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Abstract

In general it is a non-trivial task to determine the adjoint S∗ of an
unbounded symmetric operator S in a Hilbert or Krein space. We pro-
pose a method to specify S∗ explicitly which makes use of two boundary
mappings that satisfy an abstract Green’s identity, a surjectivity condi-
tion and give rise to a self-adjoint extension of S. We show for various
concrete examples how convenient and easily applicable this technique is.
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1 Introduction

Let S be a densely defined unbounded linear operator in a Hilbert space (H, 〈·, ·〉)
and suppose that S is symmetric, i.e. 〈Sf, g〉 = 〈f, Sg〉 for all f, g ∈ domS, or,
equivalently, the adjoint operator S∗ is an extension of S. For many investiga-
tions, e.g. for the description of the self-adjoint extensions of S and their spectral
properties, it is necessary to determine the adjoint operator S∗. Within the clas-
sical extension theory due to J. von Neumann [27] this is possible in an implicit
way in terms of deficiency elements, but apart from just using the definition
there exists no general technique to compute the domain domS∗ of the adjoint
operator explicitly and to specify the action of S∗ on elements f ∈ domS∗ which
do not belong to the domain of the symmetric operator S.

In this paper we propose an abstract method to verify that a given operator
is the adjoint of a symmetric operator, and in various examples we show how
convenient this technique is. We illustrate the approach for the well-known case
of a Sturm–Liouville operator on a finite interval. Suppose that q ∈ L1(a, b)
is a real-valued function, let `(f) := −f ′′ + qf and denote by Dmax the linear
space of absolutely continuous functions f ∈ L2(a, b) with absolutely continuous
derivatives f ′ such that `(f) also belongs to L2(a, b). The maximal operator
Smax f = `(f) is defined for all f ∈ Dmax and the minimal operator is defined
as

Smin f = `(f), domSmin =
{
f ∈ Dmax : f(a) = f ′(a) = f(b) = f ′(b) = 0

}
.

Integration by parts shows that Smin is a symmetric operator in the Hilbert
space (L2(a, b), 〈·, ·〉) and that the maximal operator Smax is a restriction of
S∗min . The fact that Smax coincides with S∗min is much more difficult to verify
and requires a deeper analysis. According to our main result Theorem 2.3 and
Corollary 2.5 the following suffices to prove Smax = S∗min : find two boundary
mappings Γ0 and Γ1 mapping Dmax into some suitable boundary Hilbert space
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(G, (·, ·)) such that

〈Smax f, g〉 − 〈f, Smax g〉 = (Γ1f,Γ0g)− (Γ0f,Γ1g) (1.1)

holds for all f, g ∈ Dmax , the map (Γ0,Γ1)> : Dmax → G ⊕ G is onto and the
restriction of Smax to ker Γ0 contains (and then automatically coincides with) a
self-adjoint operator. By computing the left-hand side in (1.1) it is easy to read
off that

G = C2, Γ0f =
(
f(a)
f(b)

)
, Γ1f =

(
f ′(a)
−f ′(b)

)
is a possible choice. Indeed, the identity (1.1) and the surjectivity condition
are obviously satisfied and so it remains to check that the boundary conditions
f(a) = f(b) = 0 determine a self-adjoint differential operator. This can be
seen elementary by checking that for all g ∈ L2(a, b) and some λ± ∈ C± the
differential equation `(f) − λ±f = g has a solution f ∈ Dmax which satisfies
f(a) = f(b) = 0.

Sometimes one does not start with a symmetric operator but with some
maximal operator T and poses the question whether T is the adjoint of a sym-
metric operator. Theorem 2.3 can be used to answer this question affirmatively
and to find this symmetric operator using boundary mappings. We emphasize
that T is not assumed to be closed and that the boundary mappings are not as-
sumed to be bounded with respect to the graph norm of T , but both properties
follow from the statement. The method proposed in Theorem 2.3 is inspired by
the theory of isometric and unitary operators between indefinite inner product
spaces (see, e.g. [5, 13, 31]) and the concept of boundary triples used in exten-
sion theory of symmetric operators, cf. [12, 14, 17]. Very roughly speaking, we
trace back the problem to determine the adjoint to the much easier problem
to check self-adjointness. There are many abstract and concrete results about
self-adjointness in the literature but hardly any that show that an operator is
the adjoint of a symmetric operator.

The paper is organized as follows. Section 2 contains the main result on the
adjoint of a symmetric operator (Theorem 2.3). Since we also want to cover
the case of non-densely defined symmetric operators, we formulate the results
in the more general language of linear relations (the operator case is formulated
in Corollary 2.5). Moreover, we allow the linear relation to act in a Krein space
rather than a Hilbert space; a Krein space is a space with an indefinite inner
product which is the direct and orthogonal sum of a Hilbert and an anti-Hilbert
space. In a couple of remarks at the end of Section 2 various alternative sufficient
conditions for the applicability of Theorem 2.3 and Corollary 2.5 are given. In
Section 3 we apply this technique to various problems. First we consider as a
simple well known example a Sturm–Liouville differential expression which is
regular or in the limit circle case at both end-points. As a trickier problem
we investigate a block operator matrix with first and second order differential
expressions as entries in Section 3.2. Such type of block operator matrices have
been considered from a different point of view in many papers, cf. [1, 21, 22].
The case of a uniformly elliptic second order differential expression (with an
indefinite weight function) on a bounded domain is treated in Section 3.3 in a
similar way as in [9, 18, 28]. Our last example on multiplication operators in
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L2-spaces is more abstract and is connected with functional models for operator-
valued Nevanlinna or Riesz–Herglotz functions, see [6, 15, 26]. We note that
here the symmetric operator is in general non-densely defined.

2 Main theorem

Let H be a Hilbert or Krein space with inner product 〈·, ·〉 and equip the space
H2 ≡ H⊕H with the usual inner product 〈·, ·〉H2 . In the case that (H, 〈·, ·〉) is
a Krein space, all topological notions in H and H2 are understood with respect
to some Hilbert space norm ‖ · ‖ such that 〈·, ·〉 is ‖ · ‖-continuous. By L(H) we
denote the set of bounded linear operators defined on H.. In the following we
will frequently make use of an indefinite inner product [[·, ·]]H2 on H2 defined by

[[
f̂ , ĝ
]]
H2 :=

〈
JHf̂ , ĝ

〉
H2 , JH :=

(
0 −iIH
iIH 0

)
, f̂ , ĝ ∈ H2; (2.1)

or explicitly:[[(
f1
f2

)
,

(
g1
g2

)]]
H2

= i〈f1, g2〉 − i〈f2, g1〉,
(
f1
f2

)
,

(
g1
g2

)
∈ H2.

Observe that [[·, ·]]H2 is an indefinite inner product also in the case when (H, 〈·, ·〉)
is a Hilbert space.

In this note we study linear operators and, more generally, linear relations
in the space H, see, e.g. [4, 16]. Recall that a linear relation in H is a linear
subspace of H2 and that a linear operator can always be identified with a linear
relation via its graph. The elements of a linear relation T are pairs denoted
by f̂ = {f ; f ′} ∈ T . A linear relation T is said to be closed if T is closed as
a subspace of H2. The domain, kernel, range and multivalued part of a linear
relation T in H are defined as

domT = {f ∈ H : ∃ f ′ s.t. {f ; f ′} ∈ T}, kerT = {f ∈ H : {f ; 0} ∈ T},
ranT = {f ′ ∈ H : ∃ f s.t. {f ; f ′} ∈ T}, mulT = {f ′ ∈ H : {0; f ′} ∈ T},

respectively. Obviously, a linear relation T is (the graph of) an operator if and
only if mulT = {0}. The inverse of a linear relation T is defined as

T−1 =
{
{f ′; f} : {f ; f ′} ∈ T

}
;

note that ranT = domT−1 and mulT = kerT−1 hold.
Let T be a closed linear relation in H. A point λ ∈ C belongs to the resolvent

set ρ(T ) if

(T − λ)−1 =
{
{f ′ − λf ; f} : {f ; f ′} ∈ T

}
is an everywhere defined bounded operator. The spectrum σ(T ) is the com-
plement of ρ(T ) in C. It is not difficult to check that for λ ∈ C such that
ker(T − λ) = {0} the identity

T =
{
{(T − λ)−1h; (IH + λ(T − λ)−1)h} : h ∈ ran (T − λ)

}
(2.2)



On the adjoint of a symmetric operator 4

holds. The adjoint T ∗ of a linear relation T in H is defined as the orthogonal
companion of T with respect to [[·, ·]]H2 , i.e.

T ∗ := T [[⊥]] =
{
f̂ ∈ H2 :

[[
f̂ , ĝ
]]
H2 = 0 for all ĝ ∈ T

}
(2.3)

=
{
{f ; f ′} ∈ H2 : 〈f ′, g〉 = 〈f, g′〉 for all {g; g′} ∈ T

}
.

Here the symbol ∗ is also used for the adjoint in the case when (H, 〈·, ·〉) is a
Krein space. It is easy to see that (2.3) generalizes the usual definition of the
adjoint of a densely defined operator. Observe that the adjoint T ∗ is a closed
linear relation in H. A linear relation T is called symmetric (self-adjoint) if
T ⊂ T ∗ (T = T ∗, respectively). We note that for a self-adjoint relation T
the spectrum σ(T ) is symmetric with respect to the real line. If (H, 〈·, ·〉) is a
Hilbert space, then σ(T ) is real.

Next the notion of boundary triples will be recalled; see, e.g. [11, 12, 14, 15,
17, 20, 25]. This concept is nowadays very popular in extension and spectral
theory of symmetric and self-adjoint operators since a boundary triple can be
used to describe all closed extensions of a symmetric operator which are restric-
tions of the adjoint, in particular, all self-adjoint extensions. Besides the inner
product [[·, ·]]H2 we make use of a second indefinite inner product [[·, ·]]G2 on G2

defined as in (2.1), where G is a Hilbert space.

Definition 2.1. Let S be a closed symmetric relation in H. We say that
(G,Γ0,Γ1) is a boundary triple for S∗ if (G, (·, ·)) is a Hilbert space and Γ0,Γ1 :
S∗ → G are linear mappings such that Γ :=

(
Γ0
Γ1

)
: S∗ → G ⊕G is surjective, and

the relation [[
f̂ , ĝ
]]
H2 =

[[
Γf̂ ,Γĝ

]]
G2 (2.4)

holds for all f̂ , ĝ ∈ S∗.

If S is a closed symmetric relation in H, then a boundary triple (G,Γ0,Γ1)
for S∗ exists if and only if S admits self-adjoint extensions in H. We note that
a boundary triple for S∗ is not unique. If (G,Γ0,Γ1) is a boundary triple for
S∗, then Γ = (Γ0,Γ1)> : S∗ → G2 is continuous with respect to the graph norm
of S∗ and the mapping

Θ 7→ AΘ := ker(Γ1 −ΘΓ0) =
{
f̂ ∈ S∗ : Γf̂ = {Γ0f̂ ; Γ1f̂} ∈ Θ

}
= Γ−1(Θ)

establishes a bijective correspondence between the closed linear relations Θ in
G and the closed extensions AΘ ⊂ S∗ of S; see, e.g. [14, 15, 17]. If mul Θ 6= {0},
then the expression Γ1−ΘΓ0 has to be interpreted in the sense of linear relations,
i.e.

Γ1 −ΘΓ0 =
{
{f̂ ; Γ1f̂ − y} : f̂ ∈ S∗, {Γ0f̂ ; y} ∈ Θ

}
.

It is important to note that the identity A∗Θ = AΘ∗ holds. This implies that AΘ

is a closed symmetric (self-adjoint) extension of S if and only if Θ is a closed
symmetric (self-adjoint, respectively) relation in G.

Remark 2.2. In many applications the closed symmetric relation S is a densely
defined symmetric operator. Then S∗ is also an operator and it is more natural
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to define the boundary mappings on domS∗ instead of (the graph of) S∗. More
precisely, if (G,Γ0,Γ1) is a boundary triple for S∗, then for f ∈ domS∗ and
f̂ = {f ;S∗f} we write Γif instead of Γif̂ , i = 0, 1. Then (2.4) turns into

〈S∗f, g〉 − 〈f, S∗g〉 = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ domS∗. (2.5)

Relation (2.5) is sometimes called abstract Green’s identity or abstract Lagrange
identity. Later this terminology will become clearer.

The following theorem is the main result of this note. It provides a method
to determine the adjoint of a symmetric operator or relation. The idea is based
on the theory of isometric and unitary operators in Krein spaces and the concept
of boundary triplets, cf. [5, 12, 13, 31].

Theorem 2.3. Let T be a linear relation in the Hilbert or Krein space (H, 〈·, ·〉)
and let (G, (·, ·)) be a Hilbert space. Assume that Γ =

(
Γ0
Γ1

)
: T → G ⊕ G is a

linear mapping such that the following conditions are satisfied:

(i) there exists a symmetric relation Θ in G such that

ker(Γ1 −ΘΓ0) =
{
f̂ ∈ T : Γf̂ = {Γ0f̂ ; Γ1f̂} ∈ Θ

}
contains a self-adjoint relation A in (H, 〈·, ·〉),

(ii) ran Γ = G ⊕ G,

(iii)
[[
f̂ , ĝ
]]
H2 =

[[
Γf̂ ,Γĝ

]]
G2 for all f̂ , ĝ ∈ T .

Then S := ker Γ is a closed symmetric relation in H such that S∗ = T and
(G,Γ0,Γ1) is a boundary triple for S∗. Furthermore, Θ is a self-adjoint relation
in G and A = ker(Γ1 −ΘΓ0) = AΘ holds.

Remark 2.4. We point out that in the assumptions of Theorem 2.3, T is not
assumed to be closed and that the boundary mappings are not assumed to be
continuous with respect to the graph norm of T . It is part of the conclusion
that T is closed and Γ is bounded. For the applicability of the method it is
essential that closedness of T and boundedness of Γ do not have to be checked,
see the examples in Section 3.

If T is a linear operator and the mappings Γ0,Γ1 are defined on domT instead
of T (cf. Remark 2.2), then Theorem 2.3 reduces to the following corollary, which
in the Hilbert space case, under the additional assumption that T is closed,
coincides with [12, Theorem 1.13].

Corollary 2.5. Let T be a linear operator in the Hilbert or Krein space (H, 〈·, ·〉)
and let (G, (·, ·)) be a Hilbert space. Assume that Γ =

(
Γ0
Γ1

)
: domT → G ⊕ G is

a linear mapping such that the following conditions are satisfied:

(i) there exists a symmetric relation Θ in G such that

T ¹ ker(Γ1 −ΘΓ0) = T ¹
{
f ∈ domT : Γf = {Γ0f ; Γ1f} ∈ Θ

}
has a self-adjoint restriction A in (H, 〈·, ·〉),

(ii) ran Γ = G ⊕ G,
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(iii) 〈Tf, g〉 − 〈f, Tg〉 = (Γ1f,Γ0g)− (Γ0f,Γ1g) for all f, g ∈ domT .

Then S := T ¹ ker Γ is a densely defined closed symmetric operator in H such
that S∗ = T and (G,Γ0,Γ1) is a boundary triple for S∗. Furthermore, Θ is a
self-adjoint relation in G and A = T ¹ ker(Γ1 −ΘΓ0) = AΘ holds.

Proof of Theorem 2.3. The symmetric relation Θ can be extended to a maximal
symmetric relation Θ̃ in G, i.e. Θ̃ is symmetric and i ∈ ρ(Θ̃) or −i ∈ ρ(Θ̃).
Without loss of generality assume the former and define an operator W =
(Wij)2i,j=1 ∈ L(G ⊕ G) by

W :=

(
IG + i(Θ̃− i)−1 −(Θ̃− i)−1

(Θ̃− i)−1 IG + i(Θ̃− i)−1

)
. (2.6)

Let JG be as in (2.1) such that [[·, ·]]G2 = (JG ·, ·)G2 holds. Then (Θ̃∗+i)−1 ∈ L(G)
and

(Θ̃− i)−1 − (Θ̃∗ + i)−1 = 2i(Θ̃∗ + i)−1(Θ̃− i)−1;

this and a straightforward calculation show thatW ∗W = IG andW ∗JGW = JG .
Since condition (iii) holds for Γ: T → G ⊕ G, we conclude that the mapping

ΓW =
(

ΓW
0

ΓW
1

)
:=
(
W11 W12

W21 W22

)(
Γ0

Γ1

)
= WΓ : T → G ⊕ G

satisfies a corresponding condition[[
ΓW f̂ ,ΓW ĝ

]]
G2 =

[[
WΓf̂ ,WΓĝ

]]
G2 =

(
JGWΓf̂ ,WΓĝ

)
G2

=
(
W ∗JGWΓf̂ ,Γĝ

)
G2 =

(
JGΓf̂ ,Γĝ

)
G2 =

[[
Γf̂ ,Γĝ

]]
G2 =

[[
f̂ , ĝ
]]
H2

(2.7)

for all f̂ , ĝ ∈ T , and since W is isometric, ker Γ = ker ΓW holds. Observe also
that for f̂ ∈ T the element {Γ0f̂ ; Γ1f̂} belongs to the symmetric relation Θ̃ if
and only if {ΓW

0 f̂ ; ΓW
1 f̂} belongs to the symmetric relation{

{W11u+W12v;W21u+W22v} : {u; v} ∈ Θ̃
}
.

Making use of Θ̃ =
{
{(Θ̃ − i)−1x; (IG + i(Θ̃ − i)−1)x} : x ∈ ran (Θ̃ − i)

}
, cf.

(2.2), and inserting the entries Wij from (2.6) we conclude that {Γ0f̂ ; Γ1f̂} ∈ Θ̃
implies ΓW

0 f̂ = 0, i.e.

ker(Γ1 − Θ̃Γ0) ⊂ ker ΓW
0

and hence by condition (i)

A ⊂ ker(Γ1 −ΘΓ0) ⊂ ker(Γ1 − Θ̃Γ0) ⊂ ker ΓW
0 . (2.8)

Suppose now that f̂ , ĝ ∈ ker ΓW
0 . From (2.7) we obtain

[[f̂ , ĝ]]H2 = [[ΓW f̂ ,ΓW ĝ]]G2 = 0
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and hence ker ΓW
0 is a symmetric relation in H. Therefore (2.8) and the self-

adjointness of A imply

ker ΓW
0 ⊂

(
ker ΓW

0

)∗ ⊂ A∗ = A ⊂ ker ΓW
0 ,

which implies equality everywhere, i.e. ker(Γ1 −ΘΓ0) = Γ−1(Θ) = A = ker ΓW
0

is self-adjoint in H. Moreover,

S := ker Γ = ker ΓW ⊂ ker ΓW
0

is a symmetric relation in H.
Assume that Θ is not self-adjoint. Then Θ ( Θ∗, and since ran Γ = G⊕G, we

have Γ−1(Θ) ( Γ−1(Θ∗). Assumption (iii) implies Γ−1(Θ∗) ⊂ (Γ−1(Θ))∗, which
is a contradiction to the self-adjointness of Γ−1(Θ). Hence Θ is self-adjoint. It
follows now that also WW ∗ = IG and hence ranΓW = G⊕G by assumption (ii).

Let us verify that S = T ∗ holds. For f̂ ∈ S = ker ΓW and ĝ ∈ T we have
[[f̂ , ĝ]]H2 = [[ΓW f̂ ,ΓW ĝ]]G2 = 0 by (2.7); hence f̂ ∈ T ∗. On the other hand, since
A ⊂ T is self-adjoint, each element f̂ ∈ T ∗ necessarily belongs to A = ker ΓW

0 .
For arbitrary ĝ ∈ T this implies

0 =
[[
f̂ , ĝ
]]
H2 =

[[
ΓW f̂ ,ΓW ĝ

]]
G2 = −i(ΓW

1 f̂ ,ΓW
0 ĝ).

It follows from condition (ii) and ran Γ = ranΓW that ran ΓW
0 = G holds and

this gives ΓW
1 f̂ = 0. Hence we have f̂ ∈ ker ΓW

0 ∩ker ΓW
1 = S. Therefore S = T ∗

and, in particular, S is a closed linear relation in H.
Since S∗ = T ∗∗ = T , it remains to show that T is closed. Let (f̂n) ∈ T be a

sequence converging to f̂ . For ẑ ∈ G ⊕ G we choose ĝ ∈ T such that Γĝ = JG ẑ
holds. From

lim
n→∞

(Γf̂n, ẑ)G2 = lim
n→∞

[[
Γf̂n,Γĝ

]]
G2 = lim

n→∞

[[
f̂n, ĝ

]]
H2 =

[[
f̂ , ĝ
]]
H2 (2.9)

we conclude that Γf̂n converges weakly to some x̂ ∈ G ⊕ G. Let ĥ ∈ T be such
that Γĥ = x̂. Then (2.9) implies[[

f̂ , ĝ
]]
H2 = lim

n→∞
(Γf̂n, ẑ)G2 = (x̂, ẑ)G2 = (Γĥ,J−1

G Γĝ)G2

=
[[
Γĥ,Γĝ

]]
G2 =

[[
ĥ, ĝ
]]
H2

and therefore [[f̂ − ĥ, ĝ]]H2 = 0. Since ĝ ∈ T , we conclude f̂ − ĥ ∈ T ∗ = S ⊂ T .
Now ĥ ∈ T implies f̂ ∈ T . We have shown S∗ = T . By conditions (ii) and (iii)
it follows that (G,Γ0,Γ1) is a boundary triple for S∗.

Remark 2.6. In the proof of Theorem 2.3 we have also shown that (G,ΓW
0 ,ΓW

1 )
is a boundary triple for S∗ = T such that AΘ = ker ΓW

0 holds.
Remark 2.7. In applications it is often convenient to choose the symmetric rela-
tion Θ in condition (i) as one of the self-adjoint relations Θ0 = {{0; g} : g ∈ G}
or Θ1 = Θ−1

0 = 0. In this case one has to verify that ker Γ0 = ker(Γ1 − Θ0Γ0)
or ker Γ1, respectively, contains a self-adjoint relation in (H, 〈·, ·〉). For Corol-
lary 2.5, (i) reduces to the statement:

T ¹ {f ∈ domT : Γ0f = 0} (or T ¹ {f ∈ domT : Γ1f = 0}, respectively)

has a self-adjoint restriction.
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Remark 2.8. If (H, 〈·, ·〉) is a Hilbert space, then condition (i) can be replaced
by one of the following conditions

(i)′ there exist a symmetric relation Θ in G and λ± ∈ C± such that for every
h ∈ H there are f̂± = {f±; f ′±} ∈ T with

f ′± − λ±f± = h and {Γ0f̂±; Γ1f̂±} ∈ Θ;

(i)′′ ker Γ is closed, codim (ran (ker Γ− λ±)) = n < ∞ for some λ± ∈ C± and
there exists a symmetric relation Θ in G such that

dim
(
ker(Γ1 −ΘΓ0)/ ker Γ

)
= n.

Indeed, (i) can be replaced by (i)′ since condition (iii) in Theorem 2.3 implies
that the linear relation A := ker(Γ1 − ΘΓ0) is symmetric. Then by (i)′ we
have ran (A − λ±) = H for some λ± ∈ C±. Therefore A is self-adjoint and
hence (i) holds. The fact that (i) can be replaced by (i)′′ is a consequence of
the symmetry of the n-dimensional extension A := ker(Γ1 −ΘΓ0) of the closed
symmetric relation S = ker Γ.

Remark 2.9. If (H, 〈·, ·〉) is a Hilbert or Krein space, condition (i) can be re-
placed by

(i)′′′ there exist a symmetric relation Θ in G and λ ∈ R such that for every
h ∈ H there is an f̂ = {f ; f ′} ∈ T with

f ′ − λf = h and {Γ0f̂ ; Γ1f̂} ∈ Θ.

Remark 2.10. Condition (iii) in Theorem 2.3 can be replaced by one of the
following conditions

(iii)′ the sesquilinear form D defined on T by D[f̂ , ĝ] := 〈f ′, g〉 − (Γ1f̂ ,Γ0ĝ),
f̂ = {f ; f ′}, ĝ = {g; g′} ∈ T is symmetric;

(iii)′′ D[f̂ , f̂ ] = 〈f ′, f〉 − (Γ1f̂ ,Γ0f̂) is real for all f̂ = {f ; f ′} ∈ T .

In the case that T is an operator, one defines D[f, g] := 〈Tf, g〉 − (Γ1f,Γ0g) for
f, g ∈ domT . For Sturm–Liouville operators the form D is nothing else than
the Dirichlet form.

3 Applications

In this section we apply the general method to determine the adjoint of a sym-
metric operator for various examples. As a simple problem we first discuss the
well-known case of a Sturm–Liouville operator in Section 3.1. Afterwards we
investigate a block operator matrix with first and second order differential oper-
ators as entries. In Section 3.3 a second order elliptic differential expression with
an indefinite weight function on a bounded domain is considered and finally, in
Section 3.4, we deal with multiplication operators in L2-spaces which are con-
nected with functional models for operator-valued Nevanlinna or Riesz–Herglotz
functions.
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3.1 Sturm–Liouville operators in limit circle case

We consider a Sturm–Liouville operator on an interval (a, b) which is regular or
in limit circle case at both end-points in order to illustrate the general method
from the previous section. The form of the adjoint of the minimal operator is
of course well known and can be derived by other means, which usually require
quite lengthy calculations; see, e.g. [32, 33, 34].

Let p, q, w be real-valued functions on the interval (a, b) such that 1/p, q, w ∈
L1

loc(a, b) and w(x) > 0 almost everywhere. Let L2
w(a, b) denote the space of

(equivalence classes) of complex-valued measurable functions on (a, b) such that
|f |2w ∈ L1(a, b) and equip L2

w(a, b) with the inner product

〈f, g〉 =
∫ b

a

f(x)g(x)w(x)dx.

In the Hilbert space (L2
w(a, b), 〈·, ·〉) we consider the operator

Tf =
1
w

(
−(pf ′)′ + qf

)
defined on

domT =
{
f ∈ L2

w(a, b) : f, pf ′ absolutely continuous on (a, b),

1
w

(
−(pf ′)′ + qf

)
∈ L2

w(a, b)
}
.

With Wp denoting the modified Wronskian

Wp(f, g)(x) := p(x)
(
f(x)g′(x)− f ′(x)g(x)

)
we have the following Lagrange identity for a ≤ c < d ≤ b and f, g ∈ domT ,∫ d

c

(Tf)(x)g(x)w(x)dx−
∫ d

c

f(x)(Tg)(x)w(x)dx = Wp(f, g)(d)−Wp(f, g)(c).

It follows from this identity that for f, g ∈ domT the limits limc→aWp(f, g)(c),
limd→bWp(f, g)(d) exist because f, g, Tf, Tg ∈ L2

w(a, b). Since the equation is
regular or in limit circle case at both end-points, for every λ ∈ C, all solutions
of

1
w

(
−(pf ′)′ + qf

)
= λf (3.1)

are in L2
w(a, b). Fix a λ ∈ R and let θa, φa be two linearly independent, real-

valued solutions of (3.1) such that Wp(θa, φa) ≡ 1. Note that Wp(f, g) is con-
stant if f and g are both solutions of (3.1). The functions θa, φa will be used
for boundary mappings connected with the left end-point. Similarly, let θb,
φb also be two linearly independent, real-valued solutions of (3.1) such that
Wp(θb, φb) ≡ 1 (one could also use a different λ for b).

Define boundary mappings for f ∈ domT by

Γ0f :=

 lim
x→a

Wp(f, φa)(x)

lim
x→b

Wp(f, φb)(x)

 , Γ1f :=

− lim
x→a

Wp(f, θa)(x)

lim
x→b

Wp(f, θb)(x)

 .
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All limits exist since the functions f, φa, φb, θa, θb are in domT . It is well
known that the self-adjoint restrictions of T can be described with the help
of these limits, cf. [32, 33, 34]. The boundary triple which is obtained in the
following statement as a consequence of Corollary 2.5 was also used in [2].

Corollary 3.1. The operator T is the adjoint of the densely defined closed sym-
metric operator

Sf =
1
w

(
−(pf ′)′ + qf

)
,

domS =

{
f ∈ domT :

limx→aWp(f, φa)(x) = limx→aWp(f, θa)(x) = 0

limx→bWp(f, φb)(x) = limx→bWp(f, θb)(x) = 0

}
,

in the Hilbert space (L2
w(a, b), 〈·, ·〉), and (C2,Γ0,Γ1) is a boundary triple for T .

Remark 3.2. If T is regular at, e.g. the left end-point a (i.e. a is finite and
1/p, q, w are integrable at a), then one can choose θa, φa such that they satisfy
the initial conditions

θa(a) = 1, φa(a) = 0,
(pθ′a)(a) = 0, (pφ′a)(a) = 1.

For the boundary mappings at a one then gets

(Γ0f)1 = f(a), (Γ1f)1 = (pf ′)(a),

where ( )1 denotes the first component of a two-vector. Similarly, if the right
end-point b is regular, then the second components of the boundary mappings
can be chosen as

(Γ0f)2 = f(b), (Γ1f)2 = −(pf ′)(b).

Proof of Corollary 3.1. We show that all conditions of Corollary 2.5 are satis-
fied. To see that ran

(
Γ0
Γ1

)
= G2, consider a function f ∈ domT that is equal

to θa in a neighbourhood of a and vanishes identically in a neighbourhood of b,
which gives Γ0f =

(
1
0

)
, Γ1f =

(
0
0

)
. Using three similar functions we obtain the

surjectivity of
(
Γ0
Γ1

)
, i.e. (ii).

Next we show that the abstract Green’s identity is satisfied. For f, g ∈ domT
we have

Wp(f, θa)Wp(g, φa)−Wp(f, φa)Wp(g, θa)

= p2(fθ′a − f ′θa)(gφ′a − g′φa)− p2(fφ′a − f ′φa)(gθ′a − g′θa)

= p2
(
fg′(θaφ

′
a − θ′aφa)− f ′g(θaφ

′
a − θ′aφa)

)
= Wp(θa, φa)Wp(f, g) = Wp(f, g)
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and a similar relation for θb, φb. Hence

〈Tf, g〉 − 〈f, Tg〉
= lim

d→b
Wp(f, g)(d)− lim

c→a
Wp(f, g)(c)

= lim
d→b

(
Wp(f, θb)(d)Wp(g, φb)(d)−Wp(f, φb)(d)Wp(g, θb)(d)

)
− lim

c→a

(
Wp(f, θa)(c)Wp(g, φa)(c)−Wp(f, φa)(c)Wp(g, θa)(c)

)
= (Γ1f,Γ0g)− (Γ0f,Γ1g),

which shows condition (iii). Finally, we verify condition (i)′ in Remark 2.8 with
the self-adjoint relation Θ = {{0; g} : g ∈ C2}. For λ ∈ C \ R, let ψa, ψb be
non-trivial solutions of (3.1) such that

lim
x→a

Wp(ψa, φa) = 0, lim
x→b

Wp(ψb, φb) = 0,

respectively. It is possible to find such solutions since the space of solutions
of (3.1) is two-dimensional. Now it is easy to show that for f ∈ L2

w(a, b), the
function

y(x) =
1

Wp(ψb, ψa)

(
ψb(x)

∫ x

a

ψa(t)f(t)w(t)dt+ ψa(x)
∫ b

x

ψb(t)f(t)w(t)dt
)

is a solution of (T − λ)y = f and Γ0y = 0. All integrals exist since f, ψa, ψb ∈
L2

w(a, b), and Wp(ψb, ψa) 6= 0 because otherwise, the function ψa would be an
eigenfunction of the symmetric operator T ¹ ker Γ0 corresponding to a non-real
eigenvalue. This can be done for λ in the upper and lower half planes, and hence
condition (i)′ in Remark 2.8 is satisfied.

Remark 3.3. In a similar way one can prove Corollary 3.1 also for an indefinite
weight w that satisfies w 6= 0 almost everywhere and w ∈ L1

loc(a, b). In this
case L2

w(a, b) is a Krein space rather than a Hilbert space. Instead of (i)′ in
Remark 2.8 we use (i)′′′ in Remark 2.9 with a real λ. If ψa, ψb (constructed as
above) are linearly independent, then we can find a solution of (T − λ)y = f ,
Γ0y = 0 for every f ∈ L2

w(a, b) as in the case w > 0. Otherwise, let χa be a
solution of (3.1) such that limx→aWp(χa, θa) = 0, which in this case must be
linearly independent of ψb. Hence Wp

(
χa, ψb

)
6= 0 and for f ∈ L2

w(a, b), the
function

y(x) =
1

Wp(ψb, χa)

(
ψb(x)

∫ x

a

χa(t)f(t)w(t)dt+ χa(x)
∫ b

x

ψb(t)f(t)w(t)dt
)

is a solution of (T − λ)y = f , (Γ0y)2 = 0, (Γ1y)1 = 0. This shows that (i)′′′ is
satisfied with

Θ =
{{(

α

0

)
;
(

0
β

)}
: α, β ∈ C

}
,

which clearly is a symmetric (and even a self-adjoint) relation.
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3.2 A block operator matrix

In this subsection we consider a block operator matrix of the form−
d

dx
p
d

dx
+ q − d

dx
b+ c

b
d

dx
+ c d

 (3.2)

in the Hilbert space H = L2(0, 1)⊕L2(0, 1) with inner product 〈·, ·〉. Operators
of this type have been considered in many papers and books, see, e.g. [1, 10, 21,
22], but usually under relatively restrictive assumptions on the coefficients, and
apart from [10] only self-adjoint realizations were studied and not the maximal
operator or boundary triples. However, note that in contrast to [10] the off-
diagonal entries in (3.2) are unbounded first order differential operators, which
leads also to a different form of boundary mappings. Let us assume that the
coefficients satisfy the following conditions

p > 0; q, d real-valued;
1
p
, b, c, d ∈ L∞(0, 1); q ∈ L1(0, 1). (3.3)

The expression in (3.2) is only formal; we define a maximal operator T more
carefully by

T

(
f

g

)
=

−(pf ′ + bg
)′ + qf + cg

bf ′ + cf + dg

 (3.4)

with domain

domT =
{(

f

g

)
∈ H : f, pf ′ + bg absolutely continuous on [0, 1],

−
(
pf ′ + bg

)′ + qf, bf ′ ∈ L2(0, 1)
}
.

(3.5)

Note that in general the domain is not diagonal, i.e. it is not of the form D1⊕D2.
For

(
f
g

)
∈ domT we define the boundary mappings

Γ0

(
f

g

)
:=
(
f(0)
−f(1)

)
, Γ1

(
f

g

)
:=

(
(pf ′ + bg)(0)

(pf ′ + bg)(1)

)
. (3.6)

Using Corollary 2.5 we show the following statement.

Corollary 3.4. The operator T defined in (3.4)–(3.5) is the adjoint of the
densely defined closed symmetric operator S = T ¹ domS, where

domS =
{(

f

g

)
∈ domT :

f(0) = (pf ′ + bg)(0) = 0
f(1) = (pf ′ + bg)(1) = 0

}
,

and (C2,Γ0,Γ1) is a boundary triple for T .
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Proof. In order to show (iii) in Corollary 2.5 we verify condition (iii)′′ in Re-
mark 2.10. Let

(
f
g

)
∈ domT and calculate

D

[(
f

g

)
,

(
f

g

)]
=
〈
T

(
f

g

)
,

(
f

g

)〉
−
(

Γ1

(
f

g

)
,Γ0

(
f

g

))
=
〈
−
(
pf ′ + bg

)′ + qf + cg, f
〉

+
〈
bf ′ + cf + dg, g

〉
− (pf ′ + bg)(0)f(0) + (pf ′ + bg)(1)f(1)

= −
∫ 1

0

(
pf ′ + bg

)′
f +

∫ 1

0

q|f |2 + 〈cg, f〉+ 〈bf ′, g〉+ 〈cf, g〉+ 〈dg, g〉

− (pf ′ + bg)(0)f(0) + (pf ′ + bg)(1)f(1)

=
∫ 1

0

(
pf ′ + bg

)
f ′ +

∫ 1

0

q|f |2 + 〈cg, f〉+ 〈bf ′, g〉+ 〈cf, g〉+ 〈dg, g〉

=
∫ 1

0

(
p|f ′|2 + 2 Re(bf ′g) + q|f |2

)
+ 2 Re〈cf, g〉+ 〈dg, g〉.

Since the latter expression is real, assumption (iii)′′ in Remark 2.10 is satisfied.
To show the surjectivity of Γ, it is sufficient to consider g = 0 and a function

f that satisfies f ≡ 1 near 0, f ≡ 0 near 1, a function for which f(x) =
∫ x

0
1

p(t)dt

near 0 and f ≡ 0 near 1 and similar functions for the right end-point.
We show condition (i)′′′ in Remark 2.9 with Θ = {{0; g} : g ∈ G}, i.e. we

show that for some λ ∈ R and every
(
u
v

)
∈ H there exists

(
f
g

)
∈ domA such

that (A − λ)
(
f
g

)
=
(
u
v

)
, where A = T ¹ ker Γ0. First we see that the form D is

bounded from below: due to the assumptions (3.3), the form D can be estimated
as follows

D

[(
f

g

)
,

(
f

g

)]
≥ (ess inf p)‖f ′‖2 − 2‖b‖∞‖f ′‖ ‖g‖ − ‖q‖1‖f‖2∞ − 2‖c‖∞‖f‖ ‖g‖ − ‖d‖∞‖g‖2

≥ (ess inf p)‖f ′‖2 − 2‖b‖∞
(
ε‖f ′‖2 +

1
4ε
‖g‖2

)
− ‖q‖1

(
ε‖f ′‖2 + Cε‖f‖2

)
− ‖c‖∞

(
‖f‖2 + ‖g‖2

)
− ‖d‖∞‖g‖2,

where ε > 0 is arbitrary and Cε is some positive constant depending only on
ε; for the estimate of ‖f ′‖ ‖g‖ the geometric–quadratic inequality was used, for
the estimate of ‖f‖∞ see, e.g. [24, IV-(1.19)]. If ε is chosen sufficiently small,
then

D

[(
f

g

)
,

(
f

g

)]
≥ γ

∥∥∥∥(fg
)∥∥∥∥2

for some γ ∈ R. Now choose λ < min {γ, ess inf d} such that

ess inf
(
p− |b|2

d− λ

)
> 0. (3.7)

It follows that λ cannot be an eigenvalue of A since every eigenvalue of A must
be contained in the numerical range of D. Let u, v ∈ L2(0, 1). The equation
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(A− λ)
(
f
g

)
=
(
u
v

)
, which we have to solve, is explicitly given by

−
(
pf ′ + bg

)′ + (q − λ)f + cg = u, (3.8)

bf ′ + cf + (d− λ)g = v. (3.9)

Solving (3.9) for g yields

g = − b

d− λ
f ′ − c

d− λ
f +

v

d− λ
; (3.10)

plugging this into (3.8) we obtain(
−
(
p− |b|2

d− λ

)
f ′ +

bc

d− λ
f − bv

d− λ

)′
− bc

d− λ
f ′ +

(
q − λ− |c|2

d− λ

)
f = u− cv

d− λ
,

which can be written as

(−Pf ′ +Rf + V )′ −Rf ′ +Qf = U (3.11)

with

P = p− |b|2

d− λ
, R =

bc

d− λ
, Q = q − λ− |c|2

d− λ
,

U = u− cv

d− λ
, V = − bv

d− λ
.

Due to the assumptions (3.3) and relation (3.7), these functions satisfy

1
P
,R ∈ L∞(0, 1); Q ∈ L1(0, 1); U, V ∈ L2(0, 1).

Introducing new variables

F := f, G := −Pf ′ +Rf + V

we can write (3.11) as a canonical (or Dirac) system,

J

F
G

′ +

|R|2

P
−Q −R

P

−R
P

1
P


F
G

 =

−U −
R

P
V

1
P
V

 , (3.12)

where J =
(

0 −1
1 0

)
. The potential is a Hermitian matrix with entries in L1(0, 1).

The boundary conditions Γ0

(
f
g

)
= 0 transform into

F (0) = 0, F (1) = 0. (3.13)

If we denote the left-hand side of (3.12) by τcan
(
F
G

)
, then the operatorAcan

(
F
G

)
:=

τcan
(
F
G

)
with domain

domAcan =
{(

F

G

)
∈ H : F,G absolutely continuous on [0, 1], τcan

(
F

G

)
∈ H

}
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is self-adjoint inH and the spectrum of Acan consists only of eigenvalues; see, e.g.
[33, Satz 15.11]. Since λ is not an eigenvalue of A, 0 is not an eigenvalue of Acan.
Hence Acan is boundedly invertible and (3.12), (3.13) has an absolutely contin-
uous solution

(
F
G

)
for every right-hand side in L2(0, 1)⊕L2(0, 1). Transforming

this solution back, i.e. setting f := F and defining g by (3.10), we see that
(3.8), (3.9) has a solution in domA for every right-hand side

(
u
v

)
∈ H; the con-

ditions about absolute continuity are satisfied since f = F and pf ′ + bg = −G.
This shows that (i)′′′ in Remark 2.9 is satisfied. Hence we have proved the
corollary.

3.3 Second order elliptic operators with indefinite weights

Boundary triple methods for elliptic differential operators on bounded domains
were recently investigated in various papers; see, e.g. [3, 7, 29, 30]. The following
example is similar to and heavily inspired by [9, 10, 28] and the fundamental
article [18] by G. Grubb, where it appears in a slightly different form.

Let Ω be a smooth bounded domain in Rn, n > 1, with C∞-boundary ∂Ω
and let

(Lf)(x) = −
n∑

j,k=1

(
∂j ajk ∂kf

)
(x) + a(x)f(x)

be a second order differential expression on Ω with smooth coefficients ajk, a ∈
C∞(Ω) such that ajk(x) = akj(x) for all x ∈ Ω and a is real. Moreover, we
assume that there exists C > 0 such that

n∑
j,k=1

ajk(x)ξjξk ≥ C

n∑
k=1

ξ2k

holds for all x ∈ Ω and all ξ = {ξ1; . . . ; ξn} ∈ Rn, i.e. L is a uniformly elliptic
differential expression.

The Sobolev space of kth order on Ω is denoted by Hk(Ω) and the closure
of C∞0 (Ω) in Hk(Ω) is denoted by Hk

0 (Ω). Sobolev spaces on the boundary
of Ω are denoted by Hs(∂Ω), s ∈ R. Let n(x) = {n1(x); . . . ;nn(x)} be the
outward normal vector on ∂Ω and denote by f |∂Ω and ∂f

∂ν |∂Ω =
∑
ajk nj ∂kf |∂Ω

the traces of a function f ∈ C∞(Ω) and its normal derivative. According to [23]
the trace map can be extended to a linear mapping defined on

Dmax =
{
f ∈ L2(Ω): Lf ∈ L2(Ω)

}
with values in H−1/2(∂Ω). Let (·, ·)1/2,−1/2 be the extension of the L2(∂Ω) inner
product (·, ·) to H1/2(∂Ω) ×H−1/2(∂Ω) and let ι± : H±1/2(∂Ω) → L2(∂Ω) be
isomorphisms such that (x, y)1/2,−1/2 = (ι+x, ι−y) holds for all x ∈ H1/2(∂Ω)
and y ∈ H−1/2(∂Ω).

In the following we assume that the Dirichlet problem for L is uniquely
solvable, i.e.

(D) for every g ∈ L2(Ω) there exists a unique function f ∈ H2(Ω) ∩ H1
0 (Ω)

such that Lf = g holds.
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Let w be a real-valued function on Ω such that w(x) 6= 0 for a.e. x ∈ Ω and
w, 1

w ∈ L∞(Ω), and equip the space L2(Ω) with the (in general indefinite) inner
product

〈f, g〉 =
∫

Ω

f(x)g(x)w(x) dx.

Observe that f ∈ L2(Ω) if and only if wf ∈ L2(Ω) and also if and only if
1
wf ∈ L

2(Ω). We consider the operator

Tf =
1
w
Lf, domT = Dmax =

{
f ∈ L2(Ω): Lf ∈ L2(Ω)

}
, (3.14)

in L2(Ω) defined in the sense of distributions. The assumption (D) implies that
the domain of T can be decomposed into a direct sum:

domT =
(
H2(Ω) ∩H1

0 (Ω)
)
+̇ kerT.

The functions f ∈ domT will be decomposed accordingly, we write f = fD +f0,
where fD ∈ H2(Ω) ∩ H1

0 (Ω) and f0 ∈ kerT . Let G = L2(∂Ω) and define the
boundary mappings by

Γ0f := ι−f0|∂Ω and Γ1f := −ι+
∂fD

∂ν

∣∣∣
∂Ω
, f = fD + f0 ∈ domT.

The boundary mappings Γ0 and Γ1 are well defined since f0|∂Ω ∈ H−1/2(∂Ω)
and ∂fD

∂ν |∂Ω ∈ H1/2(∂Ω), cf. [23]. Corollary 2.5 implies now the following state-
ment, cf. [9, Proposition 3.1].

Corollary 3.5. The operator T defined in (3.14) is the adjoint of the densely
defined closed symmetric operator

Sf =
1
w
Lf, domS =

{
f ∈ H2(Ω) ∩H1

0 (Ω) :
∂f

∂ν

∣∣∣
∂Ω

= 0
}
,

in the Krein or Hilbert space (L2(Ω), 〈·, ·〉) and (L2(∂Ω),Γ0,Γ1) is a boundary
triple for T .

Proof. By the classical trace theorem on H2(Ω) the mapping

H2(Ω) ∩H1
0 (Ω) 3 fD 7→ ∂fD

∂ν

∣∣∣
∂Ω
∈ H1/2(∂Ω)

is surjective and according to [19, Theorem 2.1] the same holds for the map
kerT 3 f0 7→ f0|∂Ω ∈ H−1/2(∂Ω).. This implies that condition (ii) in Corol-
lary 2.5 holds. In order to verify condition (iii) in Corollary 2.5 we show that

D[f, f ] = 〈Tf, f〉 − (Γ1f,Γ0f)

is real for f ∈ domT , cf. condition (iii)′′ in Remark 2.10. In fact, since Tf0 = 0
we find

D[f, f ] = 〈TfD, fD〉+ 〈TfD, f0〉 − 〈fD, T f0〉 − (Γ1f,Γ0f)

= 〈TfD, fD〉+
∫

Ω

(
(LfD)(x)f0(x)− fD(x)Lf0(x)

)
dx− (Γ1f,Γ0f)
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and from Green’s identity (which is applicable since fD ∈ H2(Ω) and f0 ∈ Dmax ,
cf. [23]) we conclude that the above expression takes the form

〈TfD, fD〉+
∫

∂Ω

(
fD|∂Ω

∂f0
∂ν

∣∣∣
∂Ω
−∂fD

∂ν

∣∣∣
∂Ω
f0|∂Ω

)
dσ +

(
∂fD

∂ν

∣∣∣
∂Ω
, f0|∂Ω

)
1
2 ,− 1

2

,

where we have also used the definition of Γ0 and Γ1. From fD|∂Ω = 0 we obtain

D[f, f ] = 〈TfD, fD〉 =
∫

Ω

(LfD)(x)fD(x) dx,

which is real by Green’s identity. Finally, it follows immediately from assump-
tion (D) that condition (i)′′′ in Remark 2.9 holds for λ = 0 and the self-adjoint
relation Θ = {{0; g} : g ∈ L2(∂Ω)}.

3.4 Multiplication operators in L2

Let (G, (·, ·)G) be a Hilbert space and Q a Nevanlinna or Riesz–Herglotz function
whose values are bounded operators in G, i.e. Q is holomorphic on C\R, Q(λ) =
Q(λ)∗ and ImQ(λ) := 1

2i

(
Q(λ)−Q(λ)∗

)
≥ 0 if Imλ > 0. Then Q has an integral

representation of the form

Q(λ) = λB + C +
∫

R

( 1
t− λ

− t

1 + t2

)
dΣ(t), (3.15)

where B and C are bounded self-adjoint operators with B ≥ 0 and Σ is an
operator-valued measure, i.e. a mapping Σ: Bb(R) → L(G), where Bb(R) denotes
the set of bounded Borel subsets of R and L(G) denotes the set of bounded
operators, with the properties

Σ(∅) = 0, Σ(∆) ≥ 0 for ∆ ∈ Bb(R), Σ is strongly countably additive.

Moreover, Σ satisfies the following property,∫
R

1
1 + t2

dΣ(t) is a bounded operator in G.

As in [8] and [26] we define the space L2(R,G,Σ) as follows. Let C00(R,G) be
the set of strongly continuous functions on R with compact support such that
the values are in a finite dimensional subspace of G (this subspace depends on
the function). For f, g ∈ C00(R,G) the following semi-inner product exists,

〈f, g〉Σ =
∫

R

(
dΣ(t)f(t), g(t)

)
G = lim

d(πn)→0

n∑
k=1

(
Σ(∆k)f(ξk), g(ξ)

)
G ,

where πn = (tk)n
k=0, t0 < · · · < tn, is a partition such that supp f, supp g ⊂

[t0, tn], d(πn) its diameter, ∆k := (tk−1, tk] and ξk ∈ [tk−1, tk]. The space
L2(R,G,Σ) is defined as the completion of C00(R,G) and then factorization
with respect to the set of f for which 〈f, f〉Σ = 0. It can be easily shown
that if f ∈ L2(R,G,Σ) and ϕ is a scalar, bounded, continuous function defined
on R, then ϕf ∈ L2(R,G,Σ) with ‖ϕf‖ ≤ ‖ϕ‖∞‖f‖. This shows also that
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the multiplication operator by the independent variable in L2(R,G,Σ) with
maximal domain is self-adjoint since it is symmetric and for λ ∈ C \ R, the
resolvent operator f(t) 7→ 1

t−λf(t) is a bounded operator.
For x ∈ G, the function 1√

1+t2
x is in L2(R,G,Σ) since it can be approximated

by functions of the form ϕn(t)x, where ϕn has compact support. Moreover, one
can show that ∥∥∥∥ 1√

1 + t2
x

∥∥∥∥2

Σ

≤
∥∥∥∥∫

R

1
1 + t2

dΣ(t)
∥∥∥∥ ‖x‖2G . (3.16)

For a function f for which
√

1 + t2f(t) ∈ L2(R,G,Σ) one can define
∫

R dΣ(t)f(t)
using the Riesz representation theorem and (3.16) such that(∫

R
dΣ(t)f(t), x

)
G

=
〈√

1 + t2 f(t),
1√

1 + t2
x

〉
Σ

for every x ∈ G.

Let

G0 := kerB, G1 := G⊥0 , B1 := B ¹ G1,

HB := ranB1/2
1 with inner product 〈x, y〉HB

:=
(
B
−1/2
1 x,B

−1/2
1 y

)
G

H := L2(R,G,Σ)⊕HB with inner product 〈·, ·〉.
In the Hilbert space (H, 〈·, ·〉) define the linear relation

T :=
{{(

f(t)
x

)
;
(
g(t)
y

)}
∈ H ⊕H :

g(t) = tf(t)− c for some c ∈ G
and a.e. t ∈ R, x = Bc

}

and the boundary mappings Γ0,Γ1 : T → G by

Γ0

{(
f(t)
x

)
;
(
g(t)
y

)}
:= c,

Γ1

{(
f(t)
x

)
;
(
g(t)
y

)}
:= y + Cc+

∫
R
dΣ(t)

1
1 + t2

(
f(t) + tg(t)

)
,

where c is as above, i.e. c = tf(t)− g(t). The integral in the definition of Γ1 is
well defined since√

1 + t2
1

1 + t2

(
f(t) + tg(t)

)
=

1√
1 + t2

f(t) +
t√

1 + t2
g(t) ∈ L2(R,G,Σ).

Remark 3.6. Note that if B = 0, the space H can be identified with L2(R,G,Σ).
Moreover, the relation T is an operator if and only if B = 0 and the space
L2(R,G,Σ) does not contain non-zero constants.

As a consequence of Theorem 2.3 we obtain the following corollary which is
a generalization of [15, Proposition 5.3] and [26, Proposition 7.9].

Corollary 3.7. Assume that the function Q in (3.15) satisfies 0 ∈ ρ(ImQ(i)).
Then the relation T is the adjoint of the closed symmetric operator

S

(
f(t)
0

)
=

 tf(t)

−
∫

R
dΣ(t)f(t)

 ,

domS =
{(

f(t)
0

)
∈ H : tf(t) ∈ L2(R,G,Σ),

∫
R
dΣ(t)f(t) ∈ HB

}
,
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in the Hilbert space (H, 〈·, ·〉) and (G,Γ0,Γ1) is a boundary triple for T .

Remark 3.8. It can be shown in the same way as in [15, 26] that the so-called
Weyl function associated with the boundary triple (G,Γ0,Γ1) in Corollary 3.7
coincides with the given Nevanlinna function Q in (3.15).

Proof of Corollary 3.7. We show that the assumptions of Theorem 2.3 are sat-
isfied. The relation ker Γ0 is the orthogonal sum of the maximal multiplica-
tion operator with the independent variable in L2(R,G, dΣ) and the completely
multi-valued relation {0} ⊕ HB and hence self-adjoint, i.e. (i) is satisfied with
Θ = {{0; g} : g ∈ L2(∂Ω)}.

To show (iii), we employ Remark 2.10. For{(
f(t)
x

)
;
(
g(t)
y

)}
∈ T

we calculate

D

[{(
f(t)
x

)
;
(
g(t)
y

)}
,

{(
f(t)
x

)
;
(
g(t)
y

)}]
=
〈(

g(t)
y

)
,

(
f(t)
x

)〉
−
(
y + Cc+

∫
R
dΣ(t)

1
1 + t2

(
f(t) + tg(t)

)
, c

)
G

= 〈g, f〉Σ +
(
B
−1/2
1 y,B

−1/2
1 Bc

)
G − (y, c)G − (Cc, c)G

−
〈

1√
1 + t2

(
f(t) + tg(t)

)
,

1√
1 + t2

c

〉
Σ

= 〈g, f〉Σ − (Cc, c)G

−
〈

1√
1 + t2

f(t) +
t√

1 + t2
g(t),

t√
1 + t2

f(t)− 1√
1 + t2

g(t)
〉

Σ

= −(Cc, c)G −
〈 t

1 + t2
f, f

〉
Σ

+ 2 Re
〈 1

1 + t2
f, g
〉

Σ
+
〈 t

1 + t2
g, g
〉

Σ
,

which is real and implies Green’s identity (iii) by condition (iii)′′ .
The surjectivity of Γ, i.e. the relation (ii) is shown as follows. The element

f̂ =


 1

1 + t2
a

0

 ;

 t

1 + t2
a

Ba


has boundary values Γ0f̂ = 0, Γ1f̂ = ImQ(i)a.. Note that the functions 1

1+t2 a

and t
1+t2 a are in L2(R,G,Σ) since they are products of scalar functions in

L2(R, 1
1+t2 dt) and a fixed element in G. The deficiency element

ĝ =


 1
t− i

b

Bb

 ;

 i

t− i
b

iBb


has boundary values Γ0ĝ = b, Γ1ĝ = Q(i)b. Since ImQ(i) is surjective, this
shows that Γ =

(
Γ0
Γ1

)
is surjective.
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