# On generalized resolvents of symmetric operators of defect one with finitely many negative squares 

Jussi Behrndt and Carsten Trunk


#### Abstract

Jussi Behrndt and Carsten Trunk (2005). On generalized resolvents of symmetric operators of defect one with finitely many negative squares. Proceedings of the University of Vaasa, Reports xxx, pp-pp.

For a closed symmetric operator $A$ of defect one with finitely many negative squares in a Krein space we establish a bijective correspondence between the compressed resolvents of minimal selfadjoint exit space extensions of $A$ with finitely many negative squares and a special subclass of meromorphic functions in $\mathbb{C} \backslash \mathbb{R}$.

Jussi Behrndt, Department of Mathematics MA 6-4, Straße des 17. Juni 136, TU Berlin, 10623 Berlin, Germany, E-mail: behrndt@math.tu-berlin.de Carsten Trunk, Department of Mathematics MA 6-3, Straße des 17. Juni 136, TU Berlin, 10623 Berlin, Germany, E-mail: trunk@math.tu-berlin.de


Keywords: generalized resolvents, boundary value spaces, definitizable operators, Krein spaces.
Mathematics Subject Classification (2000): 47B50; 47B25.

## 1. Introduction

For a closed densely defined symmetric operator $A$ with equal defect numbers in the Hilbert space $\mathfrak{K}$ let $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary value space for the adjoint operator $A^{*}$ and let $A_{0}$ be the restriction of $A^{*}$ to $\operatorname{ker} \Gamma_{0}, A_{0}:=A^{*} \mid \operatorname{ker} \Gamma_{0}$. If $\gamma$ and $M$ are the corresponding $\gamma$-field and Weyl function, respectively, then it is well known that the Krein-Naimark formula

$$
\begin{equation*}
\left.P_{\mathfrak{K}}(\widetilde{A}-\lambda)^{-1}\right|_{\mathfrak{K}}=\left(A_{0}-\lambda\right)^{-1}-\gamma(\lambda)(M(\lambda)+\tau(\lambda))^{-1} \gamma(\bar{\lambda})^{*} \tag{1}
\end{equation*}
$$

establishes a bijective correspondence between the compressed resolvents of minimal selfadjoint exit space extensions $\widetilde{A}$ of $A$ in $\mathfrak{K} \times \mathfrak{H}$, where $\mathfrak{H}$ is a Hilbert space, and the so-called Nevanlinna families $\tau$.

The aim of this note is to give a similar correspondence for a class of symmetric operators in Krein spaces. More precisely, if $A$ is a closed symmetric operator of defect
one with finitely many negative squares acting in a Krein space $\mathcal{K}$ and if $A$ has a selfadjoint extension $A_{0}$ in $\mathcal{K}$ with nonempty resolvent set we prove in Theorem 3 that the formula (1) establishes a bijective correspondence between the compressed resolvents of minimal selfadjoint exit space extensions $\widetilde{A}$ of $A$ in $\mathcal{K} \times \mathcal{H}$ having also finitely many negative squares and scalar functions $\tau$ belonging to some classes $D_{\widehat{\kappa}}$, $\widehat{\kappa} \in\{0,1, \ldots\}$. Moreover we show how the number $\widehat{\kappa}$ is related to the number of negative squares of $\widetilde{A}$. Here the exit space $\mathcal{H}$ is in general a Krein space and the classes $D_{\widehat{\kappa}}$ are subclasses of the so-called definitizable functions (cf. [Jonas (2000)]). The classes $D_{\widehat{\kappa}}$ where introduced and studied in connection with eigenvalue dependent boundary value problems by the authors in [Behrndt and Trunk (2005)]. Roughly speaking a function $\tau$ belongs to some class $D_{\widehat{\kappa}}$ if $\lambda \mapsto \lambda \tau(\lambda)$ is a generalized Nevanlinna function.

Our approach is based on [Derkach, Hassi, Malamud and de Snoo (2000)]; see also [Hassi, Kaltenbäck and de Snoo (1997) and (1998)]. For the special case that the exit space $\mathcal{H}$ is a Pontryagin space Theorem 3 follows from [Derkach (1998)]. In this situation the functions $\tau \in D_{\widehat{\kappa}}$ belong to certain subclasses of the generalized Nevanlinna functions.

## 2. Preliminaries

Let throughout this paper $(\mathcal{K},[\cdot, \cdot])$ be a separable Krein space. The linear space of all bounded linear operators defined on a Krein space $\mathcal{K}_{1}$ with values in a Krein space $\mathcal{K}_{2}$ is denoted by $\mathcal{L}\left(\mathcal{K}_{1}, \mathcal{K}_{2}\right)$. If $\mathcal{K}:=\mathcal{K}_{1}=\mathcal{K}_{2}$ we write $\mathcal{L}(\mathcal{K})$. We study linear relations in $\mathcal{K}$, that is, linear subspaces of $\mathcal{K}^{2}$. The set of all closed linear relations in $\mathcal{K}$ is denoted by $\widetilde{\mathcal{C}}(\mathcal{K})$. Linear operators are viewed as linear relations via their graphs. For the usual definitions of the linear operations with relations, the inverse, the multivalued part etc. we refer to [Dijksma and de Snoo (1987)].

Let $S$ be a linear relation in $\mathcal{K}$. The adjoint $S^{+} \in \widetilde{\mathcal{C}}(\mathcal{K})$ of $S$ is defined as

$$
S^{+}:=\left\{\left.\binom{h}{h^{\prime}} \right\rvert\,\left[f^{\prime}, h\right]=\left[f, h^{\prime}\right] \text { for all }\binom{f}{f^{\prime}} \in S\right\} .
$$

The linear relation $S$ is said to be symmetric (selfadjoint) if $S \subset S^{+}$(resp. $S=S^{+}$). For a closed linear relation $S$ in $\mathcal{K}$ the resolvent set $\rho(S)$ of $S \in \widetilde{\mathcal{C}}(\mathcal{K})$ is defined as the set of all $\lambda \in \mathbb{C}$ such that $(S-\lambda)^{-1} \in \mathcal{L}(\mathcal{K})$, the spectrum $\sigma(S)$ of $S$ is the
complement of $\rho(S)$ in $\mathbb{C}$. For the definition of the point spectrum $\sigma_{p}(S)$, continuous spectrum $\sigma_{c}(S)$ and residual spectrum $\sigma_{r}(S)$ we refer to [Dijksma et al. (1987)].

For the description of the selfadjoint extensions of closed symmetric relations we use the so-called boundary value spaces.

Definition 1. Let $A$ be a closed symmetric relation in the Krein space ( $\mathcal{K},[\cdot, \cdot])$. We say that $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ is a boundary value space for $A^{+}$if $(\mathcal{G},(\cdot, \cdot))$ is a Hilbert space and there exist mappings $\Gamma_{0}, \Gamma_{1}: A^{+} \rightarrow \mathcal{G}$ such that $\Gamma:=\binom{\Gamma_{0}}{\Gamma_{1}}: A^{+} \rightarrow \mathcal{G} \times \mathcal{G}$ is surjective, and the relation

$$
\left[f^{\prime}, g\right]-\left[f, g^{\prime}\right]=\left(\Gamma_{1} \hat{f}, \Gamma_{0} \hat{g}\right)-\left(\Gamma_{0} \hat{f}, \Gamma_{1} \hat{g}\right)
$$

holds for all $\hat{f}=\binom{f}{f^{\prime}}, \hat{g}=\binom{g}{g^{\prime}} \in A^{+}$.
For basic facts on boundary value spaces and further references see e.g. [Derkach (1999)]. We recall only a few important consequences. Let $A$ be a closed symmetric relation and assume that there exists a boundary value space $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ for $A^{+}$. Then $A_{0}:=\operatorname{ker} \Gamma_{0}$ and $A_{1}:=\operatorname{ker} \Gamma_{1}$ are selfadjoint extensions of $A$. The mapping $\Gamma=\binom{\Gamma_{0}}{\Gamma_{1}}$ induces, via

$$
\begin{equation*}
A_{\Theta}:=\Gamma^{-1} \Theta=\left\{\hat{f} \in A^{+} \mid \Gamma \hat{f} \in \Theta\right\}, \quad \Theta \in \widetilde{\mathcal{C}}(\mathcal{G}) \tag{2}
\end{equation*}
$$

a bijective correspondence $\Theta \mapsto A_{\Theta}$ between $\widetilde{\mathcal{C}}(\mathcal{G})$ and the set of closed extensions $A_{\Theta} \subset A^{+}$of $A$. In particular (2) gives a one-to-one correspondence between the closed symmetric (selfadjoint) extensions of $A$ and the closed symmetric (resp. selfadjoint) relations in $\mathcal{G}$. If $\Theta$ is a closed operator in $\mathcal{G}$, then the corresponding extension $A_{\Theta}$ of $A$ is determined by

$$
\begin{equation*}
A_{\Theta}=\operatorname{ker}\left(\Gamma_{1}-\Theta \Gamma_{0}\right) \tag{3}
\end{equation*}
$$

Let $\mathcal{N}_{\lambda, A^{+}}:=\operatorname{ker}\left(A^{+}-\lambda\right)$ be the defect subspace of $A$ and $\hat{\mathcal{N}}_{\lambda, A^{+}}:=\left\{\left.\binom{f}{\lambda f} \right\rvert\, f \in \mathcal{N}_{\lambda, A^{+}}\right\}$. Now we assume, in addition, that the selfadjoint relation $A_{0}$ has a nonempty resolvent set. For each $\lambda \in \rho\left(A_{0}\right)$ the relation $A^{+}$can be written as a direct sum of (the subspaces) $A_{0}$ and $\hat{\mathcal{N}}_{\lambda, A^{+}}$. Denote by $\pi_{1}$ the orthogonal projection onto the first component of $\mathcal{K}^{2}$. The functions

$$
\begin{equation*}
\gamma(\lambda):=\pi_{1}\left(\Gamma_{0} \mid \hat{\mathcal{N}}_{\lambda}\right)^{-1} \in \mathcal{L}(\mathcal{G}, \mathcal{K}) \quad \text { and } \quad M(\lambda):=\Gamma_{1}\left(\Gamma_{0} \mid \hat{\mathcal{N}}_{\lambda}\right)^{-1} \in \mathcal{L}(\mathcal{G}) \tag{4}
\end{equation*}
$$

are defined and holomorphic on $\rho\left(A_{0}\right)$ and are called the $\gamma$-field and the Weyl function corresponding to $A$ and $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$.

Let $\Theta \in \widetilde{\mathcal{C}}(\mathcal{G})$ and let $A_{\Theta}$ be the corresponding extension of $A$ via (2). For $\lambda \in \rho\left(A_{0}\right)$ we have

$$
\begin{equation*}
\lambda \in \rho\left(A_{\Theta}\right) \quad \text { if and only if } \quad 0 \in \rho(\Theta-M(\lambda)) . \tag{5}
\end{equation*}
$$

Moreover the well-known resolvent formula

$$
\begin{equation*}
\left(A_{\Theta}-\lambda\right)^{-1}=\left(A_{0}-\lambda\right)^{-1}+\gamma(\lambda)(\Theta-M(\lambda))^{-1} \gamma(\bar{\lambda})^{+} \tag{6}
\end{equation*}
$$

holds for $\lambda \in \rho\left(A_{\Theta}\right) \cap \rho\left(A_{0}\right)$ (cf. [Derkach (1999)]).

Recall, that a piecewise meromorphic function $G$ in $\mathbb{C} \backslash \mathbb{R}$ belongs to the generalized Nevanlinna class $N_{\kappa^{\prime}}, \kappa^{\prime} \in \mathbb{N}_{0}$, if $G$ is symmetric with respect to the real axis, that is $G(\bar{\lambda})=\overline{G(\lambda)}$ for all points $\lambda$ of holomorphy of $G$, and the so-called Nevanlinna kernel

$$
N_{G}(\lambda, \mu):=\frac{G(\lambda)-G(\bar{\mu})}{\lambda-\bar{\mu}}
$$

has $\kappa$ negative squares (see e.g. [Krein and Langer (1977)]). The subclasses $D_{\widehat{\kappa}}$, $\widehat{\kappa} \in \mathbb{N}_{0}$, (see Definition 2) of the so-called definitizable functions (cf. [Jonas (2000)]) were introduced and studied in [Behrndt et al. (2005)].

Definition 2. Let $\tau$ be a piecewise meromorphic function in $\mathbb{C} \backslash \mathbb{R}$ which is symmetric with respect to the real axis and let $\lambda_{0} \in \mathbb{C}$ be a point of holomorphy of $\tau$. We say that $\tau$ belongs to the class $D_{\widehat{\kappa}}, \widehat{\kappa} \in \mathbb{N}_{0}$, if there exists a generalized Nevanlinna function $G \in N_{\widehat{\kappa}}$ holomorphic at $\lambda_{0}$ and a rational function $g$ holomorphic in $\overline{\mathbb{C}} \backslash\left\{\lambda_{0}, \bar{\lambda}_{0}\right\}$ such that

$$
\frac{\lambda}{\left(\lambda-\lambda_{0}\right)\left(\lambda-\bar{\lambda}_{0}\right)} \tau(\lambda)=G(\lambda)+g(\lambda)
$$

holds for all points $\lambda$ where $\tau, G$ and $g$ are holomorphic.
Let $A$ be a closed symmetric relation in $\mathcal{K}$. We say that $A$ has defect $m \in \mathbb{N} \cup\{\infty\}$ if there exists a selfadjoint extension $\widehat{A}$ in $\mathcal{K}$ such that $\operatorname{dim}(\widehat{A} / A)=m$. If $J$ is a fundamental symmetry in $\mathcal{K}$ then $A$ has defect $m$ if and only if the deficiency indices $n_{ \pm}(J A)=\operatorname{dim} \operatorname{ker}\left((J A)^{*} \mp i\right)$ of the symmetric relation $J A$ in the Hilbert space $(\mathcal{K},[J \cdot, \cdot])$ are equal to $m$. A closed symmetric relation $A$ in the Krein space $(\mathcal{K},[\cdot, \cdot])$
is said to have $\kappa$ negative squares, $\kappa \in \mathbb{N}_{0}$, if the hermitian form $\langle\cdot, \cdot\rangle$ on $A$, defined by

$$
\left\langle\binom{ f}{f^{\prime}},\binom{g}{g^{\prime}}\right\rangle:=\left[f, g^{\prime}\right], \quad\binom{f}{f^{\prime}},\binom{g}{g^{\prime}} \in A,
$$

has $\kappa$ negative squares, that is, there exists a $\kappa$-dimensional subspace $\mathcal{M}$ in $A$ such that $\langle\hat{v}, \hat{v}\rangle<0$ if $\hat{v} \in \mathcal{M}, \hat{v} \neq 0$, but no $\kappa+1$ dimensional subspace with this property. If, in addition, the defect of $A$ is one and $\left\{\mathbb{C}, \Gamma_{0}, \Gamma_{1}\right\}$ is a boundary value space for $A^{+}$ such that the resolvent set of $A_{0}=\operatorname{ker} \Gamma_{0}$ is nonempty, then the corresponding Weyl function $M$ belongs to some subclass $D_{\widehat{\kappa}}, \widehat{\kappa} \leq \kappa+1$.

Conversely, by [Behrndt et al. (2005)] each function $\tau \in D_{\widehat{\kappa}}$ which is not equal to a constant is a Weyl function corresponding to a symmetric operator $T$ in some Krein space $\mathcal{H}$ and a boundary value space $\left\{\mathbb{C}, \Gamma_{0}^{\prime}, \Gamma_{1}^{\prime}\right\}$ such that the selfadjoint relation $\operatorname{ker} \Gamma_{0}^{\prime}$ has $\widehat{\kappa}$ negative squares.

## 3. A class of generalized resolvents of symmetric operators with finitely many negative squares

Let $A$ be a not necessarily densely defined symmetric operator in the Krein space $\mathcal{K}$, let $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary value space for $A^{+}$and let $\mathcal{H}$ be a further Krein space. A selfadjoint extension $\widetilde{A}$ of $A$ in $\mathcal{K} \times \mathcal{H}$ is said to be an exit space extension of $A$ and $\mathcal{H}$ is called the exit space. The exit space extension $\widetilde{A}$ of $A$ is said to be minimal if $\rho(\widetilde{A})$ is nonempty and

$$
\mathcal{K} \times \mathcal{H}=\operatorname{clsp}\left\{\mathcal{K},\left.(\widetilde{A}-\lambda)^{-1}\right|_{\mathcal{K}} \mid \lambda \in \rho(\widetilde{A})\right\}
$$

holds. The elements of $\mathcal{K} \times \mathcal{H}$ will be written in the form $\{k, h\}, k \in \mathcal{K}, h \in \mathcal{H}$. Let $P_{\mathcal{K}}: \mathcal{K} \times \mathcal{H} \rightarrow \mathcal{H},\{k, h\} \mapsto k$, be the projection onto the first component of $\mathcal{K} \times \mathcal{H}$. Then the compression

$$
\left.P_{\mathcal{K}}(\widetilde{A}-\lambda)^{-1}\right|_{\mathcal{K}}, \quad \lambda \in \rho(\widetilde{A})
$$

of the resolvent of $\widetilde{A}$ to $\mathcal{K}$ is said to be a generalized resolvent of $A$.

In the proof of Theorem 3 below we will deal with direct products of linear relations. The following notation will be used. If $U$ is a relation in $\mathcal{K}$ and $V$ is a relation in $\mathcal{H}$
we shall write $U \times V$ for the direct product of $U$ and $V$ which is a relation in $\mathcal{K} \times \mathcal{H}$,

$$
U \times V=\left\{\left.\binom{\left\{f_{1}, f_{2}\right\}}{\left\{f_{1}^{\prime}, f_{2}^{\prime}\right\}} \right\rvert\,\binom{ f_{1}}{f_{1}^{\prime}} \in U,\binom{f_{2}}{f_{2}^{\prime}} \in V\right\} .
$$

For the pair $\binom{\left\{f_{1}, f_{2}\right\}}{\left\{f_{1}^{\prime}, f_{2}^{\prime}\right\}}$ we shall also write $\left\{\hat{f}_{1}, \hat{f}_{2}\right\}$, where $\hat{f}_{1}=\binom{f_{1}}{f_{1}^{\prime}}$ and $\hat{f}_{2}=\binom{f_{2}}{f_{2}^{\prime}}$.
Theorem 3. Let $A$ be a symmetric operator of defect one with finitely many negative squares and let $\left\{\mathbb{C}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary value space for $A^{+}$with corresponding $\gamma$-field $\gamma$ and Weyl function $M$. Assume that $A_{0}=\operatorname{ker} \Gamma_{0}$ has a nonempty resolvent set. Then the following holds.
(i) The formula

$$
\begin{equation*}
\left.P_{\mathcal{K}}(\tilde{A}-\lambda)^{-1}\right|_{\mathcal{K}}=\left(A_{0}-\lambda\right)^{-1}-\gamma(\lambda)(M(\lambda)+\tau(\lambda))^{-1} \gamma(\bar{\lambda})^{+} \tag{7}
\end{equation*}
$$

establishes a bijective correspondence between the compressed resolvents of minimal selfadjoint exit space extensions $\widetilde{A}$ of $A$ in $\mathcal{K} \times \mathcal{H}$ which have finitely many negative squares and the functions $\tau$ from the class $\bigcup_{\widehat{\kappa}=0}^{\infty} D_{\widehat{\kappa}} \cup\left\{\left.\binom{0}{c} \right\rvert\, c \in \mathbb{C}\right\}$.
(ii) Assume that $A$ has $\kappa$ negative squares. If $\tilde{A}$ is a minimal selfadjoint exit space extension with $\widetilde{\kappa}$ negative squares in $\mathcal{K} \times \mathcal{H}, \mathcal{H} \neq\{0\}$, then $\tau$ belongs to $D_{\widehat{\kappa}}$, where

$$
0 \leq \widehat{\kappa} \in\{\widetilde{\kappa}-\kappa-2, \ldots, \widetilde{\kappa}-\kappa+1\}
$$

Conversely, if $\tau \in D_{\widehat{\kappa}}, \widehat{\kappa} \in \mathbb{N}_{0}$, then the corresponding selfadjoint exit space extension $\widetilde{A}$ in $\mathcal{K} \times \mathcal{H}$ has

$$
0 \leq \widetilde{\kappa} \in\{\kappa+\widehat{\kappa}-1, \ldots, \kappa+\widehat{\kappa}+2\}
$$

negative squares.
Proof. Let $(\mathcal{H},[\cdot, \cdot])$ be a Krein space and let $\widetilde{A}$ be a minimal selfadjoint exit space extension of $A$ in $\mathcal{K} \times \mathcal{H}$ which has $\widetilde{\kappa}$ negative square. The linear relations

$$
S:=\left\{\binom{k}{k^{\prime}} \left\lvert\,\binom{\{k, 0\}}{\left\{k^{\prime}, 0\right\}} \in \widetilde{A}\right.\right\} \quad \text { and } \quad T:=\left\{\binom{h}{h^{\prime}} \left\lvert\,\binom{\{0, h\}}{\left\{0, h^{\prime}\right\}} \in \widetilde{A}\right.\right\}
$$

are closed and symmetric in $\mathcal{K}$ and $\mathcal{H}$, respectively. As $S$ is an extension of $A$ either $S$ is of defect one and coincides with $A$ or $S$ is selfadjoint in $\mathcal{K}$. It follows from [Strauss (1962)], [Remark 5.3, Derkach et al. (2000)] that in the first case $T$ is also of defect one and in the second case $T$ is selfadjoint in $\mathcal{H}$.

If $S$ and $T$ are both selfadjoint, then $S \times T$ coincides with $\widetilde{A}$. As $\widetilde{A}$ is a minimal exit space extension we have

$$
\mathcal{H}=\operatorname{clsp}\left\{\left.P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\right|_{\mathcal{K}} \mid \lambda \in \rho(\widetilde{A})\right\}=\{0\} .
$$

Hence $\widetilde{A}$ is a selfadjoint extension of $A$ in $\mathcal{K}$ and there exists a constant $\tau \in \mathbb{R} \cup$ $\left\{\left.\binom{0}{c} \right\rvert\, c \in \mathbb{C}\right\}$ such that $\widetilde{A}=\binom{\Gamma_{0}}{\Gamma_{1}}^{-1}\{-\tau\}$ and by (6) we have

$$
(\tilde{A}-\lambda)^{-1}=\left(A_{0}-\lambda\right)^{-1}-\gamma(\lambda)(M(\lambda)+\tau)^{-1} \gamma(\bar{\lambda})^{+} .
$$

If $S$ and $T$ are both of defect one we have $A=S$ and it follows from [ $\S 5$, Derkach et al. (2000)] that $A^{+}$and $T^{+}$can be written as

$$
A^{+}=\left\{\binom{k}{k^{\prime}} \left\lvert\,\binom{\{k, h\}}{\left\{k^{\prime}, h^{\prime}\right\}} \in \widetilde{A}\right.\right\} \quad \text { and } \quad T^{+}=\left\{\binom{h}{h^{\prime}} \left\lvert\,\binom{\{k, h\}}{\left\{k^{\prime}, h^{\prime}\right\}} \in \widetilde{A}\right.\right\} .
$$

Let

$$
\widehat{P}_{\mathcal{K}}: \widetilde{A} \rightarrow A^{+},\binom{\{k, h\}}{\left\{k^{\prime}, h^{\prime}\right\}} \mapsto\binom{k}{k^{\prime}} \quad \text { and } \quad \widehat{P}_{\mathcal{H}}: \widetilde{A} \rightarrow T^{+},\binom{\{k, h\}}{\left\{k^{\prime}, h^{\prime}\right\}} \mapsto\binom{h}{h^{\prime}} .
$$

In the sequel we denote the elements in $A^{+}$and $T^{+}$by $\hat{f}_{1}$ and $\hat{f}_{2}$, respectively. It follows as in [Theorem 5.4, Derkach et al. (2000)] that $\left\{\mathbb{C}, \Gamma_{0}^{\prime}, \Gamma_{1}^{\prime}\right\}$, where

$$
\Gamma_{0}^{\prime}:=-\Gamma_{0} \widehat{P}_{\mathcal{K}} \widehat{P}_{\mathcal{H}}^{-1} \quad \text { and } \quad \Gamma_{1}^{\prime}:=\Gamma_{1} \widehat{P}_{\mathcal{K}} \widehat{P}_{\mathcal{H}}^{-1}
$$

is a boundary value space for $T^{+} . \widetilde{A}$ is the canonical selfadjoint extension of the symmetric relation $A \times T$ in $\mathcal{K} \times \mathcal{H}$ given by

$$
\begin{equation*}
\widetilde{A}=\left\{\left\{\hat{f}_{1}, \hat{f}_{2}\right\} \in A^{+} \times T^{+} \mid \Gamma_{0} \hat{f}_{1}+\Gamma_{0}^{\prime} \hat{f}_{2}=\Gamma_{1} \hat{f}_{1}-\Gamma_{1}^{\prime} \hat{f}_{2}=0\right\} \tag{8}
\end{equation*}
$$

Since $A \times T$ is of defect two, $A$ has $\kappa$ negative squares and $\widetilde{A}$ has $\widetilde{\kappa}$ negative squares we conclude that $T$ has

$$
0 \leq \kappa^{\prime} \in\{\widetilde{\kappa}-\kappa-2, \widetilde{\kappa}-\kappa-1, \widetilde{\kappa}-\kappa\}
$$

negative squares.
For $\lambda \in \rho(\widetilde{A})$ the relation

$$
\operatorname{ran}\left(\left.P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\right|_{\mathcal{K}}\right)=\mathcal{N}_{\lambda, T^{+}}=\operatorname{ker}\left(T^{+}-\lambda\right)
$$

holds (cf. [Lemma 2.14, Derkach, Hassi, Malamud and de Snoo (2005)]. Since $\widetilde{A}$ is a minimal exit space extension we have

$$
\begin{equation*}
\mathcal{H}=\operatorname{clsp}\left\{\left.P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\right|_{\mathcal{K}} \mid \lambda \in \rho(\widetilde{A})\right\}=\operatorname{clsp}\left\{\mathcal{N}_{\lambda, T^{+}} \mid \lambda \in \rho(\widetilde{A})\right\} \tag{9}
\end{equation*}
$$

and this implies that $T$ is an operator.

Let

$$
\hat{\mathcal{N}}_{\infty, T^{+}}:=\left\{\binom{0}{f} \in T^{+}\right\} \quad \text { and } \quad \mathcal{F}_{\Pi^{\prime}}:=\binom{\Gamma_{0}^{\prime}}{\Gamma_{1}^{\prime}} \hat{\mathcal{N}}_{\infty, T^{+}},
$$

where $\mathcal{F}_{\Pi^{\prime}} \subset \mathbb{C}^{2}$ is the so-called forbidden relation (cf. [Derkach (1999)]). As $T$ is an operator of defect one the dimension of $\mathcal{F}_{\Pi^{\prime}}$ is less or equal to one. We choose $\alpha \in \mathbb{R}$ such that

$$
\left\{\left.\binom{x}{\alpha x} \right\rvert\, x \in \mathbb{C}\right\} \cap \mathcal{F}_{\Pi^{\prime}}=\{0\}
$$

and define $T_{\alpha}:=\operatorname{ker}\left(\Gamma_{1}^{\prime}-\alpha \Gamma_{0}^{\prime}\right)$. Then $T_{\alpha}$ is selfadjoint and by [Proposition 2.1, Derkach (1999)] $T_{\alpha}$ is an operator. From $\{0\}=\operatorname{mul} T_{\alpha}=\left(\operatorname{dom} T_{\alpha}\right)^{[\perp]}$ we conclude that $T_{\alpha}$ is densely defined.

We claim that $\rho\left(T_{\alpha}\right)$ is nonempty. In fact, for $\lambda \in \rho(\widetilde{A})$ we have $\operatorname{ran}(\widetilde{A}-\lambda)=\mathcal{K} \times \mathcal{H}$ and since $A \times T$ is of defect two also the range of $(A \times T)-\lambda$ is closed. Therefore $\operatorname{ran}(T-\lambda), \lambda \in \rho(\widetilde{A})$, is closed in $\mathcal{H}$ and the same holds true for $\operatorname{ran}\left(T_{\alpha}-\lambda\right)$. Assume now $\rho\left(T_{\alpha}\right)=\emptyset$. Then

$$
\rho(\widetilde{A}) \subset\left(\sigma_{p}\left(T_{\alpha}\right) \cup \sigma_{r}\left(T_{\alpha}\right)\right)
$$

and as $\lambda \in \sigma_{r}\left(T_{\alpha}\right)$ implies $\bar{\lambda} \in \sigma_{p}\left(T_{\alpha}\right)$ we can assume that there are $\kappa^{\prime}+2$ eigenvalues in one of the open half planes. The corresponding eigenvectors $f_{1}, \ldots, f_{\kappa^{\prime}+2}$ are mutually orthogonal and it follows as in [Proof of Proposition 1.1, Ćurgus and Langer (1989)] that there exist vectors $g_{1}, \ldots, g_{\kappa^{\prime}+2}$ in dom $\left(T_{\alpha}\right)$ such that $\left[T_{\alpha} f_{i}, g_{j}\right]=\delta_{i j}, i, j=$ $1, \ldots, \kappa^{\prime}+2$, holds. Since

$$
\mathcal{L}:=\left(\operatorname{sp}\left\{f_{1}, \ldots, f_{\kappa^{\prime}+2}, g_{1}, \ldots, g_{\kappa^{\prime}+2}\right\},\left[T_{\alpha} \cdot, \cdot\right]\right)
$$

is a Krein space with a $\left(\kappa^{\prime}+2\right)$-dimensional neutral subspace, $\mathcal{L}$ contains also a $\left(\kappa^{\prime}+2\right)$ dimensional negative subspace. But this is impossible since $T$ has $\kappa^{\prime}$ negative squares and therefore $T_{\alpha}$ has at most $\kappa^{\prime}+1$ negative squares, thus $\rho\left(T_{\alpha}\right) \neq \emptyset$.

We denote the $\gamma$-field and Weyl function corresponding to the boundary value space $\left\{\mathbb{C}, \Gamma_{1}^{\prime}-\alpha \Gamma_{0}^{\prime},-\Gamma_{0}^{\prime}\right\}$ for $T^{+}$by $\gamma^{\prime}$ and $\sigma$, respectively. Clearly $\sigma$ is holomorphic on $\rho\left(T_{\alpha}\right)$. From

$$
\mathcal{H}=\operatorname{clsp}\left\{\mathcal{N}_{\lambda, T^{+}} \mid \lambda \in \rho\left(T_{\alpha}\right)\right\}=\operatorname{clsp}\left\{\gamma^{\prime}(\lambda) \mid \lambda \in \rho\left(T_{\alpha}\right)\right\}
$$

and $\sigma(\lambda)-\sigma(\bar{\mu})=(\lambda-\bar{\mu}) \gamma^{\prime}(\mu)^{+} \gamma^{\prime}(\lambda), \lambda, \mu \in \rho\left(T_{\alpha}\right)$, we conclude that $\sigma$ is not identically equal to a constant.

It is easy to see that $\left\{\mathbb{C}^{2}, \widetilde{\Gamma}_{0}, \widetilde{\Gamma}_{1}\right\}$, where

$$
\widetilde{\Gamma}_{0}\left\{\hat{f}_{1}, \hat{f}_{2}\right\}:=\binom{\Gamma_{0} \hat{f}_{1}}{\Gamma_{1}^{\prime} \hat{f}_{2}-\alpha \Gamma_{0}^{\prime} \hat{f}_{2}} \quad \text { and } \quad \widetilde{\Gamma}_{1}\left\{\hat{f}_{1}, \hat{f}_{2}\right\}:=\binom{\Gamma_{1} \hat{f}_{1}}{-\Gamma_{0}^{\prime} \hat{f}_{2}},
$$

is a boundary value space for $A^{+} \times T^{+}$with corresponding $\gamma$-field

$$
\lambda \mapsto \widetilde{\gamma}(\lambda)=\left(\begin{array}{cc}
\gamma(\lambda) & 0  \tag{10}\\
0 & \gamma^{\prime}(\lambda)
\end{array}\right), \quad \lambda \in \rho\left(A_{0}\right) \cap \rho\left(T_{\alpha}\right),
$$

and Weyl function

$$
\lambda \mapsto \widetilde{M}(\lambda)=\left(\begin{array}{cc}
M(\lambda) & 0  \tag{11}\\
0 & \sigma(\lambda)
\end{array}\right), \quad \lambda \in \rho\left(A_{0}\right) \cap \rho\left(T_{\alpha}\right) .
$$

The selfadjoint extension of $A \times T$ corresponding to $\Theta=\left(\begin{array}{cc}-\alpha & 1 \\ 1 & 0\end{array}\right) \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ via (2) and (3) is given by

$$
\operatorname{ker}\left(\widetilde{\Gamma}_{1}-\Theta \widetilde{\Gamma}_{0}\right)=\left\{\left\{\hat{f}_{1}, \hat{f}_{2}\right\} \in A^{+} \times T^{+} \mid \Gamma_{0} \hat{f}_{1}+\Gamma_{0}^{\prime} \hat{f}_{2}=\Gamma_{1} \hat{f}_{1}-\Gamma_{1}^{\prime} \hat{f}_{2}=0\right\}
$$

and coincides with $\widetilde{A}$ (cf. (8)). By (5) $(\Theta-\widetilde{M}(\lambda))$ is invertible for all points $\lambda$ in $\rho(\widetilde{A}) \cap \rho\left(A_{0}\right) \cap \rho\left(T_{\alpha}\right)$. Then we have

$$
\begin{equation*}
(\widetilde{A}-\lambda)^{-1}=\left(\left(A_{0} \times T_{\alpha}\right)-\lambda\right)^{-1}+\widetilde{\gamma}(\lambda)(\Theta-\widetilde{M}(\lambda))^{-1} \widetilde{\gamma}(\bar{\lambda})^{+} \tag{12}
\end{equation*}
$$

(cf. (6)) and, as $\sigma$ is not equal to a constant, we obtain

$$
(\Theta-\widetilde{M}(\lambda))^{-1}=\left(M(\lambda)-\sigma(\lambda)^{-1}+\alpha\right)^{-1}\left(\begin{array}{cc}
-1 & -\sigma(\lambda)^{-1}  \tag{13}\\
-\sigma(\lambda)^{-1} & -\sigma(\lambda)^{-1}(\alpha-M(\lambda))
\end{array}\right)
$$

for all $\lambda \in \rho(\widetilde{A}) \cap \rho\left(A_{0}\right) \cap \rho\left(T_{\alpha}\right)$. Setting $\tau(\lambda):=-\sigma(\lambda)^{-1}+\alpha$ we conclude from (10), (12) and (13) that the formula

$$
\left.P_{\mathcal{K}}(\widetilde{A}-\lambda)^{-1}\right|_{\mathcal{K}}=\left(A_{0}-\lambda\right)^{-1}-\gamma(\lambda)(M(\lambda)+\tau(\lambda))^{-1} \gamma(\bar{\lambda})^{+}
$$

holds. It is not hard to see that $\tau$ is the Weyl function corresponding to the boundary value space $\left\{\mathbb{C}, \Gamma_{0}^{\prime}, \Gamma_{1}^{\prime}\right\}$ for $T^{+}$. As ker $\Gamma_{0}^{\prime}$ is a selfadjoint extension of $T$ it follows that $\operatorname{ker} \Gamma_{0}^{\prime}$ has $\kappa^{\prime}$ or $\kappa^{\prime}+1$ negative squares. Now [Lemma 3.7, Behrndt et al. (2005)] implies that $\tau$ belongs to some class $D_{\widehat{\kappa}}$, where

$$
0 \leq \widehat{\kappa} \in\{\widetilde{\kappa}-\kappa-2, \ldots, \widetilde{\kappa}-\kappa+1\} .
$$

For a function $\tau$ in the class $D_{\widehat{\kappa}}$ it was shown in [ $\S 4$, Behrndt et al. (2005)] that there exists a Krein space $\mathcal{H}$ and a minimal selfadjoint extension $\widetilde{A} \in \widetilde{\mathcal{C}}(\mathcal{K} \times \mathcal{H})$ such that the formula (7) holds and $\widetilde{A}$ has

$$
0 \leq \widetilde{\kappa} \in\left\{\kappa+\widehat{\kappa}-1, \ldots, \kappa+\kappa^{\prime}+2\right\}
$$

negative squares.

## References

Behrndt, J. \& C. Trunk (2005). Sturm-Liouville operators with indefinite weight functions and eigenvalue depending boundary conditions, submitted.

Curgus, B. \& H. Langer (1989). A Krein space approach to symmetric ordinary differential operators with an indefinite weight function. J. Differential Equations 79, 31-61.

Derkach, V. (1998) On Krein space symmetric linear relations with gaps, Methods of Funct. Anal. Topology 4, 16-40.

Derkach, V. (1999) On generalized resolvents of hermitian relations in Krein spaces. J. Math Sciences 97, 4420-4460.

Derkach, V., S. Hassi, M. Malamud \& H. de Snoo (2000). Generalized resolvents of symmetric operators and admissibility. Methods of Funct. Anal. Topology 6, 24-53.

Derkach, V., S. Hassi, M. Malamud \& H. de Snoo (2005). Boundary relations and their Weyl families. to appear in Trans. Amer. Math. Soc..

Dijksma, A. \& H. de Snoo (1987). Symmetric and selfadjoint relations in Krein spaces I. Operator Theory: Advances and Applications, 24, Birkhäuser Verlag Basel, 145-166.

Hassi, S., M. Kaltenbäck \& H. de Snoo (1997). Selfadjoint extensions of the orthogonal sum of symmetric relations, I. Operator theory, operator algebras and related topics (Timişoara, 1996), Theta Found. Bucharest, 163-178.

Hassi, S., M. Kaltenbäck \& H. de Snoo (1998). Selfadjoint extensions of the orthogonal sum of symmetric relations, II. Operator Theory: Advances and Applications, 106, Birkhäuser Verlag Basel, 187-200.

Jonas, P. (2000). Operator representations of definitizable functions. Ann. Acad. Sci. Fenn. Math. 25, 41-72.

Krein, M. \& H. Langer (1977). Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_{\kappa}$ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen. Math. Nachr. 77, 187-236.

Strauss, A. (1962). On selfadjoint operators in the orthogonal sum of Hilbert spaces. Dokl. Akad. Nauk SSSR 144, 512-515.

