Bounds on the Non-real Spectrum of a Singular Indefinite Sturm-Liouville Operator on \mathbb{R}

Jussi Behrndt¹, Philipp Schmitz^{2,*}, and Carsten Trunk²

¹ Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

² Institut für Mathematik, Technische Universität Ilmenau, PF 100565, 98694 Ilmenau, Germany

A simple explicit bound on the absolute values of the non-real eigenvalues of a singular indefinite Sturm-Liouville operator on the real line with the weight function $sgn(\cdot)$ and an integrable, continuous potential q is obtained.

Copyright line will be provided by the publisher

1 Introduction and main result

In this note we consider the indefinite Sturm-Liouville differential expression

$$\tau = \operatorname{sgn}(\cdot) \left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \right)$$

on the real line for a continuous, real-valued potential $q \in L^1(\mathbb{R})$. The associated maximal operator is defined as

$$(Af)(x) = \operatorname{sgn}(x) \left(-f''(x) + q(x)f(x) \right), \quad x \in \mathbb{R}, \quad f \in \mathcal{D},$$
(1)

with domain $\mathcal{D} = \{f \in L^2(\mathbb{R}) : f, f' \text{ are locally absolutely continuous and } \tau f \in L^2(\mathbb{R})\}$. It is easy to see that A is neither symmetric nor self-adjoint with respect to the usual scalar product in $L^2(\mathbb{R})$, but A becomes symmetric and self-adjoint with respect to the indefinite inner product

$$[f,g] := \int_{\mathbb{R}} \operatorname{sgn}(x) f(x) \overline{g(x)} \, \mathrm{d}x, \qquad f,g \in L^2(\mathbb{R})$$

Therefore it is not surprising that indefinite Sturm-Liouville operators of the form (1) may have non-real eigenvalues. The spectral properties of such differential operators have attracted interest for more than a century, see [8, 11]. For an overview we refer to [13] and for recent results on the non-real spectrum see [2–7, 10].

The main objective of this note is to proof an estimate on the absolute values of the non-real eigenvalues of the indefinite Sturm-Liouville operator A in (1) which depends only on the L^1 -norm of the continuous potential q.

Theorem 1.1 Every non-real eigenvalue λ of A satisfies the inequality

$$|\lambda| \le \frac{1}{C^2} ||q||_1^2$$
, where $C = \ln\left(1 + \frac{1}{1 + \sqrt{2}}\right)$

For further estimates on the non-real spectrum of indefinite Sturm-Liouville operators in the singular case we refer to [3], where bounds depending on the L^{∞} -norm of the potential were obtained. Regarding the regular case, i.e. the Sturm-Liouville differential expression is defined on a finite interval with integrable coefficients, bounds in terms of the coefficients can be found in [2,7,10]; we also mention that the techniques in [1, Section 3] may be used to prove related eigenvalue estimates.

2 Proof of Theorem 1.1

In the following we denote the restriction of a function $f : \mathbb{R} \to \mathbb{C}$ to \mathbb{R}^{\pm} by f_{\pm} . Observe that for a non-real eigenvalue λ of A and a corresponding eigenfunction $f \in \mathcal{D}$ the functions $f_{\pm} \in L^2(\mathbb{R}^{\pm})$ are nontrivial solutions of the differential equations

$$f''_{+} = -\lambda f_{+} + q_{+}f_{+}$$
 on \mathbb{R}^{+} and $f''_{-} = \lambda f_{-} + q_{-}f_{-}$ on \mathbb{R}^{-} (2)

such that the matching condition

$$\frac{f'_{+}(0)}{f_{+}(0)} = \frac{f'_{-}(0)}{f_{-}(0)} \tag{3}$$

^{*} Corresponding author: e-mail philipp.schmitz@tu-ilmenau.de, phone +49 3677 69 3634, fax +49 3677 69 3270

is satisfied; the values $f_{\pm}(0)$ are non-zero since λ is assumed to be non-real. As the differential expression τ is in the limit point case at $\pm \infty$ the L²-solutions f_+ and f_- of (2) are unique up to a constant factor; cf. Lemma 9.37 and Theorem 9.9 in [12]. In this context we recall that a function g is called a solution of a second order differential equation on \mathbb{R}^{\pm} if g and g' are locally absolutely continuous on \mathbb{R}^{\pm} and g satisfies the equation almost everywhere in \mathbb{R}^{\pm} .

The next lemma on the form and properties of solutions of the differential equations in (2) can be shown with the help of the Liouville-Green method in [9]. Here the square root $\sqrt{\cdot}$ is fixed by a cut along $(-\infty, 0]$, so that $\operatorname{Re}\sqrt{\mu} > 0$ for $\mu \in \mathbb{C} \setminus \mathbb{R}$. **Lemma 2.1** For $\lambda \in \mathbb{C} \setminus \mathbb{R}$ there exist solutions f_{\pm} of the differential equations (2) of the form

$$f_{\pm}(x) = \exp\left(\mp\sqrt{\mp\lambda}x\right) \left(1 + R_{\pm}(x)\right), \qquad x \in \mathbb{R}^{\pm},\tag{4}$$

where the functions R_{\pm} satisfy the estimates

$$|R_{\pm}(x)| \le \exp\left(\|q_{\pm}\|_{1}|\lambda|^{-1/2}\right) - 1 \quad and \quad |R'_{\pm}(x)| \le |\lambda|^{1/2} \left(\exp\left(\|q_{\pm}\|_{1}|\lambda|^{-1/2}\right) - 1\right), \quad x \in \mathbb{R}^{\pm}.$$
(5)

The solutions f_{\pm} are (up to constant factor) the unique square-integrable solutions of (2).

The proof of Theorem 1.1 is now essentially a consequence of (2)–(3) together with the representation of f_{\pm} and estimates on R_{\pm} in Lemma 2.1.

Proof of Theorem 1.1. Assume that λ is a non-real eigenvalue of A such that

$$|\lambda| > ||q||_1^2 \left(\ln\left(1 + \frac{1}{1 + \sqrt{2}}\right) \right)^{-2}$$

and let $\epsilon = \exp(||q||_1 |\lambda|^{-1/2}) - 1$. Then

$$||q||_1 |\lambda|^{-1/2} < \ln\left(1 + \frac{1}{1 + \sqrt{2}}\right)$$

and hence $0 < \epsilon < (1 + \sqrt{2})^{-1} < 1$. For f_{\pm} and R_{\pm} in Lemma 2.1 we have $|R_{\pm}(x)| \le \epsilon$ and $|R'_{\pm}(x)| \le \epsilon |\lambda|^{1/2}$ for all $x \in \mathbb{R}^{\pm}$. Moreover, (4) leads to

$$f_{\pm}(0) = 1 + R_{\pm}(0)$$
 and $f'_{\pm}(0) = \mp \sqrt{\mp \lambda} (1 + R_{\pm}(0)) + R'_{\pm}(0).$

The matching condition (3) can be rewritten in the form

$$-\sqrt{-\lambda} + \frac{R'_{+}(0)}{1+R_{+}(0)} = \sqrt{\lambda} + \frac{R'_{-}(0)}{1+R_{-}(0)}$$

and together with the estimates for R_{\pm} we get

$$\sqrt{2} = \frac{\left|\sqrt{\lambda} + \sqrt{-\lambda}\right|}{\sqrt{|\lambda|}} \le \frac{1}{\sqrt{|\lambda|}} \left(\frac{|R'_{+}(0)|}{|1 + R_{+}(0)|} + \frac{|R'_{-}(0)|}{|1 + R_{-}(0)|}\right) \le 2\frac{\epsilon}{1 - \epsilon}.$$

Rearranging the terms leads to $(1 + \sqrt{2})^{-1} \le \epsilon$; a contradiction.

Acknowledgements The authors wish to thank Gerald Teschl for very helpful comments. Jussi Behrndt gratefully acknowledges financial support by the Austrian Science Fund (FWF): Project P 25162-N26.

References

- [1] A. A. Abramov, A. Aslanyan, and E. B. Davies, J. Phys. A 34, 1113–1126 (2001).
- [2] J. Behrndt, S. Chen, F. Philipp, J. Qi, Proc. Roy. Soc. Edinburgh Sect. A 144, 1113–1126 (2014).
- [3] J. Behrndt, F. Philipp, and C. Trunk, Math. Ann. 357, 185–213 (2013).
- [4] J. Behrndt, Q. Katatbeh, C. Trunk, J. Phys. A: Math. Theor 41, 244003 (2008).
 [5] J. Behrndt, Q. Katatbeh, C. Trunk, Proc. Amer. Math. Soc. 137, 3787–3806 (2009).
- [6] S. Chen, J. Qi, J. Spectr. Theory 4, 53-63 (2014).
- [7] S. Chen, J. Qi, B. Xie, Proc. Amer. Math. Soc. 144, 547-559 (2016).
- [8] O. Haupt., Math. Annalen 76, 67-104 (1914).
- [9] F. W. J. Olver, Asymptotics and Special Functions (A K Peter, New York, 1974), pp. 190–197.
- [10] J. Qi, B. Xie, J. Differential Equations 255, 2291–2301 (2013).
- [11] R. G. D. Richardson, Am. J. Math. 40, 283–316 (1918).
- [12] G. Teschl, Mathematical Methods in Quantum Mechanics (Amer. Math. Soc., Providence, RI, 2009).
- [13] A. Zettl, Sturm-Liouville Theory (Amer. Math. Soc., 2005).