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Abstract. Let A and B be selfadjoint operators in a Krein space. Assume that the resolvent
difference of A and B is of rank one and that the spectrum of A consists in some interval
I ⊂ R of isolated eigenvalues only. In the case that A is an operator with finitely many
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1. INTRODUCTION

Let A and B be bounded or unbounded selfadjoint operators in a Krein space (K, [·, ·])
such that ρ(A) ∩ ρ(B) 6= ∅ and assume that the resolvent difference of A and B
is a rank one operator,

dim
(
ran

(
(A− λ0)−1 − (B − λ0)−1)) = 1

for some, and hence for all, λ0 ∈ ρ(A) ∩ ρ(B). The main objective of this note is to
provide sharp bounds on the number of distinct isolated eigenvalues of B in an open
interval I ⊂ R in terms of the number of distinct isolated eigenvalues of A in I. In
our considerations also eigenvalues of infinite geometric or algebraic multiplicity are
allowed and hence multiplicities are not counted.

It is necessary to impose additional assumptions on the operators A and B in
order to obtain meaningful bounds and estimates in the Krein space setting. In
particular, in general it may happen that an open interval I ⊂ R is contained in ρ(A)
but the set σp(B) ∩ I is infinite, or I may even be in the interior of σ(B), see, e.g.,
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[25, §5, Remark 2]. In the recent work [3] the special case of a selfadjoint operator A
which is nonnegative with respect to the indefinite inner product [·, ·] was considered;
we refer the reader there for more details and further references.

In the present paper we go beyond the nonnegative case and consider a selfadjoint
operator A with finitely many negative squares κA, that is, the form [A·, ·] has negative
values on a κA-dimensional subspace of dom A, but there is no κA + 1-dimensional
subspace with this property. We then employ typical techniques from perturbation
theory to study interlacing properties of eigenvalues of A and B in a gap of the essential
spectrum. Of particular interest are those eigenvalues of A and B which may destroy
natural interlacing, and it is essential for our estimates that these special eigenvalues
can be controlled in terms of a local quantity related to the number of negative squares
of A and B, respectively. In summary this analysis leads to upper and lower bounds
on the number of distinct eigenvalues of B in a gap of the essential spectrum of A in
our first main result Theorem 3.1. It is remarkable that all these bounds are sharp;
this is our second main result formulated as Theorem 4.1.

Finally, in the last section, the abstract results are illustrated for a typical
Sturm-Liouville eigenvalue problem with an indefinite weight function which gives rise
to a selfadjoint operator with finitely many negative squares in a weighted L2-Krein
space.

2. OPERATORS WITH FINITELY MANY NEGATIVE SQUARES
AND RANK ONE PERTURBATIONS

A complex linear space K with a nondegenerate hermitian sesquilinear form [·, ·] is
called a Krein space if there exists a decomposition

K = K++̇ K−

such that the subspaces (K±,±[·, ·]) are Hilbert spaces and orthogonal to each other
with respect to [·, ·]. An element x in the Krein space (K, [·, ·]) is positive (negative,
neutral ) if [x, x] > 0 ([x, x] < 0, [x, x] = 0, respectively). For further information on
Krein spaces we refer to the monographs [1] and [11].

For a densely defined linear operator A in the Krein space (K, [·, ·]) the adjoint with
respect to the indefinite inner product [·, ·] is denoted by A+. The operator A is called
selfadjoint if A = A+ and symmetric if A ⊂ A+. We denote the point spectrum by
σp(A), the spectrum by σ(A) and the resolvent set by ρ(A). The root subspace Lλ(A)
of A at λ is the collection of all Jordan chains, Lλ(A) :=

{
x ∈ ker (A− λ)j : j ∈ N

}
.

A real isolated eigenvalue λ of A is called of positive (negative) type if all its correspond-
ing eigenvectors are positive (negative, respectively). In this case we write λ ∈ σ++(A)
(λ ∈ σ−−(A), respectively). An isolated eigenvalue λ of A which is not of positive
neither of negative type is called a critical point of A and we write λ ∈ c(A). Observe
that for an isolated eigenvalue of positive or negative type there is no Jordan chain of
length greater than one, that is, Lλ(A) = ker (A− λ).
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A selfadjoint operator A in the Krein space (K, [·, ·]) with ρ(A) 6= ∅ has κA negative
squares if for some κA ∈ N0 the hermitian form 〈·, ·〉 on dom A, defined by

〈f, g〉 := [Af, g], f, g ∈ dom A,

has κA negative squares, that is, there exists a κA-dimensional subspaceM in dom A
such that 〈v, v〉 < 0 if v ∈M, v 6= 0, but there exists no κA + 1 dimensional subspace
with this property. Selfadjoint operators with finitely many negative squares belong
to the class of definitizable operators introduced and comprehensively studied by
H. Langer in [23, 24]. We recall some well-known spectral properties of operators with
finitely many negative squares. The statements in Theorem 2.1 below can be found in
[23,24], see also [6, Theorem 3.1].
Theorem 2.1. Let A be a selfadjoint operator in the Krein space (K, [·, ·]) and assume
that A has κA negative squares. Then the nonreal spectrum of A consists of at most
κA pairs {µi, µ̄i}, Imµi > 0, of eigenvalues with finite-dimensional root subspaces. If
λ ∈ σp(A) and {κ−(λ), κ0(λ), κ+(λ)} denotes the signature of the root subspace Lλ(A)
then

∑

λ∈σp(A)∩(0,∞)

(
κ−(λ) + κ0(λ)

)
+

∑

λ∈σp(A)∩(−∞,0)

(
κ+(λ) + κ0(λ)

)
+
∑

i

κ0(µi) ≤ κA

and if 0 6∈ σp(A) then equality holds. Moreover, there are at most κA different real
nonzero eigenvalues of A with corresponding Jordan chains of length greater than one.

Let A and B be selfadjoint operators in the Krein space (K, [·, ·]), let ρ(A)∩ρ(B) 6= ∅
and assume that

dim ran
(
(A− λ0)−1 − (B − λ0)−1) = 1 (2.1)

holds for some, and hence for all, λ0 ∈ ρ(A) ∩ ρ(B). It is not difficult to see that if
A and B satisfy (2.1) and A has κA negative squares then it follows that also the
operator B has κB ≥ 0 negative squares, where

|κA − κB | ≤ 1. (2.2)

We recall a well known factorization of the resolvent difference of A and B with
the help of scalar functions which can be viewed as Weyl functions or Q-functions
corresponding to A and B, respectively; cf. [14, 26]. Proposition 2.2 below is taken
from [3], where its proof was omitted. For the convenience of the reader a short proof
of the resolvent formula with the help of boundary triples and their γ-fields and Weyl
functions (see [13–15]) is given.
Proposition 2.2. Let A and B be selfadjoint operators in the Krein space (K, [·, ·])
which satisfy (2.1). Then there exist holomorphic functions MA : ρ(A) → C,
MB : ρ(B)→ C symmetric with respect to the real line and vectors ϕA, ϕB in K
such that the following holds.
(i) For γA(λ) := (1 + (λ− λ0)(A− λ)−1)ϕA, λ ∈ ρ(A), we have

MA(λ)−MA(ω) = (λ− ω)[γA(λ), γA(ω)], λ, ω ∈ ρ(A).
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(ii) For γB(λ) := (1 + (λ− λ0)(B − λ)−1)ϕB, λ ∈ ρ(B), we have

MB(λ)−MB(ω) = (λ− ω)[γB(λ), γB(ω)], λ, ω ∈ ρ(B).

(iii) For λ ∈ ρ(A) ∩ ρ(B) we have MB(λ) = − 1
MA(λ) and

(A− λ)−1 − (B − λ)−1 = 1
MA(λ) [·, γA(λ)]γA(λ) = − 1

MB(λ) [·, γB(λ)]γB(λ).

Proof. Consider S = A∩B, which is a (possibly nondensely defined) closed symmetric
operator in (K, [·, ·]) of defect one. As in [4, Corollary 2.5] it follows that there exists
a boundary triple {C,Γ0,Γ1} for the adjoint S+ such that A = S+ � ker Γ0 and
B = S+ � ker Γ1. Let γ and M be the corresponding γ-field and Weyl function and
define ϕA := γ(λ0). It follows from the property γ(λ) = (1 + (λ− λ0)(A− λ)−1)γ(λ0),
λ ∈ ρ(A), that γA = γ holds. Moreover, MA := M satisfies the formula in (i). Observe
that {C,Γ1,−Γ0} is also a boundary triple for S+. Let γ̃ and M̃ be the corresponding
γ-field and Weyl function and define ϕB := γ̃(λ0). As above it follows that γB = γ̃

and MB := M̃ satisfies the formula in (ii). It follows from the definition of the Weyl
function corresponding to a boundary triple that M̃(λ) = −M(λ)−1, and hence
MB(λ) = −MA(λ)−1, λ ∈ ρ(A) ∩ ρ(B), as stated in (iii). The formula in (iii) is
a special case of [13, Theorem 2.1] (see also [15, Theorem 3.1]).

From now on we will suppose that the following assumption is satisfied.
Assumption (I). Let A and B be selfadjoint operators in the Krein space (K, [·, ·])
such that condition (2.1) on the resolvent difference of A and B holds for some, and
hence for all, λ0 ∈ ρ(A) ∩ ρ(B). Let I ⊂ R be an open interval and assume that
ρ(B)∩ I 6= ∅ and that σ(A)∩ I consists only of isolated eigenvalues which are poles of
the resolvent of A.

From Assumption (I) and general perturbation results (see e.g. [16, 18]) it follows
that the set σ(B) ∩ I consists only of eigenvalues which may only accumulate to the
eigenvalues of infinite algebraic multiplicity of A or to the boundary of I. Note that
any eigenvalue of A with an infinite dimensional root subspace is also an eigenvalue
of B with an infinite dimensional root subspace. Furthermore, if µ ∈ ρ(A) ∩ I then
either µ ∈ ρ(B) or µ ∈ σp(B) with dim ker (B − µ) = 1.

The next proposition is essentially a consequence of Proposition 2.2. For a proof
we refer the reader to [3, Corollary 2.2 and Lemma 2.4].

Proposition 2.3. Let A, B be as in Assumption (I). Then for all λ ∈ I∩ρ(A) we have

(i) λ ∈ σp(B) if and only if MA(λ) = 0;
(ii) λ ∈ σ++(B) if and only if MA(λ) = 0 and M ′A(λ) > 0;
(iii) λ ∈ σ−−(B) if and only if MA(λ) = 0 and M ′A(λ) < 0.
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Let A and B be as in Assumption (I). According to [3, Lemma 2.5] the following
holds: If µ ∈ I ∩ σ++(A) (µ ∈ I ∩ σ−−(A)) with µ ∈ ρ(B) then the function MA has
a pole at µ of order one with

lim
λ↗µ

MA(λ) = +∞, lim
λ↘µ

MA(λ) = −∞
(

lim
λ↗µ

MA(λ)= −∞, lim
λ↘µ

MA(λ) = +∞, respectively
)
.

This observation immediately leads to the following interlacing property.

Proposition 2.4. Let A, B be as in Assumption (I). Let µ1, µ2 ∈ ρ(B) ∩ I be such
that the interval (µ1, µ2) satisfies (µ1, µ2) ⊂ ρ(A).

(i) If µ1, µ2 ∈ σ++(A) then there exists µ ∈ (µ1, µ2) with µ ∈ σp(B) \ σ−−(B).
(ii) If µ1, µ2 ∈ σ−−(A) then there exists µ ∈ (µ1, µ2) with µ ∈ σp(B) \ σ++(B).

3. EIGENVALUE ESTIMATES

Let A and B be as in Assumption (I) and assume that A has finitely many negative
squares κA. The next theorem provides estimates from below and above on the number
of distinct eigenvalues of B in terms of the number of distinct eigenvalues of A. This
is the first main result of this paper. In order to formulate it, we denote the numbers
of distinct eigenvalues of A and B in I by nA(I) and nB(I), respectively,

nA(I) = ]
{
λ : λ ∈ I ∩ σp(A)

}
and nB(I) = ]

{
λ : λ ∈ I ∩ σp(B)

}
,

and we denote the number of common eigenvalues of A and B in I by nA,B(I),

nA,B(I) = ]
{
λ : λ ∈ I ∩ σp(A) ∩ σp(B)

}
;

here the symbol ] stands for the number of elements in a given set. We emphasize
that the multiplicities of the eigenvalues are not counted here. For a subset ∆ of I
the numbers KA(∆) and KB(∆) are defined as

KA(∆) = ]
{
λ ∈ σp(A) ∩∆ : λ ∈ (R+ \ σ++(A)) ∪ (R− \ σ−−(A))

}
(3.1)

and
KB(∆) = ]

{
λ ∈ σp(B) ∩∆ : λ ∈ (R+ \ σ++(B)) ∪ (R− \ σ−−(B))

}
,

respectively; where R+ = (0,∞) and R− = (−∞, 0). By Theorem 2.1 both numbers
KA(∆) and KB(∆) are finite and satisfy the estimates

KA(∆) ≤ κA and KB(∆) ≤ κB . (3.2)

We are ready to formulate our first main result. We mention that all estimates in
the next theorem will turn out to be sharp, see Theorem 4.1 below.



722 Jussi Behrndt, Roland Möws, and Carsten Trunk

Theorem 3.1. Let A, B be as in Assumption (I) and assume that A has κA negative
squares. Then the following estimates hold.
(i) If nA(I) <∞ and 0 6∈ I then

nA(I)−nA,B(I)−2KA(I∩ρ(B))−1 ≤ nB(I) ≤ nA(I)+nA,B(I)+2KB(I∩ρ(A))+1.

(ii) If nA(I) <∞ and 0 ∈ I then

nB(I) ≥ nA(I)− nA,B(I)− 2KA(I ∩ ρ(B))−





3 if 0 ∈ ρ(B) ∩ c(A),
2 if 0 ∈ ρ(B) \ c(A),
1 if 0 ∈ σ(B),

and

nB(I) ≤ nA(I) + nA,B(I) + 2KB(I ∩ ρ(A)) +





3 if 0 ∈ ρ(A) ∩ c(B),
2 if 0 ∈ ρ(A) \ c(B),
1 if 0 ∈ σ(A).

(iii) We have nA(I) =∞ if and only if nB(I) =∞.
Proof. (i) Let nA(I) <∞ and 0 /∈ I. It is no restriction to assume I ⊂ R+. Denote
by n ≥ 0 the number of points in the open interval I which are in σ(A) ∩ σ(B) or in
σ(A) \ σ++(A). Obviously,

n = nA,B(I) + KA(I ∩ ρ(B)). (3.3)

The open interval I without these n points decomposes into n+ 1 open intervals Ij ,
j = 1, . . . , n+1. Each Ij satisfies Ij∩σ(A) ⊂ σ++(A)∩ρ(B). In view of Proposition 2.4
we have for j = 1, . . . , n+ 1

nA(Ij)− 1 ≤ nB(Ij).

Summing up, we obtain


n+1∑

j=1
nA(Ij)


− n− 1 ≤

n+1∑

j=1
nB(Ij). (3.4)

With (3.4) and with the identity nA(I) = n+
∑n+1
j=1 nA(Ij) we obtain

nB(I) =



n+1∑

j=1
nB(Ij)


+ nA,B(I) ≥



n+1∑

j=1
nA(Ij)


− n− 1 + nA,B(I)

= nA(I)− 2n− 1 + nA,B(I).

Then (3.3) implies the lower estimate in (i). We recall from [5, Theorem 4.3 and
Remark 4.4] that the assumption nA(I) <∞ is equivalent to nB(I) <∞, and hence
by interchanging the roles of A and B, also the upper estimate in (i) is shown.
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(ii) Let nA(I) < ∞ and 0 ∈ I. We show the lower estimate in (ii); the upper
estimate follows by interchanging the roles of A and B. We apply (i) to the intervals
I ∩ R+ and I ∩ R− and obtain

nB(I ∩ R±) ≥ nA(I ∩ R±)− nA,B(I ∩ R±)− 2KA(I ∩ R± ∩ ρ(B))− 1.

By adding the inequality for the interval I∩R− and the inequality for I∩R+ we derive

nB(I \ {0}) ≥ nA(I \ {0})− nA,B(I \ {0})− 2KA ((I \ {0}) ∩ ρ(B))− 2. (3.5)

Obviously, if zero is in ρ(A), then nA(I) = nA(I\{0}). Otherwise nA(I) = nA(I\{0})+1
and the same identities are valid for A replaced by B. Similarly, if zero is in σ(A)∩σ(B),
then nA,B(I) = nA,B(I \ {0}) + 1. Otherwise nA,B(I) = nA,B(I \ {0}). From the
definition of the number KA in (3.1) it follows KA(∆) = KA(∆ \ {0}) for every subset
∆ of I and hence we have with (3.5)

nB(I) ≥ nA(I)− nA,B(I)− 2KA(I ∩ ρ(B))−





3 if 0 ∈ ρ(B) ∩ σ(A),
2 if 0 ∈ ρ(B) ∩ ρ(A),
1 if 0 ∈ σ(B).

(3.6)

In order to show the lower bound in (ii) it remains to consider the case
0 ∈ (ρ(B) ∩ σ(A)) \ c(A) and to show

nB(I) ≥ nA(I)− nA,B(I)− 2KA(I ∩ ρ(B))− 2. (3.7)

For a spectral point λ of A which is in I \ c(A) we have λ ∈ σ++(A)∪ σ−−(A). Hence,
if 0 ∈ (ρ(B) ∩ σ(A)) \ c(A), then

0 ∈ ρ(B) ∩ (σ++(A) ∪ σ−−(A))

and it is sufficient to show (3.7) for 0 ∈ ρ(B) ∩ σ++(A). The case 0 ∈ ρ(B) ∩ σ−−(A)
is treated similarly. Therefore, we assume in the following

0 ∈ ρ(B) ∩ σ++(A). (3.8)

Then there exists ε > 0 such that

[−ε, 0) ⊂ ρ(A) ∩ ρ(B)

and we set

Aε := A+ ε, Bε := B + ε, and Iε := {λ+ ε : λ ∈ I}.

It is not difficult to see that Theorem 2.1 and (3.8) yield that Aε (Bε) is also an
operator with κA (resp. κB) negative squares and that Assumption (I) holds for A and
B replaced by Aε and Bε. Furthermore, the spectrum of Aε in Iε consists of isolated
eigenvalues only. Then (3.6) is also valid for Aε, Bε, Iε and, as 0 ∈ ρ(Aε) ∩ ρ(Bε),
we have

nBε(Iε) ≥ nAε(Iε)− nAε,Bε(Iε)− 2KAε(Iε ∩ ρ(Bε))− 2. (3.9)
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Obviously, we have

nA(I) = nAε(Iε), nB(I) = nBε(Iε), and nA,B(I) = nAε,Bε(Iε). (3.10)

In particular, (3.8) implies

KA(I ∩ ρ(B)) = KAε(Iε ∩ ρ(Bε)) (3.11)

and, therefore, (3.7) follows from (3.9), (3.10), and (3.11).
(iii) is a special case of [5, Theorem 4.3 and Remark 4.4].

In view of (2.2) and (3.2) the operator B has κB ≤ κA + 1 negatives squares and

KA(I ∩ ρ(B)) ≤ KA(I) ≤ κA and KB(I ∩ ρ(A)) ≤ KB(I) ≤ κB ≤ κA + 1.

This implies the following corollary.

Corollary 3.2. If nA(I) <∞ and 0 6∈ I then

nA(I)− nA,B(I)− 2κA − 1 ≤ nB(I) ≤ nA(I) + nA,B(I) + 2κA + 3.

If nA(I) <∞ and 0 ∈ I then

nA(I)− nA,B(I)− 2κA − 3 ≤ nB(I) ≤ nA(I) + nA,B(I) + 2κA + 5.

4. SHARPNESS

In this section we show that all the estimates in Theorem 3.1 are sharp in the following
sense: There exists an interval I and two operators A, B satisfying Assumption (I) for
which we obtain equality in the formulas in (i) and (ii) in Theorem 3.1. In particular,
for given natural numbers k, n which stand for KB(I∩ρ(A)) or KA(I∩ρ(B)) and nA(I),
respectively, and every number p (= nA,B(I)) smaller than n we find for each of the
inequalities in (i) and (ii) of Theorem 3.1 A,B and I such that equality holds. In this
sense, the inequalities in Theorem 3.1 are optimal and the next theorem complements
the estimates in Theorem 3.1. The following proof relies on minimal realizations of
rational generalized Nevanlinna functions in finite dimensional Pontryagin spaces,
and makes use of boundary triple techniques in a similar way as in the proof of
Proposition 2.2. A similar method was used in [3] to show sharpness of related
eigenvalue estimates for nonnegative operators in Krein spaces.

Theorem 4.1. The following assertions (i)–(iv) hold.

(i) Let k, n ∈ N and p ∈ {0, 1, . . . , n}. Then there exists an open interval I ⊂ R+,
a finite dimensional Krein space K and selfadjoint matrices A and B in K which
satisfy Assumption (I) such that

nB(I) = nA(I) + nA,B(I) + 2KB(I ∩ ρ(A)) + 1

holds with nA(I) = n, KB(I ∩ ρ(A)) = k and nA,B(I) = p.
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(ii) Let k, n ∈ N and p ∈ {0, 1, . . . , n} be numbers with n − p − 2k ≥ 1. Then there
exists an open interval I ⊂ R+, a finite dimensional Krein space K and selfadjoint
matrices A and B in K which satisfy Assumption (I) such that

nB(I) = nA(I)− nA,B(I)− 2KA(I ∩ ρ(B))− 1

holds with nA(I) = n, KA(I ∩ ρ(B)) = k and nA,B(I) = p.
(iii) Let k, n ∈ N and p ∈ {0, 1, . . . , n}. Then there exists an open interval I ⊂ R with

0 ∈ I, finite dimensional Krein spaces Kj and selfadjoint matrices Aj, Bj in Kj,
j = 1, 2, 3, which satisfy Assumption (I) such that
(a) 0 ∈ σ(A1) and nB1(I) = nA1(I)+nA1,B1(I)+2KB1(I∩ρ(A1))+1,
(b) 0 ∈ ρ(A2)\c(B2) and nB2(I) = nA2(I)+nA2,B2(I)+2KB2(I∩ρ(A2))+2,
(c) 0 ∈ ρ(A3)∩c(B3) and nB3(I) = nA3(I)+nA3,B3(I)+2KB3(I∩ρ(A3))+3,
holds with nAj (I) = n, KBj (I ∩ ρ(Aj)) = k and nAj ,Bj (I) = p for j = 1, 2, 3.

(iv) Let k, n ∈ N and p ∈ {0, 1, . . . , n}. Then there exists an open interval I ⊂ R with
0 ∈ I, finite dimensional Krein spaces Kj and selfadjoint matrices Aj, Bj in Kj,
j = 1, 2, 3, which satisfy Assumption (I) such that
(a) 0 ∈ σ(B1), n− p− 2k ≥ 1, and

nB1(I) = nA1(I)− nA1,B1(I)− 2KA1(I ∩ ρ(B1))− 1,

(b) 0 ∈ ρ(B2) \ c(A2), n− p− 2k ≥ 2, and

nB2(I) = nA2(I)− nA2,B2(I)− 2KA2(I ∩ ρ(B2))− 2,

(c) 0 ∈ ρ(B3) ∩ c(A3), n− p− 2k ≥ 3, and

nB3(I) = nA3(I)− nA3,B3(I)− 2KA3(I ∩ ρ(B3))− 3,

holds with nAj (I) = n, KAj (I ∩ ρ(Bj)) = k and nAj ,Bj (I) = p for j = 1, 2, 3.
Proof. (i) Let k, n ∈ N and fix positive numbers λ0, . . . , λn+1, µ1, . . . , µ2k+1, and
ν1, . . . , νn such that

0 < λ0 < µ1 < · · · < µ2k+1 < λ1 < ν1 < λ2 < · · · < νn < λn+1

and set I := (λ0, λn+1). The rational function

M(λ) := − (λ− µ1) . . . (λ− µ2k+1)(λ− ν1) . . . (λ− νn)
(λ− λ0) . . . (λ− λn+1)(λ+ 1)2k−1

has the following obvious properties:
(a) M is symmetric with respect to the real axis, M(λ) = M(λ),
(b) M has n simple poles λ1, . . . , λn in I,
(c) M has 2k + 1 simple zeros µ1, . . . , µ2k+1 in (λ0, λ1) ⊂ I such that

M ′(µ2j+1) > 0, j = 0, . . . , k, and M ′(µ2j) < 0, j = 1, . . . , k,

and M has n simple zeros ν1, . . . , νn ∈ I such that M ′(νl) > 0, l = 1, . . . , n,
(d) limλ→±∞M(λ) = −1.
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Next we argue in the same way as in the proof of [3, Theorem 3.5] making use of
a minimal realization of the function M as a Weyl function of some boundary triple; cf.
[2, 17, 22]. More precisely, since M is a rational generalized Nevanlinna function there
exists a Pontryagin space (K, [·, ·]), a (possibly nondensely defined) symmetric operator
S of defect one and a boundary triple {C,Γ0,Γ1} for the adjoint S+ such that the
corresponding Weyl function coincides with M , see [2, Corollary 3.5]. The model can
be chosen minimal, in which case K is a finite dimensional space and A := S+ � ker Γ0
is a selfadjoint matrix with eigenvalues located at the poles of M . In particular, A has
no multivalued part as M has no pole at ±∞. Note that σ(A) ∩ I consists of the n
distinct eigenvalues λ1, . . . , λn, and hence

nA(I) = n. (4.1)

Next we use that {C,Γ1,−Γ0} is a boundary triple for S+ with Weyl function −M−1

and that B := S+ � ker Γ1 is a selfadjoint matrix in K. Note that B has no multivalued
part as −M−1 has no pole at ±∞. Since both A and B are selfadjoint extensions of
the symmetric (nondensely defined) operator S with defect one the difference of A
and B is a rank one operator and, hence, the difference of their resolvents is a rank
one operator. Therefore Assumption (I) is satisfied. Moreover, the zeros of M in I
coincide with σ(B) ∩ I. Hence B has 2k + 1 eigenvalues in the interval (λ0, λ1), where

σ++(B) ∩ (λ0, λ1) = {µ1, µ3, . . . , µ2k+1}, σ−−(B) ∩ (λ0, λ1) = {µ2, µ4, . . . , µ2k},

and one eigenvalue in each of the n = nA(I) intervals (λ1, λ2), . . . , (λn, λn+1); cf.
Proposition 2.3 and (4.1). In particular, we have

nB(I) = 2k + 1 + nA(I) and KB(I ∩ ρ(A)) = KB((λ0, λ1)) = k,

and hence assertion (i) in the case p = nA,B(I) = 0 follows. In order to obtain the
assertion in the remaining case 1 ≤ p ≤ n add orthogonally to A and B a matrix C
with nC(I) = p distinct eigenvalues such that σp(C) ⊂ σp(A). Then,

(
A 0
0 C

)
and

(
B 0
0 C

)
(4.2)

have nC(I) common eigenvalues in the interval I, and their resolvents differ by
a rank one matrix. We have shown assertion (i). Observe that assertion (ii) follows
by interchanging the roles of A and B.
(iii) Let k, n ∈ N, fix λ0, . . . , λn+1, µ0, . . . , µ2k+1, and ν1, . . . , νn such that

λ0 < µ0 < 0 < µ1 < · · · < µ2k+1 < λ1 < ν1 < λ2 < · · · < νn < λn+1

and set I := (λ0, λn+1). The rational function

N(λ) := − (λ− µ0)λ2(λ− µ1) . . . (λ− µ2k+1)(λ− ν1) . . . (λ− νn)
(λ− λ0) . . . (λ− λn+1)(λ− (λ0 − 1))2k+2

has the following obvious properties:
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(a) N is symmetric with respect to the real axis, N(λ) = N(λ),
(b) N has n simple poles λ1, . . . , λn in I,
(c) N has a zero of multiplicity 2 at 0 and 2k + 2 simple zeros µ0, . . . , µ2k+1 in the

interval (λ0, λ1) ⊂ I such that

N ′(µ2j+1) > 0, j = 0, . . . , k, and N ′(µ2j) < 0, j = 0, . . . , k, (4.3)

and N has n simple zeros ν1, . . . , νn ∈ I such that N ′(νl) > 0, l = 1, . . . , n,
(d) limλ→±∞N(λ) = −1.
Now use a minimal realization of N and show the existence of K and A and B in
exactly the same way as in the proof of assertion (i). Then σ(A) ∩ I consists of the
poles of N in I, σ(A) ∩ I = {λ1, . . . , λn}. The zeros of N in I coincide with σ(B) ∩ I.
From (4.3) and Proposition 2.2 (ii) and (iii) we conclude

µ2j+1 ∈ σ++(B), j = 0, . . . , k, and µ2j ∈ σ−−(B), j = 0, . . . , k,

and we see, as µ0 < 0 and 0 < µ1 < . . . < µ2k+1,

KB(I ∩ ρ(A)) = k.

Hence
nB(I) = 2k + 3 + n = nA(I) + 2KB(I ∩ ρ(A)) + 3.

Again one treats the case 1 ≤ p ≤ n as in (4.2). The sharpness in the remaining two
cases in (iii) can be shown analogously with the help of a minimal model for the
generalized Nevanlinna function

P (λ) := − (λ− µ0)(λ− µ1) . . . (λ− µ2k+1)(λ− ν1) . . . (λ− νn)
(λ− λ0) . . . (λ− λn+1)(λ− (λ0 − 1))2k ,

which has the properties
(a) P is symmetric with respect to the real axis, P (λ) = P (λ),
(b) P has n simple poles λ1, . . . , λn in I = (λ0, λn+1),
(c) P has 2k + 2 simple zeros µ0, . . . , µ2k+1 in the interval (λ0, λ1) ⊂ I such that

P ′(µ2j+1) > 0, j = 0, . . . , k, and P ′(µ2j) < 0, j = 0, . . . , k,

and P has n simple zeros ν1, . . . , νn ∈ I such that P ′(νl) > 0, l = 1, . . . , n,
(d) limλ→±∞ P (λ) = −1,
as well as with a minimal model for the generalized Nevanlinna function

Q(λ) := − (λ− µ0)(λ− µ1) . . . (λ− µ2k+1)(λ− ν1) . . . (λ− νn)
(λ− λ0)λ2(λ− λ1) . . . (λ− λn+1)(λ− (λ0 − 1))2k−2 ,

which has the properties
(a) Q is symmetric with respect to the real axis, Q(λ) = Q(λ),
(b) Q has a pole of order 2 at 0 and n simple poles λ1, . . . , λn in I = (λ0, λn+1),
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(c) Q has 2k + 2 simple zeros µ0, . . . , µ2k+1 in the interval (λ0, λ1) ⊂ I such that

Q′(µ2j+1) > 0, j = 0, . . . , k, and Q′(µ2j) < 0, j = 0, . . . , k,

and Q has n simple zeros ν1, . . . , νn ∈ I such that Q′(νl) > 0, l = 1, . . . , n,
(d) limλ→±∞Q(λ) = −1.

This completes the proof of assertion (iii). It is clear that (iv) follows by interchanging
A and B.

5. AN EXAMPLE: SINGULAR INDEFINITE STURM-LIOUVILLE PROBLEMS

In this section the general eigenvalue estimates are illustrated in a typical application
from the theory of singular Sturm-Liouville problems with indefinite weight functions.
We go beyond the so-called left-definite case, which was studied thoroughly from
different points of view, see, e.g. [7–9,12,19–21,27].

Let r, p−1, q ∈ L1
loc(R) be real valued, p > 0 and r 6= 0 a.e., and consider the

differential expression τ on R,

τ = 1
r

(
− d

dx
p
d

dx
+ q

)
.

We assume that τ is in the limit point case at ±∞ and that the weight function
r has one sign change at some point c ∈ R such that r+ = r � (c,∞) > 0 and
r− = r � (−∞, c) < 0 a.e.

The indefinite Sturm-Liouville operator B corresponding to τ is defined by

Bf = τ(f) = 1
r

(
(−pf ′)′ + qf

)
, f ∈ dom B,

where dom B consists of all locally absolutely continuous functions f ∈ L2(R, |r|) such
that pf ′ is locally absolutely continuous and τ(f) ∈ L2(R, |r|); here L2(R, |r|) denotes
the space of all equivalence classes of complex valued measurable functions f on R
such that

(f, f) =
∫

R

|f(x)|2|r(x)| dx <∞. (5.1)

Note that B is selfadjoint in the Krein space (L2(R, |r|), [·, ·]), where [·, ·] is given by

[f, g] =
∫

R

f(x)g(x) r(x) dx, f, g ∈ L2(R, |r|). (5.2)

In the following we will also make use of the selfadjoint realizations T+ and T−
of τ restricted to (c,∞) and (−∞, c), respectively, with Dirichlet boundary condi-
tions at c in the Hilbert spaces L2((c,∞), |r+|) and L2((−∞, c), |r−|), respectively.
Here L2((c,∞), |r+|) and L2((−∞, c), |r−|) stand for the spaces of all equivalence
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classes of square integrable complex valued functions f with
∫

(c,∞) |f |2|r+| < ∞
(resp.

∫
(−∞,c) |f |2|r−| <∞). The domain of T+ (T−) consists of all locally absolutely

continuous functions f in L2((c,∞), |r+|) (L2((−∞, c), |r−|), respectively) which are
zero in c such that pf ′ is locally absolutely continuous and the restrictions of τ(f) are
in L2((c,∞), |r+|) (L2((−∞, c), |r−|), respectively).

Obviously, the direct sum T+ ⊕ T− is closely related to the operator B, see also
Proposition 5.1 below. As we are interested in operators with finitely many squares we
will impose assumptions on T+ and T− which imply that T+ ⊕ T− and the indefinite
Sturm-Liouville operator B have finitely many negative squares.

Proposition 5.1. Assume that the essential spectra of T+ and T− satisfy

η+ := min σess(T+) > 0 and η− := max σess(T−) < 0, (5.3)

and that T+ has only finitely many eigenvalues in (−∞, η+) and T− has only finitely
many eigenvalues in (η−,∞). Then the following holds.

(i) The orthogonal sum T+⊕T− is a selfadjoint operator in the Hilbert space L2(R, |r|).
(ii) The indefinite Sturm-Liouville operator B has κB negative squares in the Krein

space (L2(R, |r|), [·, ·]) with ρ(B) 6= ∅ and

κB ≤ nT+((−∞, 0)) + nT−((0,∞)) + 1.

(iii) We have

dim ran
(
(B − λ)−1 − ((T+ ⊕ T−)− λ)−1) = 1, λ ∈ C \ R, (5.4)

and the essential spectrum of T+ ⊕ T− coincides with the essential spectrum of B.
In particular,

(η−, η+) ∩ σess(B) = ∅.
Proof. The selfadjointness of T+ and T− implies (i). Furthermore, it is not difficult to
see that the operator T+ ⊕ T− is also selfadjoint in the Krein space (L2(R, |r|), [·, ·]).
Then [12, Remark 1.3] applied to T+ ⊕ T− and the symmetric operator B ∩ (T+ ⊕ T−)
gives ρ(B) 6= ∅. In order to show the assertion on κB in (ii), we consider the (definite)
differential expression

` = 1
|r|

(
− d

dx
p
d

dx
+ q

)

on R. Then ` gives rise to a selfadjoint operator

Tf = `(f) = 1
|r|
(
(−pf ′)′ + qf

)
, f ∈ dom T, (5.5)

in the Hilbert space L2(R, |r|), where the domain dom T coincides with the domain
of B. In view of the definition of the inner products in (5.2) and (5.1), we easily see

[Bf, f ] = (Tf, f) for f ∈ dom B = dom T.
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Due to the limit point behaviour of τ at ±∞ all eigenvalues of T are simple. Hence the
number of negative squares of the form [B·, ·] equals the number of negative eigenvalues
of the selfadjoint operator T , κB = nT ((−∞, 0)). The orthogonal sum of T+ and −T−
differs from T only in the boundary condition at c. Therefore

dim
(
ran (T − λ)−1 − ((T+ ⊕ (−T−))− λ)−1) = 1, λ ∈ C \ R.

This together with well-known perturbation results for selfadjoint operators in Hilbert
spaces (see, e.g., [10, § 9.3, Theorem 3]) gives

κB = nT ((−∞, 0)) ≤ nT+⊕(−T−)((−∞, 0)) + 1 = nT+((−∞, 0)) + nT−((0,∞)) + 1.

This shows (ii). The orthogonal sum of the operators T+ with T− differs from B only
in the boundary condition at c and (5.4) follows. The remaining assertions in (iii) are
obvious.

In Theorem 5.2 below we express the number of eigenvalues of B in a gap around
zero in terms of the number of eigenvalues of the operators T− and T+. Observe that
B is a selfadjoint operator in a Krein space and B, in general, is not left-definite. For
such operators there are no results for the number of eigenvalues of B in terms of the
coefficients r, p, q available. Contrary, as T− and T+ are selfadjoint operators in Hilbert
spaces and correspond to definite Sturm-Liouville expressions on the intervals (−∞, c)
and (c,∞), respectively, their point spectrum has been studied in various situations.
The estimates in the next theorem and Remark 5.4 below allow to translate results
from the well-studied definite case to the indefinite case.

Theorem 5.2. Assume (5.3) holds and that T+ has only finitely many eigenvalues in
(−∞, η+) and T− has only finitely many eigenvalues in (η−,∞). Moreover, we assume

σp(T+) ∩ σp(T−) ∩ (η−, η+) = ∅. (5.6)

Then the following holds.

(i) nB((η−, η+)) is finite.
(ii) If 0 ∈ ρ(B) ∩ ρ(T+) ∩ ρ(T−) then

nB((η−, η+)) ≥ nT+(0, η+) + nT−(η−, 0)− nT+(η−, 0)− nT−(0, η+)− 2.

(iii) If 0 6∈ ρ(B) ∩ ρ(T+) ∩ ρ(T−) then

nB((η−, η+)) ≥ nT+(0, η+) + nT−(η−, 0)− nT+(η−, 0)− nT−(0, η+)− 1.

Proof. As ` is in the limit point case at ±∞, all eigenvalues of T+ and of T− are simple.
Assume λ ∈ σp(T+) ∩ σp(B). Then the corresponding eigenfunction of the operator B
is defined on R and coincides on (c,∞) with the eigenfunction of T+ corresponding
to λ. Hence, it is zero at c. But this implies λ ∈ σp(T−), a contradiction to (5.6). The
preceding argumentation remains valid if T+ interchanges with T− and, hence, we
obtain

nT+⊕T−,B((η−, η+)) = 0. (5.7)
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The operator T+⊕T− is selfadjoint in the Krein space (L2(R, |r|), [·, ·]) and the number
KT+⊕T−((η−, η+) ∩ ρ(B)) defined in (3.1) can be calculated explicitly in terms of the
eigenvalues of T+ and of T−,

KT+⊕T−((η−, η+) ∩ ρ(B)) = nT+(η−, 0) + nT−(0, η+). (5.8)

By Proposition 5.1 the operators T+ ⊕ T− and B satisfy Assumption (I) and, hence,
Theorem 3.1 (iii) and nT+⊕T−((η−, η+)) <∞ yield (i). Furthermore, Theorem 3.1 (ii),
(5.7), and (5.8) give

nB((η−, η+)) ≥

nT+⊕T−((η−, η+))− 2nT+(η−, 0)− 2nT−(0, η+)−





3 if 0 ∈ ρ(B) ∩ c(T+ ⊕ T−),
2 if 0 ∈ ρ(B) \ c(T+ ⊕ T−),
1 if 0 ∈ σ(B).

Note that 0 ∈ c(T+⊕T−) if and only if 0 ∈ σp(T+)∩ σp(T−). By (5.6) the intersection
of the set σp(T+)∩σp(T−) with (η−, η+) is empty and hence the first case in the above
inequality is not present. Moreover,

nT+⊕T−((η−, η+)) = nT+((η−, η+)) + nT−((η−, η+))
= nT+((0, η+)) + nT+({0}) + nT+((η−, 0)) + nT−((0, η+)) + nT−({0}) + nT−((η−, 0))

and we obtain the estimate

nB((η−, η+)) ≥ nT+((0, η+))− nT+((η−, 0))− nT−((0, η+)) + nT−((η−, 0))

+ nT+({0}) + nT−({0})−
{

2 if 0 ∈ ρ(B),
1 if 0 ∈ σ(B).

If 0 ∈ ρ(B)∩ρ(T+)∩ρ(T−) then nT+({0}) = nT−({0}) = 0 and (ii) follows. If 0 ∈ σp(B)
then (5.7) gives 0 ∈ ρ(T+)∩ρ(T−) and nT+({0}) = nT−({0}) = 0 implies (iii). If 0∈ρ(B)
and 0 ∈ σp(T+), then (5.6) implies 0 ∈ ρ(T−). Hence nT+({0}) = 1, nT−({0}) = 0 and
(iii) follows. The case 0 ∈ ρ(B) and 0 ∈ σp(T−) is shown analogously.

Corollary 5.3. Assume in addition to the assumption in Theorem 5.2 that T+ is
a nonnegative operator in the Hilbert space L2((c,∞), |r+|) and T− is a nonpositive
operator in the Hilbert space L2((−∞, c), |r−|). Then the following holds.
(i) If 0 ∈ ρ(B) ∩ ρ(T+) ∩ ρ(T−) then

nB((η−, η+)) ≥ nT+(0, η+) + nT−(η−, 0)− 2.

(ii) If 0 6∈ ρ(B) ∩ ρ(T+) ∩ ρ(T−) then

nB((η−, η+)) ≥ nT+(0, η+) + nT−(η−, 0)− 1.

In the situation of Corollary 5.3 we refer to [3] for a related estimate. In [3] the
number of eigenvalues in a gap of the essential spectrum of B is estimated with the
help of the number of eigenvalues of the definite Sturm-Liouville operator T in (5.5).
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Remark 5.4. In Theorem 5.2 there are only estimates for the number nB((η−, η+))
from below. For the corresponding estimates from above in Theorem 3.1, applied to
the operators T+⊕ T− and B, the quantity KB((η−, η+)∩ ρ(B)) appears. In general it
is difficult to find an estimate for this quantity in terms of the number of eigenvalues
of T+ and T− in the interval (η−, η+). However one can use the general (and rough)
estimate from Corollary 3.2 together with (5.7) and Proposition 5.1 (ii) and concludes

nB((η−, η+)) ≤ nT+⊕T−((η−, η+)) + 2nT+((−∞, 0)) + 2nT−((0,∞)) + 5.
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