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1. Introduction

For a closed densely defined symmetric operator A with equal defect numbers in the

Hilbert space K let {G, Γ0, Γ1} be a boundary value space for the adjoint operator A∗

and let A0 be the restriction of A∗ to ker Γ0, A0 := A∗| ker Γ0. If γ and M are the

corresponding γ-field and Weyl function, respectively, then it is well known that the

Krein-Naimark formula

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)∗(1)

establishes a bijective correspondence between the compressed resolvents of minimal

selfadjoint exit space extensions Ã of A in K×H, where H is a Hilbert space, and the

so-called Nevanlinna families τ .

The aim of this note is to give a similar correspondence for a class of symmetric op-

erators in Krein spaces. More precisely, if A is a closed symmetric operator of defect
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one with finitely many negative squares acting in a Krein space K and if A has a

selfadjoint extension A0 in K with nonempty resolvent set we prove in Theorem 3

that the formula (1) establishes a bijective correspondence between the compressed

resolvents of minimal selfadjoint exit space extensions Ã of A in K × H having also

finitely many negative squares and scalar functions τ belonging to some classes Dbκ,

κ̂ ∈ {0, 1, . . . }. Moreover we show how the number κ̂ is related to the number of nega-

tive squares of Ã. Here the exit space H is in general a Krein space and the classes Dbκ

are subclasses of the so-called definitizable functions (cf. [Jonas (2000)]). The classes

Dbκ where introduced and studied in connection with eigenvalue dependent boundary

value problems by the authors in [Behrndt and Trunk (2005)]. Roughly speaking a

function τ belongs to some class Dbκ if λ 7→ λτ(λ) is a generalized Nevanlinna function.

Our approach is based on [Derkach, Hassi, Malamud and de Snoo (2000)]; see also

[Hassi, Kaltenbäck and de Snoo (1997) and (1998)]. For the special case that the exit

space H is a Pontryagin space Theorem 3 follows from [Derkach (1998)]. In this situ-

ation the functions τ ∈ Dbκ belong to certain subclasses of the generalized Nevanlinna

functions.

2. Preliminaries

Let throughout this paper (K, [·, ·]) be a separable Krein space. The linear space of all

bounded linear operators defined on a Krein space K1 with values in a Krein space K2

is denoted by L(K1,K2). If K := K1 = K2 we write L(K). We study linear relations in

K, that is, linear subspaces of K2. The set of all closed linear relations in K is denoted

by C̃(K). Linear operators are viewed as linear relations via their graphs. For the

usual definitions of the linear operations with relations, the inverse, the multivalued

part etc. we refer to [Dijksma and de Snoo (1987)].

Let S be a linear relation in K. The adjoint S+ ∈ C̃(K) of S is defined as

S+ :=

{(
h
h′

) ∣∣∣ [f ′, h] = [f, h′] for all

(
f
f ′

)
∈ S

}
.

The linear relation S is said to be symmetric (selfadjoint) if S ⊂ S+ (resp. S = S+).

For a closed linear relation S in K the resolvent set ρ(S) of S ∈ C̃(K) is defined as

the set of all λ ∈ C such that (S − λ)−1 ∈ L(K), the spectrum σ(S) of S is the
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complement of ρ(S) in C. For the definition of the point spectrum σp(S), continuous

spectrum σc(S) and residual spectrum σr(S) we refer to [Dijksma et al. (1987)].

For the description of the selfadjoint extensions of closed symmetric relations we use

the so-called boundary value spaces.

Definition 1. Let A be a closed symmetric relation in the Krein space (K, [·, ·]). We

say that {G, Γ0, Γ1} is a boundary value space for A+ if (G, (·, ·)) is a Hilbert space and

there exist mappings Γ0, Γ1 : A+ → G such that Γ :=
(

Γ0

Γ1

)
: A+ → G ×G is surjective,

and the relation

[f ′, g] − [f, g′] = (Γ1f̂ , Γ0ĝ) − (Γ0f̂ , Γ1ĝ)

holds for all f̂ =
(

f

f ′

)
, ĝ =

( g

g′

)
∈ A+.

For basic facts on boundary value spaces and further references see e.g. [Derkach

(1999)]. We recall only a few important consequences. Let A be a closed symmetric

relation and assume that there exists a boundary value space {G, Γ0, Γ1} for A+. Then

A0 := ker Γ0 and A1 := ker Γ1 are selfadjoint extensions of A. The mapping Γ =
(

Γ0

Γ1

)

induces, via

AΘ := Γ−1Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G),(2)

a bijective correspondence Θ 7→ AΘ between C̃(G) and the set of closed extensions

AΘ ⊂ A+ of A. In particular (2) gives a one-to-one correspondence between the closed

symmetric (selfadjoint) extensions of A and the closed symmetric (resp. selfadjoint)

relations in G. If Θ is a closed operator in G, then the corresponding extension AΘ of

A is determined by

AΘ = ker(Γ1 − ΘΓ0).(3)

Let Nλ,A+ := ker(A+−λ) be the defect subspace of A and N̂λ,A+ :=
{(

f
λf

)∣∣f ∈ Nλ,A+

}
.

Now we assume, in addition, that the selfadjoint relation A0 has a nonempty resolvent

set. For each λ ∈ ρ(A0) the relation A+ can be written as a direct sum of (the

subspaces) A0 and N̂λ,A+. Denote by π1 the orthogonal projection onto the first

component of K2. The functions

γ(λ) := π1(Γ0|N̂λ)
−1 ∈ L(G,K) and M(λ) := Γ1(Γ0|N̂λ)

−1 ∈ L(G)(4)
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are defined and holomorphic on ρ(A0) and are called the γ-field and the Weyl function

corresponding to A and {G, Γ0, Γ1}.

Let Θ ∈ C̃(G) and let AΘ be the corresponding extension of A via (2). For λ ∈ ρ(A0)

we have

λ ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ − M(λ)).(5)

Moreover the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+(6)

holds for λ ∈ ρ(AΘ) ∩ ρ(A0) (cf. [Derkach (1999)]).

Recall, that a piecewise meromorphic function G in C\R belongs to the generalized

Nevanlinna class Nκ′, κ′ ∈ N0, if G is symmetric with respect to the real axis, that is

G(λ) = G(λ) for all points λ of holomorphy of G, and the so-called Nevanlinna kernel

NG(λ, µ) :=
G(λ) − G(µ)

λ − µ

has κ negative squares (see e.g. [Krein and Langer (1977)]). The subclasses Dbκ,

κ̂ ∈ N0, (see Definition 2) of the so-called definitizable functions (cf. [Jonas (2000)])

were introduced and studied in [Behrndt et al. (2005)].

Definition 2. Let τ be a piecewise meromorphic function in C\R which is symmetric

with respect to the real axis and let λ0 ∈ C be a point of holomorphy of τ . We say that

τ belongs to the class Dbκ, κ̂ ∈ N0, if there exists a generalized Nevanlinna function

G ∈ Nbκ holomorphic at λ0 and a rational function g holomorphic in C\{λ0, λ0} such

that

λ

(λ − λ0)(λ − λ0)
τ(λ) = G(λ) + g(λ)

holds for all points λ where τ , G and g are holomorphic.

Let A be a closed symmetric relation in K. We say that A has defect m ∈ N ∪ {∞}

if there exists a selfadjoint extension Â in K such that dim(Â/A) = m. If J is a

fundamental symmetry in K then A has defect m if and only if the deficiency indices

n±(JA) = dim ker((JA)∗ ∓ i) of the symmetric relation JA in the Hilbert space

(K, [J ·, ·]) are equal to m. A closed symmetric relation A in the Krein space (K, [·, ·])
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is said to have κ negative squares, κ ∈ N0, if the hermitian form 〈·, ·〉 on A, defined by

〈(
f
f ′

)
,

(
g
g′

)〉
:= [f, g′],

(
f
f ′

)
,

(
g
g′

)
∈ A,

has κ negative squares, that is, there exists a κ-dimensional subspace M in A such

that 〈v̂, v̂〉 < 0 if v̂ ∈ M, v̂ 6= 0, but no κ+1 dimensional subspace with this property.

If, in addition, the defect of A is one and {C, Γ0, Γ1} is a boundary value space for A+

such that the resolvent set of A0 = ker Γ0 is nonempty, then the corresponding Weyl

function M belongs to some subclass Dbκ, κ̂ ≤ κ + 1.

Conversely, by [Behrndt et al. (2005)] each function τ ∈ Dbκ which is not equal to a

constant is a Weyl function corresponding to a symmetric operator T in some Krein

space H and a boundary value space {C, Γ′
0, Γ

′
1} such that the selfadjoint relation

ker Γ′
0 has κ̂ negative squares.

3. A class of generalized resolvents of symmetric operators with finitely

many negative squares

Let A be a not necessarily densely defined symmetric operator in the Krein space K,

let {G, Γ0, Γ1} be a boundary value space for A+ and let H be a further Krein space.

A selfadjoint extension Ã of A in K×H is said to be an exit space extension of A and

H is called the exit space. The exit space extension Ã of A is said to be minimal if

ρ(Ã) is nonempty and

K ×H = clsp
{
K, (Ã − λ)−1|K |λ ∈ ρ(Ã)

}

holds. The elements of K ×H will be written in the form {k, h}, k ∈ K, h ∈ H. Let

PK : K ×H → H, {k, h} 7→ k, be the projection onto the first component of K ×H.

Then the compression

PK(Ã − λ)−1|K, λ ∈ ρ(Ã),

of the resolvent of Ã to K is said to be a generalized resolvent of A.

In the proof of Theorem 3 below we will deal with direct products of linear relations.

The following notation will be used. If U is a relation in K and V is a relation in H
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we shall write U × V for the direct product of U and V which is a relation in K×H,

U × V =

{(
{f1, f2}
{f ′

1, f
′
2}

) ∣∣∣
(

f1

f ′
1

)
∈ U,

(
f2

f ′
2

)
∈ V

}
.

For the pair
(
{f1,f2}
{f ′

1,f ′

2}

)
we shall also write {f̂1, f̂2}, where f̂1 =

( f1

f ′

1

)
and f̂2 =

( f2

f ′

2

)
.

Theorem 3. Let A be a symmetric operator of defect one with finitely many negative

squares and let {C, Γ0, Γ1} be a boundary value space for A+ with corresponding γ-field

γ and Weyl function M . Assume that A0 = ker Γ0 has a nonempty resolvent set. Then

the following holds.

(i) The formula

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+(7)

establishes a bijective correspondence between the compressed resolvents of mini-

mal selfadjoint exit space extensions Ã of A in K ×H which have finitely many

negative squares and the functions τ from the class
⋃∞

bκ=0 Dbκ ∪
{(

0
c

)
| c ∈ C

}
.

(ii) Assume that A has κ negative squares. If Ã is a minimal selfadjoint exit space

extension with κ̃ negative squares in K × H, H 6= {0}, then τ belongs to Dbκ,

where

0 ≤ κ̂ ∈ {κ̃ − κ − 2, . . . , κ̃ − κ + 1}.

Conversely, if τ ∈ Dbκ, κ̂ ∈ N0, then the corresponding selfadjoint exit space

extension Ã in K ×H has

0 ≤ κ̃ ∈ {κ + κ̂ − 1, . . . , κ + κ̂ + 2}

negative squares.

Proof. Let (H, [·, ·]) be a Krein space and let Ã be a minimal selfadjoint exit space

extension of A in K ×H which has κ̃ negative square. The linear relations

S :=

{(
k
k′

) ∣∣∣
(
{k, 0}
{k′, 0}

)
∈ Ã

}
and T :=

{(
h
h′

) ∣∣∣
(
{0, h}
{0, h′}

)
∈ Ã

}

are closed and symmetric in K and H, respectively. As S is an extension of A either S

is of defect one and coincides with A or S is selfadjoint in K. It follows from [Strauss

(1962)], [Remark 5.3, Derkach et al. (2000)] that in the first case T is also of defect

one and in the second case T is selfadjoint in H.
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If S and T are both selfadjoint, then S × T coincides with Ã. As Ã is a minimal exit

space extension we have

H = clsp
{
PH(Ã − λ)−1|K |λ ∈ ρ(Ã)

}
= {0}.

Hence Ã is a selfadjoint extension of A in K and there exists a constant τ ∈ R ∪
{(

0
c

)
| c ∈ C

}
such that Ã =

(
Γ0

Γ1

)−1
{−τ} and by (6) we have

(Ã − λ)−1 = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ

)−1
γ(λ)+.

If S and T are both of defect one we have A = S and it follows from [§5, Derkach et

al. (2000)] that A+ and T+ can be written as

A+ =

{(
k
k′

) ∣∣∣
(
{k, h}
{k′, h′}

)
∈ Ã

}
and T+ =

{(
h
h′

) ∣∣∣
(
{k, h}
{k′, h′}

)
∈ Ã

}
.

Let

P̂K : Ã → A+,

(
{k, h}
{k′, h′}

)
7→

(
k
k′

)
and P̂H : Ã → T+,

(
{k, h}
{k′, h′}

)
7→

(
h
h′

)
.

In the sequel we denote the elements in A+ and T+ by f̂1 and f̂2, respectively. It

follows as in [Theorem 5.4, Derkach et al. (2000)] that {C, Γ′
0, Γ

′
1}, where

Γ′
0 := −Γ0P̂KP̂−1

H and Γ′
1 := Γ1P̂KP̂−1

H ,

is a boundary value space for T +. Ã is the canonical selfadjoint extension of the

symmetric relation A × T in K ×H given by

Ã =
{
{f̂1, f̂2} ∈ A+ × T+ |Γ0f̂1 + Γ′

0f̂2 = Γ1f̂1 − Γ′
1f̂2 = 0

}
.(8)

Since A × T is of defect two, A has κ negative squares and Ã has κ̃ negative squares

we conclude that T has

0 ≤ κ′ ∈
{
κ̃ − κ − 2, κ̃ − κ − 1, κ̃ − κ

}

negative squares.

For λ ∈ ρ(Ã) the relation

ran
(
PH(Ã − λ)−1|K) = Nλ,T+ = ker(T + − λ),

holds (cf. [Lemma 2.14, Derkach, Hassi, Malamud and de Snoo (2005)]. Since Ã is a

minimal exit space extension we have

H = clsp
{
PH(Ã − λ)−1|K |λ ∈ ρ(Ã)

}
= clsp

{
Nλ,T+ |λ ∈ ρ(Ã)

}
(9)

and this implies that T is an operator.
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Let

N̂∞,T+ :=

{(
0
f

)
∈ T+

}
and FΠ′ :=

(
Γ′

0

Γ′
1

)
N̂∞,T+,

where FΠ′ ⊂ C2 is the so-called forbidden relation (cf. [Derkach (1999)]). As T is an

operator of defect one the dimension of FΠ′ is less or equal to one. We choose α ∈ R

such that {(
x
αx

) ∣∣∣ x ∈ C

}
∩ FΠ′ = {0}

and define Tα := ker(Γ′
1−αΓ′

0). Then Tα is selfadjoint and by [Proposition 2.1, Derkach

(1999)] Tα is an operator. From {0} = mul Tα = (domTα)[⊥] we conclude that Tα is

densely defined.

We claim that ρ(Tα) is nonempty. In fact, for λ ∈ ρ(Ã) we have ran (Ã− λ) = K×H

and since A × T is of defect two also the range of (A × T ) − λ is closed. Therefore

ran (T −λ), λ ∈ ρ(Ã), is closed in H and the same holds true for ran (Tα−λ). Assume

now ρ(Tα) = ∅. Then

ρ(Ã) ⊂
(
σp(Tα) ∪ σr(Tα)

)

and as λ ∈ σr(Tα) implies λ ∈ σp(Tα) we can assume that there are κ′+2 eigenvalues in

one of the open half planes. The corresponding eigenvectors f1, . . . , fκ′+2 are mutually

orthogonal and it follows as in [Proof of Proposition 1.1, Ćurgus and Langer (1989)]

that there exist vectors g1, . . . , gκ′+2 in dom (Tα) such that [Tαfi, gj] = δij, i, j =

1, . . . , κ′ + 2, holds. Since

L :=
(
sp

{
f1, . . . , fκ′+2, g1, . . . , gκ′+2

}
,
[
Tα·, ·

])

is a Krein space with a (κ′+2)-dimensional neutral subspace, L contains also a (κ′+2)-

dimensional negative subspace. But this is impossible since T has κ′ negative squares

and therefore Tα has at most κ′ + 1 negative squares, thus ρ(Tα) 6= ∅.

We denote the γ-field and Weyl function corresponding to the boundary value space

{C, Γ′
1 − αΓ′

0,−Γ′
0} for T + by γ′ and σ, respectively. Clearly σ is holomorphic on

ρ(Tα). From

H = clsp
{
Nλ,T+ |λ ∈ ρ(Tα)

}
= clsp

{
γ′(λ) |λ ∈ ρ(Tα)

}

and σ(λ)− σ(µ) = (λ− µ)γ ′(µ)+γ′(λ), λ, µ ∈ ρ(Tα), we conclude that σ is not identi-

cally equal to a constant.
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It is easy to see that {C2, Γ̃0, Γ̃1}, where

Γ̃0{f̂1, f̂2} :=

(
Γ0f̂1

Γ′
1f̂2 − αΓ′

0f̂2

)
and Γ̃1{f̂1, f̂2} :=

(
Γ1f̂1

−Γ′
0f̂2

)
,

is a boundary value space for A+ × T+ with corresponding γ-field

λ 7→ γ̃(λ) =

(
γ(λ) 0

0 γ′(λ)

)
, λ ∈ ρ(A0) ∩ ρ(Tα),(10)

and Weyl function

λ 7→ M̃(λ) =

(
M(λ) 0

0 σ(λ)

)
, λ ∈ ρ(A0) ∩ ρ(Tα).(11)

The selfadjoint extension of A × T corresponding to Θ =
(
−α 1
1 0

)
∈ L(C2) via (2) and

(3) is given by

ker
(
Γ̃1 − ΘΓ̃0

)
=

{
{f̂1, f̂2} ∈ A+ × T+ |Γ0f̂1 + Γ′

0f̂2 = Γ1f̂1 − Γ′
1f̂2 = 0

}

and coincides with Ã (cf. (8)). By (5) (Θ − M̃(λ)) is invertible for all points λ in

ρ(Ã) ∩ ρ(A0) ∩ ρ(Tα). Then we have

(Ã − λ)−1 =
(
(A0 × Tα) − λ

)−1
+ γ̃(λ)

(
Θ − M̃(λ)

)−1
γ̃(λ)+(12)

(cf. (6)) and, as σ is not equal to a constant, we obtain

(
Θ − M̃(λ)

)−1
=

(
M(λ) − σ(λ)−1 + α

)−1
(

−1 −σ(λ)−1

−σ(λ)−1 −σ(λ)−1(α − M(λ))

)
(13)

for all λ ∈ ρ(Ã)∩ ρ(A0) ∩ ρ(Tα). Setting τ(λ) := −σ(λ)−1 + α we conclude from (10),

(12) and (13) that the formula

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+

holds. It is not hard to see that τ is the Weyl function corresponding to the boundary

value space {C, Γ′
0, Γ

′
1} for T +. As ker Γ′

0 is a selfadjoint extension of T it follows that

ker Γ′
0 has κ′ or κ′ + 1 negative squares. Now [Lemma 3.7, Behrndt et al. (2005)]

implies that τ belongs to some class Dbκ, where

0 ≤ κ̂ ∈
{
κ̃ − κ − 2, . . . , κ̃ − κ + 1

}
.

For a function τ in the class Dbκ it was shown in [§4, Behrndt et al. (2005)] that there

exists a Krein space H and a minimal selfadjoint extension Ã ∈ C̃(K ×H) such that

the formula (7) holds and Ã has

0 ≤ κ̃ ∈
{
κ + κ̂ − 1, . . . , κ + κ′ + 2

}
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negative squares. 2
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