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1. Introduction

In this paper we study a class of abstract A-dependent boundary value problems
with a local variant of generalized Nevanlinna functions appearing in the boundary
condition. For this let A be a closed symmetric operator or relation with defect
one in a separable Krein space H and let {C,T'g,I'1} be a boundary value space
for the adjoint relation A™. We assume that the selfadjoint extension Ay := kerI'g
of A admits a spectral decomposition into two relations one of which acts in a
Pontryagin space. A selfadjoint relation with this property is called locally of
type m4 (see Definition 3.3). Let 7 be a function which can be written as a sum
of a generalized Nevanlinna function and a locally holomorphic function; a so-
called local generalized Nevanlinna function (see Definition 3.1). In Theorem 4.1
we investigate boundary value problems of the following form: For a given h € H
find a vector f = (){,) € AT such that

f'=Af=h and 7(ANDof+T1f=0 (1.1)
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holds. For a suitable A € C a solution of this boundary value problem can be
obtained with the help of the compressed resolvent of a selfadjoint extension A of
A which acts in a larger Krein space H x K, i.e.

f=Py(A=XN)"Yyuh and f =X +h

fulfil (1.1). The relation A is called a linearization of (1.1). We construct A and
investigate its local spectral properties, which are closely connected with the solv-
ability of (1.1), with the help of the coupling method from [8, §5.2] and a pertur-
bation result from [3]. Here we obtain that Ais locally of type 7.

We briefly describe the contents of this paper. In Section 2 we recall some ba-
sic facts on boundary value spaces and Weyl functions associated with symmetric
relations in Krein spaces. In Section 3 it is shown that a local generalized Nevan-
linna function can be expressed as the Weyl function corresponding to a symmetric
relation and a suitable boundary value space {C,T'(, I} } where the selfadjoint re-
lation ker I’y is locally of type m,. Section 4 contains our main result. Based on
the approach in [8] we construct a linearization of the boundary value problem
(1.1) which again is locally of type 7m4. Under an additional assumption this lin-
earization fulfils a minimality condition. In this case the linearization is, roughly
speaking, locally uniquely determined up to unitary equivalence (Remark 4.4). As
an example we consider in Section 5 a singular Sturm-Liouville operator with the
indefinite weight sgn xz and a A-dependent interface condition.

2. Boundary value spaces and Weyl functions associated with a
symmetric relation in a Krein space

Let (IC,[-,:]) be a separable Krein space with a corresponding fundamental sym-
metry J. The linear space of bounded linear operators defined on a Krein space
K1 with values in a Krein space Kz is denoted by L(K1,Ks). If K := K1 = K3 we
simply write £(K). We study linear relations in &, that is, linear subspaces of K2.
The set of all closed linear relations in K is denoted by C| (K). Linear operators in
K are viewed as linear relations via their graphs. For the usual definitions of the

linear operations with relations, the inverse etc., we refer to [10]. The sum and the

direct sum of subspaces in K2 is denoted by + and + . We define an indefinite
inner product on K? by

.al=ird) -, F=(}) o= () ex e
Then (K2, [-,]) is a Krein space and J = (2 &/) € L(K?) is a corresponding
fundamental symmetry. Observe that also in the special case when (IC,[-,:]) is a

Hilbert space, [-,-] is an indefinite metric. In the following we shall use at the
same time inner products [-,-] arising from different Krein and Hilbert spaces as
n (2.1). Then we shall indicate these forms by subscripts, for example, [-, ],

[ 1ge-
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Let S be a linear relation in K. The adjoint relation S is defined as
SHI = Ih e K?|[h, f] = 0 for all f € S}.

S is said to be symmetric (selfadjoint) if S C ST (resp. S = ST). The resolvent
set p(S) of § € C(K) is the set of all A € C such that (S — A)~! € £(K), the
spectrum o (S) of S is the complement of p(S) in C. A point A € C is of regular
type, A € r(S), if (S — A\)~! is a bounded operator. For the definition of the point
spectrum o,(S), continuous spectrum o.(S) and residual spectrum o,.(S) we refer
to [10] and [11]. The extended spectrum &(S) of S is defined by o(S) = o(S5) if
S € L(K) and 7(S) = o(S) U {oo} otherwise.

We say that a closed symmetric relation A has defect m € N U {oo}, if both
deficiency indices

ni(JA)zdimker((JA)* —X), A e CH,

of the symmetric relation JA in the Hilbert space (IC,[J-, -]) are equal to m. With
the help of the von Neumann formulas for a closed symmetric relation in a Hilbert
space (see e.g. [7, §2.3]) one can verify without difficulty that this is equivalent to
the fact that there exists a selfadjoint extension of A in K and that each selfadjoint
extension A of A in K satisfies dim (A/A) =m.

We shall use the so-called boundary value spaces for the description of the
selfadjoint extensions of closed symmetric relations in Krein spaces. The following
definition is taken from [5].

Definition 2.1. Let A be a closed symmetric relation in the Krein space . We say
that {G,Tg,T'1} is a boundary value space for AT if G is a Hilbert space and there
exist mappings I'o,I'1 : AT — G such that I" := (;‘1)) : AT — G2 is surjective, and
the relation

[Tf.Td] . = [F.d]
holds for all f,§ € AT.
In the following we recall some basic facts on boundary value spaces which
can be found in e.g. [4] and [5]. For the Hilbert space case we refer to [12], [6] and

[7]. Let A, {G,Ty,I'1} and T be as in Definition 2.1. It follows that the mappings
I'p and I'; are continuous. The selfadjoint extensions

Ag:=kerI'y and A; :=kerl’;
of A are transversal, that is 49 N A; = A and Ag+ A; = AT. The mapping I’
induces, via
Ao :=T7l@={feAr|TfecO}, ©cC(9), (2.2)

a bijective correspondence © — Ag between the set of all closed linear relations
C(G) in G and the set of closed extensions Ag C AT of A. In particular (2.2) gives
a one-to-one correspondence between the symmetric (selfadjoint) extensions of A
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and the symmetric (resp. selfadjoint) relations in G. If © is a closed operator in G,
then the corresponding extension Ag of A is determined by

A@ = ker(Fl - @FQ) (23)
Let again A be a closed symmetric relation in K, let {G, T, I'1 } be a boundary
value space for AT and assume that 4y = kerI'y has a nonempty resolvent set.

Let Ny a+ = ker(A* — ) = ran (A — X)), X € r(A), be the defect subspace of A
and let

./\A[,\7A+:{()\f;)\)‘f,\ EN)\,A+}. (24)

When no confusion can arise we will simply write Ay and N, instead of N, AA+
and /\Af,\7A+. We have

At =Ag+ Ny forall A€ p(Ag) (2.5)

(see e.g. [5]). By m1 we denote the orthogonal projection onto the first component
of K2. For every \ € p(Ag) we define the operators

Y(A) = m (TolNx) "t € £(G,K) and M(\) =T1(Do|Na) "' € £(G).  (2.6)

The functions A — v(A) and A — M (X) are called the v-field and Weyl function
corresponding to A and {G,T9,T'1}. v and M are holomorphic on p(Ag) and the
relations

Q) =1+ (=N (Ao =)™\
and
M) = M(Q)" = (A= )y(¢) (N
hold for A, ¢ € p(Ap) (see e.g. [5]). A little calculation yields
M(X) =Re M(Xo) +7(Ao) " ((A —Re Xo)
+ (A= 20)(A = X0)(Ao = A)7H)v(No)

for all A € p(Ap) and a fixed Ag € p(Ap).
The following well-known theorem shows how the spectra of closed extensions
of A can be described with the help of the Weyl function. For a proof see e.g. [5].

(2.7)

Theorem 2.2. Let A be a closed symmetric relation in a Krein space K and let
{G,To,T'1} be a boundary value space for AT where Ag = kerT'y has a nonempty
resolvent set. Denote by v and M the corresponding y-field and Weyl function, let

O € C(G) and let Ao be the corresponding extension. For X\ € p(Ag) the following
assertions are true.

(1) X €oi(Ae) if and only if 0 € 0;(© — M(N)), i =p,c,r.
(i) A € p(Ae) if and only if 0 € p(© — M(N)).
(iii) For all A € p(Ae) N p(Aop)

(Ao —N)7' = (Ao =N +9(N) (O - MWN) y(N)T.
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3. Local generalized Nevanlinna functions as Weyl functions of
symmetric relations

Recall that a piecewise meromorphic function 7 in C\R which is symmetric with
respect to the real axis (that is 7(X) = 7()) for all points X where 7 is holomorphic)
is a generalized Nevanlinna function if the kernel
N, (Av M) = %;(M)

has a finite number of negative squares. Here we consider a local variant of general-
ized Nevanlinna functions. We recall the definition of the class of local generalized
Nevanlinna functions, which is a subclass of the class of the so-called locally defini-
tizable functions (see [17]).

Let © be some domain in C symmetric with respect to the real axis such that
QNR # () and the intersections of Q with the upper and lower open half-planes
are simply connected.

Definition 3.1. Let 7 be a piecewise meromorphic function in Q\R which is sym-
metric with respect to the real axis. We say that 7 is a local generalized Nevanlinna
function in €, if for every domain Q' with the same properties as Q, Q' C Q, 7
can be written in the form

T = To + T(0);

where 79 is a generalized Nevanlinna function and 7y is a holomorphic function in
(Y. The class of local generalized Nevanlinna functions in € is denoted by N(2).

The class N(C) coincides with the class of generalized Nevanlinna functions
(see [17]). Note, that for 7 € N(£2) the nonreal poles of 7 in £ do not accumulate
to QNR. The set of the points of holomorphy of 7 in Q\R and all points A € QNR
such 7 can be analytically continued to A and the continuations from Q NC* and
QN C~ coincide, is denoted by h(7).

Below we shall make use of the following lemma.

Lemma 3.2. Let A be a connected open subset of R such that A € QNR, and let
7 € N(Q) be locally holomorphic on A. If T is not the zero function, then the zeros
of T in A do not accumulate to the endpoints of A.

Proof. Tt is no restriction to assume that A is a bounded open interval (a,b) such
that [a,b] C Q NR. The general case can be reduced to this case by a linear
fractional transformation of the variable.

Suppose that for some ¢ > 0 the set of all zeros of 7 in (a,a + ¢) consists
of the elements of a sequence (a;)$2, with a1 > az > ..., lim; .o a; = a. Since
—771 € N(Q) (see [1]) there exists an N, function vy, x € NU{0}, and a function
V(o) locally holomorphic on [a, b] such that

—7(N) 7" =1(A) + vy (V)
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for all points of holomorphy of vy and v(p). Then vy is meromorphic on some
neighbourhood (in C) of (a,a + €) and the points a;, i = 1,2,..., are just the
poles of vy in (a,a + ). By the well-known product representation of generalized
Nevanlinna functions (see [9]) there exist an e € (0,¢), a positive function x on
(a,a+¢ep) and a Nevanlinna function v such that vo(A) = x(A\)v(A) for all points of
holomorphy of vy in (a, a+&¢). The poles of vy in (a, a+¢p) coincide with the poles
of v in (a,a + €¢). Between two neighbouring poles of the Nevanlinna function v

the function xv +v(g) = —77! has a zero. Therefore, 7 has a pole in every interval
(ai+1,ai) with a; < a+ e, which contradicts the fact that 7 is locally holomorphic
on A. O

In Section 4 we will make use of the fact that every local generalized Nevan-
linna function coincides with the Weyl function of some boundary value space
{C,T{,T%} for a closed symmetric relation where the selfadjoint relation kerI';,
has special spectral properties. For this representation we need the following sub-
class of locally definitizable selfadjoint relations in a Krein space (see [16]).

Definition 3.3. Let Q be a domain as in the beginning of this section and let Ay
be a selfadjoint relation in the Krein space (K, [-,]). Ao is said to be of type w4
(positive type) over € if for every domain €’ with the same properties as 2, ¥/ C €,
there exists a selfadjoint projection E in K such that Ag can be decomposed in

Ao = (Ao N (EK)?) + (AN ((1 - E)K)?)
and the following holds.
(i) (EK,[-,"]) is a Pontryagin space (resp. Hilbert space), p(Ag N (EK)?) # 0.
(i) o(Ao N ((1 - E)K)?) nQ' = 0.

The selfadjoint relation Ay is said to be of type m_ (negative type) over Q if Ag is
of type 7 (resp. positive type) in the Krein space (K, —[, ‘).

If Ay is a selfadjoint relation in the Krein space K we shall say that an open
subset A C R is of positive type (negative type, type 7, type T_) with respect to
Ag if there exists a domain  as above, Q@ NR = A, such that A is of positive
type (resp. negative type, type 7, type m_) over .

Let now Ag be a selfadjoint relation in K which is of type 74 over some
domain Q. Then the set 5(A) N (Q\R) is discrete and the nonreal spectrum of
Ag in Q does not accumulate to Q N R. If Ay is of positive type over Q then
(Ag) N (Q\R) is empty. We remark that the spectral points in @ N R can also
be characterized with the help of approximative eigensequences (see e.g. [2], [18],
[16]). Let ' be a domain with the same properties as 2, ' C Q, and let E be a
selfadjoint projection with the properties as in Definition 3.3. If E’ is the spectral
function of the selfadjoint relation Ay N (EK)? in the Pontryagin space EKX, then
the mapping

§— E'(0)E =: Ea,(9) (3.1)
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defined for all finite unions & of connected subsets of ' MR the endpoints of which
belong to ' MR and are not critical points of Ag N (EK)?, is the spectral function
of Ag on ' NR (see [16, Section 3.4, Remark 4.9]). E,(-) does not depend on the
choice of E.

Let A C Ay be a closed symmetric relation with defect one and let {C,T'o,T'1 }
be a boundary value space for AT with kerI'g = Ap. We denote the corresponding
~-field and Weyl function by + and M, respectively. Here v(\) € L(C,K) for
A € p(Ap), and M is a scalar function. From (2.7) and the assumption on Ay we
conclude that the Weyl function M can be written as the sum of the generalized
Nevanlinna function

Mo(A) = Re M(/\()) + ’}/(A())Jr (()\ — Re )\0)
+ (A= 20)(A = X0) (Ao — A) 1) Ev(Xo)
and the function

Moy(A) :=v(Xo)T (A = ReXg) + (A = Xo)(A = Ao) (Ao — A) 1) (1 = E)v(Ao)

which is holomorphic in ©'. Therefore, M € N(Q).

Assume now that a function 7 € N(Q) is given. In [17] it was shown that for
every domain Q' with the same properties as , Q0 C €, there exists a Krein space
(K, [,]), a selfadjoint relation Ty in K of type w4 over ' with

p(To) N Y =h(r) N, (3.2)

and an element e € K such that for a fixed Ay € Q' Nh(7) and every X € Q' Nh(r)
the relation

7(A) =Re7(Xo) + (A —ReXo)[e, ] + (A= Ao)(A —Xo)[(Th — A) "tece]  (3.3)

holds.
The representation (3.3) is called minimal if

K=csp{(1+(A—=X)(To— N el e p(Ty) nQ'} (3.4)

holds for some Ag € p(Tp) N €. Such a minimal representation of 7 exists e.g. if,
in addition, 7 is the restriction of a generalized Nevanlinna function or a so-called
definitizable function (see [14], [15]) to ' or if, in addition, the boundary of Q' is
contained in h(7).

Making use of the representation (3.3) we construct in the following theorem
a boundary value space such that 7 € N () is its Weyl function. The idea of the
proof is the same as in the proof of [6, Theorem 1].

Theorem 3.4. Let Q be as in the beginning of this section and let 7 € N() be
nonconstant. Let Q' be a domain with the same properties as 0, Q' C Q, and let T
be represented with a selfadjoint relation Ty of type w1 over ' in a Krein space K
as in (3.2)-(3.3). Then there exists a closed symmetric relation T C Ty of defect
one and a boundary value space {C,T'(, T} for TT such that kerI'{, = Ty and T
coincides with the corresponding Weyl function on €.
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In the case Q = C Theorem 3.4 reads as follows.

Corollary 3.5. Let 7 be a nonconstant generalized Nevanlinna function. Then there
exists a closed symmetric relation T in a Pontryagin space K with finite rank
of negatiwity and a boundary value space {C,T'(,T1} for T such that T is the
corresponding Weyl function.

Proof of Theorem 3.4. The assumption that 7 is not constant implies that the
vector e € K in the representation (3.3) is not zero. For every A € Q' Nh(7) and a
fixed A\g € Q' N h(7) we define

YA = (1+ A= X0)(To = A)7)e, (3.5)

which implies 7'(A) = €, 7/(¢) = (1 + (¢ = N)(To = O)~1)7'(A) and 7/(X) # 0 for
all X\, ¢ € Q' Nnh(7). For some p € Q' Nh(7) we define the closed symmetric relation

r={(J) et |lo-mtr0 =0} (3.6)

in K. As
lg =Ty W] =g -7 f 0+ 0 —m)(To—p) )y ()]
=lg =70l (W)

for all ({;) € Top and i/ € Q' N (1), the relation T' does not depend on the choice
of p. By (3.6) we have N, = ran (T — )] = spy/ ().

Now we regard +v'(A), A € Q'N(7), as the linear mapping C 3 ¢ — ¢y’ (A) € K
and denote the linear functional ¢+/(\) — ¢ defined on Ny = spy'(A) by 7/(A) (.

We write the elements f € T, for every A € Q' N b(7), in the form

;[ fo a
/= (fs) * (m) ’

where (;2) € To and f\ € Ny (see (2.5)). Let I'{j),I'} : Tt — C be the linear
functionals defined by

Tof ==~ (N1,

s / +pt 3 / (=1) (3'7)

D=2 N (fo = Mo) + 7MY (M) fa
The mapping I := (F, ) T+ — C? is surjective. Indeed, let ( ) € C? and set
=9 (A\)h1 € N,. Since, by the relation {0} = ker+/(\) = (ranv/(\)™ ) v (A)T
is surjective, there exists (;2) € Ty such that v/ (AT (f} — /\fo) = hy — 7(N)h1.

Then

() () - G2)
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Making use of the relation 7(\) — 7(¢) = (A — {)7"(¢)*+/()\), which can be
verified by a straightforward calculation, we obtain

Fale = [(%) + (5)- () + ()]
= i([fx, 90 — Ago) — [f6 — Ao, ga] — [(A = X) fr, ga])
=i((Y Y () (g )\90)) ( " (f5 = Xo) v (M) Vgn)
— (TN = )Y N a7 (VT gy)
=i((Y D 0y () (gh = Ago) + 7)Y (V) gn)
— (Y (5 = Mo) + 7)Y NI 17 () )
= [/, 19 ¢

Hence {C,T'(,, T} } is a boundary value space for . Moreover, we have ker I'{, = T}
and the corresponding v-field coincides with +'. For h = ( Ao ) € N> we obtain

T(NTph = 7(\)y' (N TV hy = T h.

Therefore 7 coincides with the Weyl function of T on ' corresponding to the
boundary value space {C,T'(, I} defined in (3.7). O

4. Boundary value problems with spectral parameter in the
boundary condition

In this section we consider a class of abstract boundary value problems of the
form (1.1) where the spectral parameter appears nonlinearly in the boundary con-
dition. Theorem 4.1 and Corollary 4.2 extend results obtained with the help of
the coupling method in [8] for a symmetric operator A in a Hilbert space and a
Nevanlinna function 7 in the boundary condition. In contrast to [8] we consider
only the case where 7 is a scalar function.

Let (H, [, ]») and (K, [-,-]x) be Krein spaces. The elements of H x K will be
written in the form {h,k}, h € H, k € K. H x K equipped with the inner product
[-, -] defined by

[{h1, k1}, {he, k2}] = [h1, holn + [k1, k2], hi,he € H, ki,ke € K,

is a Krein space. If A is a relation in H and T is a relation in K we shall write
A x T for the direct product of A and T" which is a relation in H x IC,

axr={({ ) 1(@) e (7)<} (1

) on the right hand side of (4.1) we shall also write {a,},
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Let, as in Section 3, Q be some domain in C symmetric with respect to the
real axis such that @ N R # ( and the intersections of Q with the upper and
lower open half-planes are simply connected and let £’ be a domain with the same
properties as  such that Q' C Q. Theorem 3.4 and the remarks preceding this
theorem show that under the additional assumption ' C Q the condition (7) in
the following theorem is always fulfilled.

Theorem 4.1. Let A be a closed symmetric relation of defect one in the Krein
space 'H and assume that there exists a selfadjoint extension Ag of A which is of
type 4 over Q. Let {C,Ty,T'1} be a boundary value space for A*, Ag = ker 'y, and
denote by v and M the corresponding vy-field and the Weyl function, respectively.
Let 7 € N(Q) be nonconstant, assume that M + 7 is not identically equal to zero

in Q\R and that the following condition (T) is fulfilled.

(T) There exist a closed symmetric relation T in a Krein space K and a boundary
value space {C,T, T} for TT such that T coincides with the corresponding Weyl
function on Q', Ty = ker I'{, is of type w4+ over Q' and h(r)NQ = p(To) N holds.

Then the relation
A={{fi.fo} € A" TH|D1 fi = T4 fo=Tofi + T fo =0} (4.2)
is a selfadjoint extension of A in H x K which is of type w1 over . For every

h € H and every A € p(g)ﬂf)(r) N a solution of the A-dependent boundary value
problem

fi=Mi=h TLofi+Tifi=0, fi= (ﬁ) € At (4.3)
is given by
fi=Pu(A=X)"Yh,0} and f|=A\f1+h. (4.4)

The open set p(Ag) Nh(T) N with the exception of the points of the discrete
subset

5= { € p(Ao) N(7) N | M(y0) + (1) = 0}

is contained in p(A). For every open connected subset A C p(Ao) Nh(1) N ﬂiﬁ
the set XN A is finite and the points in X N (Q'\R) do not accumulate to ' NR.
For all A € (p(Ao) Nh(7) N Q)\E we have

Pr(A =N o = (Ag = N7 =) (M) +7(0) ()T (45)

If, in addition, the representation (3.3) of T on Q' is minimal, then A satisfies
the minimality condition

sp {(1+ (A=) (A =N "H{h,0}[heH, A€ p(A)NQ}=HxK, (4.6)

for some Ao € p(A) N Y.
An analogous statement holds if Ao is of type m_ over Q and —7 belongs to
the class N(Q).
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In the next corollary we consider the special case that H is a Pontryagin
space and T is a generalized Nevanlinna function.

Corollary 4.2. Let A be a closed symmetric relation of defect one in the Pontryagin
space H with finite rank of negativity and assume that there exists a selfadjoint
extension Ay which has a nonempty resolvent set. Let {C,Tg,I'1} be a boundary
value space for AY, Ag = ker'g, and denote by v and M the corresponding y-field
and the Weyl function, respectively.

Let 7 € N(C) be nonconstant and assume that M + 7 is not identically equal to
zero. Let Ty be a minimal representing relation for T in a Pontryagin space IC,
let T C Ty be a closed symmetric relation of defect one and let {C,T'(, T} be a
boundary value space for TT such that T is the corresponding Weyl function and
To = kerI'{, (see Corollary 3.5).

Then the relation A in (4.2) is a selfadjoint extension of A in the Pontryagin
space Hx K, and A is minimal, that is (4.6) holds with p(A)NSY' replaced by p(A).
For every h € H and every \ € p(g) NH(7) a solution of the A-dependent boundary
value problem (4.3) is given by (4.4).

The open set p(Ag) N h(r) with the exception of the points of the discrete
subset ¥ = {p € p(Ao) NH(7) | M (1) + 7(p) = 0} is contained in p(A). £ N (C\R)
is finite and for every open connected subset A C p(Ao)Nh(T) NR the set LNA is
finite. For all X € (p(Ao) NH(T))\S the compressed resolvent of A onto 'H is given
by (4.5).

An analogous statement holds if H is a Pontryagin space with finite rank of

positivity and —1 belongs to the class N(C)

Proof of Theorem 4.1. As was shown below Definition 3.3 the Weyl function M
corresponding to the boundary value space {C,T'g,T'1 } is a local generalized Nevan-
linna function in Q. Since 7 and M + 7 belong to the class N(Q2) the function
—(M + 7)7! belongs also to N(2) (see [1]). Therefore its nonreal poles in Q do
not accumulate to @ N R and we conclude that the set

5= {p € p(Ao) N (1) N Q| M (p) + 7(p) = 0}
is discrete in p(Ao) N h(7) N Q' and the nonreal points of ¥ do not accumulate to
points in ' N R. In the case ' C Q the set ¥ N ('\R) is finite. If A is an open
connected subset of p(A4g) NH(7) N NR then Lemma 3.2 applied to the function
M + 7 implies that ¥ N A is finite. We define the set
ho := p(AO) n b(T) n f)((M + T)_l) neo.

Then (p(4o) NB(r) N2\ = b,

Let K, T C Ty C T and {C,T'{, T} } be as in the assumptions of the theorem

and let v be the y-field corresponding to {C,T'}, I} }. We define the mappings f‘o,
I:ATx T+t - C?by

~ (Tg © ~ [Ty 0
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It is easy to see that {C2,To,I'1} is a boundary value space for AT x TT. On
account of Ny g1+ = Ny a+ x Ny 7+ (see (2.4)), it follows that the ~-field 5
corresponding to {C?,T'y,I'1} is given by

0= (0 ). Aestaansmng, (@7

and the corresponding Weyl function M is

M) = (Mé” T&)) . XN p(Ao) N(r) NS,

(see (2.6)).
The selfadjoint relation A in H x K corresponding to the selfadjoint relation

0= { ({ﬁ’}’;@ ‘ u,v € (C} e C(C?)
via (2.2) is given by

A={{fi. o} € A X TH|Tofy + Ty fo =Tifi ~Tifo=0}.  (48)
For A € hy we have
— — M\, A
o Ty = ([ e ) | )

L . (1.9
_ ((M(A) Fr)) (M) +7(0) ) |
(M) +700) ™ =) +7(0)”

By Theorem 2.2 a point A € p(Ag) N h(7) N Q' belongs to p(A) if and only if
0 € p(© — M()N)), that is, M(A\) +7(\) # 0. Hence for A € by Theorem 2.2 implies

Aont= (W VT 0 ) e - ) AR (410

and we obtain from (4.7), (4.9) and (4.10) that the compressed resolvent is given
by
~ B B -
Pr(A= N = (Ao = )7 =N (M) +7(N) ()T, A€ bo.
By our assumptions and the properties of T the selfadjoint extension Ay x Ty
of Ax T in H x K is of type w4 over §'. Since the defect of A and T is one
(Ao xTo— N1 =A=MY Xeh,
is a rank two operator. Making use of [3, Theorem 2.4] we conclude that A s of
type w1 over .
Let us show that for A € p(4) Nh(7) N’ the compressed resolvent of A onto
H is a solution of (4.3). For a given h € H we define

fri=Pu(A=X2)7"{h,0} and  fo:= Pc(A—X)""{h,0}.
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Then

<{Af£fi’f{,2§f2}> €4

Since A C At x T+ we have f := (/\f{ﬂrh) € At and f, := (/\ffz) € Nyr+. By
(4.8), and since 7 is the Weyl function of {C,T'j, T} }, we obtain

I fi =T fo = 7(NT)fa = —7(\To fu
for A € h(7). Hence for h € H and A € p(A) N () N the vector

£ bil +
h= (Afl wn) €4
is a solution of (4.3).

It remains to verify (4.6). Assume that the representation (3.3) is minimal
(see (3.4)). Then, by (3.5),

K=clsp{v(A)|A€p(To)nQ'}, (4.11)

and the set p(Tp) N in (4.11) can be replaced by p(A) N QY. From (4.7), (4.9)
and (4.10) we obtain

Pe(A= XN 7Hh, 0} =y N)(MM) +7(0) () h
for h € Hand X € ho. If h ¢N[J‘] we have v(A)*h # 0. Making use of (4.11) we

A+
obtain
K = clsp {Pc(A —X)"Hh,0} |he H, A€ p(A) N},
and therefore (4.6) holds. Theorem 4.1 is proved. O

Remark 4.3. Let A C Ap and let {C, Ty, T'1}, v and M be as in the assumptions of
Theorem 4.1. The case that 7 € N(Q) is a real constant is excluded in Theorem 4.1.
In this case the boundary value problem (4.3) has the form

fil=Mri=h, tTofi+T1fi=0, fi= (ﬁ) € At (4.12)

The relation A_, = ker(7Do+T'1) € C(H) (see (2.2), (2.3)) is a selfadjoint extension
of A in ‘H. By Theorem 2.2 we have

(A_r =N = (Ao — N = (W) (7 + M) ()

for A € h(M)Nh((T+ M)~'). Therefore, making use of the assumption that Ay is
of type w4 over  and [3, Theorem 2.4] we conclude that A_. is also of type w1

over (2. Setting f1 := (A_, — A\)~!h it follows that

is a solution of (4.12).
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Remark 4.4. Let the assumptions be as in Theorem 4.1 and assume that A fulfils
the minimality condition (4.6). Let B be a selfadjoint extension of A in some
Krein space ‘H x K which is of type w1 over £ such that the compression of
the resolvent of B onto H yields a solution of (4.3). Assume that B fulfils the
minimality condition (4.6) with p(A) N replaced by p(B) N Y. We denote the
local spectral functions of A and B by E; and Ej, respectively (see (3.1)). Let
A C 'NR be a closed connected set such that E+ (A) is defined. Then also Ez(A)
is defined, the Pontryagin spaces £ 7(A)(H x K) and E5(A)(H x K) have the same
finite rank of negativity and the relations

A = AN (Ex(A)(H x K))® and By := BN (E5(A)(H x K))?

are unitarily equivalent (see [17]), that is, there exists an isometric isomorphism
V' which maps E ;(A)(H x K) onto E5(A)(H x K) such that

{(‘y{{hf} Z’}}) | ({{h@:Z’}}) € ;11} - B

5. An example

5.1. A Sturm-Liouville differential expression with an indefinite weight and the
spectra of its locally definitizable realizations
In this section we investigate the spectral properties of the selfadjoint extensions

of a symmetric singular Sturm-Liouville operator with the signum function as
indefinite weight and a simple potential V. We assume that V is a real function

on R which is constant on RT := (0,00) and R~ := (—00,0),
if R*
Vix) := Vi 1 TERT,
Vo ifxeR™.

Let L?(R,sgn) be the Krein space (L%(R), [, ]), where
/ f@g@ sgneds,  f,g€ LA(R),

and denote by J the fundamental symmetry of L?(R,sgn) defined by (Jf)(z) :=
(sgnz)f(z), # € R. Then [J-,-] =: (+,) is the usual scalar product of L?(R). In
the following the elements f of L*(R) will often be identified with the elements
(fe,f2), f+ = fIRE, of L2(R*) x L?(R™).

Let A be the operator in L?(R,sgn) defined by

dom A :={f € W>*([R)| f(0) =0}
={{f+, [-) e W22(RF) x W»*(R™) | f4.(0+) = fL(0-),
f+(04) = f-(0-) = 0},
(Af)(x) :==(sgna)(—f"(2) + V(2)f(x)), [ € dom A.
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By ¥/ (/) we denote the branch of /- defined in C with a cut along [0, o)
((—00,0]) and fixed by Im /A > 0 for A & [0, 00) and v/X > 0 for A € [0,00) (resp.
RevA > 0 for A € (—o0,0] and Tmv/A > 0 for A € (—o0,0]).

Claim 5.1. The operator A is a densely defined closed symmetric operator of defect
one in the Krein space L?(R,sgn). Every nonreal X is a point of reqular type of A
and the corresponding defect space Ny s+ = ker(At — \) coincides with sp {fr},

where
exp(it/)\fVJrz) ifx >0,
= 5.2
@) {exp(w/AJrV x) if x <0. (5:2)
We have

dom AT ={{f+, f-) € W»?(RY) x W*2(R7) | f1.(0+) = f-(0-)},
A+<f+af—> :<_ j!—i_‘/-l‘f-i-’ Z_V—f—>a (f+,f_)€d0mA+.

Indeed, let Ag 4+ and Ag — be the selfadjoint operators in (L?(RT), (-, -)) and
(L?(R7), (-, ), respectively, defined by

dom Ao+ =={fr € W3(R*)| f(0£) = 0},
(Ao, fe)(@) ===+ (= fL(x) + Vife(x)), fi€domAgy.

Then we have

(5.3)

o(Ao+) =[Vy,00), o(Ao,-) = (—00, —V_]
and
AO = A01+ X A07, (54)

regarded as an operator in the Krein space L?(R,sgn) is a selfadjoint extension
of A with o(4p) € R. This implies that A is a closed symmetric operator in
L?(R,sgn) of defect one, that all nonreal points are of regular type with respect
to A and that the corresponding defect spaces are one-dimensional.

With the function fi € L?(R), A € C\R, from (5.2) and for all g € dom A
integration by parts gives [Ag, fa] = [g, Afa] which implies

fr €Eker(AT — X)), A eC\R.
Then for every nonreal A we have dom AT = dom Ap+sp {fr} which implies (5.3).
Claim 5.2. If

fofi= 50, Tif o= ton -0 F= (L),

then {C,T,T1} is a boundary value space for AT and the corresponding ~y-field ~
and Weyl function M are

YNe=cfy and M) =ii/A =V, — YA+ V_, Nep(dy),  (5.5)
where Ag is the selfadjoint extension of A defined by Ay = kerT'.
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For the spectra of the selfadjoint extensions of A in L?(R,sgn), i.e. of the
selfadjoint operators A,y defined by

Ay = ker(F1 + aFo), aeR, Ay = Ao,
we have
((—o0, =V_]U [V4,00)) = 0c(A(a) C 0(Aw) C (RU{Vy +it|t € R}),
where Vy := %(VJF —V.), and for every a € R
7(A(a))\((—o0, =V_] U [Vy, 00))
is empty or consists of two eigenvalues (multiplicities counted). More precisely:

(i) Assume that V4 < —V_. Then o.(A()) =R, a € R, and there is a one-to-
one increasing continuous mapping (0,00) 3 a > tq € (0,00) such that

(A = ) if a € R\ (0, 00),
@O TN Vo + ita, Vo —ita}  if a € (0,00).
ii) Assume that —V_ < V. Then o.(A¢a)) = (=00, =V_]JU[Vy,0), a € R, and
(o)

there is a one-to-one decreasing continuous mapping
(VVi+ Vo, V2(Ve+ Vo) S a— s, € [0,3(VE +V0))
and a one-to-one increasing continuous mapping

[V2(Vi +V_),00) 3 a ' uq € [0,00)

such that
0 if a € (—o0,/ V4 +V_],
UP(A(a)) = {Vb _Sa}U{VO+Sa} ifae€ (\/V++V_,\/2(V+ +V ]
{Vo +iua} U{Vo —iua} if a € [\/2(V + V_),00).

We remark that Ay = kerI'; is the only selfadjoint extension of A with a
domain consisting of C'-functions:

dom Ay = W22(R),
(A (@) = (sgna)(—f"(x) + V(2)f(z)), [ € dom A
Let us verify Claim 5.2. It is not difficult to verify that
[A+<f+, f=){9+.9 >] [<f+af ) A+(9+ag—>}
= (f1(0+) = f£.(0-)) g(0) = £(0) (¢, (0+) — g"(0-))
=T1fTog—TofTg

holds. Therefore {C,Ty,T'1} is a boundary value space for AT. Ag = ker 'y coin-
cides with the operator defined by (5.4). Then (5.5) follows from (5.2).
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If —V_ < V4 we have 0(A4g) = R\(=V_,V4); if Vi < —=V_, then o(4p) = R.

In both of these cases for A € C\R a straightforward calculation gives
InM(A)>0(=0,<0) < Reirx>V, (=W, <W).

Now it follows from Theorem 2.2 that the spectra of all selfadjoint extensions A ),

a € R, are contained in RU (Vo + iR).

Let us show that none of the extensions Ay, a € R, has an eigenvalue in
(=00, =V_]U[V,, 00). Evidently, this is true for A (o) = Ao. Suppose that, for some
a€R, pe€ (0o, —V_]U[V,,00) is an eigenvalue of A,y and f is a corresponding
eigenelement. Then (sgnz)(—f"(x) + V(x)f(x)) = pf(z) implies

if p<—V_
f(as){ 0 ifps =V, zeR™,

cexp(w/,u—i—V_ac) if p>-—-V_,
and
0 lf/j/ZV-‘ra +
= R
/(@) {dexp(\/VJrux) if p< Vg, reRs

where ¢ and d are some constants. If p >V, or p < —V_, then the continuity of
the functions in dom A4 yields f = 0.

The last statements of Claim 5.2 are consequences of the following facts: A
point A € h(M) is an eigenvalue of A,y if and only if M () = —a, the mapping

(0,00) St M(% +Zt) S (70070)
is continuous and decreasing such that
gm M(Vy +it) = —o0
and
if < -V_
L M (Vp +it) = { vy < -V,
t10 —/2(Va+ Vo) if—-V_ < V.
If —V_ < V4 the mapping
0, 3(Ve+V0) 2t MVo+t)=M(Vo—t) € [—vV2(Vy + Vo), —/ Vi + V)

is one-to-one, continuous and increasing, M (Vp) = —/2(Vy + V_) and
1iﬁ)1M(V+ —e) = liﬁ)lM(—V_ +e)=— Vi +V_.
g g

Claim 5.3. For all the selfadjoint extensions A (), o € R, of A the following holds.
(i) Q4 :=C\(—o00,—V_] is of type 7y and Q_ = C\[V},00) is of type m_.
(i) If Vi < —=V_ the interval (—V_,00) is of positive type and the interval
(—o0, V) is of megative type. If —V_ < Vi the interval (Vy, 00) is of pos-
itive type and the interval (—oo, Vo) is of negative type.
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Indeed, since (i) is true for the fundamentally reducible operator Ag = A (o)
and the differences of the resolvents of A(,), @ € R, and A have rank one it
follows by [3, Theorem 2.4] that (i) holds for every extension A, of A.

Assume that V; < —V_. We show that (—V_,00) is of positive type with

respect to Aqy. By (i) each operator A(,), o € R, is also of type m; over the
domain

Q:={t+is|te(-V_,0), se (-1,1)}

and we have 0,(A(y)) NQ = 0. Let Q' and Q" be subdomains of 2 satisfying the
conditions mentioned before Definition 3.1 such that Q7 C Q and ' C Q”. We
are going to show that there exists a projection E as in Definition 3.3 with K and
Ag replaced by L?(R,sgn) and A(q), respectively, such that the range of £ is a
Hilbert space.

Since  is of type my with respect to A, there exists a projection E”
in L?(R,sgn) as in Definition 3.3 with Q replaced by ©” such that ran E” is a
Pontryagin space and the intersection of the spectrum of the selfadjoint operator
A(aylran E” and Q" is real and contains no eigenvalues. If F is the spectral function
of A(q)|ran E”, then by a well known result for selfadjoint operators in Pontryagin
spaces the ranges of the spectral projections F'([a, b]) corresponding to the intervals
[a,b] C Q" are Hilbert spaces. Assume, in addition, that [a,b] C Q" contains Q’NR.
Then E = F([a,b])E" is a projection in L*(R,sgn) with the required properties
and (—V_,00) is of positive type with respect to A(,). An analogous argument
applies for the interval (—oo, V) .

If -V_ < Vyand pe (Vo,V4) (n € (=V_,Vp)) is an eigenvalue of some
A(q) a simple calculation shows that the corresponding eigenelement f is positive
(negative) in L?(R,sgn), i.e. [f, f] > 0 (resp. [f, f] < 0). Now it follows as above
that (Vp,00) is of positive type and (—oo, Vp) is of negative type with respect to
the operators A(,), a € R.

5.2. A-dependent boundary conditions
In this section we consider the following boundary value problem with A-dependent
boundary conditions: For a given function h € L?*(R) find an element f = (f4, f-)
in W22(R*) x W22(R~) such that

2

(sgnz) <% + V(a:)) f(x) = Af(z) = h(z), z€RTUR™, (5.6)

holds, where V is as in Section 5.1, and the boundary conditions
T(A)f(0) + f1(04) = fL(0=) =0 and f(0+) = f(0-) (5.7)

are satisfied. Here 7 is assumed to be a meromorphic function in C (which implies
7,—7 € N(C)) from a special class described below. It will be shown that the
meromorphic functions 7 of that class possess a minimal representation of the
form (3.3).
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Let

(1) =, € CF (a5)5, c C\{o},  (k;);=, CN
be finite (joo < 00) or infinite (joo = 00) sequences such that
Lopj # py for j#k, 07 ] < pe < ..o
sup; || = 00 if joo = 00, p1j # i, j = 1,..., joo,
2.a; eRif pj eR, j=1,..., o0, a0 € R,
3. sup, k;j < oo,

7! < .

4. ;'21 lajl|w;
Then we define
1 Joo
T(A) =ao+ 3 D (ajh =)™ @A ;) 7).
=1

For jo, = oo the series converges absolutely and uniformly on every compact subset

L of C such that p; € L,  =1,2,..., joo. We have 7(X) = 7(N).
We denote by [-,]x, k € N, the inner product in C* defined by

[(3517---7$k>T7(y1;---7yk>T]k = ((zk,---,xl)Tv(yl,---,yk)T)Ck;

the sip matrix (see [13, Chapter 1)) is a fundamental symmetry of (C*, [-,-]x). The
k x k Jordan block corresponding to p € C is denoted by Ji(u):

w1 0

Je(p) ==
1
0 %

If 1 € R we set K; := (C*, —(sgna;)[-, Jx,), To,j := J, (1;) and
fj ::|aj|%(T07j—i) (O,...,O,l)T
1. ks . T
== a7 (G — )™, (=)™
If Hj ¢ R we set ’C]‘ = (Czkj, [', ']ij>,

To.; := diag (Jx, (15), Ik, (7;))

-1

(To; —i)74(0,...,0,1,0,...,0, —e~*2re i) T

] ..,—(’i _ﬁj)flefiargaj)'l'-
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Then
(aj(A =) ™" + @A —7;) ™)
= [Toifi: fil, + Alfis fily, + %+ D[(Tog = N7 i, £l

Let (£2,[-,-]) be the direct product of the Krein spaces K;, j = 1,..., joo. By the
definition of the vectors f; there exists an M such that

FillZ; < Mlag]|pg| =2 (5.8)
Then the assumption 4 above implies f := (fj)j:‘;"l € 2.
The family of operators Vy € L£(¢2), A # pj for all j =1,..., joo, defined by
Va((z))i=)) == ((To,; — Nag)

fulfils the resolvent equation, we have V5 = V,I and ker Vy = {0}. If Tj) denotes the
selfadjoint operator in ¢2 the resolvent of which coincides with V) then for any j
the space K; regarded as a subspace of 2 is contained in dom Ty and To|lC; =To, 5.
By (5.8) and assumption 4 the series

N~

Joo
to =Y [Tof;, ;]
j=1
converges and we have

T(A) =ao+to +Af, fl+ N+ D[(To— N, f] (5.9)

Making use of the fact that u; # p; for ¢ # j it is not difficult to verify that
the representation (5.9) of 7 is minimal. There exist a closed symmetric operator
T C Ty with defect one and a boundary value space {C,T'(,T"}} for T" such that
7 is the corresponding Weyl function (cf. Theorem 3.4). Since 7 and —7 belong to
the class N(C) here the selfadjoint operator Ty = ker I’ is of type 74 as well as
of type m_ over C. The minimality of the representation implies that

sp{ker(TT = A),[A#p;,i=1,...,j00}
is dense in ¢2 and therefore T" has no eigenvalues.

Claim 5.4. Let A be the symmetric operator from (5.1) and let {C,To,T'1} be the
boundary value space from Claim 5.2. Then

A={{f k}y € A< TH|T1f — Tk =Tof +Thk =0} (5.10)
is a selfadjoint extension of A in the Krein space L*(R,sgn) x 2 and the following
holds.

(i) o(A)\R is either finite or the only accumulation point of o(A)\R is cc.

(i) If Vi < =V_ then o.(A) = R, the interval (—V_,00) is of positive type and
the interval (—oo, V) is of negative type with respect to A.
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(iii) If —V_ < Vi then o.(A) = R\(=V_,Vy) and a,(A) N (=V_, V) is finite.
The interval (Vi,00) is of positive type and the interval (—oo,—V_) is of
negative type with respect to A.

(iv) If P denotes the orthogonal projection of L?(R,sgn) x £2 onto L*(R,sgn) then
for every X € p(g)\{,uj [j€1,...,j00} the function

f = P(Av_ )\)*1{]170}
is a solution of the boundary value problem (5.6)-(5.7).

In fact, let Q4 and Q_ be as in Claim 5.3. Then Ay = ker 'y is of type 7+
over Q4 and it follows from Theorem 4.1 (with Q@ = Q' = Q4) that the selfadjoint

extension A in (5.10) of A in L2(R,sgn) x ¢2 is also of type 7+ over Q.

(i) If =V_ < V4 then the fact that A is of type m+ over Qi implies that
oo is the only possible accumulation point of o(A)\R. It remains to show that in

the case V. < —V_ the nonreal spectrum of A does not accumulate to points in
[V4, —V_]. Recall that the Weyl function M corresponding to {C,Ty,T'1} is given
by

M) =i/A—Vy—/A+V_,

(cf. (5.5)). If pe (Vi, =Vo\{; 17 €1,...,joo} then the function M + 7 can be
continued analytically from the upper half plane into an open neighbourhood 4,
of u and this implies that the zeros of M + 7 in C* can not accumulate to . A
similar argument applies in the case that pis a pole of 7. Let p =V or p = —V_.
Then the limit limy—., M(X), A € C*, from the upper half plane exists and is
finite. Therefore the zeros of M + 7 cannot accumulate to p if p is a pole of .
Now assume that pu # p;, j =1,..., joo. Then

inf{’c%\(M()\)—&—T()\))’: 0<|)\—M|§T,)\EC+}—>ooif rlo

implies that the zeros of M + 7 do not accumulate to p.

Hence it follows from Theorem 2.2 that for every p € [V, —V_] there exists
an open neighbourhood U, such that U4, N C* belongs to the resolvent set of the
closed extensions

Aoy =ker(T1 +7(MTo),  AeU,NCH,

of Ain L?(R,sgn). It is no restriction to assume that 4, NCTN{u; |j =1,...,joc}

is empty. If some A € U, NCT would be an eigenvalue of A, then there would exist
f € L?(R,sgn), k € £2, {f, k} # {0,0}, such that

{f k) = (&;i%) e Ac At x T+, (5.11)
In particular f # 0, as otherwise (5.10) would imply 1"6]% =T/k=0and keT
what is impossible as T has no eigenvalues. Hence AT f = Af and, by (5.10),

I'1f =Tk =r(\Ihk = —1(MTof
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would imply A € 0;,(A(-(x))), a contradiction. Therefore the only possible accumu-
lation point of o(A)\R is cc.
(ii) From Claim 5.2 and the fact that A is a two-dimensional perturbation

in resolvent sense of Ag X Ty we conclude R C o(A4) if Vi < —V_. If A € R,
A# pj, 7 =1,...,jo, would be an eigenvalue of A then the same argument as
in the proof of (i) would imply that A is an eigenvalue of the selfadjoint operator
Aizny), T(A) € R, which contradicts Claim 5.2. For A € {u;|j = 1,...,jcc}
we have XA € 0,(Tp) and since A is a normal eigenvalue of T, we conclude that
ran (To — A) and, therefore, also ran (7' — ) is closed. Hence the defect subspace
ker(TT — A) has dimension one and ker(T+ — \) = ker(Tp — A). If A would be an
cigenvalue of A then there would exist f € L%(R,sgn), k € (2, {f,k} # {0,0},
such that {f,k} € A C At x T* (cf. (5.11)). From k € Ty and (5.10) we conclude
I‘Of =0, ie. A € 0p(A(oo)), which again contradicts Claim 5.2. Therefore we have
R = 0.(A). The same argument as in the proof of Claim 5.3 shows that (—V_,c0)
is of positive type and (—oo, V) is of negative type with respect to A.

(iii) In the case —V_ < V, the same arguments as in the proof of (ii) show
o.(A) = R\(~V_,V,) and that (Vy,00) is of positive type and (—oo, —V_) is of
negative type with respect to A. The interval (—=V_, V4) with the possible exception
of finitely many points p1;, 7 € 1,..., jso, is contained in p(Ao) N h(7). Hence by
Theorem 4.1 the set ap(g) N (=V_,V4) is finite.

(iv) The A-dependent boundary value problem (5.6)-(5.7) is equivalent to

(At =N f=h, TNDof+DT1f=0, f= (A{f>.

Hence for all A € p(A)\{x;|j € 1,...,jsc} Theorem 4.1 implies that the function
f=P(A—X)"Yh,0} is a solution of (5.6)-(5.7). Moreover the formula

P(Z— )\)_1|L2(]R,sgn) = (AO - )\)_1 - (M()‘) + T()‘))_l [" fﬂ Ia

holds for all A € p(A)\E, where ¥ is some discrete subset of p(A) with oo as only
possible accumulation point and f is the defect element from (5.2).
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