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Abstract

In this paper we study the time dependent Schrödinger equation with all possible self-adjoint singular 
interactions located at the origin, which include the δ and δ′-potentials as well as boundary conditions of 
Dirichlet, Neumann, and Robin type as particular cases. We derive an explicit representation of the time 
dependent Green’s function and give a mathematical rigorous meaning to the corresponding integral for 
holomorphic initial conditions, using Fresnel integrals. Superoscillatory functions appear in the context of 
weak measurements in quantum mechanics and are naturally treated as holomorphic entire functions. As 
an application of the Green’s function we study the stability and oscillatory properties of the solution of the 
Schrödinger equation subject to a generalized point interaction when the initial datum is a superoscillatory 
function.
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1. Introduction

The main purpose of this paper is to study the Green’s function of the time dependent 
Schrödinger equation subject to general self-adjoint point interactions located at the origin, and 
to prove stability results for the solutions corresponding to superoscillating initial data. As a con-
sequence of our detailed analysis we also obtain an explicit expression and asymptotic expansion 
of the time dependent plane wave solution, which allows to discuss the oscillatory properties of 
the time evolution of superoscillations under generalized point interactions.

Strongly localized potentials, also called pseudo-potentials or nowadays better known as δ-
potentials, were already considered by Kronig and Penney in [46] and Fermi in [40]. Heuristically 
speaking, these δ-potentials are represented by the Hamiltonian

H = −� +
∑
y∈Y

cy δ(x − y), (1.1)

where cy δ(x − y) is a point source of strength cy located at the point y ∈ Rd , d ≥ 1. The δ-
potentials may form a discrete set, e.g., a periodic lattice Y = Zd , or a single point Y = {0}. The 
rigorous mathematical meaning of the Hamiltonian (1.1) was given only much later by Berezin 
and Faddeev in [22].

In this paper we will restrict ourselves to a single point interaction in R and hence assume 
Y = {0} and d = 1 from now on. In this context H in (1.1) is defined as a proper self-adjoint 
extension of the symmetric operator −� on C∞

0 (R \ {0}) which corresponds to interface (or 
jump) conditions at the origin of the form

u(0+) = u(0−),

u′(0+) − u′(0−) = c0 u(0); (1.2)

a detailed discussion can be found in the standard monograph [16]. Besides the δ-potential also 
other types of self-adjoint interface conditions can be treated (see [13,32,35,36,38,44,51,53] and 
[21,39,50] for interactions on hypersurfaces), among them so-called δ′-potentials and further 
generalizations, as well as decoupled systems with Dirichlet, Neumann, or Robin conditions. 
There are various ways to describe the complete family of self-adjoint interface conditions at the 
origin and for our purposes it is convenient to use the parametrization

(I − J )

(
u(0+)

u(0−)

)
= i(I + J )

(
u′(0+)

−u′(0−)

)
(1.3)
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with unitary 2 × 2-matrices J (see Example 3.2 for identifying (1.2) as a special case of (1.3)) 
and I denoting the 2 × 2 identity matrix. To be more precise: The class of jump conditions 
(1.3) coincides with the class of self-adjoint interface conditions at the point 0. In other words, 
each unitary matrix J ∈ C2×2 leads to a self-adjoint realization of the Laplacian in L2(R) with 
a generalized point interaction supported at the point 0, and conversely, for each self-adjoint 
Laplacian in L2(R) with a generalized point interaction supported at the point 0 there exists a 
unitary matrix J ∈ C2×2 such that the interface condition has the form (1.3); cf. [20, Chapter 2.2].

An important problem we study in this paper is the time dependent Schrödinger equation with 
holomorphic initial datum F subject to a general self-adjoint singular interaction supported at 
the origin, that is, we consider

i
∂

∂t
�(t, x) = − ∂2

∂x2 �(t, x), t > 0, x ∈ R \ {0}, (1.4a)

(I − J )

(
�(t,0+)

�(t,0−)

)
= i(I + J )

(
∂
∂x

�(t,0+)

− ∂
∂x

�(t,0−)

)
, t > 0, (1.4b)

�(0+, x) = F(x), x ∈R \ {0}. (1.4c)

It will be shown in Section 2 that the corresponding Green’s function is given by

G(t, x, y) =
(

μ
(x,y)
+ �

( |x| + |y|
2
√

it
+ ω+

√
it

)
+ μ

(x,y)
− �

( |x| + |y|
2
√

it
+ ω−

√
it

))
e− (|x|+|y|)2

4it

+ 1

2
√

iπt

(
μ

(x,y)

0 e− (|x|+|y|)2
4it + e− (x−y)2

4it

)
, t > 0, x, y ∈R \ {0},

(1.5)

where the entire function � is defined in (2.2) and the coefficients μ±, μ0, and ω± are explicitly 
determined in terms of the entries of the unitary matrix J in the jump condition (1.4b); cf. The-
orem 2.4, the examples in Section 3, and [14,15,43,49,54] for related results. Using the Green’s 
function (1.5) the solution � of (1.4) can be written as the integral

�(t, x) =
∫
R

G(t, x, y)F (y)dy, t > 0, x ∈ R \ {0}. (1.6)

While this integral is well defined for compactly supported continuous functions F , one has 
difficulties in making sense of (1.6) already for plane waves F(x) = eikx . A mathematically 
rigorous analysis of this issue for a certain class of holomorphic functions with growth condition 
is provided in Section 4, where the main tool is the Fresnel integral approach.

The general results in Section 2 and Section 4 are applied to superoscillations in Section 5. 
Superoscillating functions are band-limited functions that can oscillate faster than their fastest 
Fourier component. They appear in quantum mechanics as results of weak measurements and, 
in particular, their time evolution under the Schrödinger equation is of crucial importance, see 
[1,10,12,31]. For a rigorous treatment of this subject we refer to [2–7,18,19,33] and [8]. These 
kinds of functions also appear in antenna theory [55] (see also [25]), and various applications 
in optics were studied by M.V. Berry and many others, see, e.g., [24,26–30,41,42,47,48]. More 
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information can also be found in the introductory papers [9,11,17,45] and in the Roadmap on 
superoscillations [23].

A weak measurement of a quantum observable represented by the self-adjoint operator A, 
involving a pre-selected state ψ0 and a post-selected state ψ1, leads to the weak value

Aweak := (ψ1,Aψ0)

(ψ1,ψ0)
∈C,

where the real part of Aweak can be interpreted as the shift and the imaginary part as the momen-
tum of the pointer recording the measurement. An important feature of the weak measurement 
is that, in contrast with strong measurements Astrong := (ψ, Aψ)/(ψ, ψ), the real part of Aweak

may become very large when the states ψ0 and ψ1 are almost orthogonal; this leads to super-
oscillations. A typical superoscillatory function is

Fn(x, k) =
n∑

l=0

Cl(n, k)ei(1− 2l
n

)x, x ∈ R, (1.7)

where |k| > 1 and

Cl(n, k) =
(

n

l

)(
1 + k

2

)n−l (1 − k

2

)l

.

If we let n tend to infinity, we obtain limn→∞ Fn(x, k) = eikx uniformly for x in compact subsets 
of R. The notion superoscillations comes from the fact that the frequencies (1 − 2l

n
) in (1.7) are 

in modulus bounded by 1, but the frequency k of the limit function can be arbitrarily large.

As a consequence of the representation (1.6) of the solution of the Schrödinger equation sub-
ject to a general self-adjoint singular interaction we ask: When does a convergent sequence of 
initial conditions

lim
n→∞Fn = F (1.8)

also lead to a convergent sequence of solutions

lim
n→∞�(t, x;Fn) = �(t, x;F), (1.9)

and which type of convergence should be considered in (1.8) and (1.9)? Our abstract result 
Theorem 4.6, which is also the bridge to investigate the time evolution of superoscillations in 
Section 5, shows that (1.9) holds uniformly on compact subsets of (0, ∞) × R, whenever the 
sequence (Fn)n satisfy some exponential boundedness conditions and the convergence in (1.8)
is such that

lim
n→∞ sup

∣∣Fn(z) − F(z)
∣∣e−C|z| = 0
z∈Sα∪(−Sα)
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for some C ≥ 0 and certain sectors Sα and −Sα in the complex plane; cf. Section 4 for more 
details. These abstract assumptions are in accordance with the convergence properties of (holo-
morphic extensions of) superoscillating functions in spaces of entire functions with exponential 
growth that have been clarified just in the recent years, see [37]. The case of superoscillatory 
initial data is then discussed in Corollary 5.2 and the explicit form, oscillatory behaviour, and 
long time asymptotics of the corresponding limit in (1.9) are provided in Proposition 5.3 and 
Theorem 5.5.

Acknowledgment. We are indebted to the anonymous referee for a careful reading of our 
manuscript and for pointing out various improvements. J.B. gratefully acknowledges support 
for the Distinguished Visiting Austrian Chair at Stanford University by the Europe Center and 
the Freeman Spogli Institute for International Studies. This publication is based upon work from 
COST Action CA18232 MAT-DYN-NET, supported by COST (European Cooperation in Sci-
ence and Technology), www.cost .eu.

2. Green’s function for the Schrödinger equation with a generalized point interaction

In this section we derive the Green’s function of the time dependent Schrödinger equation 
(1.4) with a generalized singular interaction located at the origin. That is, we construct a function 
G which depends on the matrix J , such that the solution � of (1.4) can be written in the form

�(t, x) =
∫
R

G(t, x, y)F (y)dy, t > 0, x ∈ R \ {0}. (2.1)

In Section 4 we shall clarify for which initial conditions F and in which sense this integral is 
understood. Here, we only want to derive the explicit form and some properties of the Green’s 
function G itself.

We start by defining the entire function

�(z) := ez2
(1 − erf(z)), z ∈ C, (2.2)

where erf(z) = 2√
π

∫ z

0 e−ξ2
dξ is the well known error function. Some important properties of 

this function are collected in the following lemma; cf. [19, Lemma 3.1].

Lemma 2.1. The function � in (2.2) has the following properties:

(i) The function � satisfies the differential equation

d

dz
�(z) = 2z�(z) − 2√

π
, z ∈C. (2.3)

(ii) The value of the function � at −z is given by

�(−z) = 2ez2 − �(z), z ∈C. (2.4)
157
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(iii) The absolute value of �(z) can be estimated by

|�(z)| ≤ �(Re(z)), z ∈ C. (2.5)

(iv) The function � is monotonically decreasing on R and asymptotically on C one has

�(z) =
{
O

( 1
|z|

)
, if Re(z) ≥ 0,

2ez2 +O
( 1

|z|
)
, if Re(z) ≤ 0,

as |z| → ∞. (2.6)

(v) For all a > 0 and b, c ∈ C one has the integral identities

∞∫
0

e−ax2−bxdx =
√

π

2
√

a
�

( b

2
√

a

)
, (2.7a)

∞∫
0

e−ax2−bx�
(√

a x + c
)
dx = − 1

2
√

a

⎧⎪⎨⎪⎩
�(c)−�

( b
2
√

a

)
c− b

2
√

a

, if c �= b
2
√

a
,

�′(c), if c = b
2
√

a
.

(2.7b)

Proof. (i) and (ii) are contained in [19, Lemma 3.1].

(iii) Using 
∫ ∞

0 e−ξ2
dξ =

√
π

2 in the definition (2.2) gives

�(z) = 2√
π

ez2

⎛⎝ ∞∫
0

e−ξ2
dξ −

z∫
0

e−ξ2
dξ

⎞⎠ . (2.8)

Now we use that the complex integral over the entire function e−ξ2
is path independent and 

that limx→∞
∫ x+z

x
e−ξ2

dξ = 0. Hence, the two integrals on the right-hand side of (2.8) can be 
replaced by a path integral from z to ∞, parallel to the real axis. This gives

�(z) = 2√
π

ez2

∞∫
0

e−(z+s)2
ds = 2√

π

∞∫
0

e−s2−2zsds. (2.9)

This representation can now be used to estimate the absolute value

|�(z)| ≤ 2√
π

∞∫
0

e−s2−2 Re(z)sds = �(Re(z)).

(iv) The monotonicity is a direct consequence of the representation (2.9) and the asymptotics 
were shown in [19, Lemma 3.1].
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(v) Substituting t = s√
a

in the integral (2.9) gives

�(z) = 2
√

a√
π

∞∫
0

e−at2−2z
√

a tdt,

which is exactly (2.7a) if we evaluate at z = b
2
√

a
. In order to check (2.7b) we first use (2.3) to 

obtain for c �= b√
a

the primitive

e−ax2−bx�
(√

a x + c
) = 1

2
√

a

d

dx
e−ax2−bx

�
(√

a x + c
) − �

(√
a x + b

2
√

a

)
c − b

2
√

a

.

The assertion on the integral in (2.7b) now simply follows by evaluating at x = 0 and x → ∞; 
observe that by (2.6) the limit x → ∞ vanishes. Similarly, also in the case b = 2

√
a c we get the 

primitive

e−ax2−2
√

a cx�
(√

a x + c
) = 1

2
√

a

d

dx
e−ax2−bx�′(√a x + c

)
and we also get the second case of the integral (2.7b) by evaluating the primitive at x = 0 and 
x → ∞. �

Using (2.2) we now define for every t > 0, x ∈ R \ {0}, z ∈C, and ω ∈R, the functions

G0(t, x, z) := 1

2
√

iπt
e− (|x|+z)2

4it , (2.10a)

G1(t, x, z) := �

( |x| + z

2
√

it
+ ω

√
it

)
e− (|x|+z)2

4it , (2.10b)

Gfree(t, x, z) := 1

2
√

iπt
e− (x−z)2

4it , (2.10c)

which will appear as components of the Green’s function (1.5) later on. In the following prepara-
tory lemma we check that each of these components is a solution of the free Schrödinger equation 
on R \ {0}.

Lemma 2.2. For every t > 0, x ∈ R \ {0}, z ∈ C, the functions in (2.10) satisfy the differential 
equations

i
∂

∂t
Gj (t, x, z) = − ∂2

∂x2 Gj(t, x, z), j ∈ {0,1, free}. (2.11)

Proof. In order to verify (2.11) we compute the derivatives of the functions (2.10) explicitly. For 
G0 we get
159
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∂

∂t
G0(t, x, z) = i

4t
√

iπt

(
i − (|x| + z)2

2t

)
e− (|x|+z)2

4it , (2.12a)

∂

∂x
G0(t, x, z) = − sgn(x)

|x| + z

4it
√

iπt
e− (|x|+z)2

4it , (2.12b)

∂2

∂x2 G0(t, x, z) = 1

4t
√

iπt

(
i − (|x| + z)2

2t

)
e− (|x|+z)2

4it . (2.12c)

For G1 we use (2.3) to obtain

∂

∂t
G1(t, x, z) = i

(
ω2�

( |x| + z

2
√

it
+ ω

√
it

)
+ 1

it
√

π

( |x| + z

2
√

it
− ω

√
it

))
e− (|x|+z)2

4it ,

(2.13a)

∂

∂x
G1(t, x, z) = sgn(x)

(
ω�

( |x| + z

2
√

it
+ ω

√
it

)
− 1√

iπt

)
e− (|x|+z)2

4it , (2.13b)

∂2

∂x2 G1(t, x, z) =
(

ω2�

( |x| + z

2
√

it
+ ω

√
it

)
+ 1

it
√

π

( |x| + z

2
√

it
− ω

√
it

))
e− (|x|+z)2

4it .

(2.13c)

Finally, for Gfree we get, in a similar way as for G0, the derivatives

∂

∂t
Gfree(t, x, z) = i

4t
√

iπt

(
i − (x − z)2

2t

)
e− (x−z)2

4it , (2.14a)

∂

∂x
Gfree(t, x, z) = − x − z

4it
√

iπt
e− (x−z)2

4it , (2.14b)

∂2

∂x2 Gfree(t, x, z) = 1

4t
√

iπt

(
i − (x − z)2

2t

)
e− (x−z)2

4it . (2.14c)

In all three cases it is obvious that the differential equation (2.11) is satisfied. �
Next we will collect some elementary estimates of the functions G0, G1, and Gfree, which 

will be needed throughout the paper.

Lemma 2.3. For every t > 0, x ∈R \ {0}, and z ∈C with Arg(z) ∈ [0, π2 ] the following estimates 
for the functions (2.10) hold:

∣∣Gj(t, x, z)
∣∣ ≤ cj (t) e− Im(z2)

4t
− |x| Im(z)

2t , j ∈ {0,1}, (2.15a)∣∣Gfree(t, x, z)
∣∣ ≤ cfree(t) e− Im(z2)

4t
+ x Im(z)

2t , (2.15b)

where c0(t) = cfree(t) = 1
2
√

πt
and c1(t) = �

(
ω

√
t√

2

)
. In particular, the functions (2.10) satisfy the 

common estimate ∣∣Gj(t, x, z)
∣∣ ≤ cj (t) e− Im(z2)

4t
+ |x| Im(z)

2t , j ∈ {0,1, free}. (2.16)
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Proof. The estimates (2.15a) and (2.15b) for G0 and Gfree are obvious. For the estimate (2.15a)
of G1 we use Lemma 2.1 (iii) and (iv) to get∣∣∣∣�( |x| + z

2
√

it
+ ω

√
it

)∣∣∣∣ ≤ �

( |x| + Re(z) + Im(z)

2
√

2t
+ ω

√
t√

2

)
≤ �

(
ω

√
t√

2

)
,

where the monotonicity of � is applicable since Re(z), Im(z) ≥ 0 due to Arg(z) ∈ [0, π2 ]. Finally, 
the estimate (2.16) follows immediately from (2.15) by further estimating the exponents. �

Now we turn to our main objective in this section and introduce the Green’s function

G(t, x, y) = μ
(x,y)
+ G1(t, x, |y|;ω+) + μ

(x,y)
− G1(t, x, |y|;ω−)

+ μ
(x,y)
0 G0(t, x, |y|) + Gfree(t, x, y), t > 0, x, y ∈ R \ {0},

(2.17)

which is expressed in terms of the functions (2.10) and we have added the additional argument 
ω± in G1 to emphasize the dependence of the parameter ω in (2.10b). The function in (2.17) co-
incides with the Green’s function (1.5) mentioned in the Introduction. We prove in Theorem 2.4
below that for a proper choice of coefficients μ±, μ0, and ω± the function (2.17) satisfies the 
differential equation (1.4a) as well as the jump condition (1.4b) for a fixed unitary matrix J . The 
connection to the initial value (1.4c) is postponed to Lemma 4.2 and Theorem 4.4 in Section 4, 
where the precise meaning of the integral (2.1) is clarified first.

Next we provide the coefficients ω± and the piecewise constant functions μ± and μ0 explic-
itly in terms of the unitary 2 × 2-matrix J in (1.4b). Note that every unitary 2 × 2-matrix can be 
written in the form

J = eiφ

(
α −β̄

β ᾱ

)
(2.18)

with parameters φ ∈ [0, π) and α, β ∈ C satisfying |α|2 + |β|2 = 1. It is convenient to use

η(x,y) := 1√
1 − Re(α)2

⎧⎪⎪⎨⎪⎪⎩
− Im(α), if x, y > 0,

−iβ̄, if x > 0, y < 0,

iβ, if x < 0, y > 0,

Im(α), if x, y < 0,

if |Re(α)| �= 1, (2.19a)

η(x,y) := 0, if |Re(α)| = 1, (2.19b)

the step function

�(x) =
{

1, if x > 0,

0, if x < 0,

and to distinguish the following three cases.

Case I: If Re(α) �= − cos(φ), then

ω± = − sin(φ) ± √
1 − Re(α)2

, μ
(x,y)
± = −ω± (

�(xy) ± η(x,y)
)
, μ

(x,y)
0 = sgn(xy).
cos(φ) + Re(α) 2
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Case II: If Re(α) = − cos(φ) �= −1, then ω− = μ
(x,y)
− = 0 and

ω+ = cot(φ), μ
(x,y)
+ = −ω+

2

(
�(xy) + η(x,y)

)
, μ

(x,y)
0 = η(x,y) − �(−xy).

Case III: If Re(α) = − cos(φ) = −1, then ω± = μ
(x,y)
± = 0 and μ(x,y)

0 = −1.

These three cases correspond to the rank of the matrix I + J on the right hand side of the 
jump conditions (1.4b) or (2.21). More precisely, in Case I we have rank(I + J ) = 2, in Case II 
we have rank(I + J ) = 1, and finally, in Case III we have rank(I + J ) = 0.

Theorem 2.4. For every fixed y ∈ R \ {0} the Green’s function (2.17) satisfies the differential 
equation

i
∂

∂t
G(t, x, y) = − ∂2

∂x2 G(t, x, y), t > 0, x ∈ R \ {0}, (2.20)

as well as the jump condition

(I − J )

(
G(t,0+, y)

G(t,0−, y)

)
= i(I + J )

(
∂
∂x

G(t,0+, y)

− ∂
∂x

G(t,0−, y)

)
, t > 0. (2.21)

Proof. Note first that the coefficients μ(x,y)
± and μ(x,y)

0 in the representation (2.17) of the function 
G only depend on the signs of x and y. In particular, the coefficients are constant on the half lines 
x > 0 and x < 0, and hence it follows from Lemma 2.2 that the function G in (2.17) is a solution 
of the differential equation (2.20).

In the following we will verify that the jump condition (2.21) is satisfied. Using (2.12b), 
(2.13b), and (2.14b) we find that the spatial derivative of the function G is given by

∂

∂x
G(t, x, y) = μ

(x,y)
+ sgn(x)

(
ω+�

( |x| + |y|
2
√

it
+ ω+

√
it

)
− 1√

iπt

)
e− (|x|+|y|)2

4it

+ μ
(x,y)
− sgn(x)

(
ω−�

( |x| + |y|
2
√

it
+ ω−

√
it

)
− 1√

iπt

)
e− (|x|+|y|)2

4it

− 1

4it
√

iπt

(
μ

(x,y)
0 sgn(x)

(|x| + |y|)e− (|x|+|y|)2
4it + (x − y)e− (x−y)2

4it

)
.

For the jump condition (2.21) we have to evaluate G and ∂
∂x

G at x = 0±. As in (2.21) this will 
be done in a vector form, where the first entry is the limit x = 0+ and the second entry the limit 
x = 0−. We have(

G(t,0+, y)

G(t,0−, y)

)
=

((
μ

(0+,y)
+

μ
(0−,y)
+

)
�

( |y|
2
√

it
+ ω+

√
it

)
+

(
μ

(0+,y)
−

μ
(0−,y)
−

)
�

( |y|
2
√

it
+ ω−

√
it

)

+ 1

2
√

iπt

(
μ

(0+,y)
0 + 1

μ
(0−,y) + 1

))
e− y2

4it ,
0
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(
∂
∂x

G(t,0+, y)

− ∂
∂x

G(t,0−, y)

)
=

((
μ

(0+,y)
+

μ
(0−,y)
+

)
ω+�

( |y|
2
√

it
+ ω+

√
it

)

+
(

μ
(0+,y)
−

μ
(0−,y)
−

)
ω−�

( |y|
2
√

it
+ ω−

√
it

)

− 1√
iπt

(
μ

(0+,y)
+ + μ

(0+,y)
−

μ
(0−,y)
+ + μ

(0−,y)
−

)
− |y|

4it
√

iπt

(
μ

(0+,y)
0 − sgn(y)

μ
(0−,y)

0 + sgn(y)

))
e− y2

4it ,

and since (2.21) has to be satisfied for all y ∈ R \ {0} it suffices to compare and match the 
coefficients corresponding to the terms

�

( |y|
2
√

it
+ ω±

√
it

)
,

1

2
√

iπt
, and

|y|
4it

√
iπt

,

which leads to the following four equations

(A±) : (I − J )

(
μ

(0+,y)
±

μ
(0−,y)
±

)
= iω±(I + J )

(
μ

(0+,y)
±

μ
(0−,y)
±

)
,

(B) : (I − J )

(
μ

(0+,y)
0 + 1

μ
(0−,y)
0 + 1

)
= −2i(I + J )

(
μ

(0+,y)
+ + μ

(0+,y)
−

μ
(0−,y)
+ + μ

(0−,y)
−

)
,

(C) :
(

0
0

)
= (I + J )

(
μ

(0+,y)
0 − sgn(y)

μ
(0−,y)
0 + sgn(y)

)
.

Since the variable y only appears as sgn(y) each equation splits up in one for y > 0 and one for 
y < 0. We will consider this by writing (A±), (B), and (C) as matrix equations, where the first 
column is for y > 0 and the second column for y < 0. For a shorter notation we will use the 
matrices

1 :=
(

1 1
1 1

)
, N :=

(
η(0+,0+) η(0+,0−)

η(0−,0+) η(0−,0−)

)
, Mj :=

⎛⎝ μ
(0+,0+)
j μ

(0+,0−)
j

μ
(0−,0+)
j μ

(0−,0−)
j

⎞⎠ , (2.23)

where j ∈ {0, ±}. Note that the matrix N satisfies the identity

√
1 − Re(α)2 N =

( − Im(α) −iβ̄

iβ Im(α)

)
(2.24)

by (2.19a) for | Re(α)| �= 1 and also for | Re(α)| = 1, since then Im(α) = β = 0 due to |α|2 +
|β|2 = 1. From (2.24) and |α|2 + |β|2 = 1 it immediately follows that

N2 = 1
2

( − Im(α) −iβ̄

iβ Im(α)

)2

= Im(α)2 + |β|2
2 I = I if |Re(α)| �= 1,
1 − Re(α) 1 − Re(α)
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and, consequently,

(N + I )(N − I ) = N2 − N + N − I = N2 − I = 0 if |Re(α)| �= 1, (2.25)

to which we will refer throughout the proof. With the help of the matrices (2.23) we now rewrite 
the equations (A±), (B), and (C) above in the matrix form

(A±) : (I − J )M± = iω±(I + J )M±,

(B) : (I − J )(M0 + 1) = −2i(I + J )(M+ + M−),

(C) : 0 = (I + J )(M0 + 1− 2I ).

Plugging in the matrix J from (2.18) and multiplying by e−iφ these equations turn into

(A±) :
(

e−iφ − α β̄

−β e−iφ − ᾱ

)
M± = iω±

(
e−iφ + α −β̄

β e−iφ + ᾱ

)
M±, (2.26a)

(B) :
(

e−iφ − α β̄

−β e−iφ − ᾱ

)
(M0 + 1) = −2i

(
e−iφ + α −β̄

β e−iφ + ᾱ

)
(M+ + M−),

(2.26b)

(C) : 0 =
(

e−iφ + α −β̄

β e−iφ + ᾱ

)
(M0 + 1− 2I ). (2.26c)

In the following we will discuss the three cases above Theorem 2.4 separately and verify that in 
each case with the proper choice of the coefficients ω± and μ±, μ0 the equations (A±), (B), and 
(C) are satisfied, that is, the jump condition (2.21) holds.

Case I. Observe first that the equation (2.26c) is satisfied since μ(x,y)
0 = sgn(xy) in this case, and 

hence we conclude M0 = 2I − 1. Next we use |α|2 + |β|2 = 1 to compute

det

(
e−iφ + α −β̄

β e−iφ + ᾱ

)
= 2e−iφ

(
cos(φ) + Re(α)

) �= 0,

where we also used the assumption Re(α) �= − cos(φ) in Case I. It follows that the matrix on the 
right hand side of (A±) and (B) is invertible with the inverse(

e−iφ + α −β̄

β e−iφ + ᾱ

)−1

= eiφ

2(cos(φ) + Re(α))

(
e−iφ + ᾱ β̄

−β e−iφ + α

)
,

and this leads to(
e−iφ + α −β̄

β e−iφ + ᾱ

)−1 (
e−iφ − α β̄

−β e−iφ − ᾱ

)
= −i

cos(φ) + Re(α)

(
sin(φ) + Im(α) iβ̄

−iβ sin(φ) − Im(α)

)
= −i

cos(φ) + Re(α)

(
sin(φ) I −

√
1 − Re(α)2 N

)
,
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where in the last line we used the identity (2.24). Hence the equations (2.26a) and (2.26b) turn 
into

(A±) : sin(φ) I − √
1 − Re(α)2 N

cos(φ) + Re(α)
M± = −ω±M±,

(B) : sin(φ) I − √
1 − Re(α)2 N

cos(φ) + Re(α)
(M0 + 1) = 2(M+ + M−).

Using the explicit form ω± = − sin(φ)±
√

1−Re(α)2

cos(φ)+Re(α)
in (A±) and M0 = 2I −1 in (B) these equations 

reduce to

(A±) :
√

1 − Re(α)2(N ∓ I )M± = 0,

(B) : sin(φ) I − √
1 − Re(α)2 N

cos(φ) + Re(α)
= M+ + M−.

Since we treat Case I we have μ(x,y)
± = −ω±

2

(
�(xy) ± η(x,y)

)
and from that we conclude

M± = −ω±
2

(I ± N). (2.27)

In particular, this yields

M+ + M− = − (ω+ + ω−)I + (ω+ − ω−)N

2
= sin(φ)I − √

1 − Re(α)2 N

cos(φ) + Re(α)
,

which shows that equation (B) is valid. It remains to check (A±). Indeed, these equations are 
obviously valid if | Re(α)| = 1 and if | Re(α)| �= 1 they follow from the identities (2.25) and 
(2.27).

Case II. Here we assume Re(α) = − cos(φ) �= −1, which implies, in particular, φ �= 0 and con-
sequently sin(φ) �= 0. The matrices in the equations (A±), (B), and (C) in (2.26) now have the 
form (

e−iφ − α β̄

−β e−iφ − ᾱ

)
= (

2 cos(φ) − i sin(φ)
)
I + i

( − Im(α) −iβ̄

iβ Im(α)

)
= −i sin(φ)

(
(2i cot(φ) + 1)I − N

)
,(

e−iφ + α −β̄

β e−iφ + ᾱ

)
= −i sin(φ)I − i

( − Im(α) −iβ̄

iβ Im(α)

)
= −i sin(φ)(I + N),

where in both cases we used (2.24) and 
√

1 − Re(α)2 = sin(φ), because Re(α) = − cos(φ). 
Using this in (2.26) leads to
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(A±) : (
(2i cot(φ) + 1)I − N

)
M± = iω±(I + N)M±,

(B) : (
(2i cot(φ) + 1)I − N

)
(M0 + 1) = −2i(I + N)(M+ + M−),

(C) : 0 = (I + N)(M0 + 1− 2I ).

Since in Case II we have μ(x,y)
− = 0, that is, M− = 0, the equation (A−) is trivially satisfied. 

Furthermore, with our choice ω+ = cot(φ) the equation (A+) reduces to

(A+) : (i cot(φ) + 1)(I − N)M+ = 0.

By our choice of μ(x,y)
+ we have M+ = −ω+

2 (I +N) as in the previous case (cf. (2.27)) and hence 
we conclude together with (2.25) that equation (A+) is valid; note that we can apply (2.25) since 
Re(α) �= −1 by the assumption in Case II and also Re(α) = − cos(φ) �= 1 as φ ∈ [0, π). Next, 
we observe that also equation (C) holds by (2.25) and μ(x,y)

0 = η(x,y) − �(−xy), which gives 
M0 = N −1 + I . In order to check (B), we plug in the above values for M0 and M±, and obtain

(B) : (1 + i cot(φ))(I − N)(N + I ) = 0,

which holds by (2.25).

Case III. Here we assume Re(α) = − cos(φ) = −1 and hence Im(α) = β = φ = 0 follows from 
the condition |α|2 + |β|2 = 1. Therefore, the equations (A±), (B), and (C) in (2.26) have the 
particularly simple form

(A±) : 2M± = 0,

(B) : M0 + 1= 0,

(C) : 0 = 0,

and are all obviously satisfied by the definition of the coefficients in Case III. �
3. Special cases of generalized point interactions and their Green’s functions

In this section we consider some particular generalized point interactions and derive the ex-
plicit form of the Green’s function in these situations. As an almost trivial case we start with 
the free particle in Example 3.1, discuss the well-known δ and δ′-interactions afterwards in Ex-
ample 3.2 and Example 3.3, respectively, and in Examples 3.4–3.6 we treat decoupled systems 
with Dirichlet, Neumann, and Robin boundary conditions at the origin. In each of the examples 
we first provide the corresponding matrix J for the interface conditions (1.4b) with parameters 
φ, α, β as in (2.18), then we determine which of the Cases I–III above Theorem 2.4 appears, and 
finally we compute the coefficients in the Green’s function (1.5) or (2.17). The special Green’s 
functions in this section are known from the mathematical and physical literature.

Example 3.1 (Free particle). The wave function corresponding to a free particle is continuous 
with continuous first derivative and hence at the point x = 0 we have

�(t,0−) = �(t,0+) and
∂

�(t,0−) = ∂
�(t,0+), t > 0.
∂x ∂x
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These continuity conditions are described in (1.4b) if we consider the matrix

J =
(

0 1
1 0

)
.

This matrix is of the form (2.18) with α = 0, β = −i, and φ = π
2 . In this situation the coefficient 

η(x,y) in (2.19a) is

η(x,y) =

⎧⎪⎪⎨⎪⎪⎩
0, if x, y > 0,

1, if x > 0, y < 0,

1, if x < 0, y > 0,

0, if x, y < 0,

= �(−xy).

Since we are in Case II the coefficients of the corresponding Green’s function in (1.5) have the 
explicit form

ω− = 0, μ
(x,y)
− = 0,

ω+ = cot
(π

2

)
= 0, μ

(x,y)
+ = −ω+

2

(
�(xy) + η(x,y)

) = 0,

μ
(x,y)
0 = η(x,y) − �(−xy) = 0.

Therefore, the Green’s function of the free particle is given by

G(t, x, y) = 1

2
√

iπt
e− (x−y)2

4it .

In the next example we treat the classical δ-point interaction located at the origin. Such sin-
gular potentials were studied intensively in the mathematical and physical literature; we refer the 
interested reader to the standard monograph [16] for a detailed treatment and further references. 
The particular Green’s function that appears below can also be found (sometimes in a slightly 
different form) in the papers [34,43,49].

Example 3.2 (δ-potential). We consider the standard δ-interaction of strength 2c ∈ R \ {0} lo-
cated at the point x = 0. This situation is described by the formal Schrödinger equation

i
∂

∂t
�(t, x) =

(
− ∂2

∂x2 + 2cδ(x)
)
�(t, x), t > 0, x ∈R,

and is made mathematically rigorous in the form

i
∂

∂t
�(t, x) = − ∂2

∂x2 �(t, x), t > 0, x ∈ R \ {0},
�(t,0+) = �(t,0−), t > 0, (3.1a)

∂

∂x
�(t,0+) − ∂

∂x
�(t,0−) = 2c�(t,0±), t > 0. (3.1b)
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The jump condition (3.1a)–(3.1b) is realized in (1.4b) by using the matrix

J = 1

i − c

(
c i

i c

)
.

In fact, with this choice of J and multiplication by (c − i) the condition (1.4b) reads as(
2c − i i

i 2c − i

)(
�(t,0+)

�(t,0−)

)
=

(
1 1
1 1

)(
∂
∂x

�(t,0+)

− ∂
∂x

�(t,0−)

)
,

or, more explicitely, we have the two equations

(2c − i)�(t,0+) + i�(t,0−) = ∂

∂x
�(t,0+) − ∂

∂x
�(t,0−),

i�(t,0+) + (2c − i)�(t,0−) = ∂

∂x
�(t,0+) − ∂

∂x
�(t,0−).

By subtracting these equations from each other we first conclude (3.1a) and adding the equations 
leads to (3.1b). In order to write the matrix J in the form (2.18) we choose φ ∈ (0, π) such that 
cot(φ) = c. Next we set α = − cos(φ) and β = −i sin(φ). It follows, in particular, that

cos(φ) = c√
1 + c2

and sin(φ) = 1√
1 + c2

,

and therefore

eiφ

(
α −β̄

β ᾱ

)
= 1

i − c

(
c i

i c

)
= J.

Plugging these values in (2.19a) gives

η(x,y) =

⎧⎪⎪⎨⎪⎪⎩
0, if x, y > 0,

1, if x > 0, y < 0,

1, if x < 0, y > 0,

0, if x, y < 0,

= �(−xy),

and since we are in Case II the coefficients of the Green’s function are

ω− = 0, μ
(x,y)
− = 0,

ω+ = cot(φ) = c, μ
(x,y)
+ = − c

2

(
�(xy) + �(−xy)

) = − c

2
,

μ
(x,y)
0 = �(−xy) − �(−xy) = 0.

With these quantities we conclude from (1.5) that the Green’s function of the δ-potential is given 
by

G(t, x, y) = − c
�

( |x| + |y|√ + c
√

it

)
e− (|x|+|y|)2

4it + 1√ e− (x−y)2

4it .

2 2 it 2 iπt
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The δ′-interaction in the next example is another popular singular potential that appears in 
various situations.

Example 3.3 (δ′-potential). Now consider the δ′-interaction of strength 2
c

∈ R \ {0} located at 
the point x = 0. Formally one then deals with the Schrödinger equation

i
∂

∂t
�(t, x) =

(
− ∂2

∂x2 + 2

c
δ′(x)

)
�(t, x), t > 0, x ∈ R,

which in a mathematically rigorous form reads as

i
∂

∂t
�(t, x) = − ∂2

∂x2 �(t, x), t > 0, x ∈R \ {0},
∂

∂x
�(t,0+) = ∂

∂x
�(t,0−), t > 0,

�(t,0+) − �(t,0−) = 2

c

∂

∂x
�(t,0), t > 0.

One verifies in a similar way as in the previous example that the jump conditions are realized in 
(1.4b) by using the matrix

J = 1

i − c

(
i −c

−c i

)
.

This matrix is of the form (2.18) if we choose φ ∈ (0, π) \ {π
2 } such that tan(φ) = −c and set 

α = cos(φ) and β = −i sin(φ). The coefficient η(x,y) in (2.19a) then becomes

η(x,y) =

⎧⎪⎪⎨⎪⎪⎩
0, if x, y > 0,

1, if x > 0, y < 0,

1, if x < 0, y > 0,

0, if x, y < 0,

= �(−xy),

and since we are in Case I the coefficients of the Green’s function are

ω− = − tan(φ) = c, μ
(x,y)
− = − c

2

(
�(xy) − �(−xy)

) = −c sgn(xy)

2
,

ω+ = 0, μ
(x,y)
+ = 0,

μ
(x,y)

0 = sgn(xy).

It follows that the Green’s function of the δ′-potential is given by

G(t, x, y) = − c sgn(xy)

2
�

( |x| + |y|
2
√

it
+ c

√
it

)
e− (|x|+|y|)2

4it

+ 1√
(

sgn(xy)e− (|x|+|y|)2
4it + e− (x−y)2

4it

)
.

2 iπt
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Now we turn to generalized point interactions that lead to decoupled systems. In the following 
examples we discuss Dirichlet, Neumann, and Robin boundary conditions at the origin; for a 
characterization of all decoupled systems see also Example 5.4.

Example 3.4 (Dirichlet boundary conditions). We consider the free Schrödinger equation on the 
two half lines R \ {0} with Dirichlet boundary conditions

i
∂

∂t
�(t, x) = − ∂2

∂x2 �(t, x), t > 0, x ∈R \ {0},
�(t,0+) = �(t,0−) = 0, t > 0.

These boundary conditions are realized in (1.4b) by using the matrix

J =
( −1 0

0 −1

)
, (3.2)

that is, we have φ = 0, α = −1, and β = 0 in (2.18), and hence Case III applies. The coefficients 
of the Green’s function are given by

ω± = 0, μ
(x,y)
± = 0, and μ

(x,y)
0 = −1,

and lead to

G(t, x, y) = 1

2
√

iπt

(
e− (x−y)2

4it − e− (|x|+|y|)2
4it

)
. (3.3)

Example 3.5 (Neumann boundary conditions). We consider the free Schrödinger equation on the 
two half lines R \ {0} with Neumann boundary conditions

i
∂

∂t
�(t, x) = − ∂2

∂x2 �(t, x), t > 0, x ∈R \ {0},
∂

∂x
�(t,0+) = ∂

∂x
�(t,0−) = 0, t > 0.

These boundary conditions are realized in (1.4b) by using the matrix

J =
(

1 0
0 1

)
,

that is, we have φ = 0, α = 1, and β = 0 in (2.18), and hence Case I applies. The coefficients of 
the Green’s function are given by

ω± = 0, μ
(x,y)
± = 0, and μ

(x,y)

0 = sgn(xy),

and lead to

G(t, x, y) = 1√
(

e− (x−y)2

4it + sgn(xy)e− (|x|+|y|)2
4it

)
.

2 iπt
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In the next example we consider Robin boundary conditions at the origin. The Neumann 
boundary conditions in Example 3.5 are contained as a special case and the Dirichlet boundary 
conditions in Example 3.4 formally appear as a limit; cf. Remark 3.7.

Example 3.6 (Robin boundary conditions). We consider the free Schrödinger equation on the 
two half lines R \ {0} with Robin boundary conditions

i
∂

∂t
�(t, x) = − ∂2

∂x2 �(t, x), t > 0, x ∈ R \ {0},
∂

∂x
�(t,0+) = a �(t,0+), t > 0,

∂

∂x
�(t,0−) = b�(t,0−), t > 0,

for some a, b ∈R; note that the minus sign for the derivative at x = 0− on the right hand side of 
(1.4b) is omitted here. These boundary conditions are realized in (1.4b) by using the matrix

J =
( i+a

i−a
0

0 i−b
i+b

)
, (3.4)

which is of the form (2.18) with

α = sgn(b − a)
(1 − ia)(1 − ib)√

1 + a2
√

1 + b2
, β = 0,

and φ ∈ [0, π) chosen such that

eiφ = sgn(b − a)
(1 − ia)(1 + ib)√

1 + a2
√

1 + b2
,

where we use sgn(0) = 1. One verifies that Case I applies and a (more technical) computation 
finally leads to the Green’s function

G(t, x, y) =
(

−a �(x)�(y)�

( |x| + |y|
2
√

it
+ a

√
it

)
+b�(−x)�(−y)�

( |x| + |y|
2
√

it
− b

√
it

))
e− (|x|+|y|)2

4it

+ 1

2
√

iπt

(
sgn(xy)e− (|x|+|y|)2

4it + e− (x−y)2

4it

)
.

(3.5)

Remark 3.7. It is clear that for a = b = 0 the boundary condition and Green’s function in Ex-
ample 3.6 reduce to those in Example 3.5. Moreover, also the boundary condition and Green’s 
function for the Dirichlet decoupling in Example 3.4 can be recovered from Example 3.6. In fact, 
for a → ∞ and b → −∞ the matrix J in (3.4) tends to the one in (3.2) and using Lemma 2.1 (iv) 
one obtains the asymptotics
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�

( |x| + |y|
2
√

it
+ a

√
it

)
∼ 1

a
√

iπt
and �

( |x| + |y|
2
√

it
− b

√
it

)
∼ 1

−b
√

iπt

in (3.5), which then lead to the Green’s function (3.3).

4. Solution of the Schrödinger equation with a generalized point interaction

In this section we continue the theme from Section 2, where in Theorem 2.4 it was already 
shown that the Green’s function (1.5) satisfies the Schrödinger equation (2.20) and the jump 
condition (2.21) that represents the generalized point interaction at the origin. Now we turn our 
attention to the initial value (1.4c). This missing part will be provided in Theorem 4.4 below. 
However, the main technical issue here is to make sense of the integral (1.6). Since we want to 
consider, e.g., plane waves F(x) = eikx as initial conditions, we have to deal with integrands 
that are not absolutely integrable. For this purpose the so-called Fresnel integral, discussed in 
Lemma 4.1, will be useful. The resulting representation of the integral then also ensures, in a 
mathematical rigorous way, that the properties (2.20) and (2.21) of the Green’s function G carry 
over to the respective properties (1.4a) and (1.4b) of the wave function �.

Lemma 4.1 (Fresnel integral). Let f : � → C be holomorphic on an open set � ⊆ C which 
contains the sector

Sα := { z ∈ C : 0 ≤ Arg(z) ≤ α } (4.1)

for some α ∈ (0, π2 ), and assume that f satisfies the estimate

|f (z)| ≤ Ae−ε Im(z2), z ∈ Sα, (4.2)

for some A ≥ 0 and ε > 0. Then we get

lim
R→∞

R∫
0

f (y)dy = eiα

∞∫
0

f (yeiα)dy, (4.3)

where the integral on the right hand side is absolutely convergent.

Proof. For simplicity we will write k = tan(α) > 0. For every R > 0 we consider the integration 
path

γ1 := { y : 0 ≤ y ≤ R } ,

γ2 := { R + iy : 0 ≤ y ≤ kR } ,

γ3 :=
{

yeiα : 0 ≤ y ≤ R
√

1 + k2
}

.

Since f is holomorphic, Cauchy’s theorem yields
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R∫
0

f (y)dy =
∫
γ1

f (z)dz = −
∫
γ2

f (z)dz +
∫
γ3

f (z)dz

= −i

kR∫
0

f (R + iy)dy + eiα

R
√

1+k2∫
0

f (yeiα)dy.

(4.4)

From the estimate (4.2) we obtain

∣∣∣∣ − i

kR∫
0

f (R + iy)dy

∣∣∣∣ ≤ A

∞∫
0

e−2εRydy = A

2εR
→ 0, R → ∞,

and thus in the limit R → ∞ we conclude from (4.4)

lim
R→∞

R∫
0

f (y)dy = eiα lim
R→∞

R∫
0

f (yeiα)dy.

The estimate |f (yeiα)| ≤ Ae−ε sin(2α)y2
, y > 0, implies that the integral on the right hand side is 

absolutely convergent and hence the identity (4.3) follows. �
In the next lemma we define functions �0, �1, and �free that are closely related to the func-

tions G0, G1, and Gfree in (2.10), which will then lead to a solution of the Schrödinger equation 
(1.4) in Theorem 4.4 below.

Lemma 4.2. Let F : � → C be holomorphic on an open set � ⊆ C which contains the sector 
Sα from (4.1) for some α ∈ (0, π2 ), and assume that F satisfies the estimate

|F(z)| ≤ AeB Im(z), z ∈ Sα, (4.5)

for some A, B ≥ 0. For every fixed t > 0, x ∈R \ {0} we consider the functions

�j(t, x;F) =
∞∫

0

Gj(t, x, y)F (y)dy, j ∈ {0,1, free}. (4.6)

Then the following assertions hold:

(i) The integral on the right hand side in (4.6) exists as the improper Riemann integral

∞∫
0

Gj(t, x, y)F (y)dy := lim
R→∞

R∫
0

Gj(t, x, y)F (y)dy, (4.7)

and the functions �j , j ∈ {0, 1, free}, admit the absolutely integrable representation
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�j(t, x;F) = eiα

∞∫
0

Gj(t, x, yeiα)F (yeiα)dy, j ∈ {0,1, free}. (4.8)

(ii) The functions �j , j ∈ {0, 1, free}, in (4.6) are solutions of the differential equation

i
∂

∂t
�j (t, x;F) = − ∂2

∂x2 �j(t, x;F), t > 0, x ∈ R \ {0}. (4.9)

(iii) The functions �j , j ∈ {0, 1, free}, in (4.6) admit the initial values

�0(0
+, x;F) = �1(0

+, x;F) = 0, x ∈R \ {0}, (4.10)

and

�free(0
+, x;F) =

{
F(x), if x > 0,

0, if x < 0.
(4.11)

Proof. (i) This assertion is a direct consequence of Lemma 4.1 if we verify that the functions 
y �→ Gj(t, x, y)F (y), j ∈ {0, 1, free}, satisfy an estimate of the form (4.2). In fact, the estimates 
(2.16) together with the assumption (4.5) leads to the bounds

∣∣Gj(t, x, z)F (z)
∣∣ ≤ Acj (t)e

− Im(z2)
4t

+(B+ |x|
2t

) Im(z), z ∈ Sα. (4.12)

Since for every z ∈ Sα we have Im(z) ≤ tan(α) Re(z), and hence Im(z2) ≥ 2
tan(α)

Im(z)2, the 
exponent in (4.12) can be further estimated by

− Im(z2)

4t
+

(
B + |x|

2t

)
Im(z) ≤ − Im(z2)

8t
− Im(z)2

4t tan(α)
+

(
B + |x|

2t

)
Im(z).

Taking into account that a polynomial of the form −a Im(z)2 + b Im(z) with a > 0, b ∈ R, is 
bounded from above by b2

4a
, we find

− Im(z2)

4t
+

(
B + |x|

2t

)
Im(z) ≤ − Im(z2)

8t
+ t

(
B + |x|

2t

)2
tan(α), (4.13)

and thus (4.12) can be estimated by

∣∣Gj(t, x, z)F (z)
∣∣ ≤ Acj (t)e

t (B+ |x|
2t

)2 tan(α)e− Im(z2)
8t , z ∈ Sα.

This shows that (4.2) indeed holds in the present context and the integral (4.6) exists in the form 
(4.7) and admits the absolutely integrable representation (4.8).

(ii) Now we show that the functions �0, �1, and �free satisfy the differential equation (4.9). 
Since we have already shown in Lemma 2.2 that G0, G1, and Gfree solve (2.11), it remains to 
interchange the integral and the derivatives in the representation (4.8). We verify this property 
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for the time derivative of G0 and leave the analogous arguments for the spatial derivatives and 
the functions G1 and Gfree to the reader. Note that from (2.12a) with z = yeiα one obtains

∣∣∣ ∂

∂t
G0

(
t, x, yeiα

)∣∣∣ ≤ 1

4t
√

πt

(
1 + (|x| + |y|)2

2t

)
e− y2 sin(2α)

4t
− |x|y sin(α)

2t

and hence together with (4.5)

∣∣∣ ∂

∂t
G0(t, x, yeiα)F (yeiα)

∣∣∣ ≤ A

4t
√

πt

(
1 + (|x| + |y|)2

2t

)
e− y2 sin(2α)

4t
− |x|y sin(α)

2t
+By sin(α).

The term e− y2 sin(2α)
4t now ensures the integrability of the right hand side. Since all terms are 

continuous functions in t , we can also choose an integrable upper bound, which is locally uniform 
in t . Hence, by classical theorems for Lebesgue integral (see, e.g., [52]) the time derivative of 
�0(t, x; F) exists and is given by

∂

∂t
�0(t, x;F) = eiα

∞∫
0

∂

∂t
G0(t, x, yeiα)F (yeiα)dy.

Similar arguments also apply to the other eight derivatives in (2.12), (2.13), and (2.14), and we 
conclude for every j ∈ {0, 1, free}

∂

∂t
�j (t, x;F) = eiα

∞∫
0

∂

∂t
Gj (t, x, yeiα)F (yeiα)dy, (4.14a)

∂

∂x
�j (t, x;F) = eiα

∞∫
0

∂

∂x
Gj (t, x, yeiα)F (yeiα)dy, (4.14b)

∂2

∂x2 �j(t, x;F) = eiα

∞∫
0

∂2

∂x2 Gj(t, x, yeiα)F (yeiα)dy. (4.14c)

As was already mentioned the functions Gj solve (2.11) and hence it follows that the functions 
�j satisfy (4.9).

(iii) To check the initial conditions (4.10) for �0 and �1, we plug in the estimates (2.15a) and 
(4.5) into the representation (4.8). This yields

∣∣�j(t, x;F)
∣∣ ≤ Acj (t)

∞∫
0

e− y2 sin(2α)
4t

+(B− |x|
2t

)y sin(α)dy

= Acj (t)
√

πt√
sin(2α)

�

(( |x|
2
√

t
− B

√
t

)√
tan(α)

2

)
→ 0, t → 0+,

(4.15)
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for j ∈ {0, 1}, where we have used the integral (2.7a) in the second line; the convergence follows 
from the asymptotics (2.6) and the fact that cj (t)

√
t is bounded (for the precise form of the 

constants see Lemma 2.3). For the initial value of �free we distinguish two cases. For x < 0 we 
use the estimate (2.15b) and get the same convergence as in (4.15). The remaining case x > 0 is 
more involved. Here we split up the integral (4.6) into

�free(t, x;F) = 1

2
√

iπt

⎛⎝ 2x∫
0

e− (x−y)2

4it F (y)dy +
∞∫

2x

e− (x−y)2

4it F (y)dy

⎞⎠ . (4.16)

In the first integral we use the derivative d
dz

erf(z) = 2√
π
e−z2

of the error function, as well as 
integration by parts, to get

1

2
√

iπt

2x∫
0

e− (x−y)2

4it F (y)dy = −1

2

2x∫
0

d

dy
erf

(
x − y

2
√

it

)
F(y)dy

= 1

2

⎛⎝erf

(
x

2
√

it

)
F(0) − erf

( −x

2
√

it

)
F(2x) +

2x∫
0

erf

(
x − y

2
√

it

)
F ′(y)dy

⎞⎠ .

Using limt→0+ erf
(

ξ

2
√

it

) = sgn(ξ), ξ ∈ R, and the dominated convergence theorem we get

lim
t→0+

1

2
√

iπt

2x∫
0

e− (x−y)2

4it F (y)dy = 1

2

⎛⎝F(0) + F(2x) +
2x∫

0

sgn(x − y)F ′(y)dy

⎞⎠ = F(x).

In the second integral in (4.16) we substitute y → y + 2x and obtain

1

2
√

iπt

∞∫
2x

e− (x−y)2

4it F (y)dy = 1

2
√

iπt

∞∫
0

e− (x+y)2

4it F (y + 2x)dy.

This is the same integral as the one for �0, with the initial function F( · + 2x) instead of F . 
Consequently, this integral also vanishes in the limit t → 0+. Thus, we have also shown the 
initial condition (4.11) for �free. �

As the last preparatory statement we prove the following lemma about the representation of 
the functions �0, �1, and �free at the support of the singular interaction x = 0±.

Lemma 4.3. Let F : � → C be holomorphic on an open set � ⊆ C which contains the sector 
Sα from (4.1) for some α ∈ (0, π2 ), and assume that F satisfies the estimate

|F(z)| ≤ AeB Im(z), z ∈ Sα, (4.17)
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for some A, B ≥ 0. Then for the functions �j , j ∈ {0, 1, free}, from (4.6) and their spatial deriva-
tives we are allowed to carry the limit x → 0± inside the integral

�j(t,0±;F) =
∞∫

0

Gj(t,0±, y)F (y)dy, (4.18a)

∂

∂x
�j (t,0±;F) =

∞∫
0

∂

∂x
Gj (t,0±, y)F (y)dy, (4.18b)

where, similar to (4.7), the integrals exist as improper Riemann integrals 
∫ ∞

0 := lim
R→∞

∫ R

0 .

Proof. For the function �j in the representation (4.8) we have the estimate

∣∣Gj(t, x, yeiα)F (yeiα)
∣∣ ≤ Acj (t)e

− y2 sin(2α)
4t

+y(B+ |x|
2t

) sin(α), (4.19)

which follows from the assumption (4.17) on F and (2.16). Since this upper bound is continuous 
in x, we can choose it to be uniform for all x in a neighbourhood of 0. Now we can use the 
dominated convergence theorem in (4.8) to get the absolutely integrable representation

�j(t,0±;F) = eiα

∞∫
0

Gj(t,0±, yeiα)F (yeiα)dy. (4.20)

Once more from (4.17) and (2.16) we get the estimate

∣∣Gj(t,0±, z)F (z)
∣∣ ≤ Acj (t) e− Im(z2)

4t
+B Im(z), z ∈ Sα.

The estimate (4.13) for x = 0 allows to further estimate the integrand by

∣∣Gj(t,0±, z)F (z)
∣∣ ≤ Acj (t) e− Im(z2)

8t
+tB2 tan(α), z ∈ Sα. (4.21)

This estimate shows, in particular, that the assumption (4.2) of Lemma 4.1 is satisfied and hence 
we can use (4.3) to rewrite the absolutely integrable representation (4.20) into the improper 
Riemann integral (4.18a).

The same argument applies also to the spatial derivative in (4.14b). Here, the explicit repre-
sentations (2.12b), (2.13b), and (2.14b) lead to a similar estimates as in (2.16), and consequently 
also to estimates of the form (4.19) and (4.21). �

The next theorem is the main result of this section, where a solution � of the Schrödinger 
equation (1.4) is obtained by assembling the components �j from (4.6) based on the structure 
of the Green’s function in (2.17). Besides the four parts of the Green’s function we also have 
to consider that now integrals over R appear, whereas the integrals in (4.6) are only over the 
positive half line (0, ∞).
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Theorem 4.4. Let F : � → C be holomorphic on an open set � ⊆C which contains the double 
sector

Sα ∪ (−Sα) = { z ∈ C : Arg(z) ∈ [0, α] ∪ [π,π + α] } (4.22)

for some α ∈ (0, π2 ), and assume that F satisfies the estimate

|F(z)| ≤ AeB| Im(z)|, z ∈ Sα ∪ (−Sα), (4.23)

for some A, B ≥ 0. Let G be the Green’s function in (1.5) or (2.17). Then the function

�(t, x;F) =
∫
R

G(t, x, y)F (y)dy, t > 0, x ∈R \ {0}, (4.24)

exists as an improper Riemann integral of the form

∫
R

G(t, x, y)F (y)dy := lim
R1→∞

0∫
−R1

G(t, x, y)F (y)dy + lim
R2→∞

R2∫
0

G(t, x, y)F (y)dy (4.25)

and � is a solution of the Schrödinger equation (1.4).

Proof. For y > 0 the Green’s function (2.17) can be written as

G(t, x, y) = μ
(x,0+)
+ G1(t, x, y;ω+) + μ

(x,0+)
− G1(t, x, y;ω−) + μ

(x,0+)
0 G0(t, x, y)

+ Gfree(t, x, y).

Hence we conclude from Lemma 4.2 (i) that the limit

lim
R2→∞

R2∫
0

G(t, x, y)F (y)dy = μ
(x,0+)
+ �1(t, x;ω+,F ) + μ

(x,0+)
− �1(t, x;ω−,F )

+ μ
(x,0+)
0 �0(t, x;F) + �free(t, x;F)

exists. Moreover, for y > 0 we also have

G(t, x,−y) = μ
(x,0−)
+ G1(t, x, y;ω+) + μ

(x,0−)
− G1(t, x, y;ω−) + μ

(x,0−)
0 G0(t, x, y)

+ Gfree(t,−x, y),

where we have used Gfree(t, x, −y) = Gfree(t, −x, y), a direct consequence of (2.10c). Again 
from Lemma 4.2 (i) we conclude that also the limit
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lim
R1→∞

0∫
−R1

G(t, x, y)F (y)dy = lim
R1→∞

R1∫
0

G(t, x,−y)F̃ (y)dy

= μ
(x,0−)
+ �1(t, x;ω+, F̃ ) + μ

(x,0−)
− �1(t, x;ω−, F̃ )

+ μ
(x,0−)
0 �0(t, x; F̃ ) + �free(t,−x; F̃ )

exists. Here we have used the mirrored function F̃ (z) := F(−z), which also satisfies the assump-
tion (4.5), since (4.23) holds on the double sector Sα ∪ (−Sα). This leads to the existence of the 
function � in (4.24) in the sense of (4.25), and also shows that it can be decomposed into

�(t, x;F) = μ
(x,0−)
+ �1(t, x;ω+, F̃ ) + μ

(x,0+)
+ �1(t, x;ω+,F )

+ μ
(x,0−)
− �1(t, x;ω−, F̃ ) + μ

(x,0+)
− �1(t, x;ω−,F )

+ μ
(x,0−)
0 �0(t, x; F̃ ) + μ

(x,0+)
0 �0(t, x;F)

+ �free(t,−x; F̃ ) + �free(t, x;F).

(4.26)

Due to (4.9) the functions �0, �1, and �free are solutions of the differential equation, and so is 
its linear combination � a solution of (1.4a). Note, that the coefficients μ± and μ0 only depend 
on the sign of x and hence do not influence the differential equation. Moreover, although the term 
�free(t, −x, F̃ ) depends on the variable −x, this function also solves (1.4a) since the x-derivative 
is of second order.

In order to check the jump condition (1.4b) we notice that by Lemma 4.3 we are allowed to 
carry the limit x → 0± inside the integral. Hence we get the representations

�(t,0±;F) =
∫
R

G(t,0±, y)F (y)dy,

∂

∂x
�(t,0±;F) =

∫
R

∂

∂x
G(t,0±, y)F (y)dy,

also for the linear combination. Again, note that the negative x argument of �free(t, −x; F̃ )

does not matter, since Gfree(t, 0+, y) = Gfree(t, 0−, y) by definition (2.10c). Since G satisfies 
the jump condition (2.21), the function � satisfies the jump condition (1.4b). Finally, the initial 
values (4.10) and (4.11) imply the initial condition (1.4c) of the wave function �. �

In preparation for the analysis of superoscillations in the next section we will now briefly dis-
cuss convergent sequences of initial conditions (Fn)n and the convergence of the corresponding 
solutions (�(t, x; Fn))n of the Schrödinger equation (1.4). As before we shall first deal with the 
functions �j , j ∈ {0, 1, free}, in (4.6) and assemble these components afterwards to the whole 
wave function �; cf. (4.26) in the proof of Theorem 4.4.

Lemma 4.5. Let F, Fn : � →C, n ∈N0, be holomorphic on an open set � ⊆C which contains 
the sector Sα from (4.1) for some α ∈ (0, π2 ), and assume that for some A, B ≥ 0 and An, Bn ≥ 0, 
n ∈N0, the exponential bounds (4.5) hold. If the sequence (Fn)n converges as
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lim
n→∞ sup

z∈Sα

∣∣Fn(z) − F(z)
∣∣e−C|z| = 0 (4.27)

for some C ≥ 0, then also the corresponding wave functions �j , j ∈ {0, 1, free}, in (4.6) converge 
as

lim
n→∞�j(t, x;Fn) = �j(t, x;F), j ∈ {0,1, free}, (4.28)

uniformly on compact subsets of (0, ∞) ×R.

Proof. First of all, we have the estimate∣∣Fn(z) − F(z)
∣∣ ≤ Cne

C|z|, z ∈ Sα,

where Cn := supz∈Sα
|Fn(z) − F(z)|e−C|z|. Using the representation (4.8), this inequality to-

gether with the estimate (2.16) of the Green’s function, leads to

∣∣�j(t, x;Fn) − �j(t, x;F)
∣∣ =

∣∣∣∣
∞∫

0

Gj(t, x, yeiα)
(
Fn(yeiα) − F(yeiα)

)
dy

∣∣∣∣
≤ Cncj (t)

∞∫
0

e− y2 sin(2α)
4t

+ |x|y sin(α)
2t eCydy

= Cn

cj (t)
√

πt√
sin(2α)

�
(

− |x|√tan(α)

2
√

2t
− C

√
t√

sin(2α)

)
,

where in the last line we have used the integral (2.7a). Since the right hand side of this inequality 
is continuous in t ∈ (0, ∞) and x ∈ R, and we have Cn → 0 by the assumption (4.27), the 
uniform convergence (4.28) on compact subsets of (0, ∞) ×R follows. �

Lemma 4.5 now leads to the following theorem, which is an important ingredient in the next 
section.

Theorem 4.6. Let F, Fn : � → C, n ∈ N0, be holomorphic on an open set � ⊆C which contains 
the double sector Sα ∪(−Sα) from (4.22) for some α ∈ (0, π2 ), and assume that for some A, B ≥ 0
and An, Bn ≥ 0, n ∈N0, the exponential bounds (4.23) hold. If the sequence (Fn)n converges as

lim
n→∞ sup

z∈Sα∪(−Sα)

∣∣Fn(z) − F(z)
∣∣e−C|z| = 0 (4.29)

for some C ≥ 0, then also the corresponding wave functions � in (4.24) converge as

lim
n→∞�(t, x;Fn) = �(t, x;F), (4.30)

uniformly on compact subsets of (0, ∞) ×R.
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Proof. It is clear that the convergence (4.29) of the functions Fn, n ∈ N0, implies the same 
convergence of the mirrored functions F̃n(z) = Fn(−z), n ∈ N0, and F̃ (z) = F(−z). Since the 
function � can be decomposed in the form (4.26), the convergence (4.30) follows immediately 
from Lemma 4.5. �
5. Superoscillatory initial data and plane wave asymptotics

In this section we allow superoscillatory functions as initial data in the Schrödinger equation 
(1.4) and we show that the corresponding solutions converge uniformly on compact sets. To 
discuss the oscillatory properties of these solutions we study the long time asymptotics of the 
plane wave solution in Theorem 5.5 and Remark 5.7, where the expected oscillatory behaviour 
and also possible stationary terms, reflecting negative bound states of the singular potential, are 
identified.

Superoscillating functions are band-limited functions that can oscillate faster than their fastest 
Fourier component. This is made precise in the next definition.

Definition 5.1 (Superoscillations). A generalized Fourier sequence is a sequence of functions 
(Fn)n, n ∈ N0, of the form

Fn(x) =
n∑

j=0

cj (n)eikj (n)x, x ∈R, (5.1)

with kj (n) ∈ R and cj (n) ∈ C, j ∈ {0, . . . , n}. A generalized Fourier sequence (Fn)n is said to 
be superoscillating, if:

(i) There exists some k ∈ R such that

sup
n∈N0, j∈{0,...,n}

|kj (n)| < |k|.

(ii) There exists a compact subset K ⊂ R, called superoscillation set, such that

lim
n→∞ sup

x∈K

∣∣Fn(x) − eikx
∣∣ = 0. (5.2)

In the next corollary, which is a simple consequence of Theorem 4.6, it will be shown that su-
peroscillating initial data (Fn)n (with a slightly stronger convergence property) leads to solutions 
(�(t, x; Fn))n that converge on compact subsets for all times t > 0. We mention that the charac-
teristic superoscillatory behaviour of the functions (Fn)n is on a compact set K in (5.2), but this 
is not enough to ensure the same convergence for the sequence of solutions (�(t, x; Fn))n. As 
the functions (5.1) admit entire extensions to the whole complex plane,

Fn(z) =
n∑

j=0

cj (n)eikj (n)z, z ∈ C, (5.3)

a fact that is also important for several considerations related with the so-called supershift prop-
erty, it is meaningful to assume the stronger convergence
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lim
n→∞ sup

z∈C

∣∣Fn(z) − eikz
∣∣e−C|z| = 0 (5.4)

for some C ≥ 0. Note, that in our standard example of superoscillating functions in (1.7) one 
indeed has this kind of uniform convergence; cf. [37, Theorem 2.1] and [8] for more details.

Corollary 5.2 (Stability of superoscillations). Let the sequence (Fn)n, n ∈ N0, be superoscil-
lating in the sense of Definition 5.1 and assume, in addition, that their entire extensions (5.3)
converge as in (5.4) for some C ≥ 0. Then also the corresponding solutions of (1.4) converge as

lim
n→∞�(t, x;Fn) = �(t, x; eik · ),

uniformly on compact subsets of (0, ∞) ×R.

Proof. In order to apply Theorem 4.6, we first note that (5.3) implies the estimate

|Fn(z)| ≤
n∑

j=0

|cj (n)|eRe(ikj (n)z) ≤
n∑

j=0

|cj (n)|e|kj (n)| | Im(z)|, z ∈C.

Together with the convergence (5.4) this shows that the functions Fn satisfy the assumptions of 
Theorem 4.6 for any α ∈ (0, π2 ), and hence the statement follows. �

To analyse the oscillatory behaviour of the functions �(t, x; Fn) and �(t, x; eik · ) in Corol-
lary 5.2 it is useful to compute the explicit form of the plane wave solution �(t, x; eik · ) and to 
provide its long time asymptotics.

Proposition 5.3. For every k ∈ R the solution of the Schrödinger equation (1.4) with initial con-
dition F(x) = eikx is given by

�(t, x; eik ·) =
(

μ
(x,0+)
+

ω+ + ik
+ μ

(x,0+)
−

ω− + ik
+ μ

(x,0+)
0

2

)
e− x2

4it �
( |x|

2
√

it
− ik

√
it

)

+
(

μ
(x,0−)
+

ω+ − ik
+ μ

(x,0−)
−

ω− − ik
+ μ

(x,0−)
0

2

)
e− x2

4it �
( |x|

2
√

it
+ ik

√
it

)

−
∑
j=±

⎛⎝ μ
(x,0−)
j

ωj − ik
+ μ

(x,0+)
j

ωj + ik

⎞⎠ e− x2
4it �

( |x|
2
√

it
+ ωj

√
it

)
+ eikx−ik2t ,

(5.5)

using the coefficients μ0, μ±, and ω± from Theorem 2.4. In the special case k = 0 this formula 
is understood in the sense that μ(x,0±)

j /ωj = 0, whenever ωj = 0.

Proof. We start by calculating the functions �j(t, x, eik · ) for j ∈ {0, 1, free} from (4.6). Since 
the holomorphic continuation F(z) = eikz of the initial condition satisfies the assumption (4.5)
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for the special choice α = π
4 , we can use the absolutely convergent integral representation (4.8). 

For the functions �0 and �free we now use the integral identity (2.7a) to get

�0
(
t, x; e±ik ·) = 1

2
√

πt

∞∫
0

e− (|x|+y
√

i)2

4it e±iky
√

idy = 1

2
e− x2

4it �
( |x|

2
√

it
∓ ik

√
it

)
,

as well as

�free
(
t, x; e±ik ·) = 1

2
√

πt

∞∫
0

e− (x−y
√

i)2

4it e±iky
√

idy = 1

2
e− x2

4it �
( −x

2
√

it
∓ ik

√
it

)
.

For the function �1 we use the integral (2.7b) to get, at least for ω and k not both vanishing, the 
explicit solution

�1
(
t, x;ω,e±ik ·) = √

i

∞∫
0

�
( |x| + y

√
i

2
√

it
+ ω

√
it

)
e− (|x|+y

√
i)2

4it e±iky
√

idy

= e− x2
4it

ω ± ik

(
�

( |x|
2
√

it
∓ ik

√
it

)
− �

( |x|
2
√

it
+ ω

√
it

))
.

For the special case ω = k = 0 the second integral in (2.7b) gives

�1(t, x;0,1) = √
i

∞∫
0

�
( |x| + y

√
i

2
√

it

)
e− (|x|+y

√
i)2

4it dy = −√
it �′

( |x|
2
√

it

)
e− x2

4it ;

here, however, the precise value of the integral is not needed since μ(x,y)
j = 0, j = ±, whenever 

ωj = 0 in Cases I-III in Theorem 2.4, and thus the corresponding term in the decomposition 
(4.26) is absent. Assembling now all these terms as in the decomposition (4.26) and using the 
identity (2.4) for the terms involving �free gives (5.5). �

In the next example we provide an explicit form of the solution �(t, x; eik ·) in (5.5) for 
decoupled systems, that is, separated interface (or boundary) conditions at the origin.

Example 5.4. Observe first that the interface conditions in (1.4b) decouple (separate) if and 
only if the matrix J is of diagonal form, i.e. β = 0 in (2.18). Furthermore, since in general 
|α|2 + |β|2 = 1 it follows that the interaction depends only on φ in (2.18) and Arg(α). In this 
situation the wave function of the negative half line does not interact with the wave function on 
the positive half line, and this property is also manifested in the plane wave solution (5.5). In 
fact, for decoupled systems a technical computation shows that the solution admits the form

�(t, x; eik · ) =
{

�+(t, x; eik · ), if x > 0,

�−(t, x; eik · ), if x < 0,
(5.6)
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where �± depend only on the coefficients

γ± := tan
(φ ± Arg(α)

2

)
.

Here the functions �± are explicitely given by

�±(t, x; eik · ) =1

2
e− x2

4it

(
γ± ± ik

−γ± ± ik
�

( |x|
2
√

it
∓ ik

√
it

)
− �

( |x|
2
√

it
± ik

√
it

))
+ γ±

γ± ∓ ik
e− x2

4it �
( |x|

2
√

it
− γ±

√
it

)
+ eikx−ik2t ;

in the case γ+ = ∞ and/or γ− = ∞ (that is, φ + Arg(α) = π and/or φ − Arg(α) = π ) this is 
understood in the sense that

∞ ± ik

−∞ ± ik
:= −1 and

∞
∞ ∓ ik

�
( |x|

2
√

it
− ∞√

it
)

:= 0.

In the next theorem the long time asymptotics of the plane wave solution in Proposition 5.3
is found. While the exponentially decaying eωj |x|-terms in (5.7) and (5.8) are due to negative 
bound states (see Remark 5.7), the oscillating terms eikx and ei|kx| in the first line of (5.7), or 
their absence in (5.8), show that the solution �(t, x; eik · ) oscillates with frequency k. Therefore, 
roughly speaking, the sequence (�(t, x; Fn))n shows the characteristic superoscillatory prop-
erty since the functions �(t, x; Fn) oscillate with the frequencies kj (n) and the limit function 
�(t, x; eik · ) oscillates with the larger frequency k.

Theorem 5.5. For every k ∈ R \ {0} the solution of the Schrödinger equation (1.4) with initial 
condition F(x) = eikx admits the long time asymptotics

�(t, x; eik ·) =eikx−ik2t + 2

(
μ

(x,−k)
+

ω+ − i|k| + μ
(x,−k)
−

ω− − i|k| + μ
(x,−k)
0

2

)
ei|kx|−ik2t

−
∑
j=±

⎛⎝ μ
(x,0−)
j

ωj − ik
+ μ

(x,0+)
j

ωj + ik

⎞⎠2�(−ωj )e
ωj |x|+iω2

j t +O
( 1√

t

)
,

(5.7)

as t → ∞, using the coefficients μ0, μ±, and ω± from Theorem 2.4. Moreover, for k = 0 we get 
the similar expansion

�(t, x;1) =μ
(x,0+)
+ + μ

(x,0−)
+

ω+
+ μ

(x,0+)
− + μ

(x,0−)
−

ω−
+ μ

(x,0+)
0 + μ

(x,0−)
0

2
+ 1

−
∑
j=±

μ
(x,0−)
j + μ

(x,0+)
j

ωj

2�(−ωj )e
ωj |x|+iω2

j t +O
( 1√

t

)
,

(5.8)

as t → ∞. The formula (5.8) is understood in the sense that μ(x,0±)
/ωj = 0, whenever ωj = 0.
j
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Proof. In the explicit solution (5.5) we can use the asymptotic expansion (2.6) of the function 
�, to get for every k, ωj ∈R \ {0}

�
( |x|

2
√

it
± ik

√
it

)
= 2�(±k)e

( |x|
2
√

it
±ik

√
it

)2

+O
( 1√

t

)
, as t → ∞,

�
( |x|

2
√

it
+ ωj

√
it

)
= 2�(−ωj )e

( |x|
2
√

it
+ωj

√
it

)2

+O
( 1√

t

)
, as t → ∞.

Note, that all the terms in (5.5) with ωj = 0 vanish since in this case also μ(x,0±)
j = 0 by its 

definition in Theorem 2.4. Hence we can use the above asymptotics to get the long time behaviour

�(t, x; eik ·) =
(

μ
(x,0+)
+

ω+ + ik
+ μ

(x,0+)
−

ω− + ik
+ μ

(x,0+)
0

2

)
2�(−k)e−ik|x|−ik2t

+
(

μ
(x,0−)
+

ω+ − ik
+ μ

(x,0−)
−

ω− − ik
+ μ

(x,0−)
0

2

)
2�(k)eik|x|−ik2t

−
∑
j=±

⎛⎝ μ
(x,0−)
j

ωj − ik
+ μ

(x,0+)
j

ωj + ik

⎞⎠2�(−ωj )e
ωj |x|+iω2

j t

+ eikx−ik2t +O
( 1√

t

)
, as t → ∞,

which easily simplifies to (5.7). For k = 0 we get from (5.5) the representation

�(t, x;1) =
(

μ
(x,0+)
+ + μ

(x,0−)
+

ω+
+ μ

(x,0+)
− + μ

(x,0−)
−

ω−
+ μ

(x,0+)
0 + μ

(x,0−)
0

2

)
e− x2

4it �
( |x|

2
√

it

)

−
∑
j=±

⎛⎝μ
(x,0−)
j

ωj

+ μ
(x,0+)
j

ωj

⎞⎠ e− x2
4it �

( |x|
2
√

it
+ ωj

√
it

)
+ 1.

Using the Taylor series erf(z) = 2√
π

∞∑
n=0

(−1)n

n!(2n+1)
z2n+1 we get the asymptotics

e− x2
4it �

( |x|
2
√

it

)
= 1 − erf

( |x|
2
√

it

)
= 1 +O

( 1√
t

)
.

Hence the wave function �(t, x; 1) reduces to (5.8) in the limit t → ∞. �
Example 5.6. In the same setting as in Example 5.4 one can compute the long time asymptotics 
(5.7) and (5.8) for decoupled systems. For k �= 0 we obtain the wave function
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�(t, x; eik ·) =�(−kx)
(
eikx + γ− sgn(k) − i|k|

−γ− sgn(k) − i|k|e
−ikx

)
e−ik2t

+ �(−γ+)�(x)
2γ+

γ+ − ik
e−γ+x+iγ 2+t

+ �(−γ−)�(−x)
2γ−

γ− + ik
eγ−x+iγ 2−t +O

( 1√
t

)
and for k = 0 we find the representation

�(t, x;1) = 2�(−γ+)�(x)e−γ+x+iγ+2t + 2�(−γ−)�(−x)eγ−x+iγ 2−t +O
( 1√

t

)
.

Again, similar as in Example 5.4, if γ+ = ∞ and/or γ− = ∞ are infinite (that is, φ +Arg(α) = π

and/or φ − Arg(α) = π ) this is understood in the sense that

∞ − i|k|
−∞ − i|k| := −1 and �(−∞) := 0.

Remark 5.7. We note that the eωj |x|-terms, j = ±, in the asymptotics in (5.7) and (5.8) cor-
respond to negative bound states of the underlying self-adjoint Schrödinger operator. In fact, a 
bound state corresponding to the eigenvalue (energy) E ∈ R is a function ψ ∈ L2(R) which 
satisfies

− ∂2

∂x2 ψ(x) = E ψ(x), x ∈R \ {0}, (5.9a)

(I − J )

(
ψ(0+)

ψ(0−)

)
= i(I + J )

(
∂
∂x

ψ(0+)

− ∂
∂x

ψ(0−)

)
. (5.9b)

In order to get a non-trivial L2-solution of the differential equation (5.9a) we need E < 0; in this 
case the general solution is given by

ψ(x) =
{

Ae−x
√−E, x > 0,

B ex
√−E, x < 0,

for some constants A, B ∈ C. Plugging the limits ψ(0±) and ∂
∂x

ψ(0±) into the jump condition 
leads to the linear system of equations

(I − J )

(
A

B

)
= −i

√−E (I + J )

(
A

B

)
. (5.10)

A direct calculation using the matrix (2.18) and the property |α|2 +|β|2 = 1 of the matrix entries 
shows
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Fig. 1. Possible negative eigenvalues ω± < 0 of the Schrödinger operator depending on the choice of φ ∈ [0, π) and 
Re(α) ∈ [−1, 1] in the matrix J . The continuous/dashed lines illustrate boundaries that do/don’t belong to the parameter 
regions. Case III in Theorem 2.4 corresponds to the left lower corner (−1, 0), Case II is depicted by the curve Re(α) =
− cos(φ), and the remaining points constitute Case I.

det
(
(I − J ) + i

√−E(I + J )
)

= det

((
1 − αeiφ β̄eiφ

−βeiφ 1 − ᾱeiφ

)
+ i

√−E

(
1 + αeiφ −β̄eiφ

βeiφ 1 + ᾱeiφ

))
= (

1 − 2 Re(α)eiφ + e2iφ
) + 2i

(
1 − e2iφ

)√−E − (
1 + 2 Re(α)eiφ + e2iφ

)(√−E
)2

= 2eiφ
((

cos(φ) − Re(α)
) + 2 sin(φ)

√−E − (
cos(φ) + Re(α)

)(√−E
)2

)
and for E < 0 this determinant vanishes if and only if

√−E =
{

sin(φ)∓
√

1−Re(α)2

cos(φ)+Re(α)
, Re(α) �= − cos(φ),

− cot(φ), Re(α) = − cos(φ) �= −1.

When comparing with the three different cases in Theorem 2.4 we see that 
√−E = −ω± with 

ω± < 0 in Case I and 
√−E = −ω+ with ω+ < 0 in Case II lead to negative eigenvalues. More 

precisely, if ω := ω+ = ω− < 0, then E = −ω2 is an eigenvalue of multiplicity two with linear 
independent eigenfunctions

ψ1(x) = eω|x| and ψ2(x) = sgn(x)eω|x|. (5.11)

If ω+ �= ω−, then each ω± < 0 leads to an eigenvalue E± = −ω2± of multiplicity one with 
corresponding eigenfunction

ψ(x) =
(

1 ∓ Im(β) + sgn(x)
(

Im(α) + i Re(β)
)√

1 − Re(α)2

)
eω±|x|; (5.12)

we leave it to the reader to check that the function in (5.11) and (5.12) satisfy the interface 
condition (5.10).

We conclude this section with an example illustrating Proposition 5.3 and Theorem 5.5 for 
the important special case of δ and δ′-potentials; cf. [2, Theorem 3.2].
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Example 5.8. Using the coefficients μ0, μ±, and ω± from Example 3.2 and Example 3.3 it 
follows that for k ∈R the plane wave solutions for the δ and δ′-interaction are given by

�δ(t, x; eik ·) =
(

− c

2(c + ik)
�

( |x|
2
√

it
− ik

√
it

)
− c

2(c − ik)
�

( |x|
2
√

it
+ ik

√
it

)
+ c2

c2 + k2 �
( |x|

2
√

it
+ c

√
it

))
e− x2

4it + eikx−ik2t ,

�δ′(t, x; eik ·) =
(

ik sgn(x)

2(c + ik)
�

( |x|
2
√

it
− ik

√
it

)
+ ik sgn(x)

2(c − ik)
�

( |x|
2
√

it
+ ik

√
it

)
− ikc sgn(x)

c2 + k2 �
( |x|

2
√

it
+ c

√
it

))
e− x2

4it + eikx−ik2t .

(5.13)

For k ∈ R \ {0} in the attractive case c < 0 their asymptotics as t → ∞ are

�δ(t, x; eik ·) = e−ik2t

(
eikx − c

c − i|k|e
i|kx|

)
+ 2c2

c2 + k2 ec|x|+ic2t +O
( 1√

t

)
,

�δ′(t, x; eik ·) = e−ik2t

(
eikx + ik sgn(x)

c − i|k| ei|kx|
)

− 2ick sgn(x)

c2 + k2 ec|x|+ic2t +O
( 1√

t

) (5.14)

and for k ∈ R \ {0} in the repulsive case c > 0 the asymptotics of the plane wave solutions as 
t → ∞ are

�δ(t, x; eik ·) = e−ik2t

(
eikx − c

c − i|k|e
i|kx|

)
+O

( 1√
t

)
,

�δ′(t, x; eik ·) = e−ik2t

(
eikx + ik sgn(x)

c − i|k| ei|kx|
)

+O
( 1√

t

)
.

(5.15)

In the attractive case c < 0 the time evolutions

ψδ(x) = 2c2

c2 + k2 eic2t ec|x| and ψδ′(x) = − 2ick

c2 + k2 eic2t sgn(x)ec|x|

of the eigenfunctions ec|x| and sgn(x)ec|x| (see also (5.11)) appear in (5.14); this is in accordance 
with Remark 5.7, see also Example 3.2 and Example 3.3. The function ψδ represents the damped 
wave that interacts with the δ-potential well (and similarly for ψδ′). In fact, the exponential 
damping ec|x| in space, as well as the oscillations eic2t in time, depend on c. In the repulsive 
case c > 0 equation (5.15) shows that for large times the wave keeps oscillating as e−ik2t , as 
the free wave does, but with a different complex prefactor, which means a different amplitude as 
well as a phase shift. Moreover, in the formulas (5.13) also the resonance frequencies k = ±ic

appear, where the plane wave solutions have singularities. These observations are in accordance 
with the spectral theory results for the corresponding self-adjoint Schrödinger operators in [16, 
Chapter I.3.1, Theorem 3.1.4 and below].
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