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Abstract. Spectral properties of singular Sturm-Liouville operators of the form

A = sgn (·)(− d
2

dx2 + V ) with the indefinite weight x 7→ sgn (x) on R are studied.

For a class of potentials with lim|x|→∞ V (x) = 0 the accumulation of complex and

real eigenvalues of A to zero is investigated and explicit eigenvalue problems are solved

numerically.
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1. Introduction and main results

Let V be a locally integrable real valued function on R, V ∈ L1
loc (R). Recall that the

maximal operator T associated to the differential expression − d2

dx2 + V in the Hilbert

space L2(R) is given by

(Tf)(x) = −f ′′(x) + (V f)(x), x ∈ R, (1)

defined on the dense subspace

dom T =
{

f ∈ L2(R) : f, f ′ absolutely continuous,−f ′′ + V f ∈ L2(R)
}

. (2)

We note that due to Weyl’s alternative (see, e.g., [22, 23]) the maximal operator T is

not necessarily selfadjoint in the Hilbert space L2(R), but always contains selfadjoint

restrictions. However, if the differential expression − d2

dx2 + V is in the limit point case

at both singular endpoints +∞ and −∞, then T is already selfadjoint in L2(R), cf.

[22, 23]. A sufficient condition on the potential V for − d2

dx2 + V to be in the limit point

case is, e.g.,

lim inf
x→±∞

1

x2
V (x) > −∞, (3)

see [22, 23]. The spectral properties of onedimensional Schrödinger operators of the

form (1)-(2) play a fundamental role in quantum mechanics and have been studied by

mathematicians and physicists for many decades.

Nowadays there is a strong interest in spectral analysis of non-selfadjoint second

order differential operators which still satisfy certain (Krein space) symmetry properties,

e.g., PT -symmetric operators (see the comprehensive review paper [7] for an overview

and further references and, e.g., [8, 20]). Of particular interest to us is the above

differential expression − d2

dx2 + V multiplied with the indefinite weight function sgn (·),

that is, we consider the differential operator

(Af)(x) := sgn (x)(−f ′′(x) + (V f)(x)), x ∈ R, (4)

defined on the maximal domain domA = domT . Indefinite Sturm-Liouville operators

of similar structure were considered in, e.g., [3, 9, 10, 14, 15]. Obviously, A is not a

symmetric or selfadjoint operator in the space L2(R) equipped with the usual Hilbert

scalar product (·, ·). For the following investigations it is convenient to introduce an

indefinite inner product [·, ·] on L2(R) by

[f, g] :=

∫

R

f(x)g(x) sgn (x) dx, f, g ∈ L2(R). (5)

Then we have [f, g] = (sgn (·)f, g) and (L2(R), [·, ·]) is a so-called Krein space, cf. [1].

The differential operator A is a densely defined closed operator in this Krein space. It

is not hard to see that the operator A is selfadjoint with respect to the Krein space

inner product [·, ·] if and only if the operator T is selfadjoint with respect to the usual

L2(R) scalar product (·, ·). Recall that besides symmetry with respect to the real line

the spectrum of a selfadjoint operator in a Krein space can be quite arbitrary. In
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particular, the whole complex plane may consist of eigenvalues or spectral points from

the continuous spectrum.

The present note has the following main objectives. In the case that the indefinite

Sturm-Liouville operator A in (4) is selfadjoint in the Krein space (L2(R), [·, ·]) and

the potential V tends to zero for |x| → ∞, firstly the behaviour of complex and real

eigenvalues of A in a neighborhood of zero is studied and secondly numerical methods are

applied to analyze some explicitly solvable problems; among them V (x) = −(1+ |x|)−1.

1.1. Accumulation of eigenvalues for a class of indefinite Sturm-Liouville operators

Our first theorem, which also follows from the considerations in [3] and [15], summarizes

the spectral properties of the indefinite Sturm-Liouville operator A. Recall that for a

selfadjoint operator in a Krein space the essential spectrum σess consists of all spectral

points which are no isolated eigenvalues with finite-dimensional algebraic eigenspaces.

Theorem 1 Suppose that limx→±∞ V (x) = 0 holds. Then the operator A in (4) is

selfadjoint in the Krein space (L2(R), [·, ·]), the essential spectrum of A covers the real

line, σess (A) = R, the nonreal spectrum of A consists of eigenvalues and for every δ > 0

there are at most finitely many nonreal eigenvalues of A in {z ∈ C : |z| > δ}. In

particular, no point of R\{0} is an accumulation point of nonreal eigenvalues of A.

In the following we are interested in the behaviour of the eigenvalues of A in a

neighborhood of zero. The next theorem, which is the main result of this note, shows

the different possibilities for eigenvalue accumulation at zero.

Theorem 2 Suppose that limx→±∞ V (x) = 0 holds and that V satisfies the condition

lim sup
x→+∞

x2 V (x) < −
1

4
or lim sup

x→−∞

x2 V (x) < −
1

4
. (6)

Then at least one of the following statements is true.

(i) The nonreal eigenvalues of A accumulate to zero.

(ii) The growth of λ 7→ (A − λ)−1 near zero is not of finite order, i.e., for every open

neighborhood O ⊂ C and all m ≥ 1, M > 1 there exists λ ∈ ρ(A) ∩ O\R such that

‖(A − λ)−1‖ |Im λ|m > M(1 + |λ|)2m−2.

(iii) There exists a sequence (µn)n∈N ⊂ (0,∞) of (embedded) eigenvalues of A and

associated eigenvectors (gn)n∈N such that limn→∞ µn = 0 and [gn, gn] ≤ 0 holds.

(iv) There exists a sequence (νn)n∈N ⊂ (−∞, 0) of (embedded) eigenvalues of A and

associated eigenvectors (hn)n∈N such that limn→∞ νn = 0 and [hn, hn] ≥ 0 holds.

The proofs of Theorem 1 and Theorem 2 make use of spectral and perturbation

theory of selfadjoint operators in Krein spaces. In particular, the theory of locally

definitizable operators and a result on finite rank perturbations in resolvent sense of

such operators will be applied, see Section 2 for the details.
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Figure 1. Accumulation of complex eigenvalues to zero of the indefinite differential

operator A (blue points) and negative eigenvalues of T (red points) for the potential

V (x) = −(1 + |x|)−1.

1.2. Numerical examples

In this subsection some explicit examples for potentials V are given where nonreal

eigenvalues of the indefinite Sturm-Liouville operator (4) accumulate to zero. We

mention that an existence result on such potentials was already proved in [15]. The

models considered here arise from completely solvable models on the half axes, so that

eigenvalues and eigenfunctions can be computed by using standard software packages,

e.g. Mathematica (WolframResearch).

As a first example we consider

V (x) = −
1

1 + |x|
, x ∈ R. (7)

Clearly, both assumptions on V from Theorem 2 are satisfied. The differential operator

(Tf)(x) = −f ′′(x) −
1

1 + |x|
f(x), x ∈ R,

is selfadjoint in the Hilbert space L2(R). Obviously the operator T is semibounded

from below by −1 and one verifies numerically that -0.429911 is the lower bound. Since

σ(T ) ∩ (−∞, 0) consists of simple eigenvalues the point -0.429911 is an eigenvalue.

Furthermore, the negative eigenvalues of T accumulate to zero (red points in Figure 1)

and the half axis [0,∞) is the essential spectrum of T .
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The indefinite Sturm-Liouville operator

(Af)(x) = sgn (x)

(

−f ′′(x) −
1

1 + |x|
f(x)

)

, x ∈ R,

is selfadjoint in the Krein space (L2(R), [·, ·]), its essential spectrum coincides with R and

at least one of the statements (i)-(iv) in Theorem 2 is true. Our numerical calculations

suggest that the nonreal eigenvalues accumulate to zero (blue points in Figure 1). This

is done as follows: Fix a solution f+,λ of

−f ′′(x) −
1

1 + |x|
f(x) = λf(x), x ∈ R+, (8)

which belongs to L2(R+) and a solution f−,λ of

f ′′(x) +
1

1 + |x|
f(x) = λf(x), x ∈ R−, (9)

in L2(R−). The considerations in [6] show that a point λ ∈ C\R is an eigenvalue of A

if and only if the function m, defined by

m(λ) =
f ′

+,λ(0)

f+,λ(0)
−

f ′
−,λ(0)

f−,λ(0)
, λ ∈ C\R,

has a zero in λ. It is well-known that equations (8) and (9) are explicitely solvable.

Here we compute f+,λ and f−,λ explicitely and determine the zeros of m numerically by

using the software package Mathematica (WolframResearch). A dot in the Figures 1, 2

and 3 means that for this value of λ we find solutions f±,λ ∈ L2(R±) and m(λ) vanishes

within the working default precision of Mathematica.

If λ ∈ C is an eigenvalue of A, then the selfadjointness of A with respect to [·, ·]

implies that the complex conjugate point λ̄ is also an eigenvalue. Moreover, the property

V (x) = V (−x) implies that besides λ also −λ is an eigenvalue of A and the function

x 7→ f(−x) is an eigenfunction at −λ whenever x 7→ f(x) is an eigenfunction at λ.

Therefore the spectrum of the indefinite differential operator A is symmetric with respect

to the real and imaginary line.

Not surprisingly the potential

V (x) = −
5

1 + |x|
, x ∈ R, (10)

generates complex eigenvalues of A with the same qualitative behaviour as the potential

in (7), cf. Figure 2. The eigenvalues of A in the upper halfplane for the potential in

(10) lie below the eigenvalues for the potential in (7).

As a third example a “combination” of the above potentials in (7) and (10) is

considered which does not satisfy the symmetry condition V (x) = V (−x), namely

V (x) =

{

−(1 + x)−1, x > 0,

−5(1 − x)−1, x < 0,
(11)

is considered. Here the nonreal eigenvalues of A also accumulate to zero but are not

symmetric with respect to the imaginary axis, see Figure 3.
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Figure 2. Accumulation of complex eigenvalues of the operator A for the potentials

V (x) = −(1 + |x|)−1 (blue points) and V (x) = −5(1 + |x|)−1 (red points).
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Figure 3. Accumulation of complex eigenvalues of the operator A for the

nonsymmetric potential V in (11).
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2. Proofs of Theorem 1 and Theorem 2

In this section a rigorous proof of Theorem 1 and Theorem 2 is given with the help

of modern Krein space techniques. We first briefly recall some definitions which are

essential in the following.

A point λ from the approximative point spectrum of a selfadjoint operator D in a

Krein space (K, [., .]) is said to be of positive type (negative type) with respect to D, if

for every sequence (xn) ⊂ dom D with ‖xn‖ = 1 and ‖(D − λ)xn‖ → 0 as n → ∞ we

have

lim inf
n→∞

[xn, xn] > 0 ( resp. lim sup
n→∞

[xn, xn] < 0).

We denote the set of all points of positive (negative) type by σ++(D) (resp. σ−−(D)).

For a detailed study and further properties of spectral points of positive and negative

type we refer to [2, 13, 18, 19] and [21]. The following definition can be found in a

slightly more general form in [12, 13].

Definition 1 A selfadjoint operator D in a Krein space (K, [., .]) is said to be

definitizable over C\{0} if the nonreal spectrum of D consists of isolated points which are

poles of the resolvent of D, no point of R\{0} is an accumulation point of σ(D) ∩ C\R

and the following holds:

(i) Every point µ ∈ R\{0} has an open connected neighborhood Iµ in R such that the

spectral points in each component of Iµ\{µ} belong either to σ++(D) or to σ−−(D).

(ii) For every finite union ∆ of open connected subsets of R, ∆ ⊂ R\{0}, there exist

m ≥ 1, M > 0 and an open neighborhood U of ∆ in C such that

‖(D − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m

holds for all λ ∈ U\R.

We note that if the set R\{0} in the above definition is replaced by R, then according to

[13, Theorem 4.7] the selfadjoint operator D is definitizable (over C) in the usual sense

(see [16, 17]), i.e. the resolvent set of D is nonempty and there exists a real polynomial

p such that [p(D)x, x] ≥ 0 holds for all x ∈ dom p(D).

The essence in the proof of Theorem 2 is to verify that the conditions

limx→±∞ V (x) = 0 and (6) on the potential V imply that a certain fundamentally

reducible differential operator in the Krein space (L2(R), [·, ·]) is definitizable over C\{0}

but not definitizable (over C). Then a recent result on finite rank perturbations of locally

definitizable operators implies also non-definitizability of the indefinite Sturm-Liouville

operator A in a neighborhood of zero and it follows that at least one of the statements

(i)-(iv) in Theorem 2 holds. A similar type of argument also implies the assertion in

Theorem 1, cf. [3, 15].
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2.1. The differential operators T+ and T−

Let V+ := V ↾ R+ and V− := V ↾ R− be the restrictions of the potential V ∈ L1
loc (R)

onto the positive and negative halfaxis, respectively. Since the differential expression

− d2

dx2 + V is in the limit point case at +∞ and −∞, it follows that the differential

expressions − d2

dx2 +V+ and − d2

dx2 +V− on R+ and R−, respectively, are in the limit point

case at the singular endpoint +∞ and −∞, respectively. Furthermore, V ∈ L1
loc (R)

implies V+ ∈ L1[0, b) and V− ∈ L1(a, 0] for any b ∈ R+ and a ∈ R−, and hence 0 is a

regular endpoint for both differential expressions on the half axes.

Consider the differential operators

(T+f+)(x) = −f ′′

+(x) + (V+f+)(x), x ∈ R+,

and

(T−f−)(x) = −f ′′

−(x) + (V−f−)(x), x ∈ R−,

defined on the dense subspaces

dom T+ =
{

f+ ∈ L2(R+) : f+, f ′

+ a.c.,−f ′′

+ + V+f+ ∈ L2(R+), f+(0) = 0
}

and

dom T− =
{

f− ∈ L2(R−) : f−, f ′

− a.c.,−f ′′

− + V−f− ∈ L2(R−), f−(0) = 0
}

in L2(R+) and L2(R−), respectively. Here ’a.c.’ is used as an abbreviation for ’absolutely

continuous’. As the functions in dom T+ and dom T− satisfy Dirichlet boundary

conditions at the regular endpoint 0, it follows that T+ and T− are selfadjoint in the

Hilbert spaces L2(R+) and L2(R−), respectively. Since

lim
x→+∞

V+(x) = 0 and lim
x→−∞

V−(x) = 0

holds, the essential spectra of T+ and T− are

σess (T+) = σess (T−) = [0,∞).

Furthermore, by (6) we have

lim sup
x→+∞

x2 V+(x) < −
1

4
or lim sup

x→−∞

x2 V−(x) < −
1

4

and therefore the negative eigenvalues of T+ or T−, respectively, accumulate to zero

(see, e.g., [11, XIII.7 Corollary 57]) and T+ and T− are semibounded from below, say,

e.g., by the negative constants k+ and k−. Clearly, the operator −T− is also selfadjoint

in L2(R−), its essential spectrum coincides with (−∞, 0], −T− is semibounded from

above by −k− and the positive eigenvalues of −T− accumulate to zero if and only if the

negative eigenvalues of T− accumulate to zero.
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2.2. Spectral properties of the operator T+ ×−T− in the Krein space (L2(R), [·, ·])

Let us identify the orthogonal sum of the spaces L2(R+) and L2(R−) with L2(R). Then

the diagonal operator matrix

B =

(

T+ 0

0 −T−

)

, dom B = dom T+ ⊕ dom T−, (12)

with respect to the decomposition L2(R) = L2(R+)⊕L2(R−) is selfadjoint in the Hilbert

space L2(R). Moreover, the spectrum of B is the union of the spectra of T+ and −T−,

that is, the essential spectrum of B coincides with the whole real line,

σess (B) = R, (13)

and there exists a sequence of positive (embedded) eigenvalues of B accumulating to zero

or a sequence of negative (embedded) eigenvalues of B accumulating to zero. Observe

that B is not a “usual” differential operator in L2(R) since for a function f = f+ ⊕ f−
in domB = dom T+ ⊕ domT− the derivative f ′ need not to be continuous at zero.

In the sequel B will be regarded as an operator in the Krein space (L2(R), [·, ·]),

where the indefinite inner product is given by (5). Clearly,

[f+ ⊕ f−, g+ ⊕ g−] =

∫

R+

f+(x)g+(x) dx −

∫

R
−

f−(x)g−(x) dx

for f = f+ ⊕ f−, g = g+ ⊕ g− ∈ L2(R) = L2(R+) ⊕ L2(R−) and if (·, ·)+ and

(·, ·)− denote the Hilbert scalar products in L2(R+) and L2(R−), respectively, then

[f, g] = (f+, g+)+ − (f−, g−)− holds. Now the selfadjointness of T+ and −T− implies the

selfadjointness of B in the Krein space (L2(R), [·, ·]).

Let λ ∈ (0,∞). Then λ is necessarily a spectral point of T+ (and hence B) and

there exists a sequence (fn,+) ⊂ dom T+ such that ‖fn,+‖ = 1 and ‖(T+ − λ)fn,+‖ → 0

for n → ∞. Obviously, here lim infn→∞[fn,+ ⊕ 0, fn,+ ⊕ 0] > 0 is true. If the point

λ ∈ (0,∞) does not belong to the spectrum of −T− at the same time, then every

sequence (fn,+ ⊕ fn,−) ⊂ domB with the properties ‖fn,+ ⊕ fn,−‖ = 1 and

lim
n→∞

‖(B − λ)(fn,+ ⊕ fn,−)‖ = 0

satisfies

lim inf
n→∞

[fn,+ ⊕ fn,−, fn,+ ⊕ fn,−] > 0.

Therefore, such a point λ in the spectrum of B is a spectral point of positive type of B,

λ ∈ σ++(B). Hence the set (0,∞)\σ(−T−) consists of spectral points of positive type of

B. Furthermore, each λ ∈ (0,∞) ∩ σ(−T−) is an eigenvalue of −T− (and an embedded

eigenvalue of B) and every corresponding eigenfunction f− ∈ dom T− satisfies

[0 ⊕ f−, 0 ⊕ f−] = −(f−, f−)− < 0,

i.e., λ is not a spectral point of positive type of B.
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If µ ∈ (−∞, 0)\σ(T+), then very similar arguments as above imply that for

every sequence (gn,+ ⊕ gn,−) ⊂ domB with the properties ‖gn,+ ⊕ gn,−‖ = 1 and

limn→∞ ‖(B − µ)(gn,+ ⊕ gn,−)‖ = 0 necessarily

lim sup
n→∞

[fn,+ ⊕ fn,−, fn,+ ⊕ fn,−] < 0

holds, i.e., µ is a spectral point of negative type of B; µ ∈ σ−−(B). Any µ ∈

(−∞, 0) ∩ σ(T+) is an eigenvalue of T+ (and an embedded eigenvalue of B) and every

corresponding eigenfunction g+ ∈ domT+ satisfies

[g+ ⊕ 0, g+ ⊕ 0] = (g+, g+)+ > 0,

so that µ is not a spectral point of negative type of B.

Summing up we have proved the following statements on the spectral properties

of the operator B. Observe that assertion (iv) follows from the fact that the positive

eigenvalues of T+ or the negative eigenvalues of −T− accumulate to zero.

Lemma 1 Let B be the selfadjoint operator in the Krein space (L2(R), [·, ·]) from (12)

and let T+ and T− be the differential operators from Section 2.1 with lower bounds k+

and k−. Then the following holds.

(i) σ(B) = σess (B) = R and ρ(B) = C\R;

(ii) (0,∞)\σ(−T−) = σ++(B) and (−k−,∞) ⊂ σ++(B);

(iii) (−∞, 0)\σ(T+) = σ−−(B) and (−∞, k+) ⊂ σ−−(B);

(iv) For every ε > 0 at least one of the following statements is true:

(a) there exist an eigenvalue λ ∈ (0, ε) of B and a corresponding eigenfunction fλ

with [fλ, fλ] < 0;

(b) there exist an eigenvalue µ ∈ (−ε, 0) of B and a corresponding eigenfunction

gµ with [gµ, gµ] > 0.

Moreover, since T+ and −T− are selfadjoint operators in the Hilbert spaces L2(R+)

and L2(R−), respectively, it follows that the norm of the resolvent of the operator B

can be estimated by

‖(B − λ)−1‖ ≤
1

|Im λ|
, λ ∈ C\R.

Therefore the operator B is definitizable over the domain C\{0} and B is not

definitizable (over C). The reason for non-definitizability in a neighborhood of zero

is the property (iv) in Lemma 1.

2.3. The indefinite Sturm-Liouville operator A and the operator B

The intersection (in the sense of graphs) of the indefinite Sturm-Liouville operator A in

(4) and the operator B is given by

Sf := Af = Bf, f ∈ dom S := {y ∈ domA ∩ dom B : Ay = By} . (14)
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A function f = f+ ⊕ f− ∈ L2(R) belonging to

domA ∩ dom B = dom A ∩ (domT+ ⊕ dom T−)

is absolutely continuous and has an absolutely continuous derivative f ′ such that

−f ′′ + V f belongs to L2(R) and f(0) = f+(0) = f−(0) = 0 holds. For such a function

we have

Af = sgn (·) (−f ′′ + V f) =
(

−f ′′

+ + V+f+

)

⊕
(

f ′′

− − V−f−
)

= Bf,

that is, A and B coincide on the dense subspace dom A∩ dom B of L2(R) and therefore

the operator S in (14) is a densely defined closed operator which is a one-dimensional

restriction of A and B.

With the help of the asymptotic behaviour of certain Titchmarsh-Weyl functions

corresponding to the operators T+ and T− it can be shown that the resolvent set ρ(A)

of A is nonempty, see, e.g., [3, Corollary 3.4] or [15, Section 2]. Now dim(A/S) =

dim(B/S) = 1 implies

dim
(

ran
(

(A − λ)−1 − (B − λ)−1
))

= 1, λ ∈ ρ(A) ∩ ρ(B), (15)

so that A can be viewed as a one-dimensional perturbation in resolvent sense of the

operator B. Thus the essential spectra of A and B coincide, σess (A) = σess (B) = R

(see (13) and Lemma 1), and the nonreal spectrum of A consists of eigenvalues. As

− d2

dx2 + V is in the limit point case at ±∞ the corresponding geometric eigenspaces are

one-dimensional.

Furthermore, by [4, Theorem 2.2] the operator A is definitizable and non-

definitizable over the same domains as B, in particular, A is definitizable over C\{0}

and not definitizable (over C). As a consequence of the definitizability over C\{0} we

find the remaining statements of Theorem 1. Non-definitizability in a neighborhood of

zero can have three different reasons, firstly complex eigenvalues may accumulate to

zero, secondly the growth of the resolvent of A may not be of finite order, or thirdly

for each ε > 0 the interval (−ε, 0) contains spectral points of positive and negative

type of A or the interval (0, ε) contains spectral points of positive and negative type of

A. Since [5, Theorem 2.4] and Lemma 1 (ii) imply that (−∞, 0) and (0,∞), with the

possible exception of a discrete set, belong to σ−−(A) and σ++(A), respectively, the third

option for non-definitizability of A in a neighborhood of zero holds if and only if there

exists a sequence of positive eigenvalues of A accumulating to zero with corresponding

[·, ·]-negative eigenfunctions or there exists a sequence of negative eigenvalues of A

accumulating to zero with corresponding [·, ·]-positive eigenfunctions. This completes

the proof of Theorem 2.
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