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Abstract

We consider a class of boundary value problems for Sturm-Liouville operators
with indefinite weight functions. The spectral parameter appears nonlinearly in
the boundary condition in the form of a function τ which has the property that
λ 7→ λτ(λ) is a generalized Nevanlinna function. We construct linearizations of
these boundary value problems and study their spectral properties.
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1 Introduction

In this paper we consider a class of λ-dependent boundary value problems for
differential operators with an indefinite weight function. In [6] B. Ćurgus and
H. Langer showed that a differential expression of the form

1

r

(
−(pf ′)′ + qf

)
, p−1, q, r ∈ L1(0, 1), (1)
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where r changes its sign, is connected with symmetric operators in the Krein
space (L2

|r|(0, 1), [·, ·]) (cf. Section 5), where the inner product [·, ·] is defined
by

[f, g] :=
∫ 1

0
f g r dx, f, g ∈ L2

|r|(0, 1).

Under the assumption p > 0 the minimal operator Amin associated to (1) has
a finite number κ of negative squares, that is, for some κ ∈ N0 there exists a
κ-dimensional subspace in dom (Amin) such that the hermitian form [Amin·, ·] is
negative definite on this subspace, but there is no κ + 1-dimensional subspace
with this property. It turns out (cf. [6]) that all selfadjoint extensions of Amin

in (L2
|r|(0, 1), [·, ·]) are definitizable operators and therefore one can use the

well developed spectral theory for these operator (see [29]) to investigate the
spectral properties of the differential operators associated to (1).

In this note we consider the equation

1

r

(
−(pf ′)′ + qf

)
− λf = k, f, k ∈ L2

r(0, 1), (2)

subject to eigenparameter-dependent boundary conditions

τ(λ)f(1) = (pf ′)(1) and f(0) cosα = (pf ′)(0) sin α, α ∈ [0, π). (3)

For a positive function r and a generalized Nevanlinna function τ boundary
value problems of the form (2)-(3) have been studied in a more or less abstract
framework extensively in the last decades (see e.g. [4], [12], [18], [21], [31], [33]
and the references quoted in [17]). Here we assume that τ belongs to some
subclass Dκ′, κ′ ∈ N0, of the so-called definitizable functions (see [23], [24]).
The classes Dκ′ are introduced in Definition 3. It follows from results obtained
by P. Jonas in [24] that each function τ ∈ Dκ′ can be written with the help
of a selfadjoint operator or relation T0 with κ′ negative squares in some Krein
space (H, [·, ·]H) in the form

τ(λ) = Re τ(λ0) + (λ−Re λ0)[e, e]H

+ (λ − λ0)(λ − λ0)
[
(T0 − λ)−1e, e

]
H
,

(4)

where λ0 ∈ ρ(T0) and e ∈ H are fixed. The formula (4) establishes a corre-
spondence between the functions from Dκ′, κ′ = 0, 1, 2, . . . , and the selfadjoint
operators and relations with finitely many negative squares. For generalized
Nevanlinna functions and selfadjoint operators and relations in Pontryagin
spaces such a correspondence is well known (see [19], [27]). As selfadjoint op-
erators with finitely many negative squares appear in many applications (see
e.g. [5], [6], [7], [8]) the classes Dκ′ are also of independent interest.
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In order to solve (2)-(3) in Section 4 we investigate the abstract λ-dependent
boundary value problem

f ′ − λf = k, τ(λ)Γ0f̂ + Γ1f̂ = 0, f̂ =




f

f ′


 ∈ A+. (5)

Here A is a closed symmetric operator or relation with finitely many negative
squares and defect one in a Krein space K, {C, Γ0, Γ1} is a boundary value
space for A+ (see Definition 1) and τ belongs to the class Dκ′, κ′ ∈ N0.
We assume that the selfadjoint extension A0 = ker Γ0 of A has a nonempty
resolvent set. Then the Weyl function corresponding to A and {C, Γ0, Γ1} (cf.
(12)) belongs also to some class Dκ. Using the coupling method from [12] we
construct a selfadjoint extension Ã of A which acts in the Krein space K×H,
where H is as in (4), such that its compressed resolvent PK(Ã−λ)−1|K onto the
basic space yields a solution of (5) (cf. [3]). Here we show that the linearization
Ã also has a finite number κ̃ of negative squares and we obtain an estimate
for this quantity.

In Section 5 we rewrite the λ-dependent boundary value problem (2)-(3) in
the form (5) and we apply the general results from Section 4. Making use of
results from the spectral and perturbation theory of definitizable operators,
we describe the spectral properties of the linearization Ã. It turns out that for
all λ which are points of holomorphy of τ and do not belong to some discrete
set and all k ∈ L2

r(0, 1) the problem (2)-(3) has a unique solution. For a special
function τ ∈ D0 we construct the linearization Ã in a more explicit form and
give a criterion for Ã to be nonnegative.

The paper is organized as follows. In Section 2 we provide some basic facts on
boundary value spaces and Weyl functions associated with symmetric relations
in Krein spaces. The classes Dκ′ of complex valued functions defined and
studied in Section 3 play an essential role in Section 4, where boundary value
problems of the form (5) are solved with the help of compressed resolvents of
selfadjoint operators and relations with finitely many negative squares. The
problem (2)-(3) is studied in Section 5. Here we construct the linearization Ã
and investigate its spectrum.

2 Preliminaries

Let throughout this paper (K, [·, ·]) be a separable Krein space. The linear
space of bounded linear operators defined on a Krein space K1 with values in
a Krein space K2 is denoted by L(K1,K2). If K := K1 = K2 we write L(K). We
study linear relations in K, that is, linear subspaces of K2. The set of all closed
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linear relations in K is denoted by C̃(K). Linear operators are viewed as linear
relations via their graphs. For the usual definitions of the linear operations
with relations and the inverse we refer to [15].

If (H, [·, ·]H) is another separable Krein space the elements of K × H will be
written in the form {k, h}, k ∈ K, h ∈ H. K × H equipped with the inner
product [·, ·]K×H defined by

[{k, h}, {k′, h′}]K×H := [k, k′] + [h, h′]H, k, k′ ∈ K, h, h′ ∈ H,

is also a Krein space. If S is a relation in K and T is a relation in H we shall
write S × T for the direct product of S and T which is a relation in K ×H,

S × T =







{s, t}

{s′, t′}




∣∣∣∣∣∣




s

s′


 ∈ S,




t

t′


 ∈ T





. (6)

For the pair
(
{s,t}
{s′,t′}

)
on the right hand side of (6) we shall also write {ŝ, t̂},

where ŝ =
(

s
s′

)
, t̂ =

(
t
t′

)
.

Let S be a closed linear relation in K. The resolvent set ρ(S) of S is defined
as the set of all λ ∈ C such that (S − λ)−1 ∈ L(K). If µ ∈ ρ(S) the relation S
can be written as

S =








(S − µ)−1h

(I + µ(S − µ)−1)h




∣∣∣∣∣∣
h ∈ K





.

The spectrum σ(S) of S is the complement of ρ(S) in C. The extended spec-
trum σ̃(S) of S is defined by σ̃(S) = σ(S) if S ∈ L(K) and σ̃(S) = σ(S)∪{∞}
otherwise. We set ρ̃(S) := C\σ̃(S). The adjoint S+ of S is defined as

S+ :=








h

h′




∣∣∣∣∣∣
[f ′, h] = [f, h′] for all




f

f ′


 ∈ S





.

S is said to be symmetric (selfadjoint) if S ⊂ S+ (resp. S = S+).

A closed symmetric relation A in a Krein space (K, [·, ·]) is said to have κ
negative squares, κ ∈ N0, if the hermitian form 〈·, ·〉 on A, defined by

〈


f

f ′


 ,




g

g′




〉
:= [f, g′],




f

f ′


 ,




g

g′


 ∈ A,

has κ negative squares, that is, there exists a κ-dimensional subspace M in A
such that 〈v̂, v̂〉 < 0 if v̂ ∈ M, v̂ 6= 0, but no κ + 1 dimensional subspace with

4



this property. This holds if and only if for any positive integer n the symmetric
matrix

(〈
v̂i, v̂j

〉)n

i,j=1
, v̂1, . . . , v̂n ∈ A, (7)

has at most κ negative eigenvalues and at least for one choice of n and
v̂1, . . . , v̂n ∈ A the matrix (7) has exactly κ negative eigenvalues. If A is self-
adjoint and ρ(A) is nonempty then A has κ negative squares if and only if the
form

[(
I + λ(A − λ)−1

)
·, (A − λ)−1 ·

]

defined on K has κ negative squares.

We say that a closed symmetric relation A in K has defect m ∈ N ∪ {∞} if
there exists a selfadjoint extension Â in K such that dim(Â/A) = m. It is
not difficult to see that if A has κ negative squares and finite defect m each
selfadjoint extension Â of A in K has κ′, κ ≤ κ′ ≤ κ + m, negative squares.
If Â is a selfadjoint relation with κ negative squares and A ⊂ Â, A ∈ C̃(K),
has finite defect m, then A is a symmetric relation with κ′, κ − m ≤ κ′ ≤ κ,
negative squares.

For the description of the selfadjoint extensions of closed symmetric relations
we use the so-called boundary value spaces.

Definition 1 Let A be a closed symmetric relation in the Krein space (K, [·, ·]).
We say that {G, Γ0, Γ1} is a boundary value space for A+ if (G, (·, ·)) is a
Hilbert space and there exist linear mappings Γ0, Γ1 : A+ → G such that
Γ :=

(
Γ0

Γ1

)
: A+ → G × G is surjective, and the relation

[f ′, g] − [f, g′] = (Γ1f̂ , Γ0ĝ) − (Γ0f̂ , Γ1ĝ) (8)

holds for all f̂ =
(

f

f ′

)
, ĝ =

(
g

g′

)
∈ A+.

If a closed symmetric relation A has a selfadjoint extension Â in K with
ρ(Â) 6= ∅, then there exists a boundary value space {G, Γ0, Γ1} for A+ such
that Â coincides with ker Γ0 (see [10]).

For basic facts on boundary value spaces and further references see e.g. [9],
[10], [13] and [14]. We recall only a few important consequences. For the rest
of this section let A be a closed symmetric relation and assume that there
exists a boundary value space {G, Γ0, Γ1} for A+. Then

A0 := ker Γ0 and A1 := ker Γ1 (9)
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are selfadjoint extensions of A. The mapping Γ =
(

Γ0

Γ1

)
induces, via

AΘ := Γ−1Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G), (10)

a bijective correspondence Θ 7→ AΘ between C̃(G) and the set of closed ex-
tensions AΘ ⊂ A+ of A. In particular (10) gives a one-to-one correspondence
between the closed symmetric (selfadjoint) extensions of A and the closed
symmetric (resp. selfadjoint) relations in G. If Θ is a closed operator in G,
then the corresponding extension AΘ of A is determined by

AΘ = ker
(
Γ1 − ΘΓ0

)
. (11)

Let Nλ := ker(A+ − λ) = ran (A − λ)[⊥] be the defect subspace of A and set

N̂λ :=
{(

f
λf

)∣∣∣f ∈ Nλ

}
.

Now we assume that the selfadjoint relation A0 in (9) has a nonempty resolvent
set. For each λ ∈ ρ(A0) the relation A+ can be written as a direct sum of (the
subspaces) A0 and N̂λ (see [10]). Denote by π1 the orthogonal projection onto
the first component of K2. The functions

λ 7→ γ(λ) := π1(Γ0|N̂λ)
−1 ∈ L(G,K), λ ∈ ρ(A0),

and

λ 7→ M(λ) := Γ1(Γ0|N̂λ)
−1 ∈ L(G), λ ∈ ρ(A0) (12)

are defined and holomorphic on ρ(A0) and are called the γ-field and the Weyl
function corresponding to A and {G, Γ0, Γ1}. For λ, ζ ∈ ρ(A0) the relation (8)
implies M(λ)∗ = M(λ) and

γ(ζ) =
(
1 + (ζ − λ)(A0 − ζ)−1

)
γ(λ) (13)

and

M(λ) − M(ζ)∗ = (λ − ζ)γ(ζ)+γ(λ) (14)

hold (see [10]). If Θ ∈ C̃(G) and AΘ is the corresponding extension of A then
a point λ ∈ ρ(A0) belongs to ρ(AΘ) if and only if 0 belongs to ρ(Θ − M(λ)).
For λ ∈ ρ(AΘ) ∩ ρ(A0) the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+ (15)

holds (for a proof see e.g. [10]).
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3 Classes of functions connected with selfadjoint relations with

finitely many negative squares

3.1 The classes Dκ

The class of all functions τ which are piecewise meromorphic in C\R and
symmetric with respect to the real axis, that is τ(λ) = τ(λ), is denoted by
M(C\R). By C+ (C−) we denote the open upper (resp. lower) half plane.
For the extended real line and the extended complex plane we write R and C,
respectively. For a function τ ∈ M(C\R) the union of all points of holomorphy
of τ in C\R and all points λ ∈ R such that τ can be analytically continued to
λ and the continuations from C+ and C− coincide is denoted by h(τ).

Let τ ∈ M(C\R). We shall say that the growth of τ near R is of finite order if
there exist constants M, m > 0 and an open neighbourhood U of R in C such
that U\R ⊂ h(τ) and

|τ(λ)| ≤
M(1 + |λ|)2m

|Im λ|m

holds for all λ ∈ U\R. An open subset ∆ ⊂ R is said to be of positive type
with respect to τ if for every sequence (λn) ⊂ h(τ) ∩ C+ which converges in C

to a point of ∆ we have

lim inf
n→∞

Im τ(λn) ≥ 0.

An open subset ∆ ⊂ R is said to be of negative type with respect to τ if ∆ is
of positive type with respect to −τ .

Let in the following the growth of τ ∈ M(C\R) near R be of finite order. Let
α ∈ R and assume that there exists an open interval Iα, α ∈ Iα, such that
Iα\{α} is of positive type with respect to τ . Let να ≥ 0 be the smallest integer
such that

−∞ < lim
λ→̂α

(λ − α)2να+1τ(λ) ≤ 0,

where λ→̂α denotes the nontangential limit from C+. If να > 0, then α is said
to be a generalized pole of nonpositive type of τ with multiplicity να. Assume
that there exists a number k∞ > 0 such that (k∞,∞) and (−∞,−k∞) are of
positive type with respect to τ and let ν∞ ≥ 0 be the smallest integer such
that

0 ≤ lim
λ→̂∞

τ(λ)

λ2ν∞+1
< ∞.
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If ν∞ > 0, then ∞ is said to be a generalized pole of nonpositive type of τ with
multiplicity ν∞.

Let β ∈ R and assume that there exists an open interval Iβ, β ∈ Iβ, such that
Iβ\{β} is of positive type with respect to τ . Let ηβ ≥ 0 be the largest integer
such that

−∞ < lim
λ→̂β

τ(λ)

(λ − β)2ηβ−1
≤ 0.

If ηβ > 0, then β ∈ R is said to be a generalized zero of nonpositive type of
τ with multiplicity ηβ. Assume that there exists a number l∞ > 0 such that
(l∞,∞) and (−∞,−l∞) are of positive type with respect to τ and let η∞ ≥ 0
be the largest integer such that

0 ≤ lim
λ→̂∞

λ2η∞−1τ(λ) < ∞.

If η∞ > 0, then ∞ is said to be a generalized zero of nonpositive type of τ with
multiplicity η∞.

The notions of generalized poles and generalized zeros of nonpositive type ap-
pear often in the investigation of the classes Nκ, κ = 0, 1, 2, . . . , of generalized
Nevanlinna functions. Recall that a function G ∈ M(C\R) belongs to Nκ if
the kernel NG,

NG(λ, µ) :=
G(λ) − G(µ)

λ − µ
,

has κ negative squares (see [27]). It follows from [23, Corollary 2.6] that a
function G ∈ M(C\R) is a generalized Nevanlinna function if and only if the
growth of G near R is of finite order and there exists a finite set e ⊂ R such
that R\e is of positive type with respect to G. The class N0 coincides with
the class of Nevanlinna functions. This class consists of functions which are
holomorphic in C+ ∪ C− and have a nonnegative imaginary part on C+.

Let G ∈ Nκ. Denote by αj (βi), j = 1, . . . , r (i = 1, . . . , s) the poles (zeros) in
C+ and the generalized poles (generalized zeros) of nonpositive type in R with
multiplicities νj (ηi) of G (cf. [28], [30]). By [20] (see also [11]) there exists a
Nevanlinna function G0 such that

G(λ) =

∏s
i=1(λ − βi)

ηi(λ − βi)
ηi

∏r
j=1(λ − αj)νj(λ − αj)νj

G0(λ). (16)

Note that G ∈ Nκ has poles in C+ and generalized poles of nonpositive type
in R∪{∞} of total multiplicity κ. Moreover, if G ∈ Nκ is not identically equal
to zero, then G has zeros in C+ and generalized zeros of nonpositive type in
R ∪ {∞} of total multiplicity κ (cf. [28]).
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In Theorem 2 and Definition 3 below we define a special subclass of the so-
called definitizable functions which were introduced and comprehensively stud-
ied by P. Jonas in [23] and [24]. Let again τ ∈ M(C\R), let the growth of τ
near R be of finite order and denote by κC+ the total multiplicity of the poles
in C

+ of τ and by κR+ (κR−) the total multiplicity of the generalized poles of
nonpositive type in (0,∞) ((−∞, 0)) of the function τ (−τ , respectively). If
0 (∞) is no generalized pole of nonpositive type of the function λ 7→ λτ(λ)
(λ 7→ 1

λ
τ(λ)) we set κ0 = 0 (κ∞ = 0, respectively). Otherwise we denote by κ0

and κ∞ the multiplicity of the generalized pole 0 and ∞ of nonpositive type
of the function λ 7→ λτ(λ) and λ 7→ 1

λ
τ(λ), respectively.

Theorem 2 For a function τ ∈ M(C\R) and κ ∈ N0 the following assertions
are equivalent.

(i) There exists a point λ0 ∈ h(τ)\{∞}, a function G ∈ Nκ holomorphic in λ0

and a rational function g holomorphic in C\{λ0, λ0} such that

λ

(λ − λ0)(λ − λ0)
τ(λ) = G(λ) + g(λ)

holds for all points λ where τ , G and g are holomorphic.

(ii) For every z ∈ h(τ)\{∞} there exists a function Gz ∈ Nκ holomorphic in z
and a rational function gz holomorphic in C\{z, z} such that

λ

(λ − z)(λ − z)
τ(λ) = Gz(λ) + gz(λ)

holds for all points λ where τ , Gz and gz are holomorphic.

(iii) The growth of τ near R is of finite order, there exists a finite set e ⊂ R

such that (−∞, 0)\e is of negative type and (0,∞)\e is of positive type with
respect to τ and

κ = κR+ + κR− + κC+ + κ0 + κ∞

holds.

Definition 3 For a function τ ∈ M(C\R) satisfying one of the equivalent
assertions (i), (ii) and (iii) in Theorem 2 for some κ ∈ N0 we will write
τ ∈ Dκ.

The next lemma will be used in the proofs of Theorem 2 and Theorem 6.

Lemma 4 Let G+ and G− be Nevanlinna functions holomorphic in (−∞, 0)
and (0,∞), respectively. Then the functions λ 7→ λG+(λ) and λ 7→ −λG−(λ)
belong to N0 ∪ N1 and R is of positive type with respect to λ 7→ λG+(λ) and
λ 7→ −λG−(λ).
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PROOF. We prove the statement for the function G+. A similar reasoning
applies for G−. By [1] there exists a positive measure σ,

∫ ∞

0−

dσ(t)

1 + t2
< ∞,

and constants a ∈ R, b ≥ 0, such that

G+(λ) = a + bλ +
∫ ∞

0−

(
1

t − λ
−

t

1 + t2

)
dσ(t).

We claim that λ 7→ λ(1+λ2)−1G+(λ) is a generalized Nevanlinna function. In
fact, from

λ

1 + λ2

1

t − λ
=

t

(t − λ)(1 + t2)
+

λt − 1

(1 + t2)(1 + λ2)

we obtain

λ

1 + λ2

∫ ∞

0−

(
1

t − λ
−

t

1 + t2

)
dσ(t) =

∫ ∞

0−

dσ̃(t)

t − λ
−

1

1 + λ2

∫ ∞

0−

dσ(t)

1 + t2
,

where dσ̃(t) = t(1 + t2)−1dσ(t). This implies

λ

1 + λ2
G+(λ) =

bλ2 + aλ −
∫ ∞
0−(1 + t2)−1dσ(t)

1 + λ2
+

∫ ∞

0−

dσ̃(t)

t − λ
.

The polynomial

λ 7→ bλ2 + aλ −
∫ ∞

0−

dσ(t)

1 + t2

belongs to the class N0 if b = 0 and a > 0 and to the class N1 otherwise. The
function

λ 7→ (1 + λ2)
∫ ∞

0−

dσ̃(t)

t − λ

belongs to N1 if dσ̃ 6= 0 and therefore

λG+(λ) = bλ2 + aλ −
∫ ∞

0−

dσ(t)

1 + t2
+ (1 + λ2)

∫ ∞

0−

dσ̃(t)

t − λ

belongs to N0 ∪ N1.

The only possible generalized pole (of order one) of nonpositive type is ∞, i.e.
R is of positive type with respect to λ 7→ λG+(λ). 2

PROOF. [Proof of Theorem 2] Assume that (i) holds. Let z ∈ h(τ)\{∞} and
assume that z 6= λ0, λ0. By our assumption there exists a function G ∈ Nκ
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holomorphic in λ0 and z and a rational function g holomorphic in C\{λ0, λ0}
such that

λ

(λ − z)(λ − z)
τ(λ) =

(λ − λ0)(λ − λ0)

(λ − z)(λ − z)
G(λ) +

(λ − λ0)(λ − λ0)

(λ − z)(λ − z)
g(λ).

Define a function rz by

rz(λ) =
(z − λ0)(z − λ0)

(λ − z)(z − z)
G(z) +

(z − λ0)(z − λ0)

(λ − z)(z − z)
G(z)

if z ∈ C\R and by

rz(λ) =
(z − λ0)(z − λ0)

(λ − z)2
G(z) +

2(z − Re λ0)G(z) + (z − λ0)(z − λ0)G
′(z)

λ − z

if z is real. Then the function

λ 7→ Gz(λ) =
(λ − λ0)(λ − λ0)

(λ − z)(λ − z)
G(λ) − rz(λ) (17)

is holomorphic at z and z. Obviously the multiplicity of the poles in C
+ of Gz

and G coincide. Moreover α ∈ R ∪ {∞} is a generalized pole of multiplicity
να with respect to Gz if and only if α is a generalized pole of multiplicity να

with respect to G. Therefore the function Gz belongs to the class Nκ.

With the function gz,

gz(λ) := rz(λ) +
(λ − λ0)(λ − λ0)

(λ − z)(λ − z)
g(λ),

which is a rational function holomorphic in C\{z, z}, we obtain

λ

(λ − z)(λ − z)
τ(λ) = Gz(λ) + gz(λ),

hence (ii) holds.

Let us show that (ii) implies (iii). As the function λ 7→ 1
λ
τ(λ) belongs to Nκ′

for some κ′ ∈ N0 the growth of τ near R is of finite order. Moreover, there
exists a finite set e ⊂ R such that R\e is of positive type with respect to the
function λ 7→ 1

λ
τ(λ). Let ∆ be an open interval such that ∆ ⊂ (0,∞)\e. Then

[25, Proposition 2.6] implies the existence of a Nevanlinna function G0 with
(−∞, 0) ⊂ h(G0) and a function G1 locally holomorphic on ∆ such that

1

λ
τ(λ) = G0(λ) + G1(λ).
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By Lemma 4 the interval ∆ is of positive type with respect to τ . A similar
reasoning shows that an open interval ∆, ∆ ⊂ (−∞, 0)\e is of negative type
with respect to τ . We choose now z ∈ h(τ)\R and Gz, gz as in (ii). Then for
some a, b, c ∈ R we have

λτ(λ) = (λ − z)(λ − z)Gz(λ) + aλ2 + bλ + c,

τ(λ)

λ
=

(λ − z)(λ − z)

λ2
Gz(λ) + a +

b

λ
+

c

λ2
.

(18)

By (18) the point 0 (∞) is a generalized pole of nonpositive type of multiplicity
ν0 (ν∞) with respect to Gz if and only if 0 (∞) is a generalized pole of non-
positive type of multiplicity ν0 (ν∞) with respect to λ 7→ λτ(λ) (λ 7→ 1

λ
τ(λ),

respectively). Moreover, a point α+ ∈ (0,∞) (α− ∈ (−∞, 0)) is a generalized
pole of nonpositive type of multiplicity να+

(να−
) with respect to Gz if and

only if α+ (α−) is a generalized pole of nonpositive type of multiplicity να+

(να−
) with respect to τ (−τ , respectively). Obviously the multiplicity of the

nonreal poles of Gz and τ coincide. Therefore we have

κ = κR+ + κR− + κC+ + κ0 + κ∞.

Assume that (iii) holds. Then by similar arguments used before it follows
that (0,∞)\e and (−∞, 0)\e are of positive type with respect to the function
λ 7→ λτ(λ). Hence this function belongs to some class Nκ′ , κ′ ∈ N0. Let
λ0 ∈ h(τ)\R such that τ(λ0) 6= 0. Then the function

G̃(λ) :=
λ

(λ − λ0)(λ − λ0)
τ(λ)

is also a generalized Nevanlinna function which belongs to the class Nκ′ if
∞ is a generalized pole of nonpositive type of λ 7→ λτ(λ) and to the class
Nκ′+1 otherwise. As τ is holomorphic in λ0 there exists a rational function g
holomorphic in C\{λ0, λ0} such that

λ

(λ − λ0)(λ − λ0)
τ(λ) = (G̃ − g)(λ) + g(λ) (19)

holds and G̃ − g is holomorphic in λ0. The function G̃ − g has poles in C
+ of

total multiplicity κC+ and generalized poles of nonpositive type in (0,∞) and
(−∞, 0) of total multiplicity κR+

and κR−
, respectively. It follows from (18),

where z, Gz and gz are replaced by λ0, G̃ − g and g, respectively, that the
point 0 (∞) is a generalized pole of nonpositive type of total multiplicity κ0

(κ∞, respectively) with respect to G̃− g. Therefore G̃− g has poles in C+ and
generalized poles of nonpositive type in R ∪ {∞} of total multiplicity

κ = κR+ + κR− + κC+ + κ0 + κ∞,
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that is, G̃ − g ∈ Nκ. Hence (iii) implies (i). 2

Obviously, assertion (iii) from Theorem 2 implies Dκ ∩ Dκ′ = ∅, if κ 6= κ′.
Note, that the sum of a function τ1 ∈ Dκ1

and a function τ2 ∈ Dκ2
belongs to

some class Dκ̃ with κ̃ ≤ κ1 + κ2.

We emphasize that the classes Dκ, κ ∈ N0, introduced in Definition 3 are no
subclasses of generalized Nevanlinna functions and vice versa a (generalized)
Nevanlinna function in general does not belong to some class Dκ. Moreover,
even if a function belongs to Dκ ∩ Nκ′, κ, κ′ ∈ N0, then there is in general no
connection between κ and κ′.

Example 5 Consider two subsets P and N of N0 and let (pj)j∈P ⊂ R and
(nj)j∈N ⊂ R. Assume

∑
j∈P |pj| < ∞ and

∑
j∈N |nj| < ∞. Let (µ+

j )j∈P ⊂
(0,∞) and (µ−

j )j∈N ⊂ (−∞, 0) such that µ+
j 6= µ+

k , j 6= k and µ−
j 6= µ−

k ,
j 6= k. In the case that P (N ) consists of infinitely many elements we assume,
in addition, that the sequence (µ+

j )j∈P ((µ−
j )j∈N , respectively) converges to

zero. Then the function τ ,

τ(λ) =
∑

j∈P

pj

λ − µ+
j

+
∑

j∈N

nj

λ − µ−
j

,

belongs to Dκ if and only if the number of elements of
{
pj | pj > 0

}
∪

{
nj |nj < 0

}

is equal to κ. This follows from Theorem 2 (iii) and the fact that 0 and ∞
are no generalized poles of nonpositive type of the functions λ 7→ λτ(λ) and
λ 7→ 1

λ
τ(λ), respectively.

In the case that the number of elements in
{
pj | pj > 0

}
∪

{
nj |nj > 0

}
(20)

is finite, τ can be written as the sum of a Nevanlinna function and a function
from the class Nκ′, where κ′ is the number of elements in the set (20), hence
τ ∈ Nκ′ .

Theorem 6 A function τ belongs to some class Dκ if and only if τ can be
written as the difference of two generalized Nevanlinna functions G+ and G−,
τ = G+ − G−, where G+ is holomorphic on (−∞, 0) and G− is holomorphic
on (0,∞).

PROOF. Assume that τ belongs to the class Dκ and let λ0 ∈ h(τ)\R. Then
there exists a generalized Nevanlinna function G ∈ Nκ holomorphic in λ0 such
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that

λ

(λ − λ0)(λ − λ0)
τ(λ) = G(λ) + g(λ)

holds with some rational function g which is holomorphic in C\{λ0, λ0}. Let αj

(βi), j = 1, . . . , r (i = 1, . . . , s), be the poles (zeros) in C+ and the generalized
poles (generalized zeros) of nonpositive type in R with multiplicities νj (ηi) of
G and let G0 ∈ N0 such that

G(λ) = r(λ)G0(λ), r(λ) =

∏s
i=1(λ − βi)

ηi(λ − βi)
ηi

∏r
j=1(λ − αj)νj (λ − αj)νj

, (21)

holds (cf. (16)). We write G0 as the sum of two Nevanlinna functions G0+ and
G0−, where G0+ is holomorphic on (−∞, 0) and G0− is holomorphic on (0,∞).
As λ 7→ λG0+(λ) and λ 7→ −λG0−(λ) are generalized Nevanlinna functions
(cf. Lemma 4) the same holds true for

λ 7→
(λ − λ0)(λ − λ0)

λ
G0+(λ) and λ 7→ −

(λ − λ0)(λ − λ0)

λ
G0−(λ).

We can assume that α1, . . . , αl are negative and αl+1, . . . , αr 6∈ (−∞, 0). Let r+

be a rational function with poles at αj, j = 1, . . . , l, such that the generalized
Nevanlinna function

Ĝ+(λ) :=
(λ − λ0)(λ − λ0)

λ
r(λ)G0+(λ) − r+(λ)

is holomorphic in (−∞, 0) and let r− be a rational function with poles in
(0,∞) such that the generalized Nevanlinna function

Ĝ−(λ) := −
(λ − λ0)(λ − λ0)

λ
r(λ)G0−(λ) − r−(λ)

is holomorphic in (0,∞). Then

G+(λ) := Ĝ+(λ) − r−(λ) +
(λ − λ0)(λ − λ0)

λ
g(λ)

and G−(λ) := Ĝ−(λ) − r+(λ) are generalized Nevanlinna functions holomor-
phic in (−∞, 0) and (0,∞), respectively, and τ = G+ − G−.

It remains to show that G+−G−, where G+ and G− are generalized Nevanlinna
functions holomorphic in (−∞, 0) and (0,∞), respectively, belongs to some
class Dκ. Clearly the growth of G+ −G− near R is of finite order. If e denotes
the union of the generalized generalized poles of nonpositive type of G+ and
G−, then e is finite and Theorem 2 (iii) implies G+ − G− ∈ Dκ for some
κ ∈ N0. 2
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3.2 Weyl functions of symmetric relations with finitely many negative squares

In Lemma 7 and in Theorem 8 we establish a connection between the Weyl
functions of symmetric relations with finitely many negative squares and the
functions from the classes Dκ, κ ∈ N0. We remark, that Lemma 7 can also be
deduced from [24, Theorem 1.12].

Lemma 7 Let A be a closed symmetric relation with defect one in the Krein
space (K, [·, ·]) and assume that there exists a selfadjoint extension A0 with κ
negative squares and ρ(A0) 6= ∅. Let {C, Γ0, Γ1} be a boundary value space for
A+ such that ker Γ0 = A0. Then the corresponding Weyl function M belongs
to some class Dκ′, where κ′ ≤ κ. If, in addition, the condition

K = clsp
{
Nλ |λ ∈ ρ(A0)

}

is fulfilled, then M ∈ Dκ.

PROOF. Let λ, λ0 ∈ ρ(A0). Then, making use of (13) and (14), we find
Im M(λ0) = Im λ0 γ(λ0)

+γ(λ0) and

M(λ) = M(λ0) + (λ − λ0)γ(λ0)
+γ(λ)

= Re M(λ0) − i Im λ0γ(λ0)
+γ(λ0)

+ γ(λ0)
+

(
λ − λ0 + (λ − λ0)(λ − λ0)(A0 − λ)−1

)
γ(λ0)

= Re M(λ0) + γ(λ0)
+

(
λ − Reλ0 + (λ − λ0)(λ − λ0)(A0 − λ)−1

)
γ(λ0).

For λ ∈ ρ(A0) we set

G(λ) := γ(λ0)
+(I + λ(A0 − λ)−1)γ(λ0)

and

g(λ) :=
λ ReM(λ0) + (λ Reλ0 − |λ0|2)γ(λ0)

+γ(λ0)

(λ − λ0)(λ − λ0)
.

A simple calculation shows that

λ

(λ − λ0)(λ − λ0)
M(λ) = G(λ) + g(λ)

holds. Now we regard γ(λ0) as an element in K. For λ, µ ∈ ρ(A0) we have

G(λ) − G(µ)

λ − µ
=

[
(I + λ(A0 − λ)−1)γ(λ0), (A0 − µ)−1γ(λ0)

]
(22)
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and the assumption that A0 has κ negative squares implies that G belongs to
Nκ′ for some κ′ ≤ κ. Therefore M ∈ Dκ′.

Under the additional assumption K = clsp {Nλ |λ ∈ ρ(A0)} we have

K = clsp
{
(1 + (λ − λ0)(A0 − λ)−1)γ(λ0) |λ ∈ ρ(A0)

}
.

It is not difficult to see that the set

sp








(A0 − λ)−1γ(λ0)

(I + λ(A0 − λ)−1)γ(λ0)




∣∣∣∣∣∣
λ ∈ ρ(A0)





is dense in A0. Hence the kernel (22) has κ negative squares, i.e. M ∈ Dκ. 2

Let τ ∈ Dκ for some κ ∈ N0. By [24, Theorem 3.9] there exists a Krein space
(H, [·, ·]), a definitizable selfadjoint relation T0 in H and an element e ∈ H
such that h(τ) = ρ̃(T0) and

τ(λ) = Re τ(λ0) + (λ−Re λ0)[e, e]

+ (λ − λ0)(λ − λ0)
[
(T0 − λ)−1e, e

] (23)

holds for a fixed λ0 ∈ ρ(T0) and all λ ∈ ρ(T0). Recall that the definitizable
selfadjoint relation T0 possesses a spectral function with properties similar to
the spectral function of a definitizable selfadjoint operator (cf. [24, page 71],
[16] and [29]). It follows from [24, Theorem 3.9] that if the representation (23)
is choosen minimal, i.e.

H = clsp
{
(1 + (λ − λ0)(T0 − λ)−1)e |λ ∈ ρ(T0)

}
(24)

holds, then the relation T0 has κ negative squares.

Making use of the representation (23) the next theorem is a variant of [3,
Theorem 3.3]. For the convenience of the reader we sketch the proof.

Theorem 8 Let τ be a function in the class Dκ which is not equal to a con-
stant. Choose H, T0 and e ∈ H as in (23) such that (24) holds. Then there
exists a closed symmetric operator T with defect one and a boundary value
space {C, Γ′

0, Γ
′
1} for T + such that τ coincides with the corresponding Weyl

function. Moreover H = clsp {Nλ |λ ∈ ρ(T0)}, T0 = ker Γ′
0 and T0 has κ

negative squares.

PROOF. [Sketch of the proof of Theorem 8] Let H, T0, e ∈ H and λ0 be as
in (23). For all λ ∈ ρ(T0) we define γ′(λ) := (1 + (λ − λ0)(T0 − λ)−1)e. The
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relation

T :=








f

g


 ∈ T0

∣∣∣∣∣∣
[g − λ0f, e] = 0





is closed, symmetric and has defect one and ker(T + − λ) = sp γ′(λ) holds for
all λ ∈ ρ(T0). From H = clsp {γ′(λ) |λ ∈ ρ(T0)} = clsp {Nλ |λ ∈ ρ(T0)} it
follows that T is an operator without eigenvalues. We regard γ ′(λ) as the linear
mapping C 3 c 7→ c γ′(λ) ∈ H and denote the linear functional c γ ′(λ) 7→ c
defined on ran γ′(λ) by γ′(λ)(−1). The elements f̂ ∈ T+, for every λ ∈ ρ(T0),

can be written in the form f̂ =
(

f0

f ′

0

)
+

(
fλ

λfλ

)
, where

(
f0

f ′

0

)
∈ T0 and fλ belongs

to Nλ = ran γ′(λ). One verifies as in the proof of [3, Theorem 3.3] (see also
[13, Theorem 1]) that {C, Γ′

0, Γ
′
1}, where

Γ′
0f̂ := γ′(λ)(−1)fλ,

Γ′
1f̂ := γ′(λ)+(f ′

0 − λf0) + τ(λ)γ′(λ)(−1)fλ,

is a boundary value space for T + with corresponding Weyl function τ . 2

It is well known that for an invertible function τ ∈ Nκ the function −τ−1

belongs also to the class Nκ. For a function τ ∈ Dκ the index κ can change,
e.g. if τ(λ) = λ2 + 1 then τ ∈ D0 but −τ−1 belongs to D1.

Theorem 9 Let τ ∈ Dκ, κ ∈ N0, and assume that τ is not identically equal
to zero. Then −τ−1 belongs to the class Dκ′, where κ′ ∈ {κ − 1, κ, κ + 1},
κ′ ∈ N0.

PROOF. We can assume that τ is not equal to a constant. Otherwise the
statement is clear. By Theorem 8 there exists a closed symmetric operator T
with defect one and a boundary value space {C, Γ′

0, Γ
′
1} for T + such that τ

is the Weyl function and T0 = ker Γ′
0 has κ negative squares. T has κ − 1 or

κ negative squares and therefore the selfadjoint relation T1 := ker Γ′
1 has κ′,

κ′ ∈ {κ − 1, κ, κ + 1}, negative squares.

It is easy to see that {C, Γ̂0, Γ̂1}, where Γ̂0 := −Γ′
1, Γ̂1 := Γ′

0, is also a boundary
value space for T + and the corresponding Weyl function is given by

τ̂ (λ) = −τ(λ)−1, λ ∈ ρ(T0) ∩ h(τ−1).

The statement of the theorem follows if we apply Lemma 7 to {C, Γ̂0, Γ̂1}. 2
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4 A class of λ-dependent boundary value problems

In this section we study a class of boundary value problems where a function
from some class Dκ′ appears in the boundary condition. Our investigation is
based on the approach in [12] (see also [2], [3]).

Let (K, [·, ·]) be a Krein space and let A be a closed symmetric relation with
κ negative squares and defect one. We assume that there exists a selfadjoint
extension A0 of A in K with ρ(A0) 6= ∅. Let {C, Γ0, Γ1} be a boundary value
space for A+ such that A0 = ker Γ0, and let τ ∈ Dκ′. The γ-field and the Weyl
function corresponding to A and {C, Γ0, Γ1} will be denoted by γ and M .
We consider the following λ-dependent boundary value problem: For a given
element k ∈ K find a vector f̂1 =

(
f1

f ′

1

)
∈ A+ such that

f ′
1 − λf1 = k and τ(λ)Γ0f̂1 + Γ1f̂1 = 0 (25)

holds. We remark that in the case of a constant function τ in the boundary
condition of (25) the boundary value problem can be solved with the help
of the resolvent of the selfadjoint relation Ã−τ = ker(τΓ0 + Γ1) ∈ C̃(K) (see
(11)). As A has κ negative squares it follows that Ã−τ has κ or κ + 1 negative
squares.

Theorem 10 Let A ⊂ A+, {C, Γ0, Γ1} and M be as above. Let τ ∈ Dκ′,
κ′ ∈ N0, be not equal to a constant, let H, {C, Γ′

0, Γ
′
1} and T + be as in Theorem

8 and assume that M + τ is not identically equal to zero. We define

h0 := h(M) ∩ h(τ) ∩ h
(
τ−1

)
∩ h

(
(M + τ)−1

)
.

Then the relation

Ã =
{
{f̂1, f̂2} ∈ A+× T+|Γ1f̂1 − Γ′

1f̂2 = Γ0f̂1 + Γ′
0f̂2 = 0

}

is a selfadjoint extension of A in K ×H with κ̃ negative squares, where

0 ≤ κ̃ ∈ {κ + κ′ − 1, . . . , κ + κ′ + 2}.

The set C\(R∪ h0) is finite and h0\{∞} is a subset of ρ(Ã). For every k ∈ K
and every λ ∈ h0\{∞} a unique solution of the λ-dependent boundary value
problem (25) is given by

f1 = PK(Ã − λ)−1{k, 0} = (A0 − λ)−1k − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+k,

f ′
1 = λf1 + k,
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where PK is the projection onto the first component of K×H. If, in addition,
A is a densely defined operator, then Ã is a selfadjoint operator.

PROOF. Here A0 = ker Γ0 is a selfadjoint relation with κ or κ + 1 negative
squares. Therefore, by Lemma 7 the Weyl function M corresponding to A and
the boundary value space {C, Γ0, Γ1} belongs to some class Dκ̂, κ̂ ≤ κ + 1.
Since τ ∈ Dκ′ the function M + τ belongs to some class Dη, η ≤ κ̂ + κ′, and
Theorem 9 implies that −τ−1 and −(M + τ)−1 also belong to some classes
Dµ, µ ∈ N0. In particular these functions have only a finite number of nonreal
poles and we conclude that the set C\(R ∪ h0) is finite.

Now we can proceed as in the proof of [3, Theorem 4.1]. Let H, T ⊂ T0 ⊂ T+,
{C, Γ′

0, Γ
′
1} be as in Theorem 8 and set T1 := ker Γ′

1. We define mappings Γ̃0,
Γ̃1 : A+× T+ → C2 in the following way. For {f̂1, f̂2} ∈ A+× T+ we set

Γ̃0{f̂1, f̂2} :=




Γ0f̂1

Γ′
1f̂2


 and Γ̃1{f̂1, f̂2} :=




Γ1f̂1

−Γ′
0f̂2


 .

It is not difficult to verify that {C2, Γ̃0, Γ̃1} is a boundary value space for
A+× T+. The corresponding γ-field and Weyl function are denoted by γ̃ and
M̃ , respectively. Here we have

γ̃(λ) =




γ(λ) 0

0 γ′(λ)τ(λ)−1


 , λ ∈ h(M) ∩ h(τ) ∩ h(τ−1),

where γ and γ′ are the γ-fields corresponding to A and {C, Γ0, Γ1} and to T
and {C, Γ′

0, Γ
′
1}, respectively, and

M̃(λ) =




M(λ) 0

0 −τ(λ)−1


 , λ ∈ h(M) ∩ h(τ) ∩ h(τ−1).

The selfadjoint relation Ã in K ×H corresponding to Θ =
(

0 1
1 0

)
∈ L(C2) via

(10) is given by

Ã = ker(Γ̃1 − ΘΓ̃0)

=
{
{f̂1, f̂2} ∈ A+ × T+ |Γ1f̂1 − Γ′

1f̂2 = Γ0f̂1 + Γ′
0f̂2 = 0

}
.

(26)

For λ ∈ h0\{∞} the resolvent of Ã can be written as

(Ã − λ)−1 = (A0 × T1 − λ)−1 + γ̃(λ)
(
Θ − M̃(λ)

)−1
γ̃(λ)+, (27)
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(see (15)). Calculating (Θ−M̃(λ))−1 one verifies that the compressed resolvent
of Ã onto K is given by

PK(Ã − λ)−1|K = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)+.

For k ∈ K we set

f1 := PK(Ã − λ)−1{k, 0} and f2 := PH(Ã − λ)−1{k, 0}.

Then



{f1, f2}

{λf1 + k, λf2}


 ∈ Ã ⊂ A+ × T+

and f̂1 :=
(

f1

λf1+k

)
∈ A+, f̂2 :=

(
f2

λf2

)
∈ T+, f2 ∈ ker(T + − λ). From (26) and

since τ is the Weyl function corresponding to {C, Γ′
0, Γ

′
1} we obtain

Γ1f̂1 = Γ′
1f̂2 = τ(λ)Γ′

0f̂2 = −τ(λ)Γ0f̂1, λ ∈ h0\{∞},

and it follows that f̂1 ∈ A+ is a solution of (25).

Let us show that the solution f̂1 ∈ A+ of (25) is unique. Assume that the

vector ĝ1 =
(

g1

λg1+k

)
∈ A+ is also a solution of (25), λ ∈ h0\{∞}. Then f̂1− ĝ1

belongs to N̂λ,A+ :=
{(

h
λh

)∣∣∣ h ∈ ker(A+ − λ)
}

and

0 = τ(λ)Γ0(f̂1 − ĝ1) + Γ1(f̂1 − ĝ1) =
(
τ(λ) + M(λ)

)
Γ0(f̂1 − ĝ1)

implies f̂1 − ĝ1 ∈ A0 ∩ N̂λ,A+ as τ(λ) + M(λ) 6= 0. Therefore f̂1 = ĝ1.

We claim that Ã has κ̃,

0 ≤ κ̃ ∈ {κ + κ′ − 1, . . . , κ + κ′ + 2},

negative squares. In fact, since T has κ′ or κ′ − 1 negative squares we obtain
that A×T ∈ C̃(K×H) is a symmetric relation with κ+κ′−1 or κ+κ′ negative
squares. Now the assertion follows from the fact that A × T has defect 2.

It remains to verify that Ã is an operator if A is a densely defined operator.
As T is a symmetric operator (see Theorem 8) A × T is a (in general not
densely defined) symmetric operator in K × H. We denote the multivalued
part of A+ × T+ by mul (A+ × T+). Let

N̂∞ :=








0

h




∣∣∣∣∣∣
h ∈ mul (A+ × T+)





.
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By [10, Proposition 2.1] it is sufficient to show that (Γ̃0 Γ̃1)
>N̂∞ ∩ Θ = {0}

holds. From mul (A+ × T+) = {{0, f} | f ∈ mul T +} we obtain




Γ̃0

Γ̃1


 N̂∞ ∩ Θ =








{0, Γ′
1(

0
f )}

{0,−Γ′
0(

0
f )}




∣∣∣∣∣∣
f ∈ mul T+




∩







{x, y}

{y, x}




∣∣∣∣∣∣
x, y ∈ C





.

Hence Γ′
0

(
0
f

)
= Γ′

1

(
0
f

)
= 0 and this implies

(
0
f

)
∈ T . As T is an operator

we have f = 0 and therefore (Γ̃0 Γ̃1)
>N̂∞ ∩ Θ = {0}, i.e. Ã is an operator.

Theorem 10 is proved. 2

Since the representation of the function τ ∈ Dκ′ in Theorem 10 is choosen
minimal (see Section 3) one verifies as in the proof of [3, Theorem 4.1] that Ã
fulfils the minimality condition

clsp
{
(1 + (λ − λ0)(Ã − λ)−1){k, 0} | k ∈ K, λ ∈ ρ(Ã)

}
= K ×H

for some λ0 ∈ ρ(Ã). Let B̃ be a selfadjoint extension of the symmetric relation
A ∈ C̃(K) which acts in some Krein space K × H̃ such that ρ(B̃) 6= ∅ and

PK(B̃ − λ)−1{k, 0}

yields a solution of (25). Then the compressed resolvents of Ã and B̃ onto K
coincide. Assume that B̃ fulfils the minimality condition

clsp
{
(1 + (λ − λ0)(B̃ − λ)−1){k, 0} | k ∈ K, λ ∈ ρ(B̃)

}
= K × H̃

for some λ0 ∈ ρ(Ã) ∩ ρ(B̃). Then

V :=








∑n
i=1(1 + (λi − λ0)(Ã − λi)

−1){ki, 0}
∑n

i=1(1 + (λi − λ0)(B̃ − λi)
−1){ki, 0}




∣∣∣∣∣∣
λi ∈ ρ(Ã) ∩ ρ(B̃), ki ∈ K





is a densely defined isometric operator in K ×H with dense range in K × H̃
such that

V (Ã − λ)−1x = (B̃ − λ)−1V x

is fulfilled for all x ∈ dom V and all λ ∈ ρ(Ã) ∩ ρ(B̃). As

[
(I + λ(B̃ − λ)−1)V x, (B̃ − λ)−1V x

]
K×H̃

=
[
(I + λ(Ã − λ)−1)x, (Ã − λ)−1x

]
K×H
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holds for all x ∈ dom V we conclude that the number of negative squares of
Ã and B̃ coincide.

5 Sturm-Liouville operators with an indefinite weight function

In this section we show how Theorem 10 can be applied to Sturm-Liouville
operators with an indefinite weight function and a λ-dependent boundary
condition. Here we make use of results obtained by B. Ćurgus and H. Langer
in [6]. For simplicity only regular second order differential expressions are
considered. We remark that the following considerations can be generalized to
higher order differential operators and to singular problems.

5.1 The general case

Let p−1, q, r ∈ L1(a, b), −∞ < a < b < ∞, be real functions such that p > 0,
r 6= 0 almost everywhere and assume that the sets

{x ∈ (a, b) | r(x) > 0} and {x ∈ (a, b) | r(x) < 0}

have positive Lebesgue measure. By L2
|r|(a, b) we denote the space of all equiv-

alence classes of measurable functions f defined on (a, b) for which

∫ b

a
|f(x)|2|r(x)|dx

is finite.

Let κ′ ∈ N0 and let τ ∈ Dκ′ be not equal to a constant. In this section we
consider the following boundary value problem. For a given k ∈ L2

|r|(a, b) find

f ∈ L2
|r|(a, b) such that f and pf ′ are absolutely continuous, the equation

−(pf ′)′ + qf − λrf = rk (28)

and the boundary conditions

τ(λ)f(b) = (pf ′)(b) and f(a) cos α = (pf ′)(a) sin α (29)

are fulfilled for some α ∈ [0, π).

In order to apply Theorem 10 the boundary value problem (28)-(29) will be
formulated in the form (25). For this we equip L2

|r|(a, b) with the inner products

[f, g] :=
∫ b

a
f(x)g(x)r(x)dx and (f, g) :=

∫ b

a
f(x)g(x)|r(x)|dx, (30)
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where f, g,∈ L2
|r|(a, b). The corresponding Krein space (L2

|r|(a, b), [·, ·]) (Hilbert

space (L2
|r|(a, b), (·, ·))) is denoted by K (resp. K). The fundamental symmetry

connecting the inner products in (30) is given by

(Jf)(x) := (sgn r(x))f(x), f ∈ L2
|r|(a, b).

Let D̃ be the set of all f ∈ L2
|r|(a, b) such that f and pf ′ are absolutely

continuous and the equation

−(pf ′)′ + qf = |r|g

holds with a certain g ∈ L2
|r|(a, b). We define the operator B̃ in K by B̃f := g.

This definition makes sense since f = 0 (in K) implies g = 0 (in K). We set

D := {f ∈ D̃ | f(a) cosα − (pf ′)(a) sin α = 0 = f(b) = (pf ′)(b)}

and

D′ := {f ∈ D̃ | f(a) cosα − (pf ′)(a) sin α = 0}.

The restrictions of the operator B̃ to D and D′ are denoted by B and B ′,
respectively. As in [32] one verifies that B is a densely defined closed symmetric
operator in K which has defect (1, 1). The adjoint of B in K is B ′. It is obvious
that A := JB is a densely defined closed symmetric operator in the Krein
space K and its adjoint in K is given by A+ = JB∗ = JB′. We have A+f = g,
f ∈ dom (A+) = D′ if and only if

−(pf ′)′ + qf = rg.

It is well known that the assumption p > 0 implies that B is bounded from
below and that the spectrum of an arbitrary selfadjoint extension of B in K is
discrete. By [6, Proposition 2.2] the form [A·, ·] has a finite number of negative
squares. Let B̂ be a selfadjoint extension of B in K such that 0 ∈ ρ(B̂). Then
0 belongs also to the resolvent set of the selfadjoint operator Â := JB̂ in
K which is an extension of A. From [6, Proposition 1.1] we obtain that each
selfadjoint extension of A in K has a nonempty resolvent set. As B̂−1 is a
compact operator we conclude from Â−1 = B̂−1J that the spectrum of Â is
discrete. If Â′ is an arbitrary selfadjoint extension of A in K then the resolvents
of Â′ and Â differ only by a rank one operator and therefore the spectrum of
Â′ is also discrete.

A boundary value space {C, Γ0, Γ1} for A+ is given by

Γ0f̂ := −f(b) and Γ1f̂ := (pf ′)(b), f̂ =




f

A+f


 . (31)
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The boundary value problem (28)-(29) takes the form

(A+ − λ)f = k, τ(λ)Γ0f̂ + Γ1f̂ = 0, f̂ =




f

A+f


 . (32)

By Lemma 7 the Weyl function M corresponding to the operator A and the
boundary value space {C, Γ0, Γ1} belongs to some class Dκ, κ ∈ N0. If M
fulfils M(µ) 6= −τ(µ) for some µ ∈ h(M) ∩ h(τ) Theorem 10 can be applied
to solve (32). Let T0 be a minimal representing relation for τ (cf. (23) and
(24)) in some Krein space H and choose T ⊂ T0 ⊂ T+ and {C, Γ′

0, Γ
′
1} as in

Theorem 8. By Theorem 10

Ã =
{
{f̂1, f̂2} ∈ A+× T+|Γ1f̂1 − Γ′

1f̂2 = Γ0f̂1 + Γ′
0f̂2 = 0

}
(33)

is a selfadjoint operator in K × H with a finite number of negative squares
and for all λ ∈ h0, where

h0 = h(M) ∩ h(τ) ∩ h
(
τ−1

)
∩ h

(
(M + τ)−1

)
, (34)

the vector f := PK(Ã − λ)−1|K k is the unique solution of the boundary value
problem (28)-(29). By Theorem 10 there are at most finitely many points in
C\R which do not belong to h0. As the operator A0 = ker Γ0 given by

A0f =
1

r

(
(−pf ′)′ + qf

)
,

domA0 =
{
f ∈ D̃ | f(a) cosα − (pf ′)(a) sin α = f(b) = 0

}
,

has discrete spectrum more can be said about the solvability of the boundary
value problem (28)-(29) for real λ.

Theorem 11 Let A ⊂ A+, M and τ be as above, assume that M + τ is not
identically equal to zero and let Ã and h0 be as in (33) and (34). Assume that
∆ ⊂ R is a closed interval such that

∆ ⊂ h(τ) ∪ {poles of τ}

holds. Then there exists a finite set e ⊂ ∆ such that ∆\e ⊂ h0 and for every
λ ∈ ∆\e the vector f = PK(Ã−λ)−1|K k is the unique solution of the boundary
value problem (28)-(29).

PROOF. As τ is not equal to a constant and has only finitely many poles in
∆ the function τ−1 also has only finitely many poles in ∆. Since the spectrum
of A0 is discrete the Weyl function M has at most finitely many poles in ∆
and the assumption that M + τ is not identically equal to zero implies the
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same for the poles of (M + τ)−1. If e is the union of the poles of τ , τ−1, M
and (M + τ)−1 in ∆, then e is finite and therefore ∆\e ⊂ h0 ⊂ ρ(Ã). 2

In Theorem 12 below we describe the spectrum of the operator Ã. For this
recall that a point λ ∈ C belongs to the essential spectrum σess(C) of a densely
defined closed operator C acting in a Banach space if C −λ is not a Fredholm
operator, i.e. the range of the operator C − λ has infinite codimension or
dim(ker(C − λ)) = ∞.

Let D be a definitizable operator acting in a Krein space (K, [·, ·]) and let E(·)
be the spectral function of D (cf. [29]). For the convenience of the reader we
repeat some definitions. A point λ ∈ σ̃(D)∩R belongs to σ++(D) (σ−−(D)) if
there exists a connected open set δ ⊂ R with λ ∈ δ such that E(δ) is defined
and (E(δ), [·, ·]) (resp. (E(δ),−[·, ·])) is a Hilbert space. If E(δ)H (δ and λ as
above) is a Pontryagin space with finite rank of negativity (positivity) then λ
belongs to σπ+

(D) (resp. σπ−
(D)).

A point λ ∈ R∩σ̃(D) is called a critical point (an essential critical point) of D if
λ 6∈ σ++(D)∪σ−−(D) (resp. λ 6∈ σπ+

(D)∪σπ−
(D)). A critical point λ is called

regular if sup ‖E(∆)‖ < ∞ where the supremum runs over all sufficiently small
neighbourhoods ∆ of λ. The set of critical points (essential critical points,
regular critical points) of D is denoted by c(D) (resp. c∞(D), cr(D)). The
elements of cs(D) := c(D)\cr(D) are called singular critical points.

Theorem 12 Let A ⊂ A+, {C, Γ0, Γ1} and M be as above and denote by
κ the number of negative squares of [A·, ·]. Let τ ∈ Dκ′ , κ′ ∈ N0, and let H,
T ⊂ T0 ⊂ T+ and {C, Γ′

0, Γ
′
1} be as above. Assume that M+τ is not identically

equal to zero. Then the selfadjoint operator Ã in (33) has

0 ≤ κ̃ ∈ {κ + κ′ − 1, . . . , κ + κ′ + 2}

negative squares. The set C\R with the exception of at most 2κ̃ points belongs
to the resolvent set of Ã. Moreover, we have

(0,∞) ⊂ σπ+
(Ã) ∪ ρ(Ã) and (−∞, 0) ⊂ σπ−

(Ã) ∪ ρ(Ã), (35)

and the set

σ(Ã) ∩
(
(C\R) ∪

(
(0,∞)\σ++(Ã)

)
∪

(
(−∞, 0)\σ−−(Ã)

))
(36)

is a subset of σp(Ã) consisting of at most 2κ̃ points. The essential spectrum of
Ã coincides with the essential spectrum of T0,

σess(Ã) = σess(T0). (37)
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The set c(Ã) is a subset of

(
(0,∞)\σ++(Ã)

)
∪

(
(−∞, 0)\σ−−(Ã)

)
∪ {0,∞}. (38)

The point 0 belongs to c∞(Ã) if and only if 0 ∈ c∞(T0). The point ∞ belongs to
c∞(Ã) and no other point belongs to c∞(Ã), that is c∞(Ã) ⊂ {0,∞}. Further
we have cs(Ã) ∩ ρ(T0) = ∅.

PROOF. By Theorem 10 Ã is a selfadjoint operator with ρ(Ã) 6= ∅ and κ̃
negative squares. Therefore Ã is a definitizable operator with a definitizing
polynomial p of the form

z 7→ p(z) = zq(z)q(z), (39)

where q is a monic polynomial (cf. [29]). This implies (35), (36) and (38).

For the operator A0 = ker Γ0 we have σess(A0) = ∅, hence from (27) we obtain

σess(Ã) = σess(A0 × T0) = σess(T0)

and [26, Theorem 1] implies

c∞(Ã) = c∞(A0 × T0) = c∞(A0) ∪ c∞(T0).

Observe that the assumptions on the function r and [6] imply c∞(A0) = {∞}
and, as T0 has a κ′ negative squares, c∞(T0) ⊂ {0,∞} holds.

Moreover, for λ ∈ ρ(T0) it follows from above that λ is an isolated point of the
spectrum of Ã or λ ∈ ρ(Ã) and therefore λ 6∈ cs(Ã). The remaining assertions
of the theorem follow from the fact that Ã has κ̃ negative squares and that Ã
has a definitizing polynomial p of the form (39). 2

5.2 A special function τ ∈ D0 in the boundary condition

For a special type of functions from the class D0 we construct Ã in a more
explicit form and investigate its spectral properties.

Assume that

τ(λ) = m1(λ) − m2(λ), λ ∈ h(τ), (40)
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holds with Nevanlinna functions m1 and m2 given by

m1(λ) = a1 +
∫ ∞

0

(
1

t − λ
−

t

1 + t2

)
dσ1(t),

m2(λ) = a2 +
∫ 0

−∞

(
1

t − λ
−

t

1 + t2

)
dσ2(t),

where a1, a2 ∈ R and σ1, σ2 are positive measures such that

∫ ∞

0

1

1 + t2
dσ1(t) < ∞,

∫ 0

−∞

1

1 + t2
dσ2(t) < ∞.

In the next lemma we establish a simple operator model for τ . Equip the
linear space H := L2([0,∞), σ1)× L2((−∞, 0], σ2) with the Krein space inner
product [·, ·] defined by







g1

g2


 ,




h1

h2





 :=

∫ ∞

0
g1(t)h1(t) dσ1(t) −

∫ 0

−∞
g2(t)h2(t) dσ2(t),

g1, h1 ∈ L2([0,∞), σ1), g2, h2 ∈ L2((−∞, 0], σ2), and define the operator T0 in
H on the dense linear subspace

dom T0 :=








g1

g2


 ∈ H

∣∣∣∣∣∣

∫ ∞

0
|t g1(t)|

2dσ1(t) +
∫ 0

−∞
|t g2(t)|

2dσ2(t) < ∞





by


T0




g1

g2





 (t) := t




g1(t)

g2(t)


 ,

set γ : C → H, c 7→ c
(

wi1
wi2

)
, where wi1(t) := (t − i)−1, t ∈ [0,∞), and

wi2(t) := (t − i)−1, t ∈ (−∞, 0].

Lemma 13 T0 is a selfadjoint nonnegative operator in the Krein space (H, [·, ·]).
For λ 6∈ supp σ1 ∪ supp σ2 we have

τ(λ) = Re τ(i) + γ+
(
λ + (λ2 + 1)(T0 − λ)−1

)
γ.

In particular the function τ belongs to the class D0.
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PROOF. The adjoint of γ ∈ L(C,H) is given by

γ+




g1

g2


 =

∫ ∞

0

g1(t)

t + i
dσ1(t) −

∫ 0

−∞

g2(t)

t + i
dσ2(t),




g1

g2


 ∈ H.

Now the statement of the lemma follows from an easy calculation. 2

Let T be the restriction of T0 to the set

domT :=








g1

g2


 ∈ dom T0

∣∣∣∣∣∣

∫ ∞

0
g1(t) dσ1(t) =

∫ 0

−∞
g2(t) dσ2(t)





.

Then T is a closed symmetric operator with defect one. The defect subspace
Nµ, Im µ 6= 0, of T is spanned by wµ =

(
wµ1

wµ2

)
∈ H, wµ1(t) := (t − µ)−1,

t ∈ [0,∞), wµ2(t) := (t − µ)−1, t ∈ (−∞, 0]. Since T + can be written as a

direct sum of T0 and N̂µ = sp
{(

wµ
µwµ

)}
a vector ĝ ∈ T + can be written in the

form

ĝ =




g0

T0g0


 + cĝ




wµ

µwµ


 , g0 =




g01

g02


 ∈ dom T0, (41)

with a suitable cĝ ∈ C. We define the linear mappings Γ′
0, Γ

′
1 : T+ → C by

Γ′
0ĝ := cĝ,

Γ′
1ĝ :=

∫ ∞

0
g01(t) dσ1(t) −

∫ 0

−∞
g02(t) dσ2(t) + τ(µ)cĝ.

(42)

Let us show that {C, Γ′
0, Γ

′
1} is a boundary value space for T + with corre-

sponding Weyl function τ . The latter statement is clear. Let ĝ, ĥ ∈ T+ be
decomposed in the form (41). Then we have

[
T0g0 + cĝµwµ, h0 + cĥwµ

]
−

[
g0 + cĝwµ, T0h0 + cĥµwµ

]
=

= cĝcĥ (µ − µ)[wµ, wµ] +
[
(T0 − µ)g0, cĥwµ

]
−

[
cĝwµ, (T0 − µ)h0

]

= cĝcĥ

(
τ(µ) − τ(µ)

)
+ cĥ

(∫ ∞

0
g01(t) dσ1(t) −

∫ 0

−∞
g02(t) dσ2(t)

)

− cĝ

(∫ ∞

0
h01(t) dσ1(t) −

∫ 0

−∞
h02(t) dσ2(t)

)

= Γ′
1ĝΓ′

0ĥ − Γ′
0ĝΓ′

1ĥ.

We check that
(

Γ′

0

Γ′

1

)
: T+ → C2 is surjective. For a given vector

(
c1
c2

)
∈ C2 we
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choose k0 ∈ dom T0 such that γ+(T0 + i)k0 = c2 − τ(µ)c1. Then we have




Γ′
0

Γ′
1










k0

T0k0


 + c1




wµ

µwµ





 =




c1

c2




and it follows that {C, Γ′
0, Γ

′
1} is a boundary value space for T +.

The following theorem is a special case of Theorem 12 and Theorem 11.

Theorem 14 Let τ be as in (40), let T ⊂ T0 ⊂ T+ be as above and assume
that the Weyl function M corresponding to A and the boundary value space
{C, Γ0, Γ1} fulfils M(µ′) 6= −τ(µ′) for some µ′ ∈ h(M) ∩ h(τ). Then the
operator

Ã =












f

A+f


 ,




g0

T0g0


 + cĝ




wµ

µwµ








∈ A+× T+

∣∣∣∣∣∣
f(b) = cĝ

(pf ′)(b) =
∫ ∞

0
g01(t) dσ1(t) −

∫ 0

−∞
g02(t) dσ2(t) + τ(µ)cĝ





(43)

is a selfadjoint extension of A in K ×H with κ̃ negative squares, where

κ̃ ∈ {κ, κ + 1, κ + 2}.

For all λ ∈ h0 the vector f := PK(Ã − λ)−1{k, 0} is the unique solution of
the boundary value problem (28)-(29). The sets h(τ) and h0 coincide with the
exception of a discrete set which may accumulate only to nonisolated points of
supp σ1 ∪ supp σ2.

The essential spectrum σess(Ã) of Ã coincides with the nonisolated points of
supp σ1 ∪ supp σ2. Moreover 0 belongs to c∞(Ã) if and only if 0 is an accumu-
lation point of supp σ1 and supp σ2.

PROOF. It follows from the definition of the boundary value space {C, Γ′
0, Γ

′
1}

in (42) and Theorem 10 that Ã has the form (43). Since T0 is a nonnegative
operator we get κ̃ ∈ {κ, κ + 1, κ + 2}.

As the isolated points of supp σ1 ∪ supp σ2 are poles of τ and the points not
belonging to supp σ1 ∪ supp σ2 are points of holomorphy of τ the same argu-
ments as in the proof of Theorem 11 show that the sets h(τ) and h0 coincide
with the exception of a discrete set which has accumulation points only in the
set of nonisolated points of supp σ1 ∪ supp σ2.

Since σess(T0) is the set of non-isolated points of supp σ1 and supp σ2 we obtain
from (37) that σess(Ã) coincides with the non-isolated points of supp σ1 and
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supp σ2. If 0 is an eigenvalue of T0 then the corresponding eigenspace has
at most dimension 2. Hence 0 ∈ c∞(T0) if and only if 0 is an accumulation
point of supp σ1 and supp σ2. Now Theorem 12 implies the last statement of
Theorem 14. 2

In the next theorem we give a criterion for Ã to be nonnegative.

Theorem 15 Let the assumptions be as in Theorem 14 and let Ã be as in
(43). For h := {f, g0 + cĝwµ} ∈ dom Ã we have

[Ãh, h] = (pf ′)(a)f(a) +
∫ b

a

(
p|f ′|2 + q|f |2

)
dx + [T0g0, g0]

+ 2 Re
(
cĝµ[wµ, g0]

)
+ |cĝ|

2
(
Re µ [wµ, wµ] − Re τ(µ)

)
.

If α ∈ [0, π
2
] and the function q is nonnegative, 0 ∈ h(τ) and τ(0) ≤ 0 then Ã

is a nonnegative operator in the Krein space K ×H.

PROOF. The first assertions follow from Theorem 10, (31) and the fact that
T0 and A are densely defined operators which implies (see the proof of Theorem
10) that Ã is a selfadjoint operator.

Let h := {f, g0 + cĝwµ} ∈ dom Ã. Then

−(pf ′)(b)f(b) = −cĝ[T0g0, wµ] + cĝ[µg0, wµ] − |cĝ|
2τ(µ)

and Im τ(µ) = Im µ[wµ, wµ] implies

[Ãh, h] = [A+f, f ] + [T0g0 + cĝµwµ, g0 + cĝwµ]

= −(pf ′)f
∣∣∣
b

a
+

∫ b

a

(
p|f ′|2 + q|f |2

)
dx + [T0g0 + cĝµwµ, g0 + cĝwµ]

= (pf ′)(a)f(a) +
∫ b

a

(
p|f ′|2 + q|f |2

)
dx + [T0g0, g0]

+ 2 Re
(
cĝµ[wµ, g0]

)
+ |cĝ|

2
(
Re µ[wµ, wµ] − Re τ(µ)

)
.

If 0 ∈ h(τ) we have 0 ∈ ρ(T0) and therefore we can choose µ = 0 in (41) and
(43). Then

[Ãh, h] = (pf ′)(a)f(a) +
∫ b

a

(
p|f ′|2 + q|f |2

)
dx + [T0g0, g0] − |cĝ|

2τ(0),

the nonnegativity of T0, the relation f(a) cosα = (pf ′)(a) sin α and the as-
sumptions α ∈ [0, π

2
], p > 0, q ≥ 0 and τ(0) ≤ 0 imply that the operator Ã is

nonnegative. 2
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