
Proceedings in Applied Mathematics and Mechanics, 29/5/2016

Bounds on the Non-real Spectrum of a Singular Indefinite
Sturm-Liouville Operator on R
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A simple explicit bound on the absolute values of the non-real eigenvalues of a singular indefinite Sturm-Liouville operator
on the real line with the weight function sgn(·) and an integrable, continuous potential q is obtained.
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1 Introduction and main result

In this note we consider the indefinite Sturm-Liouville differential expression

τ = sgn(·)
(
− d2

dx2
+ q

)
on the real line for a continuous, real-valued potential q ∈ L1(R). The associated maximal operator is defined as

(Af)(x) = sgn(x)
(
− f ′′(x) + q(x)f(x)

)
, x ∈ R, f ∈ D, (1)

with domain D = {f ∈ L2(R) : f, f ′ are locally absolutely continuous and τf ∈ L2(R)}. It is easy to see that A is neither
symmetric nor self-adjoint with respect to the usual scalar product in L2(R), but A becomes symmetric and self-adjoint with
respect to the indefinite inner product

[f, g] :=

∫
R
sgn(x)f(x)g(x) dx, f, g ∈ L2(R).

Therefore it is not surprising that indefinite Sturm-Liouville operators of the form (1) may have non-real eigenvalues. The
spectral properties of such differential operators have attracted interest for more than a century, see [8, 11]. For an overview
we refer to [13] and for recent results on the non-real spectrum see [2–7, 10].

The main objective of this note is to proof an estimate on the absolute values of the non-real eigenvalues of the indefinite
Sturm-Liouville operator A in (1) which depends only on the L1-norm of the continuous potential q.

Theorem 1.1 Every non-real eigenvalue λ of A satisfies the inequality

|λ| ≤ 1

C2
‖q‖21, where C = ln

(
1 +

1

1 +
√
2

)
.

For further estimates on the non-real spectrum of indefinite Sturm-Liouville operators in the singular case we refer to [3],
where bounds depending on the L∞-norm of the potential were obtained. Regarding the regular case, i.e. the Sturm-Liouville
differential expression is defined on a finite interval with integrable coefficients, bounds in terms of the coefficients can be
found in [2, 7, 10]; we also mention that the techniques in [1, Section 3] may be used to prove related eigenvalue estimates.

2 Proof of Theorem 1.1

In the following we denote the restriction of a function f : R → C to R± by f±. Observe that for a non-real eigenvalue λ of
A and a corresponding eigenfunction f ∈ D the functions f± ∈ L2(R±) are nontrivial solutions of the differential equations

f ′′+ = −λf+ + q+f+ on R+ and f ′′− = λf− + q−f− on R− (2)

such that the matching condition

f ′+(0)

f+(0)
=
f ′−(0)

f−(0)
(3)
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is satisfied; the values f±(0) are non-zero since λ is assumed to be non-real. As the differential expression τ is in the limit
point case at ±∞ the L2-solutions f+ and f− of (2) are unique up to a constant factor; cf. Lemma 9.37 and Theorem 9.9
in [12]. In this context we recall that a function g is called a solution of a second order differential equation on R± if g and g′

are locally absolutely continuous on R± and g satisfies the equation almost everywhere in R±.
The next lemma on the form and properties of solutions of the differential equations in (2) can be shown with the help of

the Liouville-Green method in [9]. Here the square root
√
· is fixed by a cut along (−∞, 0], so that Re

√
µ > 0 for µ ∈ C \R.

Lemma 2.1 For λ ∈ C \ R there exist solutions f± of the differential equations (2) of the form

f±(x) = exp
(
∓
√
∓λx

) (
1 +R±(x)

)
, x ∈ R±, (4)

where the functions R± satisfy the estimates

|R±(x)| ≤ exp
(
‖q±‖1|λ|−1/2

)
− 1 and |R′±(x)| ≤ |λ|1/2

(
exp

(
‖q±‖1|λ|−1/2

)
− 1
)
, x ∈ R±. (5)

The solutions f± are (up to constant factor) the unique square-integrable solutions of (2).
The proof of Theorem 1.1 is now essentially a consequence of (2)–(3) together with the representation of f± and estimates

on R± in Lemma 2.1.

Proof of Theorem 1.1. Assume that λ is a non-real eigenvalue of A such that

|λ| > ‖q‖21
(
ln

(
1 +

1

1 +
√
2

))−2
and let ε = exp

(
‖q‖1|λ|−1/2

)
− 1. Then

‖q‖1|λ|−1/2 < ln

(
1 +

1

1 +
√
2

)
and hence 0 < ε < (1 +

√
2)−1 < 1. For f± and R± in Lemma 2.1 we have |R±(x)| ≤ ε and |R′±(x)| ≤ ε|λ|1/2 for all

x ∈ R±. Moreover, (4) leads to

f±(0) = 1 +R±(0) and f ′±(0) = ∓
√
∓λ
(
1 +R±(0)

)
+R′±(0).

The matching condition (3) can be rewritten in the form

−
√
−λ+

R′+(0)

1 +R+(0)
=
√
λ+

R′−(0)

1 +R−(0)

and together with the estimates for R± we get

√
2 =

∣∣√λ+
√
−λ
∣∣√

|λ|
≤ 1√

|λ|

(
|R′+(0)|
|1 +R+(0)|

+
|R′−(0)|
|1 +R−(0)|

)
≤ 2

ε

1− ε
.

Rearranging the terms leads to (1 +
√
2)−1 ≤ ε; a contradiction.
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