SPECTRAL BOUNDS FOR SINGULAR INDEFINITE STURM-LIOUVILLE OPERATORS WITH $L^{1}-$ POTENTIALS

JUSSI BEHRNDT, PHILIPP SCHMITZ, AND CARSTEN TRUNK

Abstract. The spectrum of the singular indefinite Sturm-Liouville operator

$$
A=\operatorname{sgn}(\cdot)\left(-\frac{d^{2}}{d x^{2}}+q\right)
$$

with a real potential $q \in L^{1}(\mathbb{R})$ covers the whole real line and, in addition, non-real eigenvalues may appear if the potential q assumes negative values. A quantitative analysis of the non-real eigenvalues is a challenging problem, and so far only partial results in this direction were obtained. In this paper the bound

$$
|\lambda| \leq\|q\|_{L^{1}}^{2}
$$

on the absolute values of the non-real eigenvalues λ of A is obtained. Furthermore, separate bounds on the imaginary parts and absolute values of these eigenvalues are proved in terms of the L^{1}-norm of the negative part of q.

1. Introduction

The aim of this paper is to prove bounds on the absolute values of the non-real eigenvalues of the singular indefinite Sturm-Liouville operator

$$
\begin{aligned}
A f & =\operatorname{sgn}(\cdot)\left(-f^{\prime \prime}+q f\right) \\
\operatorname{dom} A & =\left\{f \in L^{2}(\mathbb{R}): f, f^{\prime} \in A C(\mathbb{R}),-f^{\prime \prime}+q f \in L^{2}(\mathbb{R})\right\}
\end{aligned}
$$

where $A C(\mathbb{R})$ stands for space of all locally absolutely continuous functions. It will always be assumed that the potential q is real-valued and belongs to $L^{1}(\mathbb{R})$.

The operator A is not symmetric nor self-adjoint in an L^{2}-Hilbert space due to the sign change of the weight function $\operatorname{sgn}(\cdot)$. However, A can be interpreted as a self-adjoint operator with respect to the Krein space inner product $(\operatorname{sgn} \cdot, \cdot)$ in $L^{2}(\mathbb{R})$. We summarize the qualitative spectral properties of A in the next theorem, which follows from [4, Theorem 4.2] or [16, Proposition 2.4] and the well-known spectral properties of the definite Sturm-Liouville operator $-\frac{d^{2}}{d x^{2}}+q$;cf. [23, 24, 25].
Theorem 1.1. The essential spectrum of A coincides with \mathbb{R} and the non-real spectrum of A consists of isolated eigenvalues with finite algebraic multiplicity which are symmetric with respect to \mathbb{R}.

Indefinite Sturm-Liouville operators have been studied for more than a century, and have again attracted a lot of attention in the recent past. Early works in this context usually deal with the regular case, that is, the operator A is studied on a finite interval with appropriate boundary conditions at the endpoints; cf. [15, 22] and, e.g., $[11,18,26]$. In this situation the spectrum of A is purely discrete and various estimates on the real and imaginary parts of the non-real eigenvalues were

[^0]obtained in the last few years; cf. $[2,9,10,14,17,21]$. The singular case is much less studied, due to the technical difficulties which, very roughly speaking, are caused by the presence of continuous spectrum.

Explicit bounds on non-real eigenvalues for singular Sturm-Liouville operators with L^{∞}-potentials were obtained with Krein space perturbation techniques in [5] and under additional assumptions for L^{1}-potentials in $[6,7]$, see also [3] for the absence of real eigenvalues and [19] for the accumulation of non-real eigenvalues of a very particular family of potentials. In this paper we substantially improve the earlier bounds in $[6,7]$ and relax the conditions on the potential. More precisely, here we prove for arbitrary real $q \in L^{1}(\mathbb{R})$ the following bound.

Theorem 1.2. Let $q \in L^{1}(\mathbb{R})$ be real. Every non-real eigenvalue λ of the indefinite Sturm-Liouville operator A satisfies

$$
\begin{equation*}
|\lambda| \leq\|q\|_{L^{1}}^{2} \tag{1.1}
\end{equation*}
$$

Moreover, we prove two bounds in terms of the negative part q_{-}of q.
Theorem 1.3. Let $q \in L^{1}(\mathbb{R})$ be real. Every non-real eigenvalue λ of the indefinite Sturm-Liouville operator A satisfies

$$
\begin{equation*}
|\operatorname{Im} \lambda| \leq 24 \cdot \sqrt{3}\left\|q_{-}\right\|_{L^{1}}^{2} \quad \text { and } \quad|\lambda| \leq(24 \cdot \sqrt{3}+18)\left\|q_{-}\right\|_{L^{1}}^{2} \tag{1.2}
\end{equation*}
$$

The bound (1.1) is proved in Section 2. Its proof is based on the BirmanSchwinger principle using similar arguments as in [1, 13], [12, Chapter 14.3]; see also [8]. The bounds in (1.2) are obtained in Section 3 by adapting the techniques from the regular case in $[2,9,21]$ to the present singular situation.

2. Proof of Theorem 1.2

In this section we prove the bound (1.1) for the non-real eigenvalues of A. We adapt a technique similar to the Birman-Schwinger principle in [12] and apply it to the indefinite operator A. The main ingredient is a bound for the integral kernel of the resolvent of the operator

$$
B_{0} f=\operatorname{sgn}(\cdot)\left(-f^{\prime \prime}\right), \quad \operatorname{dom} B_{0}=\left\{f \in L^{1}(\mathbb{R}): f, f^{\prime} \in A C(\mathbb{R}),-f^{\prime \prime} \in L^{1}(\mathbb{R})\right\}
$$

in $L^{1}(\mathbb{R})$.
Lemma 2.1. The operator B_{0} is closed in $L^{1}(\mathbb{R})$ and for all λ in the open upper half-plane \mathbb{C}^{+}the resolvent of B_{0} is an integral operator

$$
\left[\left(B_{0}-\lambda\right)^{-1} g\right](x)=\int_{\mathbb{R}} K_{\lambda}(x, y) g(y) \mathrm{d} y, \quad g \in L^{1}(\mathbb{R})
$$

where the kernel $K_{\lambda}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}$ is bounded by $\left|K_{\lambda}(x, y)\right| \leq|\lambda|^{-\frac{1}{2}}$ for all $x, y \in \mathbb{R}$.
Proof. Here and in the following we define $\sqrt{\lambda}$ for $\lambda \in \mathbb{C}^{+}$as the principal value of the square root, which ensures $\operatorname{Im} \sqrt{\lambda}>0$ and $\operatorname{Re} \sqrt{\lambda}>0$. For $\lambda \in \mathbb{C}^{+}$consider the integral operator

$$
\begin{equation*}
\left(T_{\lambda} g\right)(x)=\int_{\mathbb{R}} K_{\lambda}(x, y) g(y) \mathrm{d} y, \quad g \in L^{1}(\mathbb{R}) \tag{2.1}
\end{equation*}
$$

with the kernel $K_{\lambda}(x, y)=C_{\lambda}(x, y)+D_{\lambda}(x, y)$ of the form

$$
C_{\lambda}(x, y)=\frac{1}{2 \alpha \sqrt{\lambda}} \begin{cases}\alpha e^{i \sqrt{\lambda}(x+y)}, & x \geq 0, y \geq 0 \\ -e^{\sqrt{\lambda}(i x+y)}, & x \geq 0, y<0 \\ e^{\sqrt{\lambda}(x+i y)}, & x<0, y \geq 0 \\ -\bar{\alpha} e^{\sqrt{\lambda}(x+y)}, & x<0, y<0\end{cases}
$$

and

$$
D_{\lambda}(x, y)=\frac{1}{2 \alpha \sqrt{\lambda}} \begin{cases}\bar{\alpha} e^{i \sqrt{\lambda}|x-y|}, & x \geq 0, y \geq 0 \\ 0, & x \geq 0, y<0 \\ 0, & x<0, y \geq 0 \\ -\alpha e^{-\sqrt{\lambda}|x-y|}, & x<0, y<0\end{cases}
$$

where $\alpha:=\frac{1-i}{2}$. Hence,

$$
\left|K_{\lambda}(x, y)\right|=\left|C_{\lambda}(x, y)+D_{\lambda}(x, y)\right| \leq \frac{1}{\sqrt{|\lambda|}}
$$

and the integral in (2.1) converges for every $g \in L^{1}(\mathbb{R})$. We have

$$
\sup _{y \geq 0} \int_{\mathbb{R}}\left|C_{\lambda}(x, y)\right| \mathrm{d} x=\frac{1}{2 \sqrt{|\lambda|}}\left(\frac{1}{\operatorname{Im} \sqrt{\lambda}}+\frac{\sqrt{2}}{\operatorname{Re} \sqrt{\lambda}}\right)
$$

and

$$
\sup _{y<0} \int_{\mathbb{R}}\left|C_{\lambda}(x, y)\right| \mathrm{d} x=\frac{1}{2 \sqrt{|\lambda|}}\left(\frac{\sqrt{2}}{\operatorname{Im} \sqrt{\lambda}}+\frac{1}{\operatorname{Re} \sqrt{\lambda}}\right)
$$

For $y \geq 0$ we estimate

$$
\int_{0}^{\infty}\left|D_{\lambda}(x, y)\right| \mathrm{d} x=\frac{1}{2 \sqrt{|\lambda|}} \int_{0}^{\infty} e^{-\operatorname{Im} \sqrt{\lambda}|x-y|} \mathrm{d} x=\frac{2-e^{-\operatorname{Im} \sqrt{\lambda} y}}{2 \sqrt{|\lambda|} \operatorname{Im} \sqrt{\lambda}} \leq \frac{1}{\sqrt{|\lambda|} \operatorname{Im} \sqrt{\lambda}}
$$

and analogously for $y<0$

$$
\int_{-\infty}^{0}\left|D_{\lambda}(x, y)\right| \mathrm{d} x=\frac{1}{2 \sqrt{|\lambda|}} \int_{-\infty}^{0} e^{-\operatorname{Re} \sqrt{\lambda}|x-y|} \mathrm{d} x=\frac{2-e^{\operatorname{Re} \sqrt{\lambda} y}}{2 \sqrt{|\lambda|} \operatorname{Re} \sqrt{\lambda}} \leq \frac{1}{\sqrt{|\lambda|} \operatorname{Re} \sqrt{\lambda}}
$$

Hence,

$$
c:=\sup _{y \in \mathbb{R}} \int_{\mathbb{R}}\left|K_{\lambda}(x, y)\right| \mathrm{d} x<\infty
$$

and Fubini's theorem yields

$$
\left\|T_{\lambda} g\right\|_{L^{1}} \leq \int_{\mathbb{R}}|g(y)| \int_{\mathbb{R}}\left|K_{\lambda}(x, y)\right| \mathrm{d} x \mathrm{~d} y \leq c\|g\|_{L^{1}}
$$

Therefore T_{λ} in (2.1) is an everywhere defined bounded operator in $L^{1}(\mathbb{R})$.
We claim that T_{λ} is the inverse of $B_{0}-\lambda$. In fact, consider the functions u, v given by

$$
u(x)=\left\{\begin{array}{ll}
e^{i \sqrt{\lambda} x}, & x \geq 0, \\
\bar{\alpha} e^{\sqrt{\lambda} x}+\alpha e^{-\sqrt{\lambda} x}, & x<0,
\end{array} \quad \text { and } \quad v(x)= \begin{cases}\alpha e^{i \sqrt{\lambda} x}+\bar{\alpha} e^{-i \sqrt{\lambda} x}, & x \geq 0 \\
e^{\sqrt{\lambda} x}, & x<0\end{cases}\right.
$$

which solve the differential equation $\operatorname{sgn}(\cdot)\left(-f^{\prime \prime}\right)=\lambda f$, that is, u and v, and their derivatives, belong to $A C(\mathbb{R})$ and satisfy the differential equation almost everywhere. Since the Wronskian equals $2 \alpha \sqrt{\lambda}$, these solutions are linearly independent.

Note that $u, v \notin L^{1}(\mathbb{R})$ and one concludes that $B_{0}-\lambda$ is injective. A simple calculation shows the identity

$$
K_{\lambda}(x, y)=C_{\lambda}(x, y)+D_{\lambda}(x, y)=\frac{1}{2 \alpha \sqrt{\lambda}} \begin{cases}u(x) v(y) \operatorname{sgn}(y), & y<x \\ v(x) u(y) \operatorname{sgn}(y), & x<y\end{cases}
$$

and hence we have

$$
\left(T_{\lambda} g\right)(x)=\frac{1}{2 \alpha \sqrt{\lambda}}\left(u(x) \int_{-\infty}^{x} v(y) \operatorname{sgn}(y) g(y) \mathrm{d} y+v(x) \int_{x}^{\infty} u(y) \operatorname{sgn}(y) g(y) \mathrm{d} y\right) .
$$

One verifies $T_{\lambda} g,\left(T_{\lambda} g\right)^{\prime} \in A C(\mathbb{R})$ and $T_{\lambda} g$ is a solution of $\operatorname{sgn}(\cdot)\left(-f^{\prime \prime}\right)-\lambda f=g$. This implies $\left(T_{\lambda} g\right)^{\prime \prime} \in L^{1}(\mathbb{R})$ and hence $T_{\lambda} g \in \operatorname{dom} B_{0}$ satisfies

$$
\left(B_{0}-\lambda\right) T_{\lambda} g=g \quad \text { for all } g \in L^{1}(\mathbb{R})
$$

Therefore, $B_{0}-\lambda$ is surjective and we have $T_{\lambda}=\left(B_{0}-\lambda\right)^{-1}$. It follows that B_{0} is a closed operator in $L^{1}(\mathbb{R})$ and that λ belongs to the resolvent set of B_{0}.

Proof of Theorem 1.2. Since the non-real point spectrum of A is symmetric with respect to the real line (see Theorem 1.1) it suffices to consider eigenvalues in the upper half plane. Let $\lambda \in \mathbb{C}^{+}$be an eigenvalue of A with a corresponding eigenfunction $f \in \operatorname{dom} A$. Since $q \in L^{1}(\mathbb{R})$ and $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+q$ is in the limit point case at $\pm \infty$ (see, e.g. [23, Lemma 9.37]) the function f is unique up to a constant multiple. As $-f^{\prime \prime}+q f=\lambda f$ on \mathbb{R}^{+}and $f^{\prime \prime}-q f=\lambda f$ on \mathbb{R}^{-}with q integrable one has the well-known asymptotical behaviour

$$
\begin{align*}
f(x) & =\alpha_{+}(1+o(1)) e^{i \sqrt{\lambda} x}, \quad x \rightarrow+\infty \\
f^{\prime}(x) & =\alpha_{+} i \sqrt{\lambda}(1+o(1)) e^{i \sqrt{\lambda} x}, \quad x \rightarrow+\infty \tag{2.2}
\end{align*}
$$

and

$$
\begin{align*}
f(x) & =\alpha_{-}(1+o(1)) e^{\sqrt{\lambda} x}, \quad x \rightarrow-\infty \\
f^{\prime}(x) & =\alpha_{-} \sqrt{\lambda}(1+o(1)) e^{\sqrt{\lambda} x}, \quad x \rightarrow-\infty \tag{2.3}
\end{align*}
$$

for some $\alpha_{+}, \alpha_{-} \in \mathbb{C}$; see, e.g. [20, § 24.2, Example a] or [23, Lemma 9.37]. These asymptotics yield $f, q f \in L^{1}(\mathbb{R})$ and $-f^{\prime \prime}=\lambda \operatorname{sgn}(\cdot) f-q f \in L^{1}(\mathbb{R})$, and therefore $f \in \operatorname{dom} B_{0}$. Thus, f satisfies

$$
0=(A-\lambda) f=\operatorname{sgn}(\cdot)\left(-f^{\prime \prime}\right)-\lambda f+\operatorname{sgn}(\cdot) q f=\left(B_{0}-\lambda\right) f+\operatorname{sgn}(\cdot) q f
$$

and since λ is in the resolvent set of B_{0} we obtain

$$
-q f=q\left(B_{0}-\lambda\right)^{-1} \operatorname{sgn}(\cdot) q f
$$

Note that $\|q f\|_{L^{1}} \neq 0$ as otherwise λ would be an eigenvalue of B_{0}. With the help of Lemma 2.1 we then conclude

$$
0<\|q f\|_{L^{1}} \leq \int_{\mathbb{R}}|q(x)| \int_{\mathbb{R}}\left|K_{\lambda}(x, y)\left\|q(y) f(y) \left\lvert\, \mathrm{d} y \mathrm{~d} x \leq \frac{1}{\sqrt{|\lambda|}}\right.\right\| q f\left\|_{L^{1}}\right\| q \|_{L^{1}}\right.
$$

and this yields the desired bound (1.1).

3. Proof of Theorem 1.3

In this section we prove the bounds in (1.2) for the non-real eigenvalues of A in Theorem 1.3, which depend only on the negative part $q_{-}(x)=\max \{0,-q(x)\}$, $x \in \mathbb{R}$, of the potential. The following lemma will be useful.
Lemma 3.1. Let $\lambda \in \mathbb{C}^{+}$be an eigenvalue of A and let f be a corresponding eigenfunction. Define

$$
U(x):=\int_{x}^{\infty} \operatorname{sgn}(t)|f(t)|^{2} \mathrm{~d} t \quad \text { and } \quad V(x):=\int_{x}^{\infty}\left|f^{\prime}(t)\right|^{2}+q(t)|f(t)|^{2} \mathrm{~d} t
$$

for $x \in \mathbb{R}$. Then the following assertions hold:
(a) $\lambda U(x)=f^{\prime}(x) \overline{f(x)}+V(x)$;
(b) $\lim _{x \rightarrow-\infty} U(x)=0$ and $\lim _{x \rightarrow-\infty} V(x)=0$;
(c) $\left\|f^{\prime}\right\|_{L^{2}} \leq 2\left\|q_{-}\right\|_{L^{1}}\|f\|_{L^{2}}$;
(d) $\|f\|_{\infty} \leq 2 \sqrt{\left\|q_{-}\right\|_{L^{1}}}\|f\|_{L^{2}}$;
(e) $\left\|q f^{2}\right\|_{L^{1}} \leq 8\|q-\|_{L^{1}}^{2}\|f\|_{L^{2}}^{2}$.

Proof. Note that f satisfies the asymptotics (2.2)-(2.3) and hence f and f^{\prime} vanish at $\pm \infty$ and $f^{\prime} \in L^{2}(\mathbb{R})$. In particular, $V(x)$ is well defined. We multiply the identity $\lambda f(t)=\operatorname{sgn}(t)\left(-f^{\prime \prime}(t)+q(t) f(t)\right)$ by $\operatorname{sgn}(t) \overline{f(t)}$ and integration by parts yields

$$
\lambda U(x)=\int_{x}^{\infty}-f^{\prime \prime}(t) \overline{f(t)}+q(t)|f(t)|^{2} \mathrm{~d} t=f^{\prime}(x) \overline{f(x)}+V(x)
$$

for all $x \in \mathbb{R}$. This shows (a). Moreover, we have

$$
\lambda \int_{\mathbb{R}} \operatorname{sgn}(t)|f(t)|^{2} \mathrm{~d} t=\lim _{x \rightarrow-\infty} \lambda U(x)=\lim _{x \rightarrow-\infty} V(x)=\int_{\mathbb{R}}\left|f^{\prime}(t)\right|^{2}+q(t)|f(t)|^{2} \mathrm{~d} t
$$

Taking the imaginary part shows $\lim _{x \rightarrow-\infty} U(x)=0$ and, hence, $\lim _{x \rightarrow-\infty} V(x)=$ 0 . This proves (b).

As f is continuous and vanishes at $\pm \infty$ we have $\|f\|_{\infty}<\infty$. Let $q_{+}(x):=$ $\max \{0, q(x)\}, x \in \mathbb{R}$. Making use of $\lim _{x \rightarrow-\infty} V(x)=0$ and $q=q_{+}-q_{-}$we find

$$
\begin{align*}
0 \leq\left\|f^{\prime}\right\|_{L^{2}}^{2} & =-\int_{\mathbb{R}} q(t)|f(t)|^{2} \mathrm{~d} t=-\int_{\mathbb{R}}\left(q_{+}(t)-q_{-}(t)\right)|f(t)|^{2} \mathrm{~d} t \tag{3.1}\\
& \leq \int_{\mathbb{R}} q_{-}(t)|f(t)|^{2} \mathrm{~d} t \leq\left\|q_{-}\right\|_{L^{1}}\|f\|_{\infty}^{2}
\end{align*}
$$

This implies $\left\|q_{+} f^{2}\right\|_{L^{1}} \leq\left\|q_{-} f^{2}\right\|_{L^{1}} \leq\left\|q_{-}\right\|_{L^{1}}\|f\|_{\infty}^{2}$ and, thus,

$$
\begin{equation*}
\left\|q f^{2}\right\|_{L^{1}}=\int_{\mathbb{R}}\left|q(t)\left\|\left.f(t)\right|^{2} \mathrm{~d} t=\int_{\mathbb{R}}\left(q_{+}(t)+q_{-}(t)\right)|f(t)|^{2} \mathrm{~d} t \leq 2\right\| q_{-}\left\|_{L^{1}}\right\| f \|_{\infty}^{2}\right. \tag{3.2}
\end{equation*}
$$

In order to verify (d) let $x, y \in \mathbb{R}$ with $x>y$. Then

$$
|f(x)|^{2}-|f(y)|^{2}=\int_{y}^{x}\left(|f|^{2}\right)^{\prime}(t) \mathrm{d} t \leq 2 \int_{y}^{x}\left|f(t) f^{\prime}(t)\right| \mathrm{d} t \leq 2\|f\|_{L^{2}}\left\|f^{\prime}\right\|_{L^{2}}
$$

together with $f(y) \rightarrow 0, y \rightarrow-\infty$, leads to $\|f\|_{\infty}^{2} \leq 2\|f\|_{L^{2}}\left\|f^{\prime}\right\|_{L^{2}}$. Since f is an eigenfunction $\|f\|_{\infty}$ does not vanish and we have with (3.1)

$$
\|f\|_{\infty} \leq \frac{2\|f\|_{L^{2}}\left\|f^{\prime}\right\|_{L^{2}}}{\|f\|_{\infty}} \leq 2 \sqrt{\left\|q_{-}\right\|_{L^{1}}}\|f\|_{L^{2}}
$$

which shows (d). Moreover, the estimate in (d) applied to (3.1) and (3.2) yield (c) and (e).

Proof of Theorem 1.3. Let $\lambda \in \mathbb{C}^{+}$be a eigenvalue of A and let $f \in \operatorname{dom} A$ be a corresponding eigenfunction. We can assume $\left\|q_{-}\right\|_{L^{1}}>0$ as otherwise $f=0$ by Lemma 3.1 (d). Let U and V be as in Lemma 3.1, let $\delta:=\left(24\left\|q_{-}\right\|_{L^{1}}\right)^{-1}$ and define the function g on \mathbb{R} by

$$
g(x)= \begin{cases}\operatorname{sgn}(x), & |x|>\delta \\ \frac{x}{\delta}, & |x| \leq \delta\end{cases}
$$

From Lemma 3.1 (a) we have

$$
\begin{equation*}
\lambda \int_{\mathbb{R}} g^{\prime}(x) U(x) \mathrm{d} x=\int_{\mathbb{R}} g^{\prime}(x)\left(f^{\prime}(x) \overline{f(x)}+V(x)\right) \mathrm{d} x \tag{3.3}
\end{equation*}
$$

Since g is bounded and $U(x)$ vanishes for $x \rightarrow \pm \infty$, integration by parts leads to the estimate

$$
\begin{align*}
\int_{\mathbb{R}} g^{\prime}(x) U(x) \mathrm{d} x & =\int_{\mathbb{R}} g(x) \operatorname{sgn}(x)|f(x)|^{2} \mathrm{~d} x \geq \int_{\mathbb{R} \backslash[-\delta, \delta]}|f(x)|^{2} \mathrm{~d} x \\
& =\|f\|_{L^{2}}^{2}-\int_{-\delta}^{\delta}|f(x)|^{2} \mathrm{~d} x \geq\|f\|_{L^{2}}^{2}-2 \delta\|f\|_{\infty}^{2} \tag{3.4}\\
& \geq\|f\|_{L^{2}}^{2}-8 \delta\left\|q_{-}\right\|_{L^{1}}\|f\|_{L^{2}}^{2}=\frac{2}{3}\|f\|_{L^{2}}^{2}
\end{align*}
$$

here we have used Lemma 3.1 (d) in the last line of (3.4). Further we see with Lemma 3.1 (c)-(d)

$$
\begin{align*}
\left|\int_{\mathbb{R}} g^{\prime}(x) f^{\prime}(x) \overline{f(x)} \mathrm{d} x\right| & \leq\|f\|_{\infty}\left\|f^{\prime}\right\|_{L^{2}}\left\|g^{\prime}\right\|_{L^{2}} \leq 4\left\|q_{-}\right\|_{L^{1}}^{\frac{3}{2}}\|f\|_{L^{2}}^{2} \sqrt{\frac{2}{\delta}} \tag{3.5}\\
& \leq 16 \cdot \sqrt{3}\left\|q_{-}\right\|_{L^{1}}^{2}\|f\|_{L^{2}}^{2}
\end{align*}
$$

Since $\|g\|_{\infty}=1$ and $V(x)$ vanishes for $x \rightarrow \pm \infty$ integration by parts together with Lemma 3.1 (c) and (e) yields

$$
\begin{align*}
\left|\int_{\mathbb{R}} g^{\prime}(x) V(x) \mathrm{d} x\right| & =\left|\int_{\mathbb{R}} g(x)\left(\left|f^{\prime}(x)\right|^{2}+q(x)|f(x)|^{2}\right) \mathrm{d} x\right| \tag{3.6}\\
& \leq\|g\|_{\infty}\left(\left\|f^{\prime}\right\|_{L^{2}}^{2}+\left\|q f^{2}\right\|_{L^{1}}\right) \leq 12\left\|q_{-}\right\|_{L^{1}}^{2}\|f\|_{L^{2}}^{2}
\end{align*}
$$

Comparing the imaginary parts in (3.3) we have with (3.4) and (3.5)

$$
\begin{aligned}
\frac{2}{3}|\operatorname{Im} \lambda|\|f\|_{L^{2}}^{2} & \leq|\operatorname{Im} \lambda|\left|\int_{\mathbb{R}} g^{\prime}(x) U(x) \mathrm{d} x\right| \leq\left|\int_{\mathbb{R}} g^{\prime}(x) f^{\prime}(x) \overline{f(x)} \mathrm{d} x\right| \\
& \leq 16 \cdot \sqrt{3}\left\|q_{-}\right\|_{L^{1}}^{2}\|f\|_{L^{2}}^{2}
\end{aligned}
$$

In the same way we obtain from (3.4), (3.3) and (3.5)-(3.6) that

$$
\begin{aligned}
\frac{2}{3}|\lambda|\|f\|_{L^{2}}^{2} & \leq\left|\lambda \int_{\mathbb{R}} g^{\prime}(x) U(x) \mathrm{d} x\right|=\left|\int_{\mathbb{R}} g^{\prime}(x)\left(f^{\prime}(x) \overline{f(x)}+V(x)\right) \mathrm{d} x\right| \\
& \leq(16 \cdot \sqrt{3}+12)\left\|q_{-}\right\|_{L^{1}}^{2}\|f\|_{L^{2}}^{2}
\end{aligned}
$$

This shows the bounds in (1.2).

References

[1] A. A. Abramov, A. Aslanyan, E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys. A: Math. Gen. 34, 57-72 (2001).
[2] J. Behrndt, S. Chen, F. Philipp, J. Qi, Estimates on the non-real eigenvalues of regular indefinite Sturm-Liouville problems, Proc. Roy. Soc. Edinburgh Sect. A 144, 1113-1126 (2014).
[3] J. Behrndt, Q. Katatbeh, C. Trunk, Non-real eigenvalues of singular indefinite SturmLiouville operators, Proc. Amer. Math. Soc. 137, 3797-3806 (2009).
[4] J. Behrndt, F. Philipp, Spectral analysis of ordinary differential operators with indefinite weigths, J. Differential Equations 248, 2015-2037 (2010).
[5] J. Behrndt, F. Philipp, C. Trunk, Bounds on the non-real spectrum of differential operators with indefinite weights, Math. Ann. 357, 185-213 (2013).
[6] J. Behrndt, P. Schmitz, C. Trunk, Bounds on the non-real spectrum of a singular indefinite Sturm-Liouville operator on \mathbb{R}, Proc. Appl. Math. Mech. 16, 881-882 (2016).
[7] J. Behrndt, P. Schmitz, C. Trunk, Estimates for the non-real spectrum of a singular indefinite Sturm-Liouville operator on \mathbb{R}, to appear in Proc. Appl. Math. Mech. 17.
[8] B. M. Brown, M. S. P. Eastham, Analytic continuation and resonance-free regions for SturmLiouville potentials with power decay, J. Comput. Appl. Math. 148, 49-63 (2002).
[9] S. Chen, J. Qi, A priori bounds and existence of non-real eigenvalues of indefinite SturmLiouville problems, J. Spectr. Theory 4, 53-63 (2014).
[10] S. Chen, J. Qi, B. Xie, The upper and lower bounds on the non-real eigenvalus of indefinite Sturm-Liouville problems, Proc. Amer. Math. Soc. 144, 547-559 (2016).
[11] B. Ćurgus, H. Langer, A Krein space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differential Equations 79, 31-61 (1989).
[12] E. B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007.
[13] E. B. Davies, J. Nath, Schrödinger operators with slowly decaying potentials, J. Comput. Appl. Math. 148, 1-18 (2002).
[14] X. Guo, H. Sun, B. Xie, Non-real eigenvalues of symmetric Sturm-Liouville problems with indefinite weight functions, Electron. J. Qual. Theory Differ. Equ. 2017, 1-14 (2017).
[15] O. Haupt, Über eine Methode zum Beweise von Oszillationstheoremen, Math. Ann. 76, 67104 (1914).
[16] I. Karabash, C. Trunk, Spectral properties of singular Sturm-Liouville operators, Proc. Roy. Soc. Edinburgh Sect. A 139, 483-503 (2009).
[17] M. Kikonko, A. B. Mingarelli, Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm-Liouville problem, J. Differential Equations 261, 6221-6232 (2016).
[18] A. B. Mingarelli, A survey of the regular weighted Sturm-Liouville problem-the non-definite case, in: Proceedings of the Workshop on Applications of Differential Equations, 1986, pp. 109-137.
[19] M. Levitin, M. Seri, Accumulation of complex eigenvalues of an indefinite Sturm-Liouville operator with a shifted Coulomb potential, Operators and Matrices 10, 223-245 (2016).
[20] M. A. Naimark, Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space, Frederick Ungar Publishing Co., New York, 1968.
[21] J. Qi, B. Xie, Non-real eigenvalues of indefinite Sturm-Liouville problems, J. Differential Equations 255, 2291-2301 (2013).
[22] R. Richardson, Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math. 40, 283-316 (1918).
[23] G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Amer. Math. Soc., Providence, Rhode Island, 2009.
[24] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math. 1258, Springer, 1987.
[25] J. Weidmann, Lineare Operatoren in Hilberträumen Teil II, Teubner, 2003.
[26] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs 121, AMS, Providence, RI, 2005.

Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

E-mail address: behrndt@tugraz.at
Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany

E-mail address: philipp.schmitz@tu-ilmenau.de
Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany

E-mail address: carsten.trunk@tu-ilmenau.de

[^0]: Key words and phrases. Non-real eigenvalue, indefinite Sturm-Liouville operator, Krein space, Birman-Schwinger principle.

