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1. Introduction

The concept of boundary triples and Weyl functions is an efficient tool for the
description and analysis of the self-adjoint extensions of a given symmetric
operator A in a Hilbert space H. Roughly speaking, two boundary mappings
Γ0, Γ1 are used, which are defined on the domain of the adjoint A∗, map into
an auxiliary Hilbert space G (the space of boundary values) and satisfy an
abstract Green identity

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G (1.1)

for all f, g ∈ domA∗. The self-adjoint extensions AΘ are characterized as
restrictions of A∗ to the set of elements f ∈ domA∗ satisfying the abstract
boundary condition (

Γ0f

Γ1f

)
∈ Θ, (1.2)

where Θ is a self-adjoint linear operator or relation in G. Boundary triples
were successfully applied in many situations, in particular, ordinary differ-
ential operators; see, e.g. [15, 19, 23, 25, 48]. For second order differential
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operators on an interval one usually chooses Γ0 to assign Dirichlet data and
Γ1 to assign Neumann data at the endpoints of the interval, or vice versa.

For elliptic partial differential operators the same approach with the
boundary mappings Γ0 and Γ1 as the Dirichlet trace and the conormal de-
rivative, respectively, leads to serious difficulties since Green’s identity does
not make sense on the whole domain of the maximal operator. Based on
ideas from [39, 64] a boundary triple with regularized versions of trace and
conormal derivatives was used for elliptic operators in [20, 21, 52]. However,
in order to work with the usual trace and conormal derivative, a generaliza-
tion of the notion of boundary triples was introduced in [10]: quasi boundary
triples. In this setting the boundary mappings Γ0 and Γ1 are not defined
on the whole domain of the maximal operator A∗ but only on the domain
of some restriction T whose closure is A∗; the abstract Green identity (1.1)
holds then with A∗ replaced by T . For elliptic operators on a bounded do-
main Ω one can choose T , for instance, to be defined on H2(Ω). The aim of
the current paper is to develop the theory of quasi boundary triples further
and use it to prove new results in spectral theory. We apply the abstract
results to elliptic operators on bounded and exterior domains and to partial
differential operators with δ-potentials supported on hypersurfaces in Rn, see
also [11, 13].

In the following, let A be a symmetric operator in a Hilbert space H
and let {G,Γ0,Γ1} be a quasi boundary triple for A∗ = T , with A0 = T �
ker Γ0 self-adjoint, see also Definition 3.1. A very important object that is
associated with a quasi boundary triple is the Weyl function M , which, for
λ ∈ ρ(A0) is an operator in G that satisfies Γ1fλ = M(λ)Γ0fλ for fλ ∈
ker(T − λ). In our treatment of elliptic operators in Sections 4.1 and 4.2
it will turn out that M(λ) is the Neumann-to-Dirichlet map. In the quasi
boundary triple setting a self-adjoint relation Θ in G as abstract boundary
condition in (1.2) does not automatically induce a self-adjoint restriction AΘ

of T in H (as is the case for boundary triples) but only a symmetric operator
AΘ. In Theorem 3.11 we provide a sufficient condition on the Weyl function
M(λ) and Θ so that the operator AΘ becomes self-adjoint. Applied to elliptic
operators, this theorem yields a wide class of local and non-local boundary
conditions for which there exists a self-adjoint realization in an H2-setting
(Theorem 4.5 and Corollary 4.6). The proof of Theorem 3.11 uses a variant
of Krein’s formula, in which the resolvents of AΘ and A0 are compared, see
Theorem 3.8 and [11, Theorem 6.16]. Krein’s formula is also an important
ingredient in the proofs of the results of the core Section 3.3 in the abstract
part of the present paper. There we prove spectral estimates for resolvent
differences of two self-adjoint extensions AΘ1

and AΘ2
in terms of general

operator ideals. This yields, in particular, spectral estimates of Schatten–
von Neumann type.
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As mentioned above, we apply our abstract results to elliptic partial
differential operators associated with the expression

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+ a (1.3)

on a domain Ω in Rn with compact C∞-boundary ∂Ω. The domain Ω itself is
allowed to be either bounded or the complement of a bounded set. We define
the associated operator T on H2(Ω) if Ω is bounded, and on a set of functions
which are in H2 in a neighbourhood of ∂Ω if Ω is unbounded; for details see
Definition 4.1. For the space of boundary values G we choose L2(∂Ω), and
the boundary mappings are defined by

Γ0f =
∂f

∂νL

∣∣∣
∂Ω

:=

n∑
j,k=1

ajkνj
∂f

∂xk

∣∣∣
∂Ω

and Γ1f = f |∂Ω,

where ν(x) = (ν1(x), . . . , νn(x))> is the unit vector at the point x ∈ ∂Ω
pointing out of Ω. After having established that {L2(∂Ω),Γ0,Γ1} is a quasi
boundary triple (which is done in Theorem 4.2), we apply our abstract results
from Section 3. In Theorem 4.5 we prove that, for an arbitrary bounded self-
adjoint operator B in L2(∂Ω) that satisfies B(H1(∂Ω)) ⊂ H1/2(∂Ω), the
elliptic expression L together with the boundary condition

B
(
f |∂Ω

)
=

∂f

∂νL

∣∣∣
∂Ω

(1.4)

gives rise to a self-adjoint operator L2(Ω) whose domain consists of functions
f which are in H2 in a neighbourhood of the boundary ∂Ω. The boundary
condition in (1.4) corresponds to the abstract boundary condition (1.2) with
Θ = B−1 and contains a large class of Robin boundary conditions but also
non-local boundary conditions.

In order to describe our main results on spectral estimates of resolvent
differences of elliptic operators, we use the following notation here in the
introduction. We write

H1
r

—— H2,

if the singular values sk of the resolvent difference (H1 − λ)−1 − (H2 − λ)−1

of two self-adjoint operators H1, H2 satisfy sk = O(k−1/r), k → ∞. In
Theorem 4.10 we conclude from the abstract results in Section 3.3 that

AN

n−1
3

———– AΘ, (1.5)

where AN is the Neumann realization of L and Θ is a self-adjoint relation in
L2(∂Ω) so that 0 /∈ σess(Θ) and AΘ is self-adjoint. For instance, Θ = B−1

with a bounded self-adjoint B as above, i.e. the partial differential operator
with boundary condition (1.4), leads to (1.5). A slightly weaker result for the
Laplacian on bounded domains was proved in [12]. M. Sh. Birman [16] proved
that

AD

n−1
2

———– AN,
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and later M. Sh. Birman and M. Z. Solomjak [17] and G. Grubb [40, 41]
further investigated this relation and obtained the exact spectral asymptotics
of the resolvent difference. We also refer to [43] for spectral asymptotics in
the case of classical Robin boundary conditions. In general, the operator AΘ

as above is closer to the Neumann operator AN in the sense of (1.5) than to
the Dirichlet operator AD. We can compare also two operators with non-local
boundary conditions AΘ1

, AΘ2
under some assumption on Θ1 −Θ2, namely

in Theorem 4.15 if sk(Θ1 −Θ2) = O(k−1/r), k →∞, then

AΘ1

r(n−1)
3r+n−1

————– AΘ2
.

We also apply our abstract results to elliptic operators on Rn with a
δ-potential supported on a bounded C∞-hypersurface Σ, which splits Rn
into a bounded interior domain Ωi and an exterior domain Ωe; cf. [13] for
a more detailed treatment of the case L = −∆ + V . The spectral theory of
Schrödinger operators with δ-potentials on surfaces has been developed since
the late 1980s; see, e.g. the papers [5, 18, 29, 30, 31]. In Section 4.3 we use
quasi boundary triples to construct a self-adjoint differential operator Aδ,α
in L2(Rn) associated with L in (1.3) and interface conditions

fe|Σ = fi|Σ,
∂fi

∂νLi

∣∣∣
Σ

+
∂fe

∂νLe

∣∣∣
Σ

= αf |Σ,

where fi and fe are the restrictions of f to Ωi and Ωe, and α is a real-valued
function in C1(Σ). The operator Aδ,α can be interpreted as a differential op-
erator with a δ-potential of strength α. Using our abstract results on resolvent
differences we then conclude

Afree

n−1
3

––––– Aδ,α.

We mention that, independently, V. Ryzhov developed a concept that
has similarities to the concept of quasi boundary triples in [61, 62]. More-
over, for extension theory of elliptic operators on non-smooth domains and
Dirichlet-to-Neumann maps we refer to the recent contributions [1, 6, 33, 34,
35, 59]. Let us also mention other generalizations of boundary triples and
their Weyl functions, e.g. [4, 24, 27, 47, 53, 54, 58, 60].

2. Preliminaries

2.1. Notation and linear relations

Throughout this paper let (H, (·, ·)) and (G, (·, ·)) be Hilbert spaces. In gen-
eral, H and G are allowed to be non-separable, but in some theorems sep-
arability is assumed. The linear space of bounded linear operators defined
on H with values in G is denoted by B(H,G). If H = G, we simply write
B(H). We shall often deal with (closed) linear relations in H, that is, (closed)
linear subspaces of H⊕H. The set of closed linear relations in H is denoted

by C̃(H), and for elements in a relation we usually use a vector notation.
Linear operators in H are viewed as linear relations via their graphs. The
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domain, range, kernel, multi-valued part and the inverse of a relation T in H
are denoted by domT , ranT , kerT , mulT and T−1, respectively.

Let T ∈ C̃(H) be a closed linear relation in H. The resolvent set ρ(T )
of T is the set of all λ ∈ C such that (T − λ)−1 ∈ B(H); the spectrum σ(T )
of T is the complement of ρ(T ) in C. A point λ ∈ C is an eigenvalue of a
linear relation T if ker(T − λ) 6= {0}; in this case we write λ ∈ σp(T ). For
a linear relation T in H the adjoint relation T ∗ is a closed linear relation.
A linear relation S in H is said to be symmetric (self-adjoint) if S ⊂ S∗

(S = S∗, respectively). Recall that a symmetric relation is self-adjoint if and
only if ran(S − λ±) = H holds for some λ+ ∈ C+ and some λ− ∈ C−, where
C± := {z ∈ C : ± Im z > 0}; in this case we have ran(S − λ) = H for all
λ ∈ C\R.

For a self-adjoint relation S = S∗ in H the multi-valued part mulS
is the orthogonal complement of domS in H. Setting Hop := domS and
H∞ = mulS one verifies that S can be written as the direct orthogonal sum
S = Sop ⊕ S∞ of an (in general unbounded) self-adjoint operator Sop in the

Hilbert space Hop and the “pure” relation S∞ =
{(

0
f ′

)
: f ′ ∈ mulS

}
in the

Hilbert space H∞; the corresponding space decomposition is H = Hop⊕H∞.
We say that a point λ ∈ R belongs to the essential spectrum σess(S) of the
self-adjoint relation S if λ ∈ σess(Sop). The essential spectrum of a closed
operator T in H is the set of λ ∈ C such that T − λ is not a Fredholm
operator.

2.2. Operator ideals and singular values

In this section let H and K be separable Hilbert spaces. Denote by S∞(H,K)
the closed subspace of compact operators in B(H,K); if H = K, we simply
write S∞(H). We define classes of operator ideals along the lines of [57].

Definition 2.1. Suppose that, for every pair of Hilbert spaces H, K, we are
given a subset A(H,K) of S∞(H,K). The set

A :=
⋃

H,K Hilbert spaces

A(H,K)

is said to be a class of operator ideals if the following conditions are satisfied:

(i) the rank-one operators x 7→ (x, u)v are in A(H,K) for all u ∈ H, v ∈ K;

(ii) A+B ∈ A(H,K) for A,B ∈ A(H,K);

(iii) CAB ∈ A(H1,K1) for A ∈ A(H,K), B ∈ B(H1,H), C ∈ B(K,K1).

Moreover, we write A(H) for A(H,H).

If A is a class of operator ideals, then the sets A(H,K) are two-sided
operator ideals for every pair H, K; for the latter notion see also, e.g. [36, 56].
For two classes of operator ideals A, B we define the product and the adjoint
by

A ·B :=
{
T : there exist A ∈ A, B ∈ B so that T = AB

}
,

A∗ :=
{
A∗ : A ∈ A

}
.
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These sets are again classes of operator ideals; see [57]. The elements in the
product A ·B are denoted by (A ·B)(H,K), so that

A ·B =
⋃

H,K Hilbert spaces

(A ·B)(H,K) =
⋃

H,K,G Hilbert spaces

A(G,K) ·B(H,G),

where the products A(G,K) ·B(H,G) are defined by

A(G,K) ·B(H,G)

:=
{
T : there exist A ∈ A(G,K), B ∈ B(H,G) so that T = AB

}
.

Later also the notation A∗(K,H) := {A∗ : A ∈ A(H,K)} will be used.
The next lemma is used to extend assertions about resolvent differ-

ences from one λ to a bigger set of λ. For a special operator ideal, cf. [13,
Lemma 2.2].

Lemma 2.2. Let A be a class of operator ideals. Moreover, let H and K be
closed linear relations in a separable Hilbert space H. If

(H − λ)−1 − (K − λ)−1 ∈ A(H) (2.1)

for some λ ∈ ρ(H) ∩ ρ(K), then (2.1) holds for all λ ∈ ρ(H) ∩ ρ(K).

Proof. Let λ, µ ∈ ρ(H) ∩ ρ(K) and define

E := I + (µ− λ)(H − µ)−1, F := I + (µ− λ)(K − µ)−1,

which are both bounded operators in H. The resolvent identity implies that

E(H − λ)−1 = (H − µ)−1 and (K − λ)−1F = (K − µ)−1.

Using this and the definition of E, F one easily computes

(H − µ)−1 − (K − µ)−1 = E
(
(H − λ)−1 − (K − λ)−1

)
F.

Now the assertion follows from the ideal property of A(H). �

Recall that the singular values (or s-numbers) sk(A), k = 1, 2, . . . , of
a compact operator A ∈ S∞(H,K) are defined as the eigenvalues λk(|A|) of
the non-negative compact operator |A| = (A∗A)1/2 ∈ S∞(H), which are enu-
merated in non-increasing order and with multiplicities taken into account.
Let A ∈ S∞(H,K) and assume that H and K are infinite dimensional Hilbert
spaces. Then there exist orthonormal systems {ϕ1, ϕ2, . . . } and {ψ1, ψ2, . . . }
in H and K, respectively, such that A admits the Schmidt expansion

A =

∞∑
k=1

sk(A)( · , ϕk)ψk. (2.2)

It follows, for instance, from (2.2) and the corresponding expansion for A∗ ∈
S∞(K,H) that the singular values of A and A∗ coincide: sk(A) = sk(A∗) for
k = 1, 2, . . . ; see, e.g. [36, II.§2.2]. Moreover, if G and L are separable Hilbert
spaces, B ∈ B(G,H) and C ∈ B(K,L), then the estimates

sk(AB) ≤ ‖B‖sk(A) and sk(CA) ≤ ‖C‖sk(A), k = 1, 2, . . . , (2.3)



Spectral estimates for elliptic operators 7

hold. If, in addition, B ∈ S∞(G,H), then

sm+n−1(AB) ≤ sm(A)sn(B), m, n = 1, 2 . . . . (2.4)

The proofs of the inequalities (2.3) and (2.4) are the same as in [36, II.§2.1
and §2.3], where these facts are shown for operators acting in the same space.

Recall that the Schatten–von Neumann ideals Sp(H,K) are defined by

Sp(H,K) :=

{
A ∈ S∞(H,K) :

∞∑
k=1

(
sk(A)

)p
<∞

}
, p > 0.

Besides the Schatten–von Neumann ideals also the operator ideals

Sp,∞(H,K) :=
{
A ∈ S∞(H,K) : sk(A) = O(k−1/p), k →∞

}
,

S(0)
p,∞(H,K) :=

{
A ∈ S∞(H,K) : sk(A) = o(k−1/p), k →∞

}
,

p > 0,

will play an important role later on. The sets

Sp :=
⋃
H,K

Sp(H,K), Sp,∞ :=
⋃
H,K

Sp,∞(H,K), S(0)
p,∞ :=

⋃
H,K

S(0)
p,∞(H,K)

are classes of operator ideals in the sense of Definition 2.1.
We refer the reader to [36, III.§7 and III.§14] for a detailed study of

the classes Sp, Sp,∞ and S
(0)
p,∞. We list only some basic and well-known

properties, which will be useful for us. It follows from sk(A) = sk(A∗) that

S∗p = Sp, S
∗
p,∞ = Sp,∞ and

(
S

(0)
p,∞
)∗

= S
(0)
p,∞ hold.

Lemma 2.3. Let p, q, r, s > 0 and assume that 1
p + 1

q = 1
r . Then the following

relations are true:

(i) Sp ⊂ S
(0)
p,∞ ⊂ Sp,∞;

(ii) Ss,∞ ⊂ Sq for all q > s;

(iii) Sp,∞ ·Sq,∞ = Sr,∞;

(iv) S
(0)
p,∞ ·S(0)

q,∞ = S
(0)
r,∞;

(v) Sp ·Sq = Sr.

Proof. The first inclusion in (i) is a consequence of the fact that
∑

(sk(A))p <
∞ implies k(sk(A))p → 0 for k → ∞, and the second inclusion is clear.
Assertion (ii) follows immediately from the definitions. In order to verify
(iii) let p, q > 0 and let A ∈ Sp,∞(H,K) and B ∈ Sq,∞(G,H), that is, the

inequalities sn(A) ≤ can
−1/p and sn(B) ≤ cbn

−1/q, n ∈ N, hold with some
constants ca, cb > 0. From (2.4) and 1/p+ 1/q = 1/r we obtain

s2n(AB) ≤ s2n−1(AB) ≤ sn(A)sn(B) ≤ cacb
n1/pn1/q

=
21/rcacb
(2n)1/r

≤ 21/rcacb
(2n−1)1/r

,

which implies that AB ∈ Sr,∞(G,K). In order to show equality, let A ∈
Sr,∞(H,K) and consider its Schmidt expansion, A =

∑
k sk(A)( · , ϕk)ψk.

Define operators B : H → K and C : H → H by

B =
∑
k

(
sk(A)

)r/p
( · , ϕk)ψk, C =

∑
k

(
sk(A)

)r/q
( · , ϕk)ϕk.
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The relations A = BC, B ∈ Sp,∞(H,K), C ∈ Sq,∞(H,H) show that A ∈
Sp,∞ ·Sq,∞. The same arguments as in (iii) can be used to show (iv). The
inclusion “⊂” in (v) follows from [36, III.§7.2]. The converse inclusion follows
in a similar way as in (iii). �

Sometimes we need also the notion of a symmetrically normed ideal:
a two-sided ideal A(H,G) is a symmetrically normed ideal if it is a Banach
space with respect to some norm ‖ · ‖A such that ‖CAB‖A ≤ ‖C‖ ‖A‖A ‖B‖
for A ∈ A(H,G), B ∈ B(H), C ∈ B(G) and ‖A‖A = s1(A) for rank one
operators A; see [36, III.§2.1 and §2.2]. If a class of operator ideals consists of
symmetrically normed ideals, then we call it a class of symmetrically normed

ideals. The classes Sp, Sr,∞ and S
(0)
r,∞ are classes of symmetrically normed

ideals for p ≥ 1 and r > 1; see [36, III.§7 and §14].
The following lemma is needed in the proof of Proposition 3.5.

Lemma 2.4. Let A(G) be a symmetrically normed ideal of B(G), let C ∈
B(H) and assume that A ∈ A(G) admits the factorization A = B∗B with
B ∈ B(G,H). Then also B∗CB ∈ A(G).

Proof. If G is finite-dimensional, then the assertion is trivial. So let us assume
that G is infinite-dimensional. Observe first that (sk(A))

1
2 = sk(B) = sk(B∗)

and λk(A) = sk(A) hold for all k = 1, 2, . . . . Together with (2.4) and the first
inequality in (2.3) we obtain

s2n

(
B∗CB

)
≤ s2n−1

(
B∗CB

)
≤ sn(B∗)sn(CB) ≤ ‖C‖sn(A)

for n = 1, 2, . . . . Let us write the non-negative compact operator A ∈ A(G) in
the form A =

∑∞
k=1 λk(A)(· , ϕk)ϕk with an orthonormal basis {ϕ1, ϕ2, . . . }

of eigenvectors corresponding to the eigenvalues λk(A).
Define operators V1, V2 ∈ B(G) by

V1 :

{
ϕ2k−1 7→ ϕk,

ϕ2k 7→ 0,
V2 :

{
ϕ2k−1 7→ 0,

ϕ2k 7→ ϕk,
k ∈ N.

Then the non-negative operator

Ã := V1AV
∗
1 + V2AV

∗
2 =

∞∑
k=1

λk(A)
(
(· , ϕ2k−1)ϕ2k−1 + (· , ϕ2k)ϕ2k

)
belongs to A(G), and its eigenvalues satisfy λ2n−1(Ã) = λ2n(Ã) = λn(A).

Hence we have sk(B∗CB) ≤ ‖C‖sk(Ã), k = 1, 2, . . . , and the claim follows
from [36, III.§2.2]. �

3. Quasi boundary triples and Krein’s formula

3.1. Quasi boundary triples, γ-fields and Weyl functions

The notion of quasi boundary triples was introduced in connection with el-
liptic boundary value problems by the first two authors in [10] as a gen-
eralization of the notion of ordinary and generalized boundary triples from
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[22, 23, 26, 27, 37, 46, 51]. Let us start by recalling the basic definition from
[10].

Definition 3.1. Let (H, (·, ·)) be a Hilbert space and let A be a closed symmetric
relation in H. We say that {G,Γ0,Γ1} is a quasi boundary triple for A∗ if Γ0

and Γ1 are linear mappings defined on a dense subspace T of A∗ with values
in the Hilbert space (G, (·, ·)) such that Γ :=

(
Γ0

Γ1

)
: T → G×G has dense range,

ker Γ0 is self-adjoint and the identity

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ) (3.1)

holds for all f̂ =
(
f
f ′

)
, ĝ =

(
g
g′

)
∈ T .

We recall some basic facts for quasi boundary triples, which can be
found in [10]. Let A be a closed symmetric relation in the Hilbert space H.
Then a quasi boundary triple for A∗ exists if and only if the deficiency indices
n±(A) = dim ker(A∗ ∓ i) of A coincide. In the following, let {G,Γ0,Γ1} be a
quasi boundary triple for A∗. Then A coincides with ker Γ = ker Γ0 ∩ ker Γ1

and Γ =
(

Γ0

Γ1

)
regarded as a mapping from H ×H into G × G is closable; cf.

[10, Proposition 2.2]. Furthermore, as an immediate consequence of (3.1), the
extension A1 := ker Γ1 is a symmetric relation in H.

Let A be a closed symmetric relation in H and let {G,Γ0,Γ1} be a
quasi boundary triple for A∗ with T = dom Γ. We consider extensions of A
which are restrictions of T defined by some abstract boundary condition. For
a linear relation Θ ⊂ G × G we define

AΘ :=
{
f̂ ∈ T : Γf̂ ∈ Θ

}
= Γ−1(Θ). (3.2)

If Θ ⊂ G × G is an operator, then we have

AΘ = ker(Γ1 −ΘΓ0), (3.3)

and (3.3) holds also for linear relations Θ in G if the product and the sum on
the right-hand side are understood in the sense of linear relations. Observe
that the self-adjoint relation A0 := ker Γ0 corresponds to the purely multi-
valued relation Θ = 0−1 =

{(
0
g

)
: g ∈ G

}
in G. This little inconsistency in

the notation should not lead to misunderstandings. It is not difficult to see
that Θ ⊂ Θ∗ implies AΘ ⊂ A∗Θ. However, in contrast to ordinary boundary
triples, self-adjointness of Θ does not imply self-adjointness or essential self-
adjointness of AΘ; cf. [10, Proposition 4.11] for a counterexample, and see
[10, Proposition 2.4] and Theorem 3.11 below for sufficient conditions.

In the following we set G0 := ran Γ0 and G1 := ran Γ1. Because ran Γ is
dense in G×G, it follows that G0 and G1 are dense subspaces of G. Since A0 :=
ker Γ0 ⊂ T = dom Γ is a self-adjoint extension of A in H, the decomposition

T = A0 +̂ N̂λ,T , N̂λ,T :=

{(
fλ
λfλ

)
: fλ ∈ Nλ(T ) := ker(T − λ)

}
,

holds for all λ ∈ ρ(A0). Here +̂ denotes the direct sum of the subspaces A0

and N̂λ,T in H⊕H. It follows that the mapping(
Γ0 � N̂λ,T

)−1
: G0 → N̂λ,T , λ ∈ ρ(A0),
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is well defined and bijective. Denote the orthogonal projection in H⊕H onto
the first component of H⊕H by π1.

Definition 3.2. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a quasi boundary triple for A∗ with A0 = ker Γ0. Then the (operator-valued)
functions γ and M defined by

γ(λ) := π1

(
Γ0 � N̂λ,T

)−1
and M(λ) := Γ1

(
Γ0 � N̂λ,T

)−1
, λ ∈ ρ(A0),

are called the γ-field and Weyl function corresponding to the quasi boundary
triple {G,Γ0,Γ1}.

Note that γ(λ) is a mapping from G0 to H, and M(λ) is a mapping from
G0 to G1 ⊂ G for λ ∈ ρ(A0). These definitions coincide with the definition of
the γ-field and Weyl function or Weyl family in the case where {G,Γ0,Γ1}
is an ordinary boundary triple, generalized boundary triple or a boundary
relation as in [24, 26, 27]. In the next proposition we collect some properties
of the γ-field and the Weyl function of a quasi boundary triple, which are
extensions of well-known properties of the γ-field and Weyl function of an
ordinary boundary triple. The first six items were stated and proved in [10,
Proposition 2.6].

Proposition 3.3. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a quasi boundary triple for A∗ with γ-field γ and Weyl function M . For
λ, µ ∈ ρ(A0) the following assertions hold.

(i) γ(λ) is a densely defined bounded operator from G into H with domain

dom γ(λ) = G0, γ(λ) ∈ B(G,H), the function λ 7→ γ(λ)g is holomorphic
on ρ(A0) for every g ∈ G0, and the relation

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ)

holds.

(ii) γ(λ)∗ ∈ B(H,G), ran γ(λ)∗ ⊂ G1 and for all h ∈ H we have

γ(λ)∗h = Γ1

(
(A0 − λ)−1h

(I + λ(A0 − λ)−1)h

)
.

(iii) M(λ) maps G0 into G1. If, in addition, A1 := ker Γ1 ⊂ T is a self-adjoint
relation in H and λ ∈ ρ(A1), then M(λ) maps G0 onto G1.

(iv) M(λ)Γ0f̂λ = Γ1f̂λ for all f̂λ ∈ N̂λ,T .

(v) M(λ) ⊂ M(λ)∗ and M(λ) −M(µ)∗ = (λ − µ)γ(µ)∗γ(λ). The function
λ 7→M(λ) is holomorphic in the sense that it can be written as the sum
of the possibly unbounded operator ReM(µ) and a bounded holomorphic
operator function,

M(λ) = ReM(µ)

+ γ(µ)∗
(
(λ− Reµ) + (λ− µ)(λ− µ)(A0 − λ)−1

)
γ(µ).

(vi) ImM(λ) = 1
2i (M(λ) −M(λ)) is a densely defined bounded operator in

G. For λ ∈ C+(C−) the operator ImM(λ) is positive (negative, respec-
tively).
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(vii) For x ∈ G0 the function λ 7→M(λ)x is differentiable on ρ(A0) and

d

dλ
M(λ)x = γ(λ)∗γ(λ)x, λ ∈ ρ(A0). (3.4)

(viii) If M(λ0) is bounded for some λ0 ∈ ρ(A0), then M(λ) is bounded for all
λ ∈ ρ(A0). In this case,

1

Imλ
ImM(λ) > 0, λ ∈ C\R, (3.5)

and, in particular, kerM(λ) = {0} for λ ∈ C\R.

Proof. Items (i)–(vi) were proved in [10, Proposition 2.6]. To show (vii), let
x ∈ G0 and λ0, λ ∈ ρ(A0). It follows from (v) with µ = λ0 that

1

λ− λ0

(
M(λ)x−M(λ0)x

)
=

1

λ− λ0

(
M(λ)x−M(λ0)∗x

)
= γ(λ0)∗γ(λ)x.

If we let λ → λ0, then the right-hand side converges, which shows that the
derivative exists and that (3.4) is true for λ replaced by λ0. Item (viii) was
shown in the case where A∗ is an operator in [11, Proposition 6.14 (vi)] The
proof in the case of a relation is similar and hence omitted. �

Remark 3.4. Note that the closure of the operator on the right-hand side of
(3.4) is γ(λ)∗γ(λ), which is in B(G). Hence also d

dλM(λ) has a bounded,

everywhere defined closure, which we denote by M ′(λ). With this notation
we have the identity

M ′(λ) = γ(λ)∗γ(λ). (3.6)

For the rest of this subsection we assume that A is a closed symmetric
relation in a separable Hilbert space H. If {G,Γ0,Γ1} is a quasi boundary
triple for A∗, then also the Hilbert space G is separable. The following propo-
sition shows that, roughly speaking, the property of γ(λ), γ(λ)∗ and M(λ)
belonging to some two-sided operator ideal is independent of λ.

Proposition 3.5. Let A be a closed symmetric relation in a separable Hilbert
space H and let {G,Γ0,Γ1} be a quasi boundary triple for A∗ with A0 = ker Γ0,
γ-field γ and Weyl function M . Moreover, let A be a class of operator ideals.
Then the following assertions are true.

(i) If γ(λ0) ∈ A(G,H) for some λ0 ∈ ρ(A0), then γ(λ) ∈ A(G,H) for all
λ ∈ ρ(A0).

(ii) If γ(λ0)∗ ∈ A∗(H,G) for some λ0 ∈ ρ(A0), then γ(λ)∗ ∈ A∗(H,G) for
all λ ∈ ρ(A0).

(iii) Assume that, in addition, A is a class of symmetrically normed ideals

and that M(λ0) ∈ A(G) for some λ0 ∈ C\R. Then M(λ) ∈ A(G) for all
λ ∈ ρ(A0).

Proof. (i) It follows immediately from I + (λ − λ0)(A0 − λ)−1 ∈ B(H) and
Proposition 3.3 (i) that

γ(λ) =
(
I + (λ− λ0)(A0 − λ)−1

)
γ(λ0)
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holds for all λ, λ0 ∈ ρ(A0). The ideal property directly implies the assertion.

(ii) If γ(λ0)∗ ∈ A(H,G), then γ(λ0) = γ(λ0)∗∗ ∈ A∗(G,H). By (i) this

implies that γ(λ) ∈ A∗(G,H) for all λ ∈ ρ(A0) and hence γ(λ)∗ ∈ A(H,G)
for all λ ∈ ρ(A0).

(iii) Assume thatM(λ0) ∈ A(G) for some λ0 ∈ C\R. Then also ReM(λ0)

and ImM(λ0) belong to A(G), and by Proposition 3.3 (v) we have

1

Imλ0
ImM(λ0) = γ(λ0)∗γ(λ0) ∈ A(G).

Since γ(λ0) ∈ B(G,H) and γ(λ0)∗ = γ(λ0)
∗
∈ B(H,G), we can use Lemma 2.4

to conclude that for every λ ∈ ρ(A0) also

γ(λ0)∗
(
(λ− Reλ0) + (λ− λ0)(λ− λ0)(A0 − λ)−1

)
γ(λ0) ∈ A(G). (3.7)

It follows from Proposition 3.3 (v) that for λ ∈ ρ(A0) we have

M(λ) = ReM(λ0) + γ(λ0)∗
(
(λ−Reλ0) + (λ−λ0)(λ−λ0)(A0−λ)−1

)
γ(λ0).

Therefore ReM(λ0) ∈ A(G) and (3.7) imply that M(λ) ∈ A(G) for all λ ∈
ρ(A0). �

Remark 3.6. Note that in Proposition 3.5 (iii) it is assumed that λ0 is non-
real. However, it follows from the proof of Proposition 3.5 (iii) that the as-

sumptions M(λ1) ∈ A(G) and γ(λ1)∗γ(λ1) ∈ A(G) for some λ1 ∈ R ∩ ρ(A0)

also yield M(λ) ∈ A(G) for all λ ∈ ρ(A0). On the other hand, the assump-

tion M(λ1) ∈ A(G) for some λ1 ∈ R ∩ ρ(A0) alone does not imply that

M(λ) ∈ A(G) for all λ ∈ ρ(A0).

Proposition 3.7. Let A be a class of operator ideals. Moreover, let γ be the

γ-field associated with some quasi boundary triple {G,Γ0,Γ1}, let G̃1 be a

Hilbert space such that G1 ⊂ G̃1 ⊂ G and the embedding ιG̃1→G belongs to

A(G̃1,G). Then

γ(λ)∗ ∈ A(H,G) (3.8)

for all λ ∈ ρ(A0).

Proof. For every λ ∈ ρ(A0) we have γ(λ)∗ ∈ B(H,G) and ran γ(λ)∗ ⊂ G1 by
Proposition 3.3 (ii). Hence γ(λ)∗ is closed as an operator from H to G. Since

ιG̃1→G is bounded, γ(λ)∗ regarded as an operator from H into G̃1 is also closed

and hence bounded by the closed graph theorem, that is, γ(λ)∗ ∈ B(H, G̃1).
Hence, by the ideal property, (3.8) holds. �

3.2. Krein’s formula and self-adjoint extensions

The following theorem and corollary contain a variant of Krein’s formula for
the resolvents of canonical extensions parameterized with the help of quasi
boundary triples, cf. (3.2) and (3.3).
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Theorem 3.8. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1} be
a quasi boundary triple for A∗ with A0 = ker Γ0, γ-field γ and Weyl function
M . Further, let Θ be a relation in G and assume that λ ∈ ρ(A0) is not
an eigenvalue of AΘ, or, equivalently, that ker(Θ −M(λ)) = {0}. Then the
following assertions are true:

(i) g ∈ ran(AΘ − λ) if and only if γ(λ)∗g ∈ dom(Θ−M(λ))−1;

(ii) for all g ∈ ran(AΘ − λ) we have

(AΘ − λ)−1g = (A0 − λ)−1g + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗g. (3.9)

Proof. First note that, by [10, Theorem 2.8 (i)], the point λ ∈ ρ(A0) is not
an eigenvalue of AΘ if and only if ker(Θ − M(λ)) = {0}. Fix some point
λ ∈ ρ(A0) which is not an eigenvalue of AΘ. Then the inverses (AΘ − λ)−1

and (Θ−M(λ))−1 are operators in H and G, respectively.

The implication “⇐” in (i) and item (ii) were shown in the proof of
[10, Theorem 2.8 (ii)]. The converse implication in (i) was proved in [11,
Theorem 6.16] for the case when A∗ is an operator. Therefore we only outline
the proof for the case when A∗ is a relation. For given g ∈ ran(AΘ − λ) set

ĥ :=

(
(AΘ − λ)−1g

g + λ(AΘ − λ)−1g

)
.

One can show in a similar way as in [11, Theorem 6.16] that(
Γ0ĥ

γ(λ)∗g

)
=

(
Γ0ĥ

Γ1ĥ−M(λ)Γ0ĥ

)
∈ Θ−M(λ),

which implies that γ(λ)∗g ∈ ran(Θ−M(λ)) = dom(Θ−M(λ))−1. �

If ρ(AΘ) ∩ ρ(A0) 6= ∅ or ρ(AΘ) ∩ ρ(A0) 6= ∅, e.g. if AΘ is self-adjoint
or essentially self-adjoint, respectively, then for λ ∈ ρ(AΘ) ∩ ρ(A0), relation
(3.9) is valid on H or a dense subset of H, respectively. This, together with
the fact that γ(λ̄)∗ is an everywhere defined bounded operator and

γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗ ⊂ γ(λ)

(
Θ−M(λ)

)−1
γ(λ̄)∗,

implies the following corollary.

Corollary 3.9. Let the assumptions be as in Theorem 3.8. Then the following
assertions hold.

(i) If λ ∈ ρ(AΘ) ∩ ρ(A0), then

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗. (3.10)

(ii) If λ ∈ ρ(AΘ) ∩ ρ(A0), then

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗. (3.11)
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In particular, if AΘ is self-adjoint or essentially self-adjoint, then Krein’s
formula (3.10) or (3.11), respectively, holds at least for all non-real λ.

With the help of Krein’s formula and the next lemma we obtain a suffi-
cient condition for self-adjointness of extensions AΘ in Theorem 3.11 below.

Lemma 3.10. Let {G,Γ0,Γ1} be a quasi boundary triple with associated Weyl

function M . Assume that M(λ0) ∈ S∞(G) for some λ0 ∈ C\R and let Θ be
a self-adjoint relation in G such that 0 /∈ σess(Θ). Then(

Θ−M(λ)
)−1 ∈ B(G)

for all λ ∈ C\R.

Proof. According to Proposition 3.5 (iii) the operator M(λ) is compact for
all λ ∈ C\R because S∞(G) is a symmetrically normed ideal. Without loss
of generality let λ ∈ C+ in the following. We can decompose the self-adjoint
relation Θ into its self-adjoint operator part and the purely multi-valued part:
Θ = Θop⊕Θ∞ with a corresponding decomposition of the space G = Gop⊕G∞,
cf. Section 2.1. Denote by Pop the orthogonal projection in G onto Gop. Since

0 /∈ σess(Θop) and M(λ) is compact, the operator Θop − PopM(λ)|Gop is a
Fredholm operator in Gop with index 0. For x ∈ dom Θop, x 6= 0, we have

Im
(
(Θop − PopM(λ)|Gop)x, x

)
Gop

= − Im(M(λ)x, x)

= −
(
(ImM(λ))x, x

)
< 0

by Proposition 3.3 (viii); hence Θop−PopM(λ)|Gop has a trivial kernel. Since
its index is zero, it is also surjective. Because of the closedness, its inverse is
a bounded and everywhere defined operator in Gop. By [49, p. 137] we have(

Θ−M(λ)
)−1

=
(
Θop − PopM(λ)|Gop

)−1
Pop

and hence (Θ−M(λ))−1 ∈ B(G). �

In the assumptions of the next theorem, which is one of the main results
of the paper, we make use of the notation

Θ−1(X) :=

{
x ∈ G : ∃ y ∈ X so that

(
x

y

)
∈ Θ

}
for a linear relation Θ in G and a subspace X ⊂ G. This theorem gives a
sufficient condition for AΘ being self-adjoint.

Theorem 3.11. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a quasi boundary triple for A∗ with Ai = ker Γi, i = 0, 1, and Weyl function
M . Assume that A1 is self-adjoint and that M(λ0) ∈ S∞(G) for some λ0 ∈
C\R. If Θ is a self-adjoint relation in G such that

0 /∈ σess(Θ) and Θ−1
(
ranM(λ±)

)
⊂ G0 (3.12)

hold for some λ+ ∈ C+ and some λ− ∈ C−, then AΘ = {f̂ ∈ T : Γf̂ ∈ Θ} is
self-adjoint in H. In particular, the second condition in (3.12) is satisfied if
dom Θ ⊂ G0.
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Proof. Note first that Θ = Θ∗ implies that AΘ is a symmetric relation in H
and hence the eigenvalues of AΘ are real. Therefore it remains to check that
ran(AΘ − λ±) = H holds for some (and hence for all) points λ± ∈ C±. Since
ran γ(λ±)∗ ⊂ G1 by Proposition 3.3 (ii), we find from Theorem 3.8 (i) that it
is sufficient to verify the inclusion

G1 ⊂ dom
(
Θ−M(λ±)

)−1
= ran

(
Θ−M(λ±)

)
.

Let y ∈ G1, and let λ+ ∈ C+ be such that the second relation in (3.12) holds.

For λ− ∈ C− the same reasoning applies. With x := (Θ−M(λ+))−1y, which
is well defined by Lemma 3.10, we have(

x

y +M(λ+)x

)
∈ Θ.

Since A1 is self-adjoint, we have ranM(λ+) = G1 by Proposition 3.3 (iii) and
hence

y +M(λ+)x ∈ G1 + ranM(λ+) = ranM(λ+).

It follows from the second assumption in (3.12) that x ∈ G0 = domM(λ+).
Therefore

( x
y

)
∈ Θ−M(λ+), which shows that y ∈ ran(Θ−M(λ+)). �

Remark 3.12. If Θ is a self-adjoint relation with 0 /∈ σess(Θ), then its kernel is
finite-dimensional. If ker Θ = {0}, then B := Θ−1 is a bounded, self-adjoint
operator in G. In this case, the second condition in (3.12) becomes

B
(
ranM(λ±)

)
⊂ G0

and the relation AΘ can be written as AΘ = ker(BΓ1 − Γ0). If ker Θ 6= {0},
then one can write the abstract boundary condition Γf̂ ∈ Θ, f̂ ∈ T ⊂ A∗,
with the finite rank projection P onto ker Θ and the bounded operator

B =
(
Θ ∩

(
(ker Θ)⊥ × (ker Θ)⊥

))−1 ∈ B
(
(ker Θ)⊥

)
in the form

PΓ1f̂ = 0 and (1− P )Γ0f̂ = B(1− P )Γ1f̂ , f̂ ∈ dom Γ = T.

3.3. Resolvent differences in operator ideals

Let A be a closed symmetric relation in a separable Hilbert space H, let
{G,Γ0,Γ1} be a quasi boundary triple for A∗, and let A be a class of operator
ideals. With the help of Krein’s formula we find sufficient conditions on the
parameter Θ, the γ-field γ and the Weyl function M such that the difference
of the resolvents of the self-adjoint relations AΘ and A0 belongs to some
appropriate ideal, e.g. A(H) or (A · A∗)(H). These abstract results will turn
out to be particularly useful in Section 4 when we investigate Schatten–
von Neumann type properties of resolvent differences of self-adjoint elliptic
differential operators.

The first theorem of this subsection is one of the main results of the
paper. Here we consider the resolvent difference of AΘ and A0 under some
assumptions on M(λ), γ(λ)∗ and Θ.
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Theorem 3.13. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a quasi boundary triple for A∗ with A0 = ker Γ0, γ-field γ and Weyl
function M . Let A be a class of operator ideals and let Θ be a self-adjoint
relation in G such that the following conditions hold:

(i) M(λ0) ∈ S∞(G) for some λ0 ∈ C\R;

(ii) γ(λ1)∗ ∈ A∗(H,G) for some λ1 ∈ ρ(A0);

(iii) 0 /∈ σess(Θ) and AΘ = A∗Θ.

Then
(AΘ − λ)−1 − (A0 − λ)−1 ∈ (A · A∗)(H) (3.13)

for all λ ∈ ρ(AΘ) ∩ ρ(A0).

Proof. Note that the assumptions (i) and (ii) together with Proposition 3.5

imply that M(λ) ∈ S∞(G), γ(λ)∗ ∈ A∗(H,G) and γ(λ)∗∗ = γ(λ) ∈ A(G,H)
for all λ ∈ ρ(A0). Corollary 3.9 (i) yields that the resolvent difference of the
self-adjoint relations AΘ and A0 has the form

(AΘ − λ)−1 − (A0 − λ)−1 = γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

= γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

(3.14)

for all λ ∈ ρ(AΘ)∩ρ(A0). Furthermore, since the operator M(λ0) is compact,

we have (Θ−M(λ))−1 ∈ B(G) for all λ ∈ C\R by Lemma 3.10. Therefore, if
λ ∈ C\R, then(

Θ−M(λ)
)−1

γ(λ)∗ ∈ A∗(H,G) and γ(λ) ∈ A(G,H),

and hence (3.13) follows. Lemma 2.2 implies that (3.13) holds also for all λ
in the (possibly larger) set ρ(AΘ) ∩ ρ(A0). �

Note that Theorem 3.11 provides a sufficient condition for the second
assumption in (iii) of Theorem 3.13.

Remark 3.14. As a corollary one immediately obtains the same result for the
resolvent difference

(AΘ1
− λ)−1 − (AΘ2

− λ)−1

of AΘ1 , AΘ2 , where Θ1 and Θ2 both satisfy the assumptions in Theorem 3.13.
In Theorem 3.20 we improve this under the additional assumption that Θ1 −
Θ2 is in some class of operator ideals.

Remark 3.15. If A is equal to Sp, Sp,∞ or S
(0)
p,∞, then the resolvent difference

in (3.13) is in Sp/2(H), Sp/2,∞,(H) or S
(0)
p/2,∞,(H), respectively. This follows

from Lemma 2.3.

Krein’s formula can be used to prove a trace formula if the resolvent
difference is a trace class operator.

Corollary 3.16. Let A be a closed symmetric relation in a separable Hilbert
space H and let {G,Γ0,Γ1} be a quasi boundary triple for A∗ with A0 = ker Γ0,
γ-field γ and Weyl function M . Further, let Θ be a self-adjoint relation in G
such that the following conditions hold:
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(i) M(λ0) ∈ S∞(G) for some λ0 ∈ C\R;

(ii) γ(λ1)∗ ∈ S2(H,G) f or some λ1 ∈ ρ(A0);

(iii) 0 /∈ σess(Θ) and AΘ = A∗Θ.

Then

(AΘ − λ)−1 − (A0 − λ)−1 ∈ S1(H)

and

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= tr

(
M ′(λ)

(
Θ−M(λ)

)−1
)

for λ ∈ ρ(AΘ) ∩ ρ(A0), where M ′(λ) is defined as in Remark 3.4.

Proof. The first assertion is clear from Theorem 3.13 and Remark 3.15. Hence
we can apply the trace to both sides of (3.14). Using (3.6) and the relation
tr(AB) = tr(BA) (see, e.g. [36, Theorem III.8.2]) we obtain

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= tr

(
γ(λ)

(
Θ−M(λ)

)−1
γ(λ)∗

)
= tr

(
γ(λ)∗γ(λ)

(
Θ−M(λ)

)−1
)

= tr
(
M ′(λ)

(
Θ−M(λ)

)−1
)

; (3.15)

note that also the operator M ′(λ)(Θ − M(λ))−1 in (3.15) is a trace class
operator. �

In the following theorem the assumptions M(λ0) ∈ S∞(G), 0 /∈ σess(Θ)
are replaced by a weaker assumption on Θ −M(λ); the conclusion is also
weaker than the one in Theorem 3.13.

Theorem 3.17. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a quasi boundary triple for A∗ with A0 = ker Γ0, γ-field γ and Weyl
function M . Let A be a class of operator ideals and let Θ be a symmetric
relation in G such that the following conditions hold:

(i) Θ−M(λ0) is injective for some λ0 ∈ C\R;

(ii) γ(λ1)∗ ∈ A∗(H,G) for some λ1 ∈ ρ(A0);

(iii) AΘ = A∗Θ.

Then

(AΘ − λ)−1 − (A0 − λ)−1 ∈ A(H) (3.16)

for all λ ∈ ρ(AΘ) ∩ ρ(A0).

Proof. According to Corollary 3.9 (i) we can write the resolvent difference at
the point λ0 as

(AΘ − λ0)−1 − (A0 − λ0)−1 = γ(λ0)
(
Θ−M(λ0)

)−1
γ(λ0)∗.

In particular, it follows that both products on the right-hand side are well
defined, and hence (

Θ−M(λ0)
)−1

γ(λ0)∗ (3.17)

is everywhere defined. Since the relation Θ−M(λ0) is injective, it follows
that (Θ −M(λ0))−1 is a closable operator. Therefore, because γ(λ0)∗ is a
bounded operator, the product in (3.17) is a closable, everywhere defined
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operator and hence in B(H,G). Moreover, since γ(λ1)∗ ∈ A∗(H,G), it follows

from Proposition 3.5 that γ(λ) belongs to A(G,H) for all λ ∈ ρ(A0). Hence the
difference of the resolvents in (3.16) is in A(H) for λ = λ0. Then Lemma 2.2
implies (3.16) for all λ ∈ ρ(AΘ) ∩ ρ(A0). �

In the case Θ = 0 the above theorem together with Proposition 3.3 (viii)
imply the next corollary.

Corollary 3.18. Let A, {G,Γ0,Γ1}, γ, M and A be as in Theorem 3.17.
Assume that A1 = ker Γ1 is self-adjoint, that M(λ0) is bounded for some
λ0 ∈ ρ(A0) and that γ(λ1)∗ ∈ A∗(H,G) for some λ1 ∈ ρ(A0). Then

(A1 − λ)−1 − (A0 − λ)−1 ∈ A(H)

for all λ ∈ ρ(A1) ∩ ρ(A0)

Corollary 3.18 can be generalized as follows.

Theorem 3.19. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a quasi boundary triple for A∗ with A0 = ker Γ0, γ-field γ and Weyl
function M . Furthermore, let A, B be classes of operator ideals and assume
that the following conditions hold:

(i) A1 = ker Γ1 is self-adjoint;

(ii) M(λ0) is bounded for some λ0 ∈ ρ(A0);

(iii) γ(λ1)∗ ∈ A∗(H,G) for some λ1 ∈ ρ(A0);

(iv) there exists a Hilbert space G̃0 such that G0 ⊂ G̃0 ⊂ G and the embedding

ιG̃0→G belongs to B(G̃0,G).

Then

(A1 − λ)−1 − (A0 − λ)−1 ∈ (A ·B)(H) (3.18)

for all λ ∈ ρ(A1) ∩ ρ(A0).

Proof. SinceM(λ0) is bounded, Proposition 3.3 (viii) implies that kerM(λ) =
{0} for every λ ∈ C\R and hence M(λ)−1γ(λ)∗ is closable from H into G with
values in G0 = domM(λ). The boundedness of the embedding ιG̃0→G implies

that M(λ)−1γ(λ)∗ regarded as an operator from H into G̃0 is also closable.
Furthermore, this operator is everywhere defined and hence we have

M(λ)−1γ(λ)∗ ∈ B(H, G̃0) and ιG̃0→GM(λ)−1γ(λ)∗ ∈ B(H,G)

for all λ ∈ C\R by assumption (iv). Assumption (iii) implies γ(λ) ∈ A(G,H)
for all λ ∈ ρ(A0); cf. Proposition 3.5 (i). By the self-adjointness of A1 and by
Corollary 3.9 we have

(A1 − λ)−1 − (A0 − λ)−1 = −γ(λ)ιG̃0→GM(λ)−1γ(λ)∗,

which is in (A ·B)(H) for all λ ∈ C\R. An application of Lemma 2.2 shows
that (3.18) holds also for all λ ∈ ρ(A1) ∩ ρ(A0). �
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In the next theorem the difference of the resolvents of two self-adjoint
extensions AΘ1 and AΘ2 is considered under additional assumptions on Θ1−
Θ2; cf. [26, Theorem 2 and Corollary 4] for the case when {G,Γ0,Γ1} is an
ordinary boundary triple.

Theorem 3.20. Let A be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a quasi boundary triple for A∗ with A0 = ker Γ0, γ-field γ and Weyl
function M . Let B be a class of operator ideals, let Θ1 and Θ2 be two self-
adjoint bounded operators in G and assume that the following conditions hold:

(i) M(λ0) ∈ S∞(G) for some λ0 ∈ ρ(A0);

(ii) 0 /∈ σess(Θi) and AΘi = A∗Θi for i = 1, 2;

(iii) Θ1 −Θ2 ∈ B(G).

Then

(AΘ1
− λ)−1 − (AΘ2

− λ)−1 ∈ B(H)

holds for all λ ∈ ρ(AΘ1) ∩ ρ(AΘ2). If, in addition, A is another class of
operator ideals and γ(λ1)∗ ∈ A∗(H,G) for some λ1 ∈ ρ(A0), then

(AΘ1 − λ)−1 − (AΘ2 − λ)−1 ∈ (A ·B · A∗)(H)

for all λ ∈ ρ(AΘ1
) ∩ ρ(AΘ2

).

Proof. Since, by Lemma 3.10, the operators Θi and (Θi − M(λ))−1 are
bounded for all λ ∈ C\R, the difference of (3.10) for Θ = Θ1 and Θ = Θ2

can be rewritten as follows

(AΘ1 − λ)−1 − (AΘ2 − λ)−1

= γ(λ)
(
Θ1 −M(λ)

)−1
(Θ2 −Θ1)

(
Θ2 −M(λ)

)−1
γ(λ)∗.

All five factors on the right-hand side are bounded, the middle factor is in
B(G); hence the product is in B(H) for λ ∈ C\R, and Lemma 2.2 implies that
this is true for all λ ∈ ρ(AΘ1

) ∩ ρ(AΘ2
). If, in addition, γ(λ1)∗ ∈ A∗(H,G),

then γ(λ)∗ ∈ A∗(H,G) and γ(λ) ∈ A(G,H) for all λ ∈ ρ(A0) by Propo-
sition 3.5 (ii) and hence the second assertions holds for all λ ∈ ρ(AΘ1

) ∩
ρ(AΘ2

) ∩ ρ(A0). It remains to use Lemma 2.2 to conclude the assertion for
all λ ∈ ρ(AΘ1

) ∩ ρ(AΘ2
). �

4. Self-adjoint elliptic operators and spectral estimates for
resolvent differences

In this section we study elliptic operators on domains in Rn with smooth
compact boundary, i.e. either on bounded domains or on exterior domains.
In the first subsection we construct a quasi boundary triple where functions
in the domain of T are in H2 in a neighbourhood of the boundary and prove
sufficient conditions for self-adjoint realizations. We shall sometimes speak of
an H2 framework here although for exterior domains T is defined on a larger
space, see Definition 4.1. In Subsection 4.2 we apply the abstract results
from Section 3.3 to elliptic operators and obtain estimates for singular values
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of resolvent differences of realizations with different boundary conditions. In
Section 4.3 self-adjoint elliptic operators on Rn with δ-interactions on smooth
hypersurfaces are constructed with the help of quasi boundary triples and
interface conditions on the hypersurface. The abstract results from Section 3.3
imply spectral estimates for the resolvent differences of the elliptic operators
with δ-interactions and the unperturbed elliptic operator on Rn; cf. [13] for
similar considerations for Schrödinger operators.

4.1. Quasi boundary triples and Weyl functions for second order elliptic
differential expressions

Let Ω ⊂ Rn be a bounded or unbounded domain with compact C∞-boundary
∂Ω. We consider a formally symmetric second order differential expression

(Lf)(x) := −
n∑

j,k=1

(
∂

∂xj

(
ajk

∂f

∂xk

))
(x) + a(x)f(x), x ∈ Ω, (4.1)

with bounded, infinitely differentiable, real-valued coefficients ajk ∈ C∞(Ω)

satisfying ajk(x) = akj(x) for all x ∈ Ω and j, k = 1, . . . , n and a real-valued
function a ∈ L∞(Ω). Furthermore, L is assumed to be uniformly elliptic, i.e.
the condition

n∑
j,k=1

ajk(x)ξjξk ≥ C
n∑
k=1

ξ2
k

holds for some C > 0, all ξ = (ξ1, . . . , ξn)> ∈ Rn and x ∈ Ω. We note that the
assumptions on the domain Ω and the coefficients of L can be relaxed but it is
not our aim to treat the most general setting here. We refer the reader to, e.g.
[28, 38, 42, 50, 55, 65] for possible generalizations and to [1, 7, 33, 34, 35] for
recent work on non-smooth domains. On the other hand, we do not impose
any conditions on the growth of derivatives of ajk at infinity; cf. the stronger
assumptions in [52, Condition 3.1].

In the following we denote by Hs(Ω) and Hs(∂Ω), s ≥ 0, the usual
Sobolev spaces of order s of L2-functions on Ω and ∂Ω, respectively. The
Sobolev space H−s(∂Ω), s > 0, of negative order is defined as the dual space
of Hs(∂Ω); see, e.g. [50, Section 7.3] and [2]. The closure of C∞0 (Ω) in Hs(Ω)
is denoted by Hs

0(Ω). For a function f ∈ C∞(Ω) we denote the trace by f |∂Ω

and we set
∂f

∂νL

∣∣∣
∂Ω

:=

n∑
j,k=1

ajkνj
∂f

∂xk

∣∣∣
∂Ω
,

where ν(x) = (ν1(x), . . . , νn(x))> is the unit vector at the point x ∈ ∂Ω
pointing out of Ω. Recall that, for all s > 3

2 , the mapping C∞(Ω) 3 f 7→{
f |∂Ω,

∂f
∂νL

∣∣
∂Ω

}
extends by continuity to a continuous surjective mapping

Hs(Ω) 3 f 7→
{
f |∂Ω,

∂f

∂νL

∣∣∣
∂Ω

}
∈ Hs−1/2(∂Ω)×Hs−3/2(∂Ω), (4.2)

which admits a bounded right inverse. For s = 2 the kernel of the mapping
in (4.2) is equal to H2

0 (Ω).
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In order to construct a quasi boundary triple for the maximal operator
associated with L in L2(Ω) in an “H2 setting”, we fix a suitable operator T
as the domain of the boundary mappings.

Definition 4.1. The differential operator Tf = Lf (understood in the distri-
butional sense) is defined on the domain

domT =

{
H2(Ω) if Ω is bounded,{
f ∈ H1(Ω): Lf ∈ L2(Ω), f |Ω′ ∈ H2(Ω′)

}
if Ω is unbounded,

where in the unbounded case Ω′ ⊂ Ω is a bounded subdomain of Ω with smooth
boundary such that ∂Ω ⊂ ∂Ω′.

In the unbounded case in Definition 4.1 we can choose, for instance,
Ω′ = Ω ∩ BR(0), where BR(0) = {x ∈ Rn : ‖x‖ < R} and R is big enough
so that Rn\Ω ⊂ BR(0). Since the condition Lf ∈ L2(Ω) implies that f ∈
H2

loc(Ω) (see, e.g. [50, Theorem 2.3.2]), it is clear that the set on the right-
hand side of domT in the case of unbounded Ω is independent of Ω′. We
also note that, under the additional assumption that the coefficients ajk have
bounded uniformly continuous derivatives, the domain of T is globally H2,
cf. [8, Theorem 7.1 (i)].

In both cases (Ω bounded or unbounded), functions f in domT are in

H2 in a neighbourhood of ∂Ω, and hence f |∂Ω and ∂f
∂νL

∣∣
∂Ω

are well defined

and have values inH3/2(∂Ω) andH1/2(∂Ω), respectively. Define the Dirichlet,
Neumann and minimal operator associated with L by

ADf = Lf, domAD =
{
f ∈ domT : f |∂Ω = 0

}
,

ANf = Lf, domAN =

{
f ∈ domT :

∂f

∂νL

∣∣∣
∂Ω

= 0

}
,

Af = Lf, domA =

{
f ∈ domT : f |∂Ω = 0,

∂f

∂νL

∣∣∣
∂Ω

= 0

}
.

In the following theorem it is shown how a quasi boundary triple can be
defined in the present situation. The self-adjointness of AN in the case of
an unbounded domain is shown in full detail, the remaining assertions are
essentially a consequence of [10, Theorem 2.3].

Theorem 4.2. Let L be the uniformly elliptic differential expression from
(4.1), let T , AD, AN, A be the differential operators from above and define
the boundary mappings

Γ0f̂ :=
∂f

∂νL

∣∣∣
∂Ω

and Γ1f̂ := f |∂Ω, f̂ =

(
f
Tf

)
, f ∈ domT.

Then A is a densely defined closed symmetric operator in L2(Ω), the oper-
ators AN = ker Γ0 and AD = ker Γ1 are self-adjoint extensions of A, and
{L2(∂Ω),Γ0,Γ1} is a quasi boundary triple for A∗. Moreover,

(Tf, g) = a[f, g]− (Γ0f,Γ1g) (4.3)
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holds for all f, g ∈ domT , where

a[f, g] :=

∫
Ω

(
n∑

j,k=1

ajk
∂f

∂xk

∂g

∂xj
+ afg

)
, f, g ∈ H1(Ω). (4.4)

Proof. If Ω is bounded, the assertions in the theorem apart from (4.3) were
proved in [10, Proposition 4.1]. The proof of (4.3) follows easily from known
results; see also the proof below for the case where Ω is unbounded.

Now let Ω be unbounded. First we show that AN as defined above is
self-adjoint. Let the symmetric quadratic form a[f, g] be as in the theorem.
Because of the boundedness of the coefficients and the uniform ellipticity,
this quadratic form can be compared with the form

a0[f, g] =

∫
Ω

grad f · grad g,

which corresponds to the Laplace operator, namely, there exist constants
c1, c2 ≥ 0 and d1, d2 ∈ R such that

c1a0[f, f ] + d1‖f‖2 ≤ a[f, f ] ≤ c2a0[f, f ] + d2‖f‖2.
Since ‖f‖2 + a0[f, f ] = ‖f‖2H1(Ω), this implies that the form a is closed and

bounded from below. Hence, by [45, Theorem VI.2.1] there exists a self-

adjoint operator ÃN in L2(Ω) with dom ÃN ⊂ dom a = H1(Ω) which is
bounded from below and represents the form a, i.e.

(ÃNf, g) = a[f, g] (4.5)

for all f ∈ dom ÃN and g ∈ H1(Ω).

We claim that the domain of ÃN is equal to{
f ∈ H1(Ω): Lf ∈ L2(Ω),

∂f

∂νL

∣∣∣
∂Ω

= 0
}

(4.6)

and that ÃNf = Lf for f ∈ dom ÃN. In fact, let f ∈ dom ÃN. Then (4.5) is
true in particular for g ∈ C∞0 (Ω), which implies that

(ÃNf, g) = a[f, g] = (f,Lg) = 〈Lf, g〉,
where the last term is the application of the distribution Lf to the test
function g; the second equality follows from the definition of distributional

derivatives. This implies that Lf is a regular distribution and equals ÃNf ∈
L2(Ω). The formula

(Lu, v) = a[u, v]−
∫
∂Ω

∂u

∂νL
v (4.7)

is valid for all u ∈ H1(Ω) such that Lu ∈ L2(Ω) and all v ∈ H1(Ω) such that
one of the two functions has bounded support1. The derivative of u in the

1Indeed, for u, v ∈ H2(Ω) and bounded Ω, formula (4.7) is well known. Since in this case
H2(Ω) is dense in H1

L(Ω) := {w ∈ H1(Ω): Lw ∈ L2(Ω)} equipped with the norm ‖w‖H1 +

‖Lw‖L2 and ∂
∂νL

: H1
L(Ω) → H−1/2(∂Ω) is continuous (see [39, 50]), an approximation

argument implies (4.7).
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integral is in H−1/2(∂Ω), the trace of v is in H1/2(∂Ω); so the integral is un-
derstood as a dual pairing of H−1/2(∂Ω) and H1/2(∂Ω). Since boundary val-
ues of H1(Ω)-functions with bounded support exhaust the space H1/2(∂Ω),

relations (4.5) and (4.7) with u = f and v = g yield that ∂f
∂νL

∣∣
∂Ω

= 0. Hence

f is in the set in (4.6). Conversely, let f be in the set in (4.6). Then, by
(4.7), we have (Lf, g) = a[f, g] for all g ∈ C∞(Ω) with bounded support.

This implies that f ∈ dom ÃN and ÃNf = Lf by [45, Theorem VI.2.1 (iii)]
since {g ∈ C∞(Ω): supp g bounded} is dense in H1(Ω), which implies that
it is a core of a.

We show that functions in dom ÃN are in H2 in a neighbourhood of
∂Ω. Let R > 0 be such that Rn\Ω ⊂ BR(0) and set Ω′ := Ω ∩ BR(0).
Moreover, choose a C∞-function ϕ defined on Ω such that suppϕ ⊂ Ω′, that
ϕ(x) = 1 in a neighbourhood of ∂Ω and that ϕ(x) = 0 in a neighbourhood

of SR(0) := {x ∈ Rn : ‖x‖ = R}. Let f be in dom ÃN, i.e. in the set in (4.6).

We want to show that ϕf ∈ dom ÃN. Clearly, ϕf ∈ H1(Ω). Since

L(ϕf) = ϕ(Lf)−
n∑

j,k=1

[
2ajk

∂ϕ

∂xj

∂f

∂xk
+ f

∂ajk
∂xj

∂ϕ

∂xk
+ ajkf

∂2ϕ

∂xj∂xk

]
,

f ∈ H1(Ω) and the derivatives of ajk and ϕ are uniformly bounded on the
bounded set suppϕ, we can deduce that L(ϕf) ∈ L2(Ω). The validity of the

boundary condition ∂(ϕf)
∂νL

∣∣
∂Ω

= 0 is clear from the fact that ϕ(x) = 1 in a

neighbourhood of ∂Ω. It follows that ϕf is in the set in (4.6) and hence in

dom ÃN. Now define a quadratic form aΩ′,N,D in L2(Ω′) by the formula in
(4.4) with domain

dom aΩ′,N,D =
{
h ∈ H1(Ω′) : f |SR(0) = 0

}
.

This form defines a self-adjoint operator AΩ′,N,D:

AΩ′,N,Dh = Lh, domAΩ′,N,D =

{
h ∈ H2(Ω′) : h|SR(0) = 0,

∂h

∂νL

∣∣∣
∂Ω

= 0

}
.

Since f ∈ dom ÃN and any function g in dom aΩ′,N,D can be extended by 0
to a function g̃ in H1(Ω), we have(

(ÃNf)|Ω′ , g
)
L2(Ω′)

=
(
ÃNf, g̃

)
L2(Ω)

= a[f, g̃] = aΩ′,N,D[f |Ω′ , g]

for all g ∈ dom aΩ′,N,D. By [45, Theorem VI.2.1 (iii)] this implies that f |Ω′ ∈
domAΩ′,N,D and hence f |Ω′ ∈ H2(Ω′).

It follows that

dom ÃN =
{
f ∈ H1(Ω): Lf ∈ L2(Ω),

∂f

∂νL

∣∣∣
∂Ω

= 0
}

=
{
f ∈ H1(Ω): Lf ∈ L2(Ω),

∂f

∂νL

∣∣∣
∂Ω

= 0, f |Ω′ ∈ H2(Ω′)
}

=
{
f ∈ domT :

∂f

∂νL

∣∣∣
∂Ω

= 0
}

= domAN
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and that AN = ÃN is a self-adjoint operator in L2(Ω). With a similar reason-
ing and using the quadratic form a restricted to H1

0 (Ω) one can show that
AD is a self-adjoint operator in L2(Ω).

Next we show, with the help of [10, Theorem 2.3], that {L2(∂Ω),Γ0,Γ1}
is a quasi boundary triple. It follows from the considerations before the state-
ment of the current theorem that Γ0 and Γ1 are well defined. Moreover,

ran Γ = ran

(
Γ0

Γ1

)
= H1/2(∂Ω)×H3/2(∂Ω)

(see, e.g. [50, Theorem 1.8.3]), which is dense in L2(∂Ω)× L2(∂Ω). In order
to show Green’s identity, we first show the identity (4.3). Let Ω′ and ϕ be
as above and set ψ := 1− ϕ. If f, g ∈ domT , then (ϕf)|Ω′ , (ϕg)|Ω′ ∈ H2(Ω′)
and ψf, ψg ∈ domAN. Using (4.7) and (4.5) we obtain(

Tf, g
)
L2(Ω)

=
(
Tf, ϕg

)
L2(Ω′)

+
(
T (ϕf), ψg

)
L2(Ω′)

+
(
T (ψf), ψg

)
L2(Ω)

= a[f, ϕg]−
∫
∂Ω

∂f

∂νL
ϕg + a[ϕf, ψg]−

∫
∂Ω

∂(ϕf)

∂νL
ψg + a[ψf, ψg]

= a[f, g]−
(
Γ0f,Γ1g

)
L2(∂Ω)

since ϕ(x) = 1 and ψ(x) = 0 in a neighbourhood of ∂Ω, which proves (4.3).
The abstract Green identity (3.1) follows immediately from this and the
symmetry of a. Now we can apply [10, Theorem 2.3] to obtain that A is a
closed, symmetric operator and that {L2(∂Ω),Γ0,Γ1} is a quasi boundary
triple. Moreover, since T is an operator, we conclude that T ∗ = A is densely
defined. �

Observe that, for the quasi boundary triple in Theorem 4.2, we have

G0 = ran Γ0 = H1/2(∂Ω) and G1 = ran Γ1 = H3/2(∂Ω).

We also note that the triple {L2(∂Ω),Γ0,Γ1} is not a generalized boundary
triple or a boundary relation in the sense of [24, 27] and we refer to [20,
39] for a modified approach that leads to an ordinary boundary triple for
A∗. One of the advantages of the quasi boundary triple in Theorem 4.2 is
that the corresponding Weyl function is the inverse of the usual Dirichlet-
to-Neumann map, whereas the Weyl function corresponding to the ordinary
boundary triple from [20, 39] (which differs by an unbounded constant from
the Dirichlet-to-Neumann map) is more difficult to interpret; see also [9,
Proposition 4.1]. The γ-field corresponding to the quasi boundary triple from
Theorem 4.2 is the Poisson operator for the Neumann problem associated
with L. This is summarized in the following proposition, whose proof is clear
from the definitions of γ(λ) and M(λ).

Proposition 4.3. Let domT be as in Definition 4.1. For ϕ ∈ H1/2(∂Ω) and
λ ∈ ρ(AN) denote the unique solution of

Lh = λh,
∂h

∂νL

∣∣∣
∂Ω

= ϕ
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in domT by fλ(ϕ). Then the γ-field γ and Weyl function M associated with
the quasi boundary triple {L2(∂Ω),Γ0,Γ1} in Theorem 4.2 are given by

γ(λ) : H1/2(∂Ω)→ L2(Ω), ϕ 7→ fλ(ϕ) ∈ ker(T − λ),

M(λ) : H1/2(∂Ω)→ H3/2(∂Ω), ϕ 7→ fλ(ϕ)
∣∣
∂Ω
.

It is known from [50, 63] that M(λ) can be extended to a bounded
operator acting between various Sobolev spaces. For the convenience of the
reader we give a short proof based on a duality and interpolation argument.

Lemma 4.4. Let s ∈
[
− 3

2 ,
1
2

]
and λ ∈ ρ(AN). Then M(λ) can be extended to

a bounded operator from Hs(∂Ω) to Hs+1(∂Ω). Moreover, the closure M(λ)

in L2(∂Ω) is a compact operator in L2(∂Ω) with ran(M(λ)) ⊂ H1(∂Ω).

Proof. Denote by 〈 ·, ·〉t the dual pairing of Ht(∂Ω) and H−t(∂Ω) for t ≥ 0,
i.e. 〈x, y〉t is defined for x ∈ Ht(∂Ω) and y ∈ H−t(∂Ω), 〈 ·, ·〉t is linear in the
first and semi-linear in the second component and satisfies

〈x, y〉t = (x, y) for x ∈ Ht(∂Ω), y ∈ L2(∂Ω), (4.8)

where ( ·, ·) denotes the inner product in L2(∂Ω).
In the following, let λ ∈ ρ(AN). Proposition 3.3 (v) implies that M(λ)

is closable in L2(∂Ω) and Proposition 3.3 (iii) shows that it maps H1/2(∂Ω)
into H3/2(∂Ω). Therefore M(λ) is closed and hence bounded from H1/2(∂Ω)
to H3/2(∂Ω).

The Banach space adjoint (M(λ))′ of M(λ) is a bounded operator from
H−3/2(∂Ω) to H−1/2(∂Ω), where (M(λ))′ is defined by〈
x, (M(λ))′y

〉
1/2

=
〈
M(λ)x, y

〉
3/2
, x ∈ H1/2(∂Ω), y ∈ H−3/2(∂Ω). (4.9)

Proposition 3.3 (v) yields that (M(λ)x, y) = (x,M(λ)y) for x, y ∈ H1/2(∂Ω).
Combining this relation with (4.8) and (4.9) we obtain, for x, y ∈ H1/2(∂Ω),
that 〈

x,M(λ)y
〉

1/2
=
(
x,M(λ)y

)
=
(
M(λ)x, y

)
=
〈
M(λ)x, y

〉
3/2

=
〈
x, (M(λ))′y

〉
1/2
.

This implies that M(λ)y = (M(λ))′y for y ∈ H1/2(∂Ω). Hence the bounded
operator (M(λ))′ : H−3/2(∂Ω)→ H−1/2(∂Ω) is an extension of the mapping
M(λ) : H1/2(∂Ω)→ H3/2(∂Ω). Now interpolation (see, e.g. [50, Theorems 5.1
and 7.7]) implies that

(M(λ))′
∣∣
Hs(∂Ω)

: Hs(∂Ω)→ Hs+1(∂Ω) (4.10)

is bounded for s ∈
[
− 3

2 ,
1
2

]
.

Since M(λ) = (M(λ))′|L2(∂Ω), we can deduce from (4.10) that M(λ)

is bounded from L2(∂Ω) to H1(∂Ω). Together with the compactness of the
embedding of H1(∂Ω) into L2(∂Ω) (see, e.g. [65, Theorem 7.10]) this shows

that M(λ) is a compact operator in L2(∂Ω). �
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In [10] and [12] quasi boundary triples for elliptic operators were also
studied in the framework of the Beals space D1(Ω) when Ω is bounded with
a smooth boundary. In this setting sufficient conditions on the parameter Θ
in L2(∂Ω) that ensure self-adjointness of the corresponding elliptic operator

AΘ = L �
{
f ∈ D1(Ω): Γf̂ ∈ Θ

}
were obtained in [10, Theorem 4.8]. The next result gives a sufficient condition
on Θ in the H2-framework, which also covers a large class of Robin type
boundary conditions; cf. Corollary 4.6 below. We note that Ω is allowed to
be unbounded but ∂Ω is assumed to be compact and smooth.

Theorem 4.5. Let {L2(∂Ω),Γ0,Γ1} be the quasi boundary triple from Theo-
rem 4.2 and Γ = (Γ0,Γ1)>. Let Θ be a self-adjoint relation in L2(∂Ω) such
that 0 /∈ σess(Θ) and

Θ−1
(
H1(∂Ω)

)
⊂ H1/2(∂Ω).

Then the realization AΘ = L � {f ∈ domT : Γf̂ ∈ Θ} is self-adjoint in
L2(Ω). In particular, if B is a bounded operator in L2(∂Ω) with B(H1(∂Ω)) ⊂
H1/2(∂Ω), then the realization

AB−1f = Lf, domAB−1 =

{
f ∈ domT : B

(
f |∂Ω

)
=

∂f

∂νL

∣∣∣
∂Ω

}
,

is a self-adjoint operator in L2(Ω).

Proof. We can apply Theorem 3.11 and Remark 3.12 since ranM(λ) ⊂
H1(∂Ω) for all λ ∈ ρ(AN) by Lemma 4.4. �

The next corollary is an immediate consequence of Theorem 4.5. In
includes, in particular, classical Robin boundary conditions.

Corollary 4.6. Let β ∈ C1(∂Ω) be a real-valued function on ∂Ω and k ∈
C1(∂Ω× ∂Ω) a symmetric kernel on ∂Ω, i.e. k(x, y) = k(y, x) for x, y ∈ ∂Ω.
Then the realization

AB−1f = Lf, domAB−1 =

{
f ∈ domT : B

(
f |∂Ω) =

∂f

∂νL

∣∣∣
∂Ω

}
,

where

(Bϕ)(x) = βϕ(x) +

∫
∂Ω

k(x, y)ϕ(y)dy, ϕ ∈ L2(∂Ω),

is a self-adjoint operator in L2(Ω).

Before we continue to investigate resolvent differences of self-adjoint
realizations of L, we need the following general lemma on the singular values
of operators mapping into Sobolev spaces; see also [12] for a special case.
The proof is essentially an application of results on the asymptotic behaviour
of eigenvalues of the Laplace–Beltrami operator on compact manifolds; for
similar ideas see the proof of [3, Proposition 5.4.1].
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Lemma 4.7. Let Σ be an (n−1)-dimensional compact manifold without bound-
ary, let K be a Hilbert space and B ∈ B(K, Hr1(Σ)) with ranB ⊂ Hr2(Σ)
where r2 > r1 ≥ 0. Then B is compact and its singular values sk satisfy

sk(B) = O
(
k−

r2−r1
n−1

)
, k →∞,

i.e. B ∈ S n−1
r2−r1

,∞(K, Hr1(Σ)) and, in particular, B ∈ Sp(K, Hr1(Σ)) for

p > n−1
r2−r1 .

Proof. Let Λr1,r2 := (I−∆Σ
LB)

r2−r1
2 , where ∆Σ

LB is the Laplace–Beltrami op-
erator on Σ. The operator Λr1,r2 is an isometric isomorphism from Hr2(Σ)
onto Hr1(Σ). From [3, (5.39) and the text below] we obtain, for the asymp-

totics of the eigenvalues, λk(I −∆Σ
LB) ∼ Ck

2
n−1 with some constant C. This

implies

sk(Λ−1
r1,r2) = O

(
k−

r2−r1
n−1

)
, k →∞.

We can write B in the form

B = Λ−1
r1,r2(Λr1,r2B). (4.11)

The operator B is closed as an operator from K into Hr1(Σ), hence also
closed as an operator from K into Hr2(Σ), which implies that it is bounded
from K into Hr2(Σ). Therefore the operator Λr1,r2B is bounded from K into
Hr1(Σ), and hence the assertions follow from (4.11). �

The next result is essentially a consequence of the previous lemma,
Lemma 4.4 and general properties of the γ-field and the Weyl function estab-
lished in Section 3.1. In a slightly different setup items (i) and (iv) appeared
in [14, Proposition 3.3]; however, for the convenience of the reader, we give
the short proofs of all items.

Proposition 4.8. Let {L2(∂Ω),Γ0,Γ1} be the quasi boundary triple from The-
orem 4.2. Then, for λ ∈ ρ(AN), the associated γ-field γ, the Weyl function

M and the closures M(λ), ImM(λ) satisfy

(i) γ(λ)∗ ∈ S 2(n−1)
3 ,∞

(
L2(Ω), L2(∂Ω)

)
;

(ii) M(λ) ∈ Sn−1,∞
(
H1/2(∂Ω)

)
;

(iii) ImM(λ) ∈ Sn−1
3 ,∞(L2(∂Ω));

(iv) M(λ) ∈ Sn−1,∞(L2(∂Ω)).

Proof. Assertion (i) follows from Lemma 4.7 with r1 = 0 and r2 = 3
2 since

γ(λ)∗ is a bounded operator from K = L2(Ω) to L2(∂Ω) with ran Γ1 ⊂
H3/2(∂Ω) by Proposition 3.3 (ii).

(ii) By Lemma 4.4, the operator M(λ), λ ∈ ρ(AN), is bounded as an
operator in H1/2(∂Ω). Hence Lemma 4.7 applied with K = H1/2(∂Ω), r1 = 1

2

and r2 = 3
2 yields the assertion.

(iii) From Proposition 3.3 (v) we obtain the relation

ImM(λ) = (Imλ) γ(λ)∗γ(λ).
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It follows from (i) and Lemma 2.3 (iii) that the right-hand side is contained
in S 2(n−1)

3 ,∞ ·S 2(n−1)
3 ,∞ = Sn−1

3 ,∞.

(iv) The statement follows from Lemmas 4.4 and 4.7 with K = L2(∂Ω),
r1 = 0 and r2 = 1. �

Remark 4.9. It is not difficult to check that {L2(∂Ω),Γ1,−Γ0} is also a quasi

boundary triple for the operator A∗. The corresponding Weyl function M̂ is
— up to a minus sign — the Dirichlet-to-Neumann map from H3/2(∂Ω) to

H1/2(∂Ω), i.e. for λ ∈ ρ(AD) the operator M̂(λ) maps the Dirichlet boundary
value fλ(ϕ)|∂Ω of the solution fλ(ϕ) ∈ domT of Lh = λh, h|∂Ω = ϕ, onto

the (minus) Neumann boundary value −∂fλ(ϕ)
∂νL

|∂Ω. One of the main reasons

that we do not use the quasi boundary triple {L2(∂Ω),Γ1,−Γ0} here is that

the values of the corresponding Weyl function M̂ are unbounded operators in
L2(∂Ω).

4.2. Spectral estimates for resolvent differences of self-adjoint elliptic oper-
ators on bounded and exterior domains

Throughout this section let {L2(∂Ω),Γ0,Γ1} be the quasi boundary triple
from Theorem 4.2 with corresponding γ-field and Weyl function from Propo-
sition 4.3. If Ω is unbounded, let Ω′ be as in Definition 4.1; if Ω is bounded,
set Ω′ := Ω. For a linear relation Θ in L2(∂Ω) the corresponding realization
AΘ of L is given by

AΘf = Lf,

domAΘ =

f ∈ H1(Ω): Lf ∈ L2(Ω), f |Ω′ ∈ H2(Ω′),

 ∂f

∂νL

∣∣∣
∂Ω

f |∂Ω

 ∈ Θ

 ;

cf. (3.2), (3.3) and Theorem 4.2. A sufficient condition for the self-adjointness
of AΘ was given in Theorem 4.5. In the following, we apply the general results
from Section 3.3 to resolvent differences of self-adjoint realizations of the
elliptic differential expression L in L2(Ω). The statements in the next three
theorems are consequences of Proposition 4.8 and Theorems 3.13, 3.19 and
3.20, respectively. Similar results were proved in [11, Theorem 6.27] and [14,
Corollary 3.9 (i)]. In the case of classical Robin boundary conditions with a
coefficient that satisfies certain smoothness assumptions the asymptotics of
the singular values was determined in [40, 41, 43].

Theorem 4.10. Let AN be the Neumann operator associated with L and let
Θ be a self-adjoint relation in L2(∂Ω) such that 0 /∈ σess(Θ) and AΘ is a
self-adjoint operator. Then, for all λ ∈ ρ(AΘ)∩ρ(AN), the singular values sk
of the resolvent difference

(AΘ − λ)−1 − (AN − λ)−1 (4.12)

satisfy sk = O
(
k−

3
n−1
)
, k →∞, and the expression in (4.12) is in Sp(L

2(Ω))

for all p > n−1
3 .
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Proof. By Proposition 4.8 (i) we have γ(λ)∗ ∈ S 2(n−1)
3 ,∞(L2(Ω), L2(∂Ω)).

Hence we can apply Theorem 3.13, which yields that the resolvent difference
in (4.12) belongs to

S 2(n−1)
3 ,∞ ·S 2(n−1)

3 ,∞ = Sn−1
3 ,∞ ⊂ Sp, p >

n− 1

3
,

where we used Lemma 2.3 (iii) and (ii). �

As an immediate consequence of Theorem 4.10 we obtain that the es-
sential spectra of AΘ and AN coincide, σess(AΘ) = σess(AN). In the case of
a bounded domain these sets are empty, in the unbounded case the follow-
ing proposition shows how close eigenvalues of AΘ have to be to eigenvalues
of AN.

Proposition 4.11. Let Ω be unbounded, let AN be the Neumann operator
associated with L and let Θ be a self-adjoint relation in L2(∂Ω) such that
0 /∈ σess(Θ) and AΘ is a self-adjoint operator. If λk, k = 1, 2, . . . , are iso-
lated eigenvalues of AΘ converging to some γ ∈ R, then there exist numbers
µk, k = 1, 2, . . . , which are isolated eigenvalues of AN or equal to γ (where
the number γ may appear arbitrarily many times but an eigenvalue only up
to its multiplicity) such that

∞∑
k=1

|λk − µk|p <∞ for all p >
n− 1

3
, p ≥ 1. (4.13)

Proof. The spectrum of AN is bounded from below, which follows from (4.3)
and the ellipticity of L. Hence also the essential spectrum of AΘ is bounded
from below, and we can choose a number λ ∈ R∩ ρ(AN)∩ ρ(AΘ). Because of
Theorem 4.10 we can apply [44, Theorem II] to the operators (AN−λ)−1 and
(AΘ − λ)−1, which yields that there exist extended enumerations (αk) and
(βk) of the isolated eigenvalues of (AN − λ)−1 and (AΘ − λ)−1, respectively,
such that

∞∑
k=1

|βk − αk|p ≤
∥∥(AΘ − λ)−1 − (AN − λ)−1

∥∥p
Sp(L2(Ω))

(4.14)

for p > (n−1)/3, p ≥ 1; by “extended enumeration” a sequence is meant that
contains all isolated eigenvalues of an operator according to their multiplic-
ities plus endpoints of the essential spectrum taken arbitrarily many times.
There exist indices jk such that 1

λk−λ = βjk . The corresponding values αjk
can be written as αjk = 1

µk−λ , where the µk are either isolated eigenvalues of

AN or endpoints of the essential spectrum. Now the estimate (4.14) implies
that

∞∑
k=1

∣∣∣∣ 1

λk − λ
− 1

µk − λ

∣∣∣∣p <∞.
Since λk → γ, we must have µk → γ. Writing the difference of fractions as a
single fraction and observing that the denominators converge to γ − λ 6= 0,
we can deduce the validity of (4.13). �
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If n = 2 or n = 3, then a trace formula is valid, which is stated in
the next corollary and follows directly from Corollary 3.16. Under different
assumptions trace formulae for resolvent power differences were shown in [14,
Corollary 3.9].

Corollary 4.12. Let the assumptions be as in Theorem 4.10 and assume, in
addition, that n = 2 or n = 3. Then the resolvent difference in (4.12) is a
trace class operator and

tr
(
(AΘ − λ)−1 − (AN − λ)−1

)
= tr

(
M ′(λ)

(
Θ−M(λ)

)−1)
holds for all λ ∈ ρ(AΘ) ∩ ρ(AN).

In the case n = 2 or n = 3 in the above corollary the wave operators of
the pair {AN, AΘ} exist and are complete (see, e.g. [45, Theorem X.4.12]) and
hence the absolutely continuous parts of AN and AΘ are unitarily equivalent
and the absolutely continuous spectra of AN and AΘ coincide.

The statement in the next theorem is a well known result from [16], but
follows also easily from Theorem 3.19.

Theorem 4.13. Let AN and AD be the Neumann and Dirichlet operator as-
sociated with L. Then, for all λ ∈ ρ(AD) ∩ ρ(AN), the singular values sk of
the resolvent difference

(AD − λ)−1 − (AN − λ)−1 (4.15)

satisfy sk = O
(
k−

2
n−1
)
, k →∞, and the expression in (4.15) is in Sp(L

2(Ω))

for all p > n−1
2 .

Proof. Lemma 4.7 with K = H1/2(∂Ω), r1 = 0 and r2 = 1
2 implies that

the embedding operator from H1/2(∂Ω) into L2(∂Ω) belongs to the ideal

S2(n−1),∞
(
H1/2(∂Ω), L2(∂Ω)

)
. Now Theorem 3.19 with G0 = G̃0 = H1/2(∂Ω)

yields that (4.15) is in S 2(n−1)
3 ,∞ ·S2(n−1),∞ = Sn−1

2 ,∞, that is, the singular

values of (4.15) satisfy sk = O(k−
2

n−1 ). Lemma 2.3 (ii) immediately gives the
second statement. �

By taking differences of resolvent differences, the statements in the next
corollary follow directly from Theorems 4.10 and 4.13.

Corollary 4.14. Let Θ1 and Θ2 be self-adjoint relations in L2(∂Ω) such that
0 /∈ σess(Θi) and the realizations AΘi , i = 1, 2, of L are self-adjoint operators.
Then

(AΘ1
− λ)−1 − (AΘ2

− λ)−1 ∈ Sn−1
3 ,∞(L2(Ω)),

for all λ ∈ ρ(AΘ1
) ∩ ρ(AΘ2

) and

(AΘ1
− λ)−1 − (AD − λ)−1 ∈ Sn−1

2 ,∞(L2(Ω)),

for all λ ∈ ρ(AΘ1
) ∩ ρ(AD).

If the difference Θ1 − Θ2 is itself in some ideal Sq or Sq,∞, we obtain
an improvement of the first assertion in the previous corollary. For a similar
result in a slightly different setting; cf. [14, Theorem 3.7].
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Theorem 4.15. Let Θ1 and Θ2 be bounded self-adjoint operators in L2(∂Ω)
such that 0 /∈ σess(Θi) and the realizations AΘi , i = 1, 2, of L from (4.1)
are self-adjoint operators. Moreover, assume that sk(Θ1 − Θ2) = O(k−1/q),
k → ∞, for some q > 0. Then, for all λ ∈ ρ(AΘ1

) ∩ ρ(AΘ2
), the singular

values sk of the resolvent difference

(AΘ1
− λ)−1 − (AΘ2

− λ)−1 (4.16)

satisfy sk = O
(
k−

3
n−1−

1
q
)
, k → ∞, and hence the expression in (4.16) is in

Sp(L
2(Ω)) for all

p >
q(n− 1)

3q + n− 1
.

Proof. For Θ1 − Θ2 ∈ Sq,∞ we conclude from Theorem 3.20 and Proposi-
tion 4.8 that the difference of the resolvents in (4.16) is in

S 2(n−1)
3 ,∞ ·Sq,∞ ·S 2(n−1)

3 ,∞ = S( 3
n−1 + 1

q )−1,∞ = S q(n−1)
3q+n−1 ,∞

.

�

4.3. Elliptic operators with δ-interactions on smooth hypersurfaces

In this section we investigate second order elliptic operators with δ-interac-
tions. Spectral problems for Schrödinger operators with point δ-interactions,
as well as δ-interactions on curves and surfaces have been studied extensively
during the last decades; see, e.g. [5, 18, 29, 30, 31, 32] and [13], where the same
approach as below was used. In order to define self-adjoint elliptic operators
in L2(Rn) with δ-interactions on a smooth compact hypersurface Σ in Rn we
first construct a suitable quasi boundary triple in Proposition 4.16. One of
the main results in this section is Theorem 4.18, where we obtain spectral
estimates for the resolvent differences of the operator with a δ-interaction on
the hypersurface Σ and the unperturbed self-adjoint realization in L2(Rn).

In the following let Ωi ⊂ Rn be a bounded domain with compact
C∞-boundary and let Ωe := Rn\Ωi, so that ∂Ωi = ∂Ωe =: Σ and Rn =
Ωi ∪̇Σ ∪̇Ωe, and assume that both Ωi and Ωe are connected. The set Ωi is
called interior domain and Ωe exterior domain. A function f defined on Rn
will often be decomposed in the form fi ⊕ fe, where fi and fe denote the
restrictions of f to the interior and exterior domain, respectively. Let L be
a formally symmetric, uniformly elliptic differential expression as in (4.1) on
the Euclidean space Rn. The (usual) self-adjoint realization of L in L2(Rn)
is the operator Afree given by

Afreef = Lf, domAfree =
{
f ∈ H1(Rn) : Lf ∈ L2(Rn)

}
. (4.17)

Observe that Afree is the unique self-adjoint operator associated with the
quadratic form corresponding to L on H1(Rn); cf. [45] and (4.4). The restric-
tions of L to the interior domain Ωi and exterior domain Ωe are denoted by
Li and Le, respectively. Clearly, Li and Le are formally symmetric, uniformly
elliptic differential expressions as considered in Sections 4.1 and 4.2. Like in
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Definition 4.1 we introduce the operators Ti and Te by

Tifi = Lifi, domTi = H2(Ωi),

Tefe = Lefe, domTe =
{
fe ∈ H1(Ωe) : Lefe ∈ L2(Ωe), fe|Ω′ ∈ H2(Ω′)

}
,

where Ω′ ⊂ Ωe is a bounded subdomain of Ωe with smooth boundary such
that Σ = ∂Ωe ⊂ ∂Ω′. The Dirichlet operators on the interior and exterior
domain are defined as in Section 4.1 by

AD,ifi = Lifi, domAD,i =
{
fi ∈ domTi : fi|Σ = 0

}
,

AD,efe = Lefe, domAD,e =
{
fe ∈ domTe : fe|Σ = 0

}
.

Since AD,i and AD,e are self-adjoint operators, also the orthogonal sum AD,i⊕
AD,e is a self-adjoint operator in L2(Rn) = L2(Ωi)⊕L2(Ωe) and a restriction
of the operator Ti⊕Te. Note that the functions in the domain of AD,i⊕AD,e

do not necessarily belong to H2 in a neighbourhood of Σ; in general, they
belong only to H2 in one-sided neighbourhoods of Σ. In order to treat δ-
interactions with quasi boundary triple techniques, we introduce the closed
densely defined symmetric operator

A := Afree ∩
(
Ai

D ⊕Ae
D

)
(4.18)

in L2(Rn) and the restriction T of Ti ⊕ Te:

Tf = Lf, domT =
{
fi ⊕ fe ∈ dom(Ti ⊕ Te) : fi|Σ = fe|Σ

}
. (4.19)

In the next proposition a quasi boundary triple is introduced, which is used
to construct operators connected with δ-interactions. The proof is not com-
plicated and uses [10, Theorem 2.3] and is hence omitted. For the case of
Schrödinger operators in an H3/2-setting rather than an H2-setting, see [13,
Proposition 3.2 (i)].

Proposition 4.16. Let A be the closed densely defined symmetric operators in
(4.18) and let T be as in (4.19). Then the triple {L2(Σ),Γ0,Γ1}, where

Γ0f̂ =
∂fi

∂νLi

∣∣∣
Σ

+
∂fe

∂νLe

∣∣∣
Σ

and Γ1f̂ = f |Σ, f̂ =

(
f
Tf

)
, f ∈ domT,

is a quasi boundary triple for A∗ such that

ker Γ0 = Afree and ker Γ1 = AD,i ⊕AD,e.

With the help of the quasi boundary triples from the previous proposition
and the operators A and T we define a self-adjoint differential operator Aδ,α
associated with L and δ-interaction with strength α on Σ. We remark that
the operator Aδ,α with a δ-interaction could equivalently be defined with the
help of the quadratic form (for the latter see, e.g. [18] or [29]; for the equiv-
alence in the case of a Schrödinger operator see [13, Proposition 3.7]). The
statement in the next theorem is essentially a consequence of Theorem 3.11.
We remark that in the quasi boundary triple framework also functions α with
less smoothness could be allowed.
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Theorem 4.17. Let α ∈ C1(Σ) be real-valued. Then

Aδ,α := L �
{
f̂ ∈ T : αΓ1f̂ = Γ0f̂

}
is a self-adjoint operator in L2(Rn).

Before proving the theorem we note that the condition αΓ1f̂ = Γ0f̂ ,

f̂ =
( f
Tf

)
, has the explicit form

αf |Σ =
∂fi

∂νLi

∣∣∣
Σ

+
∂fe

∂νLe

∣∣∣
Σ
, fi|Σ = fe|Σ, f = fi ⊕ fe ∈ domTi ⊕ Te,

and hence one can interpret the operator Aδ,α as an elliptic operator with
δ-interaction of strength α.

Proof of Theorem 4.17. The quasi boundary triple {L2(Σ),Γ0,Γ1} in Propo-
sition 4.16 satisfies

ran Γ0 = H1/2(Σ) and ran Γ1 = H3/2(Σ),

so that for λ ∈ ρ(AD,i ⊕ AD,e) ∩ ρ(Afree) the corresponding Weyl function

M(λ) maps H1/2(Σ) onto H3/2(Σ). By the same argument as in Lemma 4.4
the closure of M(λ) maps L2(Σ) into H1(Σ), and it follows that this is a
compact operator in L2(Σ). Since αh ∈ H1/2(Σ) for all h ∈ H1(Σ), it follows
from Theorem 3.11 with Θ = 1/α that Aδ,α is self-adjoint. �

Now let γ be the γ-field associated with the quasi boundary triple
{L2(Σ),Γ0,Γ1} from Proposition 4.16. The same reasoning as in the proof of
Proposition 4.8 (i) yields the relation

γ(λ)∗ ∈ S 2(n−1)
3 ,∞

(
L2(Rn), L2(Σ)

)
, λ ∈ ρ(Afree). (4.20)

The next theorem is the main result in this subsection. We compare
the resolvents of the self-adjoint operator Aδ,α and the unperturbed operator

Afree. For Schrödinger operators in an H3/2-setting; cf. [13, Theorem 4.3].

Theorem 4.18. Let α ∈ C1(Σ) be real-valued. Further, let Afree be the self-
adjoint elliptic operator associated with L in (4.17) and let Aδ,α be the self-
adjoint operator from Theorem 4.17. For all λ ∈ ρ(Aδ,α) ∩ ρ(Afree), the sin-
gular values sk of the resolvent difference

(Aδ,α − λ)−1 − (Afree − λ)−1 (4.21)

satisfy sk = O(k−
3

n−1 ), k →∞, and the expression in (4.21) is in Sp(L
2(Rn))

for all p > n−1
3 .

Proof. It follows from Theorem 4.17 that the self-adjoint operator Aδ,α cor-
responds to the self-adjoint linear relation

Θ =

{(
αh

h

)
: h ∈ L2(Σ)

}
via the quasi boundary triple {L2(Σ),Γ0,Γ1}, i.e.

Aδ,α =

{
f̂ ∈ T :

(
Γ0f̂

Γ1f̂

)
∈ Θ

}
.
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In order to apply Theorem 3.13, we note that the closures of the values of the
Weyl function M(λ), λ ∈ ρ(Afree), associated with {L2(Σ),Γ0,Γ1} are com-
pact operators in L2(Σ), cf. Lemma 4.4. Since α is assumed to be in C1(Σ),
it follows that Θ−1 is an everywhere defined bounded operator in L2(Σ); in
particular, 0 /∈ σess(Θ). Therefore we can apply Theorem 3.13. Together with
(4.20) we conclude that the resolvent difference in (4.21) belongs to

S 2(n−1)
3 ,∞ ·S 2(n−1)

3 ,∞ = Sn−1
3 ,∞.

This shows the statement on the singular values. By Lemma 2.3 (ii) the re-
solvent difference (4.21) belongs to the classes Sp(L

2(Rn)), p > n−1
3 . �
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