suitable boundary value space {C, Γ′

0, Γ
′
1} where the selfadjoint re-

lation kerΓ′
0 is locally of type π+. Section 4 contains our main result. Based on

the approach in [8] we construct a linearization of the boundary value problem
(1.1) which again is locally of type π+. Under an additional assumption this lin-
earization fulfils a minimality condition. In this case the linearization is, roughly
speaking, locally uniquely determined up to unitary equivalence (Remark 4.4). As
an example we consider in Section 5 a singular Sturm-Liouville operator with the
indefinite weight sgn x and a λ-dependent interface condition.

2. Boundary value spaces and Weyl functions associated with a
symmetric relation in a Krein space

Let (K, [·, ·]) be a separable Krein space with a corresponding fundamental sym-
metry J . The linear space of bounded linear operators defined on a Krein space
K1 with values in a Krein space K2 is denoted by L(K1,K2). If K := K1 = K2 we
simply write L(K). We study linear relations in K, that is, linear subspaces of K2.

The set of all closed linear relations in K is denoted by C̃(K). Linear operators in
K are viewed as linear relations via their graphs. For the usual definitions of the
linear operations with relations, the inverse etc., we refer to [10]. The sum and the

direct sum of subspaces in K2 is denoted by and
.

. We define an indefinite
inner product on K2 by

[[f̂ , ĝ]] = i([f, g′] − [f ′, g]), f̂ =

(
f
f ′

)
, ĝ =

(
g
g′

)
∈ K2. (2.1)

Then (K2, [[·, ·]]) is a Krein space and J =
(

0 −iJ
iJ 0

)
∈ L(K2) is a corresponding

fundamental symmetry. Observe that also in the special case when (K, [·, ·]) is a
Hilbert space, [[·, ·]] is an indefinite metric. In the following we shall use at the
same time inner products [[·, ·]] arising from different Krein and Hilbert spaces as
in (2.1). Then we shall indicate these forms by subscripts, for example, [[·, ·]]K2 ,
[[·, ·]]G2 .
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Let S be a linear relation in K. The adjoint relation S+ is defined as

S[[⊥]] =
{
ĥ ∈ K2 | [[ĥ, f̂ ]] = 0 for all f̂ ∈ S

}
.

S is said to be symmetric (selfadjoint) if S ⊂ S+ (resp. S = S+). The resolvent

set ρ(S) of S ∈ C̃(K) is the set of all λ ∈ C such that (S − λ)−1 ∈ L(K), the
spectrum σ(S) of S is the complement of ρ(S) in C. A point λ ∈ C is of regular
type, λ ∈ r(S), if (S − λ)−1 is a bounded operator. For the definition of the point
spectrum σp(S), continuous spectrum σc(S) and residual spectrum σr(S) we refer
to [10] and [11]. The extended spectrum σ̃(S) of S is defined by σ̃(S) = σ(S) if
S ∈ L(K) and σ̃(S) = σ(S) ∪ {∞} otherwise.

We say that a closed symmetric relation A has defect m ∈ N ∪ {∞}, if both
deficiency indices

n±(JA) = dim ker
(
(JA)∗ − λ

)
, λ ∈ C

±,

of the symmetric relation JA in the Hilbert space (K, [J ·, ·]) are equal to m. With
the help of the von Neumann formulas for a closed symmetric relation in a Hilbert
space (see e.g. [7, §2.3]) one can verify without difficulty that this is equivalent to
the fact that there exists a selfadjoint extension of A in K and that each selfadjoint
extension Â of A in K satisfies dim

(
Â/A

)
= m.

We shall use the so-called boundary value spaces for the description of the
selfadjoint extensions of closed symmetric relations in Krein spaces. The following
definition is taken from [5].

Definition 2.1. Let A be a closed symmetric relation in the Krein space K. We say
that {G, Γ0, Γ1} is a boundary value space for A+ if G is a Hilbert space and there

exist mappings Γ0, Γ1 : A+ → G such that Γ :=
(

Γ0

Γ1

)
: A+ → G2 is surjective, and

the relation
[[
Γf̂ , Γĝ

]]
G2 =

[[
f̂ , ĝ
]]
K2

holds for all f̂ , ĝ ∈ A+.

In the following we recall some basic facts on boundary value spaces which
can be found in e.g. [4] and [5]. For the Hilbert space case we refer to [12], [6] and
[7]. Let A, {G, Γ0, Γ1} and Γ be as in Definition 2.1. It follows that the mappings
Γ0 and Γ1 are continuous. The selfadjoint extensions

A0 := kerΓ0 and A1 := kerΓ1

of A are transversal, that is A0 ∩ A1 = A and A0 A1 = A+. The mapping Γ
induces, via

AΘ := Γ−1Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G), (2.2)

a bijective correspondence Θ 7→ AΘ between the set of all closed linear relations

C̃(G) in G and the set of closed extensions AΘ ⊂ A+ of A. In particular (2.2) gives
a one-to-one correspondence between the symmetric (selfadjoint) extensions of A



4 Behrndt and Jonas

and the symmetric (resp. selfadjoint) relations in G. If Θ is a closed operator in G,
then the corresponding extension AΘ of A is determined by

AΘ = ker
(
Γ1 − ΘΓ0

)
. (2.3)

Let again A be a closed symmetric relation in K, let {G, Γ0, Γ1} be a boundary
value space for A+ and assume that A0 = kerΓ0 has a nonempty resolvent set.
Let Nλ,A+ := ker(A+ −λ) = ran (A−λ)[⊥], λ ∈ r(A), be the defect subspace of A
and let

N̂λ,A+ =
{(

fλ

λfλ

)∣∣fλ ∈ Nλ,A+

}
. (2.4)

When no confusion can arise we will simply write Nλ and N̂λ instead of Nλ,A+

and N̂λ,A+ . We have

A+ = A0

.

N̂λ for all λ ∈ ρ(A0) (2.5)

(see e.g. [5]). By π1 we denote the orthogonal projection onto the first component
of K2. For every λ ∈ ρ(A0) we define the operators

γ(λ) = π1(Γ0|N̂λ)−1 ∈ L(G,K) and M(λ) = Γ1(Γ0|N̂λ)−1 ∈ L(G). (2.6)

The functions λ 7→ γ(λ) and λ 7→ M(λ) are called the γ-field and Weyl function
corresponding to A and {G, Γ0, Γ1}. γ and M are holomorphic on ρ(A0) and the
relations

γ(ζ) = (1 + (ζ − λ)(A0 − ζ)−1)γ(λ)

and

M(λ) − M(ζ)∗ = (λ − ζ)γ(ζ)+γ(λ)

hold for λ, ζ ∈ ρ(A0) (see e.g. [5]). A little calculation yields

M(λ) = Re M(λ0) + γ(λ0)
+
(
(λ − Re λ0)

+ (λ − λ0)(λ − λ0)(A0 − λ)−1
)
γ(λ0)

(2.7)

for all λ ∈ ρ(A0) and a fixed λ0 ∈ ρ(A0).
The following well-known theorem shows how the spectra of closed extensions

of A can be described with the help of the Weyl function. For a proof see e.g. [5].

Theorem 2.2. Let A be a closed symmetric relation in a Krein space K and let
{G, Γ0, Γ1} be a boundary value space for A+ where A0 = kerΓ0 has a nonempty
resolvent set. Denote by γ and M the corresponding γ-field and Weyl function, let

Θ ∈ C̃(G) and let AΘ be the corresponding extension. For λ ∈ ρ(A0) the following
assertions are true.

(i) λ ∈ σi(AΘ) if and only if 0 ∈ σi(Θ − M(λ)), i = p, c, r.

(ii) λ ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ − M(λ)).

(iii) For all λ ∈ ρ(AΘ) ∩ ρ(A0)

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+.
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3. Local generalized Nevanlinna functions as Weyl functions of
symmetric relations

Recall that a piecewise meromorphic function τ in C\R which is symmetric with

respect to the real axis (that is τ(λ) = τ(λ) for all points λ where τ is holomorphic)
is a generalized Nevanlinna function if the kernel

Nτ (λ, µ) :=
τ(λ) − τ(µ)

λ − µ

has a finite number of negative squares. Here we consider a local variant of general-
ized Nevanlinna functions. We recall the definition of the class of local generalized
Nevanlinna functions, which is a subclass of the class of the so-called locally defini-
tizable functions (see [17]).

Let Ω be some domain in C symmetric with respect to the real axis such that
Ω ∩ R 6= ∅ and the intersections of Ω with the upper and lower open half-planes
are simply connected.

Definition 3.1. Let τ be a piecewise meromorphic function in Ω\R which is sym-
metric with respect to the real axis. We say that τ is a local generalized Nevanlinna
function in Ω, if for every domain Ω′ with the same properties as Ω, Ω′ ⊂ Ω, τ
can be written in the form

τ = τ0 + τ(0),

where τ0 is a generalized Nevanlinna function and τ(0) is a holomorphic function in
Ω′. The class of local generalized Nevanlinna functions in Ω is denoted by N(Ω).

The class N(C) coincides with the class of generalized Nevanlinna functions
(see [17]). Note, that for τ ∈ N(Ω) the nonreal poles of τ in Ω do not accumulate
to Ω∩R. The set of the points of holomorphy of τ in Ω\R and all points λ ∈ Ω∩R

such τ can be analytically continued to λ and the continuations from Ω ∩C+ and
Ω ∩ C− coincide, is denoted by h(τ).

Below we shall make use of the following lemma.

Lemma 3.2. Let ∆ be a connected open subset of R such that ∆ ⊂ Ω ∩ R, and let
τ ∈ N(Ω) be locally holomorphic on ∆. If τ is not the zero function, then the zeros
of τ in ∆ do not accumulate to the endpoints of ∆.

Proof. It is no restriction to assume that ∆ is a bounded open interval (a, b) such
that [a, b] ⊂ Ω ∩ R. The general case can be reduced to this case by a linear
fractional transformation of the variable.

Suppose that for some ε > 0 the set of all zeros of τ in (a, a + ε) consists
of the elements of a sequence (ai)

∞
i=1 with a1 > a2 > . . . , limi→∞ ai = a. Since

−τ−1 ∈ N(Ω) (see [1]) there exists an Nκ function ν0, κ ∈ N∪{0}, and a function
ν(0) locally holomorphic on [a, b] such that

−τ(λ)−1 = ν0(λ) + ν(0)(λ)
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for all points of holomorphy of ν0 and ν(0). Then ν0 is meromorphic on some
neighbourhood (in C) of (a, a + ε) and the points ai, i = 1, 2, . . . , are just the
poles of ν0 in (a, a + ε). By the well-known product representation of generalized
Nevanlinna functions (see [9]) there exist an ε0 ∈ (0, ε), a positive function χ on
(a, a+ε0) and a Nevanlinna function ν such that ν0(λ) = χ(λ)ν(λ) for all points of
holomorphy of ν0 in (a, a+ε0). The poles of ν0 in (a, a+ε0) coincide with the poles
of ν in (a, a + ε0). Between two neighbouring poles of the Nevanlinna function ν
the function χν +ν(0) = −τ−1 has a zero. Therefore, τ has a pole in every interval
(ai+1, ai) with ai < a+ε0, which contradicts the fact that τ is locally holomorphic
on ∆. �

In Section 4 we will make use of the fact that every local generalized Nevan-
linna function coincides with the Weyl function of some boundary value space
{C, Γ′

0, Γ
′
1} for a closed symmetric relation where the selfadjoint relation kerΓ′

0

has special spectral properties. For this representation we need the following sub-
class of locally definitizable selfadjoint relations in a Krein space (see [16]).

Definition 3.3. Let Ω be a domain as in the beginning of this section and let A0

be a selfadjoint relation in the Krein space (K, [·, ·]). A0 is said to be of type π+

(positive type) over Ω if for every domain Ω′ with the same properties as Ω, Ω′ ⊂ Ω,
there exists a selfadjoint projection E in K such that A0 can be decomposed in

A0 =
(
A0 ∩ (EK)2

) . (
A0 ∩ ((1 − E)K)2

)

and the following holds.

(i) (EK, [·, ·]) is a Pontryagin space (resp. Hilbert space), ρ(A0 ∩ (EK)2) 6= ∅.
(ii) σ̃

(
A0 ∩ ((1 − E)K)2

)
∩ Ω′ = ∅.

The selfadjoint relation A0 is said to be of type π− (negative type) over Ω if A0 is
of type π+ (resp. positive type) in the Krein space (K,−[·, ·]).

If A0 is a selfadjoint relation in the Krein space K we shall say that an open
subset ∆ ⊂ R is of positive type (negative type, type π+, type π−) with respect to
A0 if there exists a domain Ω as above, Ω ∩ R = ∆, such that A0 is of positive
type (resp. negative type, type π+, type π−) over Ω.

Let now A0 be a selfadjoint relation in K which is of type π+ over some
domain Ω. Then the set σ̃(A0) ∩ (Ω\R) is discrete and the nonreal spectrum of
A0 in Ω does not accumulate to Ω ∩ R. If A0 is of positive type over Ω then
σ̃(A0) ∩ (Ω\R) is empty. We remark that the spectral points in Ω ∩ R can also
be characterized with the help of approximative eigensequences (see e.g. [2], [18],
[16]). Let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω, and let E be a
selfadjoint projection with the properties as in Definition 3.3. If E ′ is the spectral
function of the selfadjoint relation A0 ∩ (EK)2 in the Pontryagin space EK, then
the mapping

δ 7→ E′(δ)E =: EA0
(δ) (3.1)
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defined for all finite unions δ of connected subsets of Ω′∩R the endpoints of which
belong to Ω′ ∩R and are not critical points of A0 ∩ (EK)2, is the spectral function
of A0 on Ω′∩R (see [16, Section 3.4, Remark 4.9]). EA0

(·) does not depend on the
choice of E.

Let A ⊂ A0 be a closed symmetric relation with defect one and let {C, Γ0, Γ1}
be a boundary value space for A+ with kerΓ0 = A0. We denote the corresponding
γ-field and Weyl function by γ and M , respectively. Here γ(λ) ∈ L(C,K) for
λ ∈ ρ(A0), and M is a scalar function. From (2.7) and the assumption on A0 we
conclude that the Weyl function M can be written as the sum of the generalized
Nevanlinna function

M0(λ) := Re M(λ0) + γ(λ0)
+
(
(λ − Re λ0)

+ (λ − λ0)(λ − λ0)(A0 − λ)−1
)
Eγ(λ0)

and the function

M(0)(λ) := γ(λ0)
+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A0 − λ)−1

)
(1 − E)γ(λ0)

which is holomorphic in Ω′. Therefore, M ∈ N(Ω).
Assume now that a function τ ∈ N(Ω) is given. In [17] it was shown that for

every domain Ω′ with the same properties as Ω, Ω′ ⊂ Ω, there exists a Krein space
(K, [·, ·]), a selfadjoint relation T0 in K of type π+ over Ω′ with

ρ(T0) ∩ Ω′ = h(τ) ∩ Ω′, (3.2)

and an element e ∈ K such that for a fixed λ0 ∈ Ω′ ∩ h(τ) and every λ ∈ Ω′ ∩ h(τ)
the relation

τ(λ) = Re τ(λ0) + (λ − Re λ0)[e, e] + (λ − λ0)(λ − λ0)
[
(T0 − λ)−1e, e

]
(3.3)

holds.
The representation (3.3) is called minimal if

K = clsp
{
(1 + (λ − λ0)(T0 − λ)−1)e |λ ∈ ρ(T0) ∩ Ω′

}
(3.4)

holds for some λ0 ∈ ρ(T0) ∩ Ω′. Such a minimal representation of τ exists e.g. if,
in addition, τ is the restriction of a generalized Nevanlinna function or a so-called
definitizable function (see [14], [15]) to Ω′ or if, in addition, the boundary of Ω′ is
contained in h(τ).

Making use of the representation (3.3) we construct in the following theorem
a boundary value space such that τ ∈ N(Ω) is its Weyl function. The idea of the
proof is the same as in the proof of [6, Theorem 1].

Theorem 3.4. Let Ω be as in the beginning of this section and let τ ∈ N(Ω) be
nonconstant. Let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω, and let τ
be represented with a selfadjoint relation T0 of type π+ over Ω′ in a Krein space K
as in (3.2)-(3.3). Then there exists a closed symmetric relation T ⊂ T0 of defect
one and a boundary value space {C, Γ′

0, Γ
′
1} for T+ such that kerΓ′

0 = T0 and τ
coincides with the corresponding Weyl function on Ω′.
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In the case Ω = C Theorem 3.4 reads as follows.

Corollary 3.5. Let τ be a nonconstant generalized Nevanlinna function. Then there
exists a closed symmetric relation T in a Pontryagin space K with finite rank
of negativity and a boundary value space {C, Γ′

0, Γ
′
1} for T+ such that τ is the

corresponding Weyl function.

Proof of Theorem 3.4. The assumption that τ is not constant implies that the
vector e ∈ K in the representation (3.3) is not zero. For every λ ∈ Ω′ ∩ h(τ) and a
fixed λ0 ∈ Ω′ ∩ h(τ) we define

γ′(λ) :=
(
1 + (λ − λ0)(T0 − λ)−1

)
e, (3.5)

which implies γ′(λ0) = e, γ′(ζ) = (1 + (ζ − λ)(T0 − ζ)−1)γ′(λ) and γ′(λ) 6= 0 for
all λ, ζ ∈ Ω′∩h(τ). For some µ ∈ Ω′∩h(τ) we define the closed symmetric relation

T :=

{(
f
g

)
∈ T0

∣∣∣ [g − µf, γ′(µ)] = 0

}
(3.6)

in K. As

[g − µ′f, γ′(µ′)] =
[
g − µ′f, (1 + (µ′ − µ)(T0 − µ′)−1)γ′(µ)

]

= [g − µf, γ′(µ)]

for all
(

f
g

)
∈ T0 and µ′ ∈ Ω′ ∩ h(τ), the relation T does not depend on the choice

of µ. By (3.6) we have Nµ = ran (T − µ)[⊥] = sp γ′(µ).

Now we regard γ′(λ), λ ∈ Ω′∩h(τ), as the linear mapping C 3 c 7→ c γ ′(λ) ∈ K
and denote the linear functional c γ ′(λ) 7→ c defined on Nλ = sp γ′(λ) by γ′(λ)(−1).

We write the elements f̂ ∈ T+, for every λ ∈ Ω′ ∩ h(τ), in the form

f̂ =

(
f0

f ′
0

)
+

(
fλ

λfλ

)
,

where
( f0

f ′

0

)
∈ T0 and fλ ∈ Nλ (see (2.5)). Let Γ′

0, Γ
′
1 : T+ → C be the linear

functionals defined by

Γ′
0f̂ := γ′(λ)(−1)fλ,

Γ′
1f̂ := γ′(λ)+(f ′

0 − λf0) + τ(λ)γ′(λ)(−1)fλ.
(3.7)

The mapping Γ′ :=
( Γ′

0

Γ′

1

)
: T+ → C2 is surjective. Indeed, let

(
h1

h2

)
∈ C2 and set

fλ := γ′(λ)h1 ∈ Nλ. Since, by the relation {0} = kerγ ′(λ) = (ran γ′(λ)+)⊥, γ′(λ)+

is surjective, there exists
( f0

f ′

0

)
∈ T0 such that γ′(λ)+(f ′

0 − λf0) = h2 − τ(λ)h1.

Then

Γ′

((
f0

f ′
0

)
+

(
fλ

λfλ

))
=

(
h1

h2

)
.
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Making use of the relation τ(λ) − τ(ζ) = (λ − ζ)γ ′(ζ)+γ′(λ), which can be
verified by a straightforward calculation, we obtain
[[
f̂ , ĝ
]]
K2 =

[[(
f0

f ′

0

)
+
(

fλ

λfλ

)
,
(

g0

g′

0

)
+
(

gλ

λgλ

)]]
K2

= i
(
[fλ, g′0 − λg0] − [f ′

0 − λf0, gλ] − [(λ − λ)fλ, gλ]
)

= i
((

γ′(λ)(−1)fλ, γ′(λ)+(g′0 − λg0)
)
−
(
γ′(λ)+(f ′

0 − λf0), γ
′(λ)(−1)gλ

)

−
(
(τ(λ) − τ(λ))γ′(λ)(−1)fλ, γ′(λ)(−1)gλ

))

= i
((

γ′(λ)(−1)fλ, γ′(λ)+(g′0 − λg0) + τ(λ)γ′(λ)(−1)gλ

)

−
(
γ′(λ)+(f ′

0 − λf0) + τ(λ)γ′(λ)(−1)fλ, γ′(λ)(−1)gλ

))

=
[[
Γ′f̂ , Γ′ĝ

]]
C2 .

Hence {C, Γ′
0, Γ

′
1} is a boundary value space for T +. Moreover, we have kerΓ′

0 = T0

and the corresponding γ-field coincides with γ ′. For h =
(

hλ

λhλ

)
∈ N̂λ we obtain

τ(λ)Γ′
0h = τ(λ)γ′(λ)(−1)hλ = Γ′

1h.

Therefore τ coincides with the Weyl function of T on Ω′ corresponding to the
boundary value space {C, Γ′

0, Γ
′
1} defined in (3.7). �

4. Boundary value problems with spectral parameter in the
boundary condition

In this section we consider a class of abstract boundary value problems of the
form (1.1) where the spectral parameter appears nonlinearly in the boundary con-
dition. Theorem 4.1 and Corollary 4.2 extend results obtained with the help of
the coupling method in [8] for a symmetric operator A in a Hilbert space and a
Nevanlinna function τ in the boundary condition. In contrast to [8] we consider
only the case where τ is a scalar function.

Let (H, [·, ·]H) and (K, [·, ·]K) be Krein spaces. The elements of H×K will be
written in the form {h, k}, h ∈ H, k ∈ K. H×K equipped with the inner product
[·, ·] defined by

[{h1, k1}, {h2, k2}] := [h1, h2]H + [k1, k2]K, h1, h2 ∈ H, k1, k2 ∈ K,

is a Krein space. If A is a relation in H and T is a relation in K we shall write
A × T for the direct product of A and T which is a relation in H×K,

A × T =

{(
{a, t}
{a′, t′}

) ∣∣∣
(

a
a′

)
∈ A,

(
t
t′

)
∈ T

}
. (4.1)

For the pair
(

{a,t}

{a′,t′}

)
on the right hand side of (4.1) we shall also write {â, t̂},

where â =
(

a
a′

)
, t̂ =

(
t
t′

)
.
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Let, as in Section 3, Ω be some domain in C symmetric with respect to the
real axis such that Ω ∩ R 6= ∅ and the intersections of Ω with the upper and
lower open half-planes are simply connected and let Ω′ be a domain with the same
properties as Ω such that Ω′ ⊂ Ω. Theorem 3.4 and the remarks preceding this
theorem show that under the additional assumption Ω′ ⊂ Ω the condition (T ) in
the following theorem is always fulfilled.

Theorem 4.1. Let A be a closed symmetric relation of defect one in the Krein
space H and assume that there exists a selfadjoint extension A0 of A which is of
type π+ over Ω. Let {C, Γ0, Γ1} be a boundary value space for A+, A0 = kerΓ0, and
denote by γ and M the corresponding γ-field and the Weyl function, respectively.
Let τ ∈ N(Ω) be nonconstant, assume that M + τ is not identically equal to zero
in Ω\R and that the following condition (T ) is fulfilled.

(T ) There exist a closed symmetric relation T in a Krein space K and a boundary
value space {C, Γ′

0, Γ
′
1} for T+ such that τ coincides with the corresponding Weyl

function on Ω′, T0 = kerΓ′
0 is of type π+ over Ω′ and h(τ)∩Ω′ = ρ(T0)∩Ω′ holds.

Then the relation

Ã =
{
{f̂1, f̂2} ∈ A+× T+|Γ1f̂1 − Γ′

1f̂2 = Γ0f̂1 + Γ′
0f̂2 = 0

}
(4.2)

is a selfadjoint extension of A in H × K which is of type π+ over Ω′. For every

h ∈ H and every λ ∈ ρ(Ã)∩h(τ)∩Ω′ a solution of the λ-dependent boundary value
problem

f ′
1 − λf1 = h, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+, (4.3)

is given by

f1 = PH(Ã − λ)−1{h, 0} and f ′
1 = λf1 + h. (4.4)

The open set ρ(A0)∩h(τ)∩Ω′ with the exception of the points of the discrete
subset

Σ :=
{
µ ∈ ρ(A0) ∩ h(τ) ∩ Ω′ |M(µ) + τ(µ) = 0

}

is contained in ρ(Ã). For every open connected subset ∆ ⊂ ρ(A0) ∩ h(τ) ∩ Ω′ ∩ R

the set Σ ∩ ∆ is finite and the points in Σ ∩ (Ω′\R) do not accumulate to Ω′ ∩ R.
For all λ ∈

(
ρ(A0) ∩ h(τ) ∩ Ω′

)
\Σ we have

PH(Ã − λ)−1|H = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+. (4.5)

If, in addition, the representation (3.3) of τ on Ω′ is minimal, then Ã satisfies
the minimality condition

clsp
{
(1 + (λ − λ0)(Ã − λ)−1){h, 0} |h ∈ H, λ ∈ ρ(Ã) ∩ Ω′

}
= H×K, (4.6)

for some λ0 ∈ ρ(Ã) ∩ Ω′.
An analogous statement holds if A0 is of type π− over Ω and −τ belongs to

the class N(Ω).
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In the next corollary we consider the special case that H is a Pontryagin
space and τ is a generalized Nevanlinna function.

Corollary 4.2. Let A be a closed symmetric relation of defect one in the Pontryagin
space H with finite rank of negativity and assume that there exists a selfadjoint
extension A0 which has a nonempty resolvent set. Let {C, Γ0, Γ1} be a boundary
value space for A+, A0 = kerΓ0, and denote by γ and M the corresponding γ-field
and the Weyl function, respectively.
Let τ ∈ N(C) be nonconstant and assume that M + τ is not identically equal to
zero. Let T0 be a minimal representing relation for τ in a Pontryagin space K,
let T ⊂ T0 be a closed symmetric relation of defect one and let {C, Γ′

0, Γ
′
1} be a

boundary value space for T + such that τ is the corresponding Weyl function and
T0 = kerΓ′

0 (see Corollary 3.5).

Then the relation Ã in (4.2) is a selfadjoint extension of A in the Pontryagin

space H×K, and Ã is minimal, that is (4.6) holds with ρ(Ã)∩Ω′ replaced by ρ(Ã).

For every h ∈ H and every λ ∈ ρ(Ã)∩h(τ) a solution of the λ-dependent boundary
value problem (4.3) is given by (4.4).

The open set ρ(A0) ∩ h(τ) with the exception of the points of the discrete

subset Σ = {µ ∈ ρ(A0) ∩ h(τ) |M(µ) + τ(µ) = 0} is contained in ρ(Ã). Σ ∩ (C\R)
is finite and for every open connected subset ∆ ⊂ ρ(A0)∩h(τ)∩R the set Σ∩∆ is

finite. For all λ ∈ (ρ(A0)∩ h(τ))\Σ the compressed resolvent of Ã onto H is given
by (4.5).

An analogous statement holds if H is a Pontryagin space with finite rank of
positivity and −τ belongs to the class N(C)

Proof of Theorem 4.1. As was shown below Definition 3.3 the Weyl function M
corresponding to the boundary value space {C, Γ0, Γ1} is a local generalized Nevan-
linna function in Ω. Since τ and M + τ belong to the class N(Ω) the function
−(M + τ)−1 belongs also to N(Ω) (see [1]). Therefore its nonreal poles in Ω do
not accumulate to Ω ∩ R and we conclude that the set

Σ :=
{
µ ∈ ρ(A0) ∩ h(τ) ∩ Ω′ |M(µ) + τ(µ) = 0

}

is discrete in ρ(A0) ∩ h(τ) ∩ Ω′ and the nonreal points of Σ do not accumulate to
points in Ω′ ∩ R. In the case Ω′ ⊂ Ω the set Σ ∩ (Ω′\R) is finite. If ∆ is an open
connected subset of ρ(A0)∩ h(τ)∩Ω′ ∩R then Lemma 3.2 applied to the function
M + τ implies that Σ ∩ ∆ is finite. We define the set

h0 := ρ(A0) ∩ h(τ) ∩ h
(
(M + τ)−1

)
∩ Ω′.

Then (ρ(A0) ∩ h(τ) ∩ Ω′)\Σ = h0.
Let K, T ⊂ T0 ⊂ T+ and {C, Γ′

0, Γ
′
1} be as in the assumptions of the theorem

and let γ′ be the γ-field corresponding to {C, Γ′
0, Γ

′
1}. We define the mappings Γ̃0,

Γ̃1 : A+× T+ → C2 by

Γ̃0 =

(
Γ0 0
0 Γ′

0

)
and Γ̃1 =

(
Γ1 0
0 Γ′

1

)
.
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It is easy to see that {C
2, Γ̃0, Γ̃1} is a boundary value space for A+ × T+. On

account of N̂λ,A+×T+ = N̂λ,A+ × N̂λ,T+ (see (2.4)), it follows that the γ-field γ̃

corresponding to {C
2, Γ̃0, Γ̃1} is given by

γ̃(λ) =

(
γ(λ) 0

0 γ′(λ)

)
, λ ∈ ρ(A0) ∩ h(τ) ∩ Ω′, (4.7)

and the corresponding Weyl function M̃ is

M̃(λ) =

(
M(λ) 0

0 τ(λ)

)
, λ ∈ ρ(A0) ∩ h(τ) ∩ Ω′,

(see (2.6)).

The selfadjoint relation Ã in H×K corresponding to the selfadjoint relation

Θ :=

{(
{u,−u}
{v, v}

) ∣∣∣u, v ∈ C

}
∈ C̃(C2)

via (2.2) is given by

Ã =
{
{f̂1, f̂2} ∈ A+× T+ |Γ0f̂1 + Γ′

0f̂2 = Γ1f̂1 − Γ′
1f̂2 = 0

}
. (4.8)

For λ ∈ h0 we have

(
Θ − M̃(λ)

)−1
=

{(
{v − M(λ)u, v + τ(λ)u}

{u,−u}

) ∣∣∣u, v ∈ C

}

=

(
−
(
M(λ) + τ(λ)

)−1 (
M(λ) + τ(λ)

)−1

(
M(λ) + τ(λ)

)−1 −
(
M(λ) + τ(λ)

)−1

)
.

(4.9)

By Theorem 2.2 a point λ ∈ ρ(A0) ∩ h(τ) ∩ Ω′ belongs to ρ(Ã) if and only if

0 ∈ ρ(Θ− M̃(λ)), that is, M(λ) + τ(λ) 6= 0. Hence for λ ∈ h0 Theorem 2.2 implies

(Ã − λ)−1 =

(
(A0 − λ)−1 0

0 (T0 − λ)−1

)
+ γ̃(λ)

(
Θ − M̃(λ)

)−1
γ̃(λ)+ (4.10)

and we obtain from (4.7), (4.9) and (4.10) that the compressed resolvent is given
by

PH(Ã − λ)−1|H = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+, λ ∈ h0.

By our assumptions and the properties of T0 the selfadjoint extension A0×T0

of A × T in H×K is of type π+ over Ω′. Since the defect of A and T is one

(A0 × T0 − λ)−1 − (Ã − λ)−1, λ ∈ h0,

is a rank two operator. Making use of [3, Theorem 2.4] we conclude that Ã is of
type π+ over Ω′.

Let us show that for λ ∈ ρ(Ã)∩ h(τ)∩Ω′ the compressed resolvent of Ã onto
H is a solution of (4.3). For a given h ∈ H we define

f1 := PH(Ã − λ)−1{h, 0} and f2 := PK(Ã − λ)−1{h, 0}.
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Then (
{f1, f2}

{λf1 + h, λf2}

)
∈ Ã.

Since Ã ⊂ A+× T+ we have f̂1 :=
(

f1

λf1+h

)
∈ A+ and f̂2 :=

(
f2

λf2

)
∈ N̂λ,T+ . By

(4.8), and since τ is the Weyl function of {C, Γ′
0, Γ

′
1}, we obtain

Γ1f̂1 = Γ′
1f̂2 = τ(λ)Γ′

0f̂2 = −τ(λ)Γ0f̂1

for λ ∈ h(τ). Hence for h ∈ H and λ ∈ ρ(Ã) ∩ h(τ) ∩ Ω′ the vector

f̂1 =

(
f1

λf1 + h

)
∈ A+

is a solution of (4.3).
It remains to verify (4.6). Assume that the representation (3.3) is minimal

(see (3.4)). Then, by (3.5),

K = clsp
{
γ′(λ) |λ ∈ ρ(T0) ∩ Ω′

}
, (4.11)

and the set ρ(T0) ∩ Ω′ in (4.11) can be replaced by ρ(Ã) ∩ Ω′. From (4.7), (4.9)
and (4.10) we obtain

PK(Ã − λ)−1{h, 0} = γ′(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+h

for h ∈ H and λ ∈ h0. If h 6∈ N [⊥]

λ,A+
we have γ(λ)+h 6= 0. Making use of (4.11) we

obtain

K = clsp
{
PK(Ã − λ)−1{h, 0} |h ∈ H, λ ∈ ρ(Ã) ∩ Ω′

}
,

and therefore (4.6) holds. Theorem 4.1 is proved. �

Remark 4.3. Let A ⊂ A0 and let {C, Γ0, Γ1}, γ and M be as in the assumptions of
Theorem 4.1. The case that τ ∈ N(Ω) is a real constant is excluded in Theorem 4.1.
In this case the boundary value problem (4.3) has the form

f ′
1 − λf1 = h, τΓ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+. (4.12)

The relation Ã−τ = ker(τΓ0+Γ1) ∈ C̃(H) (see (2.2), (2.3)) is a selfadjoint extension
of A in H. By Theorem 2.2 we have

(Ã−τ − λ)−1 = (A0 − λ)−1 − γ(λ)
(
τ + M(λ)

)−1
γ(λ)+

for λ ∈ h(M)∩ h
(
(τ +M)−1

)
. Therefore, making use of the assumption that A0 is

of type π+ over Ω and [3, Theorem 2.4] we conclude that Ã−τ is also of type π+

over Ω. Setting f1 := (Ã−τ − λ)−1h it follows that

f̂1 :=

(
f1

λf1 + h

)
∈ Ã−τ

is a solution of (4.12).
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Remark 4.4. Let the assumptions be as in Theorem 4.1 and assume that Ã fulfils

the minimality condition (4.6). Let B̃ be a selfadjoint extension of A in some

Krein space H × K̃ which is of type π+ over Ω′ such that the compression of

the resolvent of B̃ onto H yields a solution of (4.3). Assume that B̃ fulfils the

minimality condition (4.6) with ρ(Ã) ∩ Ω′ replaced by ρ(B̃) ∩ Ω′. We denote the

local spectral functions of Ã and B̃ by E eA
and E eB

, respectively (see (3.1)). Let

∆ ⊂ Ω′∩R be a closed connected set such that E eA
(∆) is defined. Then also E eB

(∆)

is defined, the Pontryagin spaces E eA
(∆)(H×K) and E eB

(∆)(H×K̃) have the same
finite rank of negativity and the relations

Ã1 := Ã ∩
(
E eA

(∆)(H×K)
)2

and B̃1 := B̃ ∩
(
E eB

(∆)(H× K̃)
)2

are unitarily equivalent (see [17]), that is, there exists an isometric isomorphism

V which maps E eA
(∆)(H×K) onto E eB

(∆)(H× K̃) such that
{(

V {h, k}
V {h′, k′}

) ∣∣∣
(

{h, k}
{h′, k′}

)
∈ Ã1

}
= B̃1.

5. An example

5.1. A Sturm-Liouville differential expression with an indefinite weight and the
spectra of its locally definitizable realizations

In this section we investigate the spectral properties of the selfadjoint extensions
of a symmetric singular Sturm-Liouville operator with the signum function as
indefinite weight and a simple potential V . We assume that V is a real function
on R which is constant on R+ := (0,∞) and R− := (−∞, 0),

V (x) :=

{
V+ if x ∈ R

+,

V− if x ∈ R−.

Let L2(R, sgn) be the Krein space (L2(R), [·, ·]), where

[f, g] :=

∫ ∞

−∞

f(x)g(x) sgnx dx, f, g ∈ L2(R),

and denote by J the fundamental symmetry of L2(R, sgn) defined by (Jf)(x) :=
(sgn x)f(x), x ∈ R. Then [J ·, ·] =: (·, ·) is the usual scalar product of L2(R). In
the following the elements f of L2(R) will often be identified with the elements
〈f+, f−〉, f± := f |R±, of L2(R+) × L2(R−).

Let A be the operator in L2(R, sgn) defined by

dom A :=
{
f ∈ W 2,2(R) | f(0) = 0

}

=
{
〈f+, f−〉 ∈ W 2,2(R+) × W 2,2(R−) | f ′

+(0+) = f ′
−(0−),

f+(0+) = f−(0−) = 0
}
,

(Af)(x) :=(sgnx)
(
−f ′′(x) + V (x)f(x)

)
, f ∈ dom A.

(5.1)
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By +
√· ( −

√·) we denote the branch of
√· defined in C with a cut along [0,∞)

((−∞, 0]) and fixed by Im
√

λ > 0 for λ 6∈ [0,∞) and
√

λ ≥ 0 for λ ∈ [0,∞) (resp.

Re
√

λ > 0 for λ 6∈ (−∞, 0] and Im
√

λ ≥ 0 for λ ∈ (−∞, 0]).

Claim 5.1. The operator A is a densely defined closed symmetric operator of defect
one in the Krein space L2(R, sgn). Every nonreal λ is a point of regular type of A
and the corresponding defect space Nλ,A+ = ker(A+ − λ) coincides with sp {fλ},
where

fλ(x) :=

{
exp
(
i+
√

λ − V+ x
)

if x > 0,

exp
(

−

√
λ + V− x

)
if x < 0.

(5.2)

We have

domA+ =
{
〈f+, f−〉 ∈ W 2,2(R+) × W 2,2(R−) | f+(0+) = f−(0−)

}
,

A+〈f+, f−〉 =
〈
− f ′′

+ + V+f+, f ′′
− − V−f−

〉
, 〈f+, f−〉 ∈ dom A+.

(5.3)

Indeed, let A0,+ and A0,− be the selfadjoint operators in (L2(R+), (·, ·)) and
(L2(R−), (·, ·)), respectively, defined by

dom A0,± :=
{
f± ∈ W 2,2(R±) | f±(0±) = 0

}
,

(A0,±f±)(x) := ±
(
−f ′′

±(x) + V±f±(x)
)
, f± ∈ dom A0,±.

Then we have

σ(A0,+) = [V+,∞), σ(A0,−) = (−∞,−V−]

and

A0 := A0,+ × A0,− (5.4)

regarded as an operator in the Krein space L2(R, sgn) is a selfadjoint extension
of A with σ(A0) ⊆ R. This implies that A is a closed symmetric operator in
L2(R, sgn) of defect one, that all nonreal points are of regular type with respect
to A and that the corresponding defect spaces are one-dimensional.

With the function fλ ∈ L2(R), λ ∈ C\R, from (5.2) and for all g ∈ domA
integration by parts gives [Ag, fλ] = [g, λfλ] which implies

fλ ∈ ker(A+ − λ), λ ∈ C\R.

Then for every nonreal λ we have domA+ = dom A0+̇sp {fλ} which implies (5.3).

Claim 5.2. If

Γ0f̂ := f(0), Γ1f̂ := f ′
+(0+) − f ′

−(0−), f̂ =

(
f

A+f

)
,

then {C, Γ0, Γ1} is a boundary value space for A+ and the corresponding γ-field γ
and Weyl function M are

γ(λ)c = cfλ and M(λ) = i+
√

λ − V+ − −

√
λ + V−, λ ∈ ρ(A0), (5.5)

where A0 is the selfadjoint extension of A defined by A0 = kerΓ0.
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For the spectra of the selfadjoint extensions of A in L2(R, sgn), i.e. of the
selfadjoint operators A(α) defined by

A(α) := ker
(
Γ1 + αΓ0

)
, α ∈ R, A(∞) := A0,

we have
(
(−∞,−V−] ∪ [V+,∞)

)
= σc(A(α)) ⊂ σ(A(α)) ⊂

(
R ∪ {V0 + it | t ∈ R}

)
,

where V0 := 1
2 (V+ − V−), and for every α ∈ R

σ(A(α))\
(
(−∞,−V−] ∪ [V+,∞)

)

is empty or consists of two eigenvalues (multiplicities counted). More precisely:

(i) Assume that V+ ≤ −V−. Then σc(A(α)) = R, α ∈ R, and there is a one-to-
one increasing continuous mapping (0,∞) 3 α 7→ tα ∈ (0,∞) such that

σp(A(α)) =

{
∅ if α ∈ R\(0,∞),

{V0 + itα, V0 − itα} if α ∈ (0,∞).

(ii) Assume that −V− < V+. Then σc(A(α)) = (−∞,−V−]∪ [V+,∞), α ∈ R, and
there is a one-to-one decreasing continuous mapping

(√
V+ + V−,

√
2(V+ + V−)

]
3 α 7→ sα ∈

[
0, 1

2 (V+ + V−)
)

and a one-to-one increasing continuous mapping
[√

2(V+ + V−),∞
)
3 α 7→ uα ∈

[
0,∞

)

such that

σp(A(α)) =





∅ if α ∈
(
−∞,

√
V+ + V−

]
,

{V0 − sα} ∪ {V0 + sα} if α ∈
(√

V+ + V−,
√

2(V+ + V−)
]
,

{V0 + iuα} ∪ {V0 − iuα} if α ∈
[√

2(V+ + V−),∞
)
.

We remark that A(0) = kerΓ1 is the only selfadjoint extension of A with a

domain consisting of C1-functions:

dom A(0) = W 2,2(R),

(A(0)f)(x) = (sgn x)
(
−f ′′(x) + V (x)f(x)

)
, f ∈ dom A(0).

Let us verify Claim 5.2. It is not difficult to verify that
[
A+〈f+, f−〉, 〈g+, g−〉

]
−
[
〈f+, f−〉, A+〈g+, g−〉

]

= (f ′
+(0+) − f ′

−(0−)) g(0)− f(0) (g′
+(0+) − g′

−(0−))

= Γ1f Γ0g − Γ0f Γ1g

holds. Therefore {C, Γ0, Γ1} is a boundary value space for A+. A0 = kerΓ0 coin-
cides with the operator defined by (5.4). Then (5.5) follows from (5.2).
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If −V− < V+ we have σ(A0) = R\(−V−, V+); if V+ ≤ −V−, then σ(A0) = R.
In both of these cases for λ ∈ C\R a straightforward calculation gives

Im M(λ) > 0 (= 0, < 0) ⇔ Re λ > V0 (= V0, < V0).

Now it follows from Theorem 2.2 that the spectra of all selfadjoint extensions A(α),

α ∈ R, are contained in R ∪ (V0 + iR).

Let us show that none of the extensions A(α), α ∈ R, has an eigenvalue in
(−∞,−V−]∪[V+,∞). Evidently, this is true for A(∞) = A0. Suppose that, for some
α ∈ R, µ ∈ (∞,−V−] ∪ [V+,∞) is an eigenvalue of A(α) and f is a corresponding
eigenelement. Then (sgn x)(−f ′′(x) + V (x)f(x)) = µf(x) implies

f(x) =

{
0 if µ ≤ −V−,

c exp
(√

µ + V− x
)

if µ > −V−,
x ∈ R

−,

and

f(x) =

{
0 if µ ≥ V+,

d exp
(
−
√

V+ − µ x
)

if µ < V+,
x ∈ R

+,

where c and d are some constants. If µ ≥ V+ or µ ≤ −V−, then the continuity of
the functions in domA(α) yields f = 0.

The last statements of Claim 5.2 are consequences of the following facts: A
point λ ∈ h(M) is an eigenvalue of A(α) if and only if M(λ) = −α, the mapping

(0,∞) 3 t 7→ M(V0 + it) ∈ (−∞, 0)

is continuous and decreasing such that

lim
t↑∞

M(V0 + it) = −∞

and

lim
t↓0

M(V0 + it) =

{
0 if V+ ≤ −V−,

−
√

2(V+ + V−) if − V− < V+.

If −V− < V+ the mapping
[
0, 1

2 (V+ + V−)
)
3 t 7→ M(V0 + t) = M(V0 − t) ∈

[
−
√

2(V+ + V−),−
√

V+ + V−

)

is one-to-one, continuous and increasing, M(V0) = −
√

2(V+ + V−) and

lim
ε↓0

M(V+ − ε) = lim
ε↓0

M(−V− + ε) = −
√

V+ + V−.

Claim 5.3. For all the selfadjoint extensions A(α), α ∈ R, of A the following holds.

(i) Ω+ := C\(−∞,−V−] is of type π+ and Ω− := C\[V+,∞) is of type π−.
(ii) If V+ ≤ −V− the interval (−V−,∞) is of positive type and the interval

(−∞, V+) is of negative type. If −V− < V+ the interval (V0,∞) is of pos-
itive type and the interval (−∞, V0) is of negative type.
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Indeed, since (i) is true for the fundamentally reducible operator A0 = A(∞)

and the differences of the resolvents of A(α), α ∈ R, and A(∞) have rank one it
follows by [3, Theorem 2.4] that (i) holds for every extension A(α) of A.

Assume that V+ ≤ −V−. We show that (−V−,∞) is of positive type with
respect to A(α). By (i) each operator A(α), α ∈ R, is also of type π+ over the
domain

Ω :=
{
t + is | t ∈ (−V−,∞), s ∈ (−1, 1)

}

and we have σp(A(α)) ∩ Ω = ∅. Let Ω′ and Ω′′ be subdomains of Ω satisfying the

conditions mentioned before Definition 3.1 such that Ω′′ ⊂ Ω and Ω′ ⊂ Ω′′. We
are going to show that there exists a projection E as in Definition 3.3 with K and
A0 replaced by L2(R, sgn) and A(α), respectively, such that the range of E is a
Hilbert space.

Since Ω is of type π+ with respect to A(α) there exists a projection E ′′

in L2(R, sgn) as in Definition 3.3 with Ω′ replaced by Ω′′ such that ranE′′ is a
Pontryagin space and the intersection of the spectrum of the selfadjoint operator
A(α)|ran E′′ and Ω′′ is real and contains no eigenvalues. If F is the spectral function
of A(α)|ranE′′, then by a well known result for selfadjoint operators in Pontryagin
spaces the ranges of the spectral projections F ([a, b]) corresponding to the intervals
[a, b] ⊂ Ω′′ are Hilbert spaces. Assume, in addition, that [a, b] ⊂ Ω′′ contains Ω′∩R.
Then E = F ([a, b])E′′ is a projection in L2(R, sgn) with the required properties
and (−V−,∞) is of positive type with respect to A(α). An analogous argument
applies for the interval (−∞, V+) .

If −V− < V+ and µ ∈ (V0, V+) (µ ∈ (−V−, V0)) is an eigenvalue of some
A(α) a simple calculation shows that the corresponding eigenelement f is positive

(negative) in L2(R, sgn), i.e. [f, f ] > 0 (resp. [f, f ] < 0). Now it follows as above
that (V0,∞) is of positive type and (−∞, V0) is of negative type with respect to
the operators A(α), α ∈ R.

5.2. λ-dependent boundary conditions

In this section we consider the following boundary value problem with λ-dependent
boundary conditions: For a given function h ∈ L2(R) find an element f = 〈f+, f−〉
in W 2,2(R+) × W 2,2(R−) such that

(sgnx)

(
− d2

dx2
+ V (x)

)
f(x) − λf(x) = h(x), x ∈ R

+ ∪ R
−, (5.6)

holds, where V is as in Section 5.1, and the boundary conditions

τ(λ)f(0) + f ′
+(0+) − f ′

−(0−) = 0 and f(0+) = f(0−) (5.7)

are satisfied. Here τ is assumed to be a meromorphic function in C (which implies
τ,−τ ∈ N(C)) from a special class described below. It will be shown that the
meromorphic functions τ of that class possess a minimal representation of the
form (3.3).
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Let
(
µj

)j∞
j=1

⊂ C+,
(
aj

)j∞
j=0

⊂ C\{0},
(
kj

)j∞
j=1

⊂ N

be finite (j∞ < ∞) or infinite (j∞ = ∞) sequences such that

1. µj 6= µk for j 6= k, 0 6= |µ1| ≤ |µ2| ≤ . . . ,
supj |µj | = ∞ if j∞ = ∞, µj 6= i, j = 1, . . . , j∞,

2. aj ∈ R if µj ∈ R, j = 1, . . . , j∞, a0 ∈ R,

3. supj kj < ∞,

4.
∑j∞

j=1 |aj ||µj |−1 < ∞.

Then we define

τ(λ) := a0 +
1

2

j∞∑

j=1

(
aj(λ − µj)

−kj + aj(λ − µj)
−kj
)
.

For j∞ = ∞ the series converges absolutely and uniformly on every compact subset
L of C such that µj 6∈ L, j = 1, 2, . . . , j∞. We have τ(λ) = τ(λ).

We denote by [·, ·]k, k ∈ N, the inner product in Ck defined by
[
(x1, . . . , xk)>, (y1, . . . , yk)>

]
k

:=
(
(xk , . . . , x1)

>, (y1, . . . , yk)>
)

Ck ;

the sip matrix (see [13, Chapter 1]) is a fundamental symmetry of (Ck, [·, ·]k). The
k × k Jordan block corresponding to µ ∈ C is denoted by Jk(µ):

Jk(µ) :=




µ 1 0
. . .

. . .

. . . 1
0 µ




.

If µj ∈ R we set Kj := (Ckj ,−(sgnaj)[·, ·]kj
), T0,j := Jkj

(µj) and

fj :=|aj |
1
2

(
T0,j − i

)−1
(0, . . . , 0, 1)>

= − |aj |
1
2

(
(i − µj)

−kj , . . . , (i − µj)
−1
)>

.

If µj 6∈ R we set Kj := (C2kj , [·, ·]2kj
),

T0,j := diag
(
Jkj

(µj), Jkj
(µj)

)

and

fj :=
∣∣∣aj

2

∣∣∣
1
2

(T0,j − i)−1(0, . . . , 0, 1, 0, . . . , 0,−e−i arg aj )>

= −
∣∣∣aj

2

∣∣∣
1
2 (

(i − µj)
−kj , . . . , (i − µj)

−1,

− (i − µj)
−kj e−i arg aj , . . . ,−(i − µj)

−1e−i arg aj
)>

.
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Then

1

2

(
aj(λ − µj)

−kj + aj(λ − µj)
−kj
)

=
[
T0,jfj , fj

]
kj

+ λ
[
fj , fj

]
kj

+ (λ2 + 1)
[
(T0,j − λ)−1fj , fj

]
kj

.

Let (`2
τ , [·, ·]) be the direct product of the Krein spaces Kj , j = 1, . . . , j∞. By the

definition of the vectors fj there exists an M such that

‖fj‖2
C

kj
≤ M |aj ||µj |−2. (5.8)

Then the assumption 4 above implies f := (fj)
j∞
j=1 ∈ `2

τ .

The family of operators Vλ ∈ L(`2
τ ), λ 6= µj for all j = 1, . . . , j∞, defined by

Vλ

(
(xj)

j∞
j=1

)
:=
(
(T0,j − λ)−1xj

)j∞
j=1

fulfils the resolvent equation, we have Vλ = V +
λ and kerVλ = {0}. If T0 denotes the

selfadjoint operator in `2
τ the resolvent of which coincides with Vλ then for any j

the space Kj regarded as a subspace of `2
τ is contained in domT0 and T0|Kj = T0,j .

By (5.8) and assumption 4 the series

t0 :=

j∞∑

j=1

[
T0,jfj , fj

]

converges and we have

τ(λ) = a0 + t0 + λ[f, f ] + (λ2 + 1)
[
(T0 − λ)−1f, f

]
. (5.9)

Making use of the fact that µj 6= µi for i 6= j it is not difficult to verify that
the representation (5.9) of τ is minimal. There exist a closed symmetric operator
T ⊂ T0 with defect one and a boundary value space {C, Γ′

0, Γ
′
1} for T+ such that

τ is the corresponding Weyl function (cf. Theorem 3.4). Since τ and −τ belong to
the class N(C) here the selfadjoint operator T0 = kerΓ′

0 is of type π+ as well as
of type π− over C. The minimality of the representation implies that

sp
{
ker(T+ − λ), |λ 6= µj , j = 1, . . . , j∞

}

is dense in `2
τ and therefore T has no eigenvalues.

Claim 5.4. Let A be the symmetric operator from (5.1) and let {C, Γ0, Γ1} be the
boundary value space from Claim 5.2. Then

Ã =
{
{f̂ , k̂} ∈ A+× T+|Γ1f̂ − Γ′

1k̂ = Γ0f̂ + Γ′
0k̂ = 0

}
(5.10)

is a selfadjoint extension of A in the Krein space L2(R, sgn)× `2
τ and the following

holds.

(i) σ(Ã)\R is either finite or the only accumulation point of σ(Ã)\R is ∞.

(ii) If V+ ≤ −V− then σc(Ã) = R, the interval (−V−,∞) is of positive type and

the interval (−∞, V+) is of negative type with respect to Ã.
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(iii) If −V− < V+ then σc(Ã) = R\(−V−, V+) and σp(Ã) ∩ (−V−, V+) is finite.
The interval (V+,∞) is of positive type and the interval (−∞,−V−) is of

negative type with respect to Ã.
(iv) If P denotes the orthogonal projection of L2(R, sgn)×`2

τ onto L2(R, sgn) then

for every λ ∈ ρ(Ã)\{µj | j ∈ 1, . . . , j∞} the function

f = P (Ã − λ)−1{h, 0}
is a solution of the boundary value problem (5.6)-(5.7).

In fact, let Ω+ and Ω− be as in Claim 5.3. Then A0 = kerΓ0 is of type π±

over Ω± and it follows from Theorem 4.1 (with Ω = Ω′ = Ω±) that the selfadjoint

extension Ã in (5.10) of A in L2(R, sgn) × `2
τ is also of type π± over Ω±.

(i) If −V− < V+ then the fact that Ã is of type π± over Ω± implies that

∞ is the only possible accumulation point of σ(Ã)\R. It remains to show that in

the case V+ ≤ −V− the nonreal spectrum of Ã does not accumulate to points in
[V+,−V−]. Recall that the Weyl function M corresponding to {C, Γ0, Γ1} is given
by

M(λ) = i+
√

λ − V+ − −

√
λ + V−,

(cf. (5.5)). If µ ∈ (V+,−V−)\{µj | j ∈ 1, . . . , j∞} then the function M + τ can be
continued analytically from the upper half plane into an open neighbourhood Uµ

of µ and this implies that the zeros of M + τ in C+ can not accumulate to µ. A
similar argument applies in the case that µ is a pole of τ . Let µ = V+ or µ = −V−.
Then the limit limλ→µ M(λ), λ ∈ C

+, from the upper half plane exists and is
finite. Therefore the zeros of M + τ cannot accumulate to µ if µ is a pole of τ .
Now assume that µ 6= µj , j = 1, . . . , j∞. Then

inf

{∣∣∣ d

dλ

(
M(λ) + τ(λ)

) ∣∣∣ : 0 < |λ − µ| ≤ r, λ ∈ C
+

}
→ ∞ if r ↓ 0

implies that the zeros of M + τ do not accumulate to µ.
Hence it follows from Theorem 2.2 that for every µ ∈ [V+,−V−] there exists

an open neighbourhood Uµ such that Uµ ∩ C+ belongs to the resolvent set of the
closed extensions

A(τ(λ)) = ker
(
Γ1 + τ(λ)Γ0

)
, λ ∈ Uµ ∩ C

+,

of A in L2(R, sgn). It is no restriction to assume that Uµ∩C+∩{µj | j = 1, . . . , j∞}
is empty. If some λ ∈ Uµ ∩C+ would be an eigenvalue of Ã, then there would exist
f ∈ L2(R, sgn), k ∈ `2

τ , {f, k} 6= {0, 0}, such that

{
f̂ , k̂

}
=

(
{f, k}

{λf, λk}

)
∈ Ã ⊂ A+ × T+. (5.11)

In particular f 6= 0, as otherwise (5.10) would imply Γ′
0k̂ = Γ′

1k̂ = 0 and k̂ ∈ T
what is impossible as T has no eigenvalues. Hence A+f = λf and, by (5.10),

Γ1f̂ = Γ′
1k̂ = τ(λ)Γ′

0k̂ = −τ(λ)Γ0f̂
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would imply λ ∈ σp(A(τ(λ))), a contradiction. Therefore the only possible accumu-

lation point of σ(Ã)\R is ∞.

(ii) From Claim 5.2 and the fact that Ã is a two-dimensional perturbation

in resolvent sense of A0 × T0 we conclude R ⊆ σ(Ã) if V+ ≤ −V−. If λ ∈ R,

λ 6= µj , j = 1, . . . , j∞, would be an eigenvalue of Ã then the same argument as
in the proof of (i) would imply that λ is an eigenvalue of the selfadjoint operator
A(τ(λ)), τ(λ) ∈ R, which contradicts Claim 5.2. For λ ∈ {µj | j = 1, . . . , j∞}
we have λ ∈ σp(T0) and since λ is a normal eigenvalue of T0 we conclude that
ran (T0 − λ) and, therefore, also ran (T − λ) is closed. Hence the defect subspace
ker(T+ − λ) has dimension one and ker(T + − λ) = ker(T0 − λ). If λ would be an

eigenvalue of Ã then there would exist f ∈ L2(R, sgn), k ∈ `2
τ , {f, k} 6= {0, 0},

such that {f̂ , k̂} ∈ Ã ⊂ A+ × T+ (cf. (5.11)). From k̂ ∈ T0 and (5.10) we conclude

Γ0f̂ = 0, i.e. λ ∈ σp(A(∞)), which again contradicts Claim 5.2. Therefore we have

R = σc(Ã). The same argument as in the proof of Claim 5.3 shows that (−V−,∞)

is of positive type and (−∞, V+) is of negative type with respect to Ã.

(iii) In the case −V− < V+ the same arguments as in the proof of (ii) show

σc(Ã) = R\(−V−, V+) and that (V+,∞) is of positive type and (−∞,−V−) is of

negative type with respect to Ã. The interval (−V−, V+) with the possible exception
of finitely many points µj , j ∈ 1, . . . , j∞, is contained in ρ(A0) ∩ h(τ). Hence by

Theorem 4.1 the set σp(Ã) ∩ (−V−, V+) is finite.

(iv) The λ-dependent boundary value problem (5.6)-(5.7) is equivalent to

(A+ − λ)f = h, τ(λ)Γ0f̂ + Γ1f̂ = 0, f̂ =

(
f

A+f

)
.

Hence for all λ ∈ ρ(Ã)\{µj | j ∈ 1, . . . , j∞} Theorem 4.1 implies that the function

f = P (Ã − λ)−1{h, 0} is a solution of (5.6)-(5.7). Moreover the formula

P (Ã − λ)−1|L2(R,sgn) = (A0 − λ)−1 −
(
M(λ) + τ(λ)

)−1[·, fλ

]
fλ

holds for all λ ∈ ρ(Ã)\Σ̃, where Σ̃ is some discrete subset of ρ(Ã) with ∞ as only
possible accumulation point and fλ is the defect element from (5.2).
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