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Abstract. In the last decade there has been a growing interest in superoscillations in various
fields of mathematics, physics and engineering. However, while in applications as optics the
local oscillatory behaviour is the important property, some convergence to a plane wave is the
standard characterizing feature of a superoscillating function in mathematics and quantum
mechanics. Also there exists a certain discrepancy between the representation of superoscil-
lations either as generalized Fourier series, as certain integrals or via special functions. The
aim of this work is to close these gaps and give a general definition of superoscillations,
covering the well-known examples in the existing literature. Superoscillations will be defined
as sequences of holomorphic functions, which admit integral representations with respect to
complex Borel measures and converge to a plane wave in the space A1(C) of exponentially
bounded entire functions.
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1. Introduction

The theory of superoscillatory functions has its origin in various areas of physics and
engineering. For example in quantum mechanics these functions appear in the context of
Aharonov’s weak values [2], in antenna theory they were first used in [33] and for optics and
other applications we refer to the Roadmap on Superoscillations by M.V. Berry et al. [19].

The prototypical superoscillatory function that appeared in quantum mechanics can be
found in the still unpublished preprint [13] from 1991, where Y. Aharonov and collaborators
made a thought experiment considering a box containing only red light, but emitting a gamma
ray. With the notion of weak values the authors also found a way How the result of a
measurement of a component of the spin of a spin-12 particle can turn out to be 100, see [2].
The type of functions considered in those papers are of the form

Fn(x) =

n∑
j=0

Cj(n)eikj(n)x, x ∈ R, n ∈ N, (1.1)

where for some fixed a > 1 the coefficients are chosen as

Cj(n) =
(
n
j

)(1 + a

2

)n−j(1− a
2

)j
and kj(n) = 1− 2j

n
. (1.2)

Note that every Fn is a linear combination of plane waves with frequencies kj(n) ∈ [−1, 1].
The superoscillatory behaviour now comes from the fact that

lim
n→∞

Fn(x) = eiax, x ∈ R, (1.3)

converges to a plane wave with frequency a > 1. However, superoscillations of the form (1.1)
do not only appear with the frequencies kj(n) in (1.2), but it was shown in [6] that for any
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choice of frequencies kj(n) ∈ [−1, 1] and any a > 1 one can construct coefficients C ′j(n) ∈ C,
such that

n∑
j=0

C ′j(n)eikj(n)x ∼ eiax, x ∈ R, (1.4)

where ∼ is understood in the sense that the Taylor coefficients of both sides coincide up to
order n.

The mathematical theory of superoscillations has attracted a lot of interest in the recent
past. A first introduction to the mathematics of superoscillations in one variable and some
of its applications to Schrödinger evolution of superoscillatory initial data can be found in
[9]. Nowadays, the literature on superoscillations is growing quite fast and, without claiming
completeness, we mention that some of the most recent results on the time evolution of
superoscillations are contained in the papers [3, 4, 5, 16, 30, 31] and in the references therein.
The case of superoscillating functions in several variables and other interesting mathematical
aspects of superoscillations are contained in the papers [8, 11, 12, 22, 23].

A certain type of superoscillations, different from the ones in (1.1), were introduced by
M.V. Berry in his work Faster than Fourier [17], where families of superoscillating functions
are constructed that have the form

Fδ(x) =
1

δ
√

2π

∫
R
eik(u)xe−

(u−ia)2

2δ2 du, x ∈ R, δ > 0, (1.5)

with some fixed coefficient a > 0 and a frequency function k with values k(u) ∈ [−1, 1] for
every u ∈ R. Instead of a convergence result of the form (1.3) it is shown in Berry’s work
that the local wavenumber exceeds the range [−1, 1], while the intrinsic frequencies k take
only values in [−1, 1]. In the same way also the superoscillatory behaviour of the function

Fδ(x) =
2

δ
e−

1
δ sinc

(√
x2 − 2iax

δ
− 1

δ2

)
x ∈ R, δ > 0, (1.6)

was investigated in [18].

A method of constructing superoscillating functions was introduced in [7] and revisited in
[14]. The idea is to consider for some entire function H(z) =

∑∞
n=0 hnz

n the associated infinite

order differential operator H(−i ∂∂x) :=
∑∞

n=0 hn(−i ∂∂x)n and the corresponding generalized
Schrödinger equation

i
∂

∂t
Ψ(t, x) = −H

(
− i ∂

∂x

)
Ψ(t, x), t, x ∈ R. (1.7)

Using superoscillating initial conditions it turns out that the solution Ψ(t, · ) at any time
t ∈ R is still superoscillating. Moreover, under some additional assumptions on the range of
the function H the solution Ψ( · , x) is also superoscillating in the time variable for every fixed
x ∈ R.

Furthermore, a different perspective on superoscillatory behaviour was taken by P. Ferreira,
A. Kempf and D. Lee in a series of papers [24, 25, 26, 27, 28, 29]. There functions of the form

F (x) =
m∑
l=0

cl sinc(x− xl), x ∈ R, (1.8)

were considered, where the coefficients (cl)l are chosen such that F (xl) = al, l ∈ {0, . . . ,m},
admits the prescribed values (al)l at the prescibed points (xl)l. Choosing now for example
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xl = δl for some arbitrary small δ > 0 and al = (−1)l with alternating sign, the function
F admits an arbitrary large number of oscillations in an arbitrary small interval, while its
Fourier transform is always supported in the bounded interval [−1, 1].

The above examples show that there exist many variants of superoscillations, defined in
various ways and having different types of oscillatory behaviour. One of the main purposes of
this paper is to propose the general Definition 1.2 of superoscillations below and to show that
all the above examples are contained as special cases in this concept. The crucial points in
our analysis are the integral representation (1.11) via complex Borel measures and the space
A1(C) of exponentially bounded entire functions, where the convergence of superoscillating
functions is considered with respect to the natural topology.

Definition 1.1. The space of entire functions with exponential growth is defined as

A1(C) :=
{
F : C→ C entire

∣∣∣ ∃A,B ≥ 0 such that |F (z)| ≤ AeB|z| for all z ∈ C
}
. (1.9)

For any F0, (Fn)n ∈ A1(C) we say that Fn → F0 converges in A1(C) if and only if there exists
some B ≥ 0, such that

lim
n→∞

sup
z∈C
|Fn(z)− F0(z)|e−B|z| = 0. (1.10)

The idea is now to consider superoscillations as certain superpositions of plane waves with
frequencies in a bounded range [−k0, k0], but converging to a plane wave with frequency
a ∈ R \ [−k0, k0] exceeding this range.

Definition 1.2. A sequence of functions of the form

Fn(z) =

∫ k0

−k0

eikzdµn(k), z ∈ C, (1.11)

with a common maximal frequency k0 > 0 and complex Borel measures µn on [−k0, k0], is
called superoscillating, if there exists some a ∈ R \ [−k0, k0], such that

lim
n→∞

Fn(z) = eiaz in A1(C). (1.12)

Note, that any function of the form (1.11) is an element in A1(C). In fact, since a complex
measure has finite total variation, the exponential boundedness follows immediately from the
estimate

|Fn(z)| ≤
∫ k0

−k0

e|k||z|d|µn|(z) ≤ |µn|([−k0, k0])ek0|z|, z ∈ C.

Moreover, the holomorphicity follows from a version of the dominated convergence theorem
which allows to carry the derivatives inside the integral.

Also note that the functions (1.1) are superoscillation in the sense of Definition 1.2 since
the representation (1.11) holds with the complex Borel measures

µn(B) :=

n∑
j=0,kj(n)∈B

Cj(n), for every Borel set B ⊆ [−1, 1], (1.13)

and the convergence (1.12) was shown in [21, Theorem 2.1].

In the main part of this paper we collect and generalize the different superoscillating func-
tions that appear in the mathematical and physical literature, and prove that they fit into
the context of Definition 1.2. In particular, we verify the convergence in the space A1(C)
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in all cases, which is important from an analytic point of view and puts the phenomenon of
superoscillations in an appropriate mathematical perspective. In Section 2 functions of the
form (1.5) and certain extensions of these classes are discussed. The superoscillating sinc-
function (1.6) is treated in Section 3. Section 4 shows that the approximation (1.4) really
leads to superoscillations in the sense of Definition 1.2 for a large class of given frequencies
kj(n), see Corollary 4.2. Moreover, in Theorem 4.1 this concept is generalized to any low

frequency function of the form (4.3) instead of the exponentials eikj(n)z. It then turns out
that a version of the method (1.8) can be considered as a special case of Corollary 4.4, treated
in Example 4.5. The final Section 5 then considers the method of generating superoscillating
functions described in (1.7).

Acknowledgements. Jussi Behrndt gratefully acknowledges financial support by the Aus-
trian Science Fund (FWF): P 33568-N. Peter Schlosser’s research was funded by the Austrian
Science Fund (FWF) under Grant No. J 4685-N and by the European Union – NextGenera-
tionEU. This publication is also based upon work from COST Action CA 18232 MAT-DYN-
NET, supported by COST (European Cooperation in Science and Technology), www.cost.eu.

2. A construction of superoscillations due to M.V. Berry

The considerations in this section are inspired by M.V. Berry’s paper [17], where super-
oscillatory functions of the form

Fδ(x) =
1

δ
√

2π

∫
R
eik(u)xe−

(u−ia)2

2δ2 du, x ∈ R, (2.1)

were introduced. The idea behind this construction is that the complex Gaussian

1

δ
√

2π
e−

(u−ia)2

2δ2 → δ(u− ia), as δ → 0+,

approximates the complex delta function and consequently

Fδ(x)→ eik(ia)x, as δ → 0+,

converges to a plane wave. If one chooses a frequency function with values k(u) ∈ [−1, 1] for
every u ∈ R and k(ia) ∈ R\ [−1, 1] for some a > 0, this indicates a superoscillatory behaviour
of the functions Fδ.

We will now revisit this idea and improve it in three ways. Firstly, an additional function g is
included in the integral (2.1). This function does not affect the superoscillatory property of the
Fδ’s, but allows to modify their shape. Secondly, precise assumptions on the involved functions
g and k are given. Thirdly and most importantly, while in [17] mainly the complex saddle
point approximation is used to derive quantities like the local wave number, the convergence
in the space A1(C) is proven here. In particular, Corollary 2.2 shows that the functions Fδ
are indeed superoscillating in the sense of Definition 1.2.

Theorem 2.1. For b ≥ a > 0 let ∆ ⊆ C be the open triangle with corners ia and ±b. Consider
measurable functions k, g : R ∪∆→ C which for some B ≥ 0 satisfy the bounds

sup
u∈R
|k(u)| <∞ and sup

u∈R
|g(u)|e−B|u| <∞. (2.2)
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Moreover, assume that k and g are continuous on ∆, holomorphic on ∆, and in the case
a = b their derivatives are bounded on ∆. Then, for every δ > 0, the functions

Fδ(z) :=
1

δ
√

2π

∫
R
g(u)eik(u)ze−

(u−ia)2

2δ2 du, z ∈ C, (2.3)

belong to the space A1(C) and converge as

lim
δ→0+

Fδ(z) = g(ia)eik(ia)z in A1(C). (2.4)

Proof. We shall make use of the constants

C := sup
u∈R
|k(u)| and A := sup

u∈R
|g(u)|e−B|u|,

which are finite due to assumption (2.2). A straightforward estimate shows

|Fδ(z)| ≤
1

δ
√

2π

∫
R
|g(u)|e|k(u)||z|e

−u2+a2

2δ2 du ≤ A

δ
√

2π
e
a2

2δ2

(∫
R
eB|u|e−

u2

2δ2 du

)
eC|z|, (2.5)

and hence Fδ is well defined for every δ > 0. Furthermore, a version of the dominated
convergence theorem shows that Fδ is holomorphic and together with the above estimate it
follows that Fδ, δ > 0, belongs to the space A1(C).

In the following we will verify that Fδ converges as in (2.4). First, we change the part
−b→ b of the integration path in (2.3) to −b→ ia→ b, that is, we use∫ b

−b
g(u)eik(u)ze−

(u−ia)2

2δ2 du =

∫ ia

−b
g(u)eik(u)ze−

(u−ia)2

2δ2 du+

∫ b

ia
g(u)eik(u)ze−

(u−ia)2

2δ2 du.

In fact, since g and k are holomorphic on ∆ and continuous on ∆ the above equality follows
from the Cauchy theorem applied to the boundary of the scaled triangle ∆ε and then taking
the limit ε→ 0+.

Re

Im

-b b

ia

ε

ε ε

∆ε

Hence we can split up the function Fδ into the four parts

Fδ(z) = F
(1)
δ (z) + F

(2)
δ (z) + F

(3)
δ (z) + F

(4)
δ (z), z ∈ C, (2.6)

where

F
(1)
δ (z) =

1

δ
√

2π

∫ −b
−∞

g(u)eik(u)ze−
(u−ia)2

2δ2 du,

F
(2)
δ (z) =

1

δ
√

2π

∫ ia

−b
g(u)eik(u)ze−

(u−ia)2

2δ2 du,

F
(3)
δ (z) =

1

δ
√

2π

∫ b

ia
g(u)eik(u)ze−

(u−ia)2

2δ2 du,

F
(4)
δ (z) =

1

δ
√

2π

∫ ∞
b

g(u)eik(u)ze−
(u−ia)2

2δ2 du.
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For these four functions we will now investigate the limit δ → 0+ separately. Starting with

F
(4)
δ we estimate in the same way as in (2.5)

|F (4)
δ (z)| ≤ A

δ
√

2π
eC|z|e

a2

2δ2

∫ ∞
b

eBue−
u2

2δ2 du ≤ A√
2π
eC|z|ebB

∫ ∞
0

e−
v2

2 ev(Bδ−
b
δ
)dv,

where in the second inequality we used a ≤ b and substituted v = u−b
δ . Shifting the expo-

nential eC|z| to the left side of this inequality leads to a z-independent right hand side, which
converges as

sup
z∈C
|F (4)
δ (z)|e−C|z| ≤ A√

2π
ebB

∫ ∞
0

e−
v2

2 ev(Bδ−
b
δ
)dv → 0, as δ → 0+.

According to (1.10) this is exactly the convergence

lim
δ→0+

F
(4)
δ (z) = 0 in A1(C).

In the same way we also prove

lim
δ→0+

F
(1)
δ (z) = 0 in A1(C).

For the function F
(3)
δ (z) we first use the identity∫ b

ia
e−

(u−ia)2

2δ2 du =
δ
√
π√
2

erf
(b− ia
δ
√

2

)
,

which is an immediate consequence of the definition of the error function, to rewrite the
difference

F
(3)
δ (z)− g(ia)

2
eik(ia)z =

1

δ
√

2π

∫ b

ia

(
g(u)eik(u)z − g(ia)

erf
(
b−ia
δ
√
2

)eik(ia)z)e− (u−ia)2

2δ2 du. (2.7)

In the case b > a we use uδ(t) := ia+ δt(b− ia), t ∈ [0, 1δ ], to parametrize this integral as

F
(3)
δ (z)− g(ia)

2
eik(ia)z =

b− ia√
2π

∫ 1
δ

0

(
g(uδ(t))e

ik(uδ(t))z − g(ia)

erf
(
b−ia
δ
√
2

)eik(ia)z)e− t2(b−ia)2

2 dt,

and estimate the difference by∣∣∣F (3)
δ (z)− g(ia)

2
eik(ia)z

∣∣∣ ≤ √b2 + a2√
2π

∫ 1
δ

0

(
|g(uδ(t))|

∣∣eik(uδ(t))z − eik(ia)z∣∣
+

∣∣∣∣g(uδ(t))−
g(ia)

erf( b−ia
δ
√
2

)

∣∣∣∣e|k(ia)| |z|)e− t2(b2−a2)
2 dt.

Since g, k are continuous on ∆, we denote their respective suprema by ‖ · ‖∆. Using the
estimate (A.1) we obtain∣∣∣F (3)

δ (z)− g(ia)

2
eik(ia)z

∣∣∣ ≤ √b2 + a2√
2π

e‖k‖∆|z|
∫ 1

δ

0

(
|k(uδ(t))− k(ia)| ‖g‖∆|z|

+

∣∣∣∣g(uδ(t))−
g(ia)

erf( b−ia
δ
√
2

)

∣∣∣∣)e− t2(b2−a2)
2 dt.
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Using also the inequality |z| ≤ e|z|, which is an immediate consequence of the power series
representation of the exponential, we find the estimate∣∣∣F (3)

δ (z)− g(ia)

2
eik(ia)z

∣∣∣e−(‖k‖∆+1)|z| ≤
√
b2 + a2√

2π

∫ 1
δ

0

(
|k(uδ(t))− k(ia)| ‖g‖∆

+

∣∣∣∣g(uδ(t))−
g(ia)

erf( b−ia
δ
√
2

)

∣∣∣∣)e− t2(b2−a2)
2 dt.

In this form we note that the right hand side is independent of z and vanishes as δ → 0+

due to the dominated convergence theorem, the continuity of g and k and the fact that
limδ→0+ erf( b−ia

δ
√
2

) = 1 by the choice b > a. This shows the convergence

lim
δ→0+

F
(3)
δ (z) =

g(ia)

2
eik(ia)z in A1(C).

In the case a = b we go back to formula (2.7) and note that all functions in the integrand are
continuous. Hence we can shift the integration path into the open triangle ∆ where g and k
are holomorphic, i.e. we write the integral as the limit

F
(3)
δ (z)− g(ia)

2
eik(ia)z =

1

δ
√

2π
lim
ε→0+

∫ a−ε

i(a−ε)

(
g(u)eik(u)z − g(ia)

erf
(a(1−i)
δ
√
2

)eik(ia)z)e− (u−ia)2

2δ2 du.

Using the complementary error function erfc(z) := 1− erf(z) and its derivative

d

du
erfc

(u− ia
δ
√

2

)
= −

√
2

δ
√
π
e−

(u−ia)2

2δ2 ,

integration by parts leads to

F
(3)
δ (z)− g(ia)

2
eik(ia)z

= −1

2
lim
ε→0+

∫ a−ε

i(a−ε)

(
g(u)eik(u)z − g(ia)

erf
(a(1−i)
δ
√
2

)eik(ia)z) d
du

erfc
(u− ia
δ
√

2

)
du

= −g(a)

2
eik(a)z erfc

(a(1− i)
δ
√

2

)
+

1

2
lim
ε→0+

∫ a−ε

i(a−ε)

d

du

(
g(u)eik(u)z

)
erfc

(u− ia
δ
√

2

)
du

= −g(a)

2
eik(a)z erfc

(a(1− i)
δ
√

2

)
+

1

2
lim
ε→0+

∫ a−ε

0

d

ds

(
g(uε(s))e

ik(uε(s))z
)

erfc
(uε(s)− ia

δ
√

2

)
ds,

where in the last line we parametrized the complex path integral by uε(s) := i(a−ε)+s(1−i),
s ∈ [0, a− ε]. Using this, we can now estimate the difference by∣∣∣F (3)

δ (z)− g(ia)

2
eik(ia)z

∣∣∣ ≤ e‖k‖∆|z|(‖g‖∆

2

∣∣∣ erfc
(a(1− i)

δ
√

2

)∣∣∣
+
‖g′‖∆ + ‖gk′‖∆|z|√

2
lim
ε→0+

∫ a−ε

0

∣∣∣ erfc
(uε(s)− ia

δ
√

2

)∣∣∣ds)
≤ e(‖k‖∆+1)|z|

(
‖g‖∆

2

∣∣∣ erfc
(a(1− i)

δ
√

2

)∣∣∣
+
‖g′‖∆ + ‖gk′‖∆√

2

∫ a

0

∣∣∣ erfc
(s(1− i)

δ
√

2

)∣∣∣ds), (2.8)
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where in the second inequality we performed the limit ε → 0+ and used the estimate |z| ≤
e|z| to get rid of the z-dependency inside the brackets. Using the representation erfc(z) =
2√
π

∫∞
0 e−(t+z)

2
dt of the complementary error function, see [1, Eq. (7.1.2)], it can be estimated

by ∣∣∣ erfc
(s(1− i)

δ
√

2

)∣∣∣ =
2√
π

∣∣∣ ∫ ∞
0

e
−(t+ s(1−i)

δ
√

2
)2
dt
∣∣∣ ≤ 2√

π

∫ ∞
0

e−t
2−
√

2 ts
δ dt ≤ min

{ δ√2

s
√
π
, 1
}
,

where in the last inequality we estimated either e−t
2 ≤ 1 or e−

√
2 ts
δ ≤ 1 to get the minimum

as an upper bound. This inequality on the one hand gives an δ-independent bound of the last
integral in (2.8) as well as for every s ∈ (0, a] the pointwise convergence as δ → 0+. With the
dominated convergence theorem this then leads to∣∣∣F (3)

δ (z)− g(ia)

2
eik(ia)z

∣∣∣e−(‖k‖∆+1)|z| ≤ ‖g‖∆

2

∣∣∣ erfc
(a(1− i)

δ
√

2

)∣∣∣
+
‖g′‖∆ + ‖gk′‖∆√

2

∫ a

0

∣∣∣ erfc
(s(1− i)

δ
√

2

)∣∣∣ds δ→0+

−→ 0.

Since the right hand side is independent of |z| we conclude the convergence

lim
δ→0+

F
(3)
δ (z) =

g(ia)

2
eik(ia)z in A1(C).

For the same reason also

lim
δ→0+

F
(2)
δ (z) =

g(ia)

2
eik(ia)z in A1(C).

Summing up, we have proved that all the terms in (2.6) converge in A1(C) and hence (2.4)
follows. �

The next corollary puts the result of Theorem 2.1 into the perspective of superoscillations
and proves that under certain assumptions on the frequency function k, the resulting functions
Fδ satisfy Definition 1.2.

Corollary 2.2. Let b ≥ a > 0 and k, g be as in Theorem 2.1. Assume, in addition, that there
exists some k0 > 0 such that

g(ia) = 1, k(ia) ∈ R \ [−k0, k0] and k(u) ∈ [−k0, k0] for every u ∈ R. (2.9)

Then the functions Fδ in (2.3) are superoscillating with limit

lim
δ→0+

Fδ(z) = eik(ia)z in A1(C). (2.10)

Proof. Since g(ia) = 1 by assumption, the convergence (2.10) follows from Theorem 2.1.
Hence it remains to verify the integral representation (1.11). For this we first define the
complex Borel measure

σδ(A) :=
1

δ
√

2π

∫
A
g(u)e−

(u−ia)2

2δ2 du

for Borel sets A ⊆ R. With this measure the function Fδ admits the representation

Fδ(z) =

∫
R
eik(u)zdσδ(u), z ∈ C.
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In a second step we consider the Borel measure

µδ(B) := σδ
(
{ u ∈ R | k(u) ∈ B }

)
for Borel sets B ⊆ [−k0, k0] and rewrite Fδ as

Fδ(z) =

∫ k0

−k0

eikzdµδ(k), z ∈ C,

which is exactly the form (1.11). Since by assumption k(u) ∈ [−k0, k0] for every u ∈ R and
since the frequency k(ia) of the limit function in (2.10) lies in R \ [−k0, k0], the functions Fδ
are indeed superoscillating in the sense of Definition 1.2. �

Remark 2.3. Note that in Theorem 2.1 and Corollary 2.2 we may modify the functions k, g
on R \ [−b, b] as long as (2.2) and (2.9) remain valid. Since this only changes the functions

Fδ but not the limit g(ia)eik(ia)z in (2.4), any such modification leads to a new family of
superoscillating functions.

To illustrate our result we provide some possible choices of functions k and g which lead to
superoscillations in Corollary 2.2. In particular, we will use the functions k from the original
paper [17].

Example 2.4. Possible choices of the frequency function are

k1(u) =
1

1 + u2

2

, k2(u) =
1

cosh(u)
, k3(u) = e−

u2

2 , k4(u) = cos(u).

All these functions satisfy kj(u) ∈ [−1, 1] for j = 1, 2, 3, 4 and for every u ∈ R. Evaluated for
complex arguments these functions admit the values

k1(ia) =
1

1− a2

2

, k2(ia) =
1

cos(a)
, k3(ia) = e

a2

2 , k4(ia) = cosh(a),

and hence k1(ia) > 1 for every a ∈ (0,
√

2), k2(ia) > 1 for every a ∈ (0, π2 ), and k3,4(ia) > 1
for every a > 0. With the constant gj ≡ 1 for j = 1, 2, 3, 4, the assumptions of Corollary 2.2
are satisfied and we end up with superoscillating functions Fδ. Another possible choice con-
sidered in [17] is for any 0 < a ≤ 2 the functions

g5(u) =

{
1, if u ∈ ∆,

0, if u ∈ R \ [−a, a],
and k5(u) =

{
1− u2

2 , if u ∈ ∆

0, if u ∈ R \ [−a, a].

Here, ∆ is the triangle from Theorem 2.1 with b = a. Also these functions satisfy the assum-
tions of Corollary 2.2 and lead to superoscillating functions Fδ.

3. Superoscillating sinc-functions

In [18] M.V. Berry considered another type of superoscillating functions

Fδ(z) =
2

δ
e−

1
δ sinc

(√
z2 − 2iaz

δ
− 1

δ2

)
, z ∈ C, (3.1)

for some fixed a > 1 and every δ > 0; here sinc(z) := sin(z)
z denotes the Sinus cardinalis and

the complex square root is fixed by

0 ≤ Arg(
√
· ) < π. (3.2)
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The aim of this section is to verify that (3.1) is indeed superoscillatory in the sense of Defi-
nition 1.2. This will be done in two steps. In Theorem 3.2 we prove the convergence (1.12)
and with the help of Lemma A.2 we conclude the integral representation (1.11).

We start with a technical estimate of the complex square root, which will be important for
the A1-convergence of the functions (3.1) in Theorem 3.2.

Lemma 3.1. For any a > 1 there exists some C ≥ 0, such that∣∣√z2 − 2iaz − 1 + az − i
∣∣ ≤ C min{|z|, |z|2}, z ∈ C. (3.3)

Proof. In the first step we consider the function f(z) :=
√
z2 − 2iaz − 1 − az + i. Assume

that f(z0) = 0 for some z0 ∈ C, that is,√
z20 − 2iaz0 − 1 = az0 − i.

Squaring both sides leads to z20 = a2z20 and since obviously z0 6= 0 by the choice of the square
root in (3.2), this is a contradiction to a > 1. Hence f does not have any zeros. Since a > 1
by assumption we also conclude

lim
|z|→∞

|f(z)| =∞,

and consequently there exists c > 0 such that

|f(z)| ≥ c, z ∈ C. (3.4)

In the second step we consider g(z) :=
√
z2 − 2iaz − 1 +az− i. Using (3.4), this function can

be estimated by

|g(z)| =
∣∣∣g(z)f(z)

f(z)

∣∣∣ =
∣∣∣(1− a2)z2

f(z)

∣∣∣ ≤ (a2 − 1)|z|2

c
, z ∈ C. (3.5)

Moreover, g can also be estimated by

|g(z)| ≤
√

(|z|+ a)2 + a|z|+ 1 = (1 + a)(1 + |z|), z ∈ C. (3.6)

Using now (3.5) for |z| ≤ 1 and (3.6) for |z| ≥ 1 this implies the estimate (3.3). �

Theorem 3.2. For every a > 1 and δ > 0 the functions Fδ in (3.1) belong to the space A1(C)
and converge as

lim
δ→0+

Fδ(z) = eiaz in A1(C). (3.7)

Proof. For this proof it will be convenient to use the notation

Rδ(z) :=

√
z2 − 2iaz

δ
− 1

δ2
, z ∈ C, (3.8)

so that we can write Fδ(z) = 2
δ e
− 1
δ sinc(Rδ(z)). Although the complex square root in (3.8) is

not entire, in the series expansion of the sinc-function only even powers appear and we still
end up with the entire function

Fδ(z) =
2

δ
e−

1
δ

∞∑
n=0

(−1)n

(2n+ 1)!
Rδ(z)

2n =
2

δ
e−

1
δ

∞∑
n=0

(−1)n

(2n+ 1)!

(
z2 − 2iaz

δ
− 1

δ2

)n
.
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For δ > 0 fixed and z ∈ C sufficiently large we have 1 ≤ |Rδ(z)| ≤ 2|z| and hence the
exponential bound

|Fδ(z)| =
2

δ
e−

1
δ
| sin(Rδ(z))|
|Rδ(z)|

≤ 1

δ
e−

1
δ

∣∣eiRδ(z) − e−iRδ(z)∣∣ ≤ 2

δ
e−

1
δ e2|z|

holds for all z ∈ C sufficiently large. It follows that Fδ ∈ A1(C).

In order to show that Fδ converges as in (3.7) we first estimate the difference between Fδ(z)

and Gδ(z) := 2
δ e
− 1
δ sinc( iδ − az). Using the identity sinc(ξ) = 1

2

∫ 1
−1 e

itξdt, ξ ∈ C, we find

Fδ(z)−Gδ(z) =
1

δ
e−

1
δ

∫ 1

−1

(
eitRδ(z) − eit(

i
δ
−az))dt,

and with the help of (A.1) we obtain

|Fδ(z)−Gδ(z)| ≤
1

δ
e−

1
δ

∫ 1

−1
|t|
∣∣∣Rδ(z) + az − i

δ

∣∣∣e|t|max{|Rδ(z)|,| iδ−az|}dt

≤ 1

δ
e−

1
δ

∫ 1

−1

∣∣∣Rδ(z) + az − i

δ

∣∣∣e|t|(|Rδ(z)+az− i
δ
|+|az− i

δ
|)dt.

(3.9)

Since the estimate (3.3) translates into∣∣∣Rδ(z) + az − i

δ

∣∣∣ =
1

δ

∣∣√δ2z2 − 2iaδz − 1 + aδz − i
∣∣ ≤ C min{|z|, δ|z|2},

we can further estimate (3.9) in the form

|Fδ(z)−Gδ(z)| ≤ C|z|2e−
1
δ

∫ 1

−1
e|t|(C|z|+a|z|+

1
δ
)dt

≤ C|z|2e(C+a)|z|e−
1
δ

∫ 1

−1
e
|t|
δ dt

= 2Cδ|z|2e(C+a)|z|e−
1
δ (e

1
δ − 1)

≤ 2Cδ|z|2e(C+a)|z|;

(3.10)

in the last inequality we used |z|2 ≤ 2e|z|, which follows from the power series representation
of the exponential.

In a second step we estimate the difference between Gδ(z) and eiaz. For this, we again use

sinc(ξ) = 1
2

∫ 1
−1 e

itξdt, ξ ∈ C, as well as integration by parts to rewrite Gδ as

Gδ(z) =
1

δ
e−

1
δ

∫ 1

−1
eit(

i
δ
−az)dt

= −e−
1
δ

∫ 1

−1

( d
dt
e−

t
δ

)
e−iatzdt

= eiaz − e−
2
δ e−iaz − iaze−

1
δ

∫ 1

−1
e−

t
δ e−iatzdt.
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This representation allows the estimate

|Gδ(z)− eiaz| ≤
(
e−

2
δ + a|z|e−

1
δ

∫ 1

−1
e−

t
δ dt
)
ea|z|

=
(
e−

2
δ + aδ|z|(1− e−

2
δ )
)
ea|z|

≤ (e−
2
δ + aδ|z|)ea|z|

≤ (e−
2
δ + aδ)e(a+1)|z|,

(3.11)

where in the last inequality we used |z| ≤ e|z|, which follows from the power series represen-
tation of the exponential.

Combining now (3.10) and (3.11) leads to the estimate

|Fδ(z)− eiaz|e−(C+a+1)|z| ≤ 4Cδ + e−
2
δ + aδ, z ∈ C,

and since the right hand side is z-independent and converges to zero as δ → 0+, this shows
limδ→0+ Fδ(z) = eiaz in A1(C). �

The convergence result of Theorem 3.2 together with the integral representation of the
sinc-function in Lemma A.2 imply the superoscillatory property of the functions Fδ in (3.1).

Corollary 3.3. For every a > 1 the functions Fδ in (3.1) are superoscillating with limit

lim
δ→0+

Fδ(z) = eiaz in A1(C). (3.12)

Proof. The convergence (3.12) was shown in Theorem 3.2 and it remains the integral repre-

sentation (1.11). From (A.3) with z and b replaced by z − ia
δ and

√
a2−1
δ , respectively, we

obtain

Fδ(z) =
2

δ
e−

1
δ sinc

(√
z2 − 2iaz

δ
− 1

δ2

)
=

1

δ

∫ 1

−1
eikze

ak−1
δ J0

(√
(a2 − 1)(1− k2)

δ

)
dk.

Using the complex Borel measure

µδ(B) :=
1

δ

∫
B
e
ak−1
δ J0

(√
(a2 − 1)(1− k2)

δ

)
dk

for Borel sets B ⊆ [−1, 1] we conclude that Fδ admits the integral representation (1.11) with
k0 = 1 and hence the functions Fδ are superoscillating according to Definition 1.2. �

4. Superoscillations with prescribed frequencies

The standard example (1.1) of a superoscillating function is a linear combination of plane
waves

Fn(z) =

n∑
j=0

Cj(n)eikj(n)z, z ∈ C, (4.1)

with frequencies kj(n) = 1 − 2j
n and coefficients Cj(n) =

(
n
j

)
(1+k2 )n−j(1−k2 )j . For a long

time it was not clear how many of such superoscillating functions exist. In the recent paper
[6] for any set of given frequencies kj(n) ∈ [−1, 1] and any target frequency a ∈ R \ [−1, 1]
coefficients Cj(n) were constructed, such that the corresponding sequence (4.1) approximates
the exponential eiax in the sense that the Taylor series of Fn(x) and eiax coincide up to order
n. This approximation suggests a certain superoscillatory behaviour, but is not sufficient
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to conclude the convergence Fn(z) → eiaz in A1(C). The analysis in this section is partly
inspired by these earlier considerations in [6]. In particular, in Corollary 4.2 we conclude the
A1-convergence under sufficient conditions on the frequencies kj(n).

Starting from a more general perspective we shall study functions of the form

Fn(z) =
n∑
j=0

Cj(n)fj,n(z), z ∈ C, (4.2)

with frequency functions

fj,n(z) =

∫ k0

−k0

eikzdµj,n(k), z ∈ C. (4.3)

The idea is now to choose the coefficients Cj(n) in such a way that the Taylor coefficients of
Fn(z) and eiaz coincide up to order n, that is,

F (l)
n (0) = (ia)l, n ∈ N, l ∈ {0, . . . , n}, (4.4)

or, more explicitly using (4.3) and (4.2)
n∑
j=0

Cj(n)

∫ k0

−k0

(ik)ldµj,n(k) = (ia)l, n ∈ N, l ∈ {0, . . . , n}.

For each n ∈ N this is a linear system of the form

Sncn = an, n ∈ N, (4.5)

where the matrix Sn ∈ C(n+1)×(n+1) and the vectors cn,an ∈ Cn+1 are given by

Sn =


∫ k0

−k0
k0dµ0,n(k) . . .

∫ k0

−k0
k0dµn,n(k)

...
. . .

...∫ k0

−k0
kndµ0,n(k) . . .

∫ k0

−k0
kndµn,n(k)

 , cn =

C0(n)
...

Cn(n)

 , an =

a
0

...
an

 . (4.6)

The following Theorem 4.1 is of abstract nature and provides conditions such that the func-
tions Fn in (4.2) are superoscillating. Using point measures µj,n in Corollary 4.2 we complete
the earlier considerations in [6]. A different situation based on the choice of absolutely con-
tinuous measures is treated in Corollary 4.4.

Theorem 4.1. Let k0 > 0, a ∈ R \ [−k0, k0], µj,n be complex Borel measures on [−k0, k0], and
let cn be a solution of the system (4.5) for n ∈ N. If there exist constants κ1, κ2 ≥ 0 such that
for every n ∈ N and j ∈ {0, . . . , n}

|µj,n|([−k0, k0]) ≤ κn1 and |Cj(n)| ≤ κn2 (4.7)

hold, then the functions Fn in (4.2) are superoscillating with limit

lim
n→∞

Fn(z) = eiaz in A1(C). (4.8)

Proof. First of all, it is clear that fj,n ∈ A1(C) for every j ∈ {0, . . . , n} and hence Fn ∈ A1(C)
by the arguments given below Definition 1.2. The bounds of the measures µj,n and the
coefficients Cj(n) in (4.7) immediately lead to the estimate

|Fn(z)| ≤
n∑
j=0

|Cj(n)|
∫ k0

−k0

e|k||z|d|µj,n|(k) ≤ (n+ 1)(κ1κ2)
nek0|z|, z ∈ C. (4.9)
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Next, we write the difference between Fn(z) and eiaz as the Taylor series

Fn(z)− eiaz =

∞∑
l=0

F
(l)
n (0)− (ia)l

l!
zl =

∞∑
l=n+1

F
(l)
n (0)− (ia)l

l!
zl, z ∈ C, (4.10)

where in the second equality we used (4.4). For z ∈ C\{0} the Cauchy integral formula along
a circle of radius (1 + κ1κ2)|z| leads to the following bounds for the coefficients in (4.10)

|F (l)
n (0)− (ia)l|

l!
=

∣∣∣∣ 1

2πi

∫
|ξ|=(1+κ1κ2)|z|

Fn(ξ)− eiaξ

ξl+1
dξ

∣∣∣∣
≤ 1

2π(1 + κ1κ2)l|z|l

∫ 2π

0

∣∣∣Fn((1 + κ1κ2)|z|eiϕ
)
− eia(1+κ1κ2)|z|eiϕ

∣∣∣dϕ
≤ 1

2π(1 + κ1κ2)l|z|l

∫ 2π

0

(
(n+ 1)(κ1κ2)

nek0(1+κ1κ2)|z| + e|a|(1+κ1κ2)|z|
)
dϕ

≤ (n+ 1)(κ1κ2)
n + 1

(1 + κ1κ2)l|z|l
e|a|(1+κ1κ2)|z|,

where we used (4.9) and k0 < |a| in the estimate of the integrand. Plugging this into the
Taylor series (4.10) gives

|Fn(z)− eiaz| ≤
(
(n+ 1)(κ1κ2)

n + 1
)
e|a|(1+κ1κ2)|z|

∞∑
l=n+1

1

(1 + κ1κ2)l

=
(n+ 1)(κ1κ2)

n + 1

κ1κ2(1 + κ1κ2)n
e|a|(1+κ1κ2)|z|, z ∈ C \ {0}.

(4.11)

Due to (4.10) this inequality obviously holds for z = 0 and hence we conclude the A1-
convergence

sup
z∈C
|Fn(z)− eiaz|e−|a|(1+κ1κ2)|z| ≤ (n+ 1)(κ1κ2)

n + 1

κ1κ2(1 + κ1κ2)n
→ 0, as n→∞.

Finally, the integral representation (1.11) of the functions Fn is satisfied by

Fn(z) =

∫ k0

−k0

eikz
n∑
j=0

Cj(n)µj,n(k) =

∫ k0

−k0

eikzdµn(k), z ∈ C,

using the Borel measure µn(B) :=
∑n

j=0Cj(n)µj,n(B) for Borel sets B ⊆ [−k0, k0]. We have

shown that the functions Fn are superoscillating with limit (4.8). �

In the next corollary we return to the initial problem of this section. The aim is to find for
given kj(n) coefficients Cj(n) in (4.1) such that the resulting functions Fn are superoscillat-
ing. Here the measures µj,n in Theorem 4.1 are chosen as point measures and an additional
condition on the frequencies kj(n) is imposed.

Corollary 4.2. Let k0 > 0, kj(n) ∈ [−k0, k0], and assume that

n∏
l=0,l 6=j

|kl(n)− kj(n)| ≥ κn, n ∈ N, j ∈ {0, . . . , n}, (4.12)
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holds for some κ > 0. For a ∈ R \ [−k0, k0] define the coefficients

Cj(n) =
n∏

l=0,l 6=j

kl(n)− a
kl(n)− kj(n)

, n ∈ N, j ∈ {0, . . . , n}. (4.13)

Then the functions

Fn(z) :=

n∑
j=0

Cj(n)eikj(n)z, z ∈ C, (4.14)

are superoscillating with limit limn→∞ Fn(z) = eiaz in A1(C).

Proof. Observe first that the functions (4.14) can be written in the form (4.2) using the point
measures

µj,n(B) :=

{
1, if kj(n) ∈ B,
0, if kj(n) /∈ B,

for Borel sets B ⊆ [−k0, k0]. Since the first bound in (4.7) is trivially satisfied, it remains
to check that the (unique) solution Cj(n) of (4.5) satisfies the second bound in (4.7). The
explicit form of the matrix Sn in this particular setting is

Sn =

k0(n)0 . . . kn(n)0

...
. . .

...
k0(n)n . . . kn(n)n

 .

This is a Vandermonde matrix, which is known to be invertible whenever the (kj(n))nj=0 are

pairwise disjoint. But this is obviously the case due to the assumption (4.12). Moreover,
using Cramer’s rule and the known determinant formula for Vandermonde matrices, one can
easily derive the explicit representation (4.13) for the coefficients Cj(n) of the solution, see
also [6, Theorem 2.2]. The assumption (4.12) now allows to estimate these coefficients as

|Cj(n)| =
n∏

l=0,l 6=j

|kl(n)− a|
|kl(n)− kj(n)|

≤
n∏

l=0,l 6=j

k0 + |a|
|kl(n)− kj(n)|

≤
(k0 + |a|

κ

)n
,

which shows the second bound in (4.7). It follows from Theorem 4.1 that the functions Fn
are superoscillating. �

Remark 4.3. Note that the frequencies kj(n) = 1− 2j
n in (1.2) can be estimated by

n∏
l=0,l 6=j

|kl(n)− kj(n)| =
n∏

l=0,l 6=j

2|l − j|
n

=
2nj!(n− j)!

nn
=

2nn!

nn
(
n
j

) ≥ 1

en
,

where in the last inequality we used
(
n
j

)
≤ 2n as well as nn

n! ≤ en, which is a consequence of

the Stirling formula. Hence, Corollary 4.2 applies and the coefficients Cj(n) in (4.13) lead to
superoscillating functions Fn in (4.14). Note that these coefficients do not coincide with those
in (1.2).

Now we turn to a different situation, where the measures µj,n in Theorem 4.1 are abso-

lutely continuous. Here the initial idea is to replace the exponentials eikj(n)z in (4.1) by the
derivatives of a bandlimited function

f(z) =

∫ k0

−k0

eikzh(k)dk, z ∈ C, (4.15)
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with h ∈ L1([−k0, k0]); note that h is the compactly supported Fourier transform of f .

Corollary 4.4. Let k0 > 0 and let h ∈ L1([−k0, k0]) be a nonnegative function from the Szegö
class, i.e. for some α, β ∈ [−k0, k0] with α < β one has∫ β

α

ln(h(k))√
(β − k)(k − α)

dk > −∞, (4.16)

and let f be as in (4.15). Then, for every a ∈ R \ [−k0, k0] there exist coefficients Cj(n) ∈ C
such that the functions

Fn(z) =

n∑
j=0

Cj(n)f (j)(z), z ∈ C, (4.17)

are superoscillating with limit limn→∞ Fn(z) = eiaz in A1(C).

Proof. Note that the functions Fn in (4.17) are of the form (4.2) if we use the measures

µj,n(B) =

∫
B

(ik)jh(k)dk (4.18)

for Borel sets B ⊆ [−k0, k0]. Hence we are in the situation to apply Theorem 4.1 but have to
check the two estimates (4.7). The bound of the absolute variations of the measures is clearly
satisfied by

|µj,n|([−k0, k0]) =

∫ k0

−k0

|k|j |h(k)|dk ≤ kj0
∫ k0

−k0

|h(k)|dk ≤ max{k0, 1}n‖h‖L1 .

To calculate the coefficients Cj(n) we have to solve the system (4.5) or, equivalently, the
system Mndn = an with the matrix and the vectors

(Mn)j,l =

∫ k0

−k0

kj+lh(k)dk, (dn)j = ijCj(n), (an)l = al,

where we shifted the powers ij of the imaginary unit from the coefficient matrix into the
solution vector. Now consider the matrix

(M̃n)j,l :=

∫ β

α
kj+lh(k)dk, j, l ∈ {0, . . . , n}.

It is shown in [32] that its lowest eigenvalue λ̃n = inf06=x∈Cn
〈M̃nx,x〉
|x|2 is bounded from below

by

λ̃n ≥ κn, n ∈ N,
for some κ > 0. Hence M̃n is elliptic with bound M̃n ≥ κn for every n ∈ N. For x ∈ Cn+1 the
estimate

〈Mnx, x〉 =

∫ k0

−k0

∣∣∣ n∑
j=0

kjxj

∣∣∣2h(k)dk ≥
∫ β

α

∣∣∣ n∑
j=0

kjxj

∣∣∣2h(k)dk = 〈M̃nx, x〉 ≥ κn|x|2,

shows that the same is true for the matrix Mn. Consequently, the inverse matrix exists and
is bounded by ‖M−1n ‖ ≤ 1

κn . Finally we can estimate the elements Cj(n) of the solution by

|Cj(n)| ≤ |dn| = |M−1n an| ≤
1

κn
|an| ≤

√
n+ 1 max{an, 1}

κn
.

Hence, also the second bound in (4.7) is satisfied and the assertions follow from Theorem 4.1.
�
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In the following example we make a special choice of the function h in (4.15) in order to find
a close connection between the functions (4.17) and the method presented in the paragraph
below equation (1.8).

Example 4.5. In this example we apply Corollary 4.4 with k0 = 1 and the constant function
h(k) = 1

2 . The exact integral∫ 1

−1

ln(12)√
(1− k)(k + 1)

dk = −π ln(2) > −∞

shows that the condition (4.16) is satisfied in this setting. Moreover, the function f in (4.15)
is given by

f(z) =
1

2

∫ 1

−1
eikzdk = sinc(z), z ∈ C,

which means that the functions Fn in (4.17) become the sum of derivatives of the sinc-function

Fn(z) =
n∑
j=0

Cj(n) sinc(j)(z), z ∈ C. (4.19)

This example is of particular importance, since these functions are closely related to the method
of P. Ferreira, A. Kempf and D. Lee in the series of papers [24, 25, 26, 28, 29]. There
functions of the form (1.8) were considered, with coefficients (cl)l chosen in such a way that at
prescribed points (xl)l the function F admits the prescribed values F (xl) = al, l ∈ {0, . . . ,m}.
Furthermore, in the paper [27] this construction is extended in the sense that also the values
of the derivative F ′ can be prescribed and it is then straight forward to also prescribe the
derivatives up to any order n, i.e. F (j)(xj,l) = aj,l, l ∈ {0, . . . ,m}, j ∈ {0, . . . , n}. This then
leads to a function F of the form

F (x) =
m∑
l=0

c0,l sinc(x− x0,l) +
m∑
l=0

c1,l sinc′(x− x1,l) + · · ·+
m∑
l=0

cn,l sinc(n)(x− xn,l).

In the special case that we choose m = 0, the points x0,0 = x1,0 = · · · = xn,0 = 0 as the origin
and the values aj,0 = (ia)j, we end up with exactly the function (4.19), namely

F (x) = c0,0 sinc(x) + c1,0 sinc′(x) + · · ·+ cn,0 sinc(n)(x).

5. Superoscillating solutions of the generalized Schrödinger equation

In this final section we derive two methods to construct new families of superoscillating
functions out of given ones. The underlying technique has its origin in [7] and was revisited
in [8, 9, 14]; it is based on the generalized force free Schrödinger equation

i
∂

∂t
Ψ(t, z) = −H

(
− i ∂

∂z

)
Ψ(t, z), t, z ∈ C, (5.1)

where for some entire H(z) =
∑∞

l=0 hlz
l the operator H(−i ddz ) :=

∑∞
l=0 hl(−i)l

dl

dzl
is defined

as the corresponding infinite order differential expression. If we now consider superoscillating
initial conditions Ψn(0, z) = Fn(z) of the form (1.11), then the equation (5.1) admits the
explicit solution

Ψn(t, z) =

∫ k0

−k0

eiH(k)teikzdµn(k), t, z ∈ C; (5.2)
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cf. Lemma 5.1. One may expect that the solutions Ψn(t, · ) are superoscillatory also for t 6= 0.
This method is specified in Theorem 5.2 (i). Moreover, it turns out that in the point z = 0
the functions Ψn( · , 0) are superoscillatory in the time variable t as well, see Theorem 5.2 (ii).

In the next lemma we collect some properties of the propagator of the generalized Schrödinger
equation (5.1).

Lemma 5.1. Let H : C→ C be an entire function. For every t ∈ C the operator

Ut :=
∞∑
m=0

(it)m

m!
H
(
− i d

dz

)m
, (5.3)

is continuous as an operator Ut : A1(C)→ A1(C) and it acts on plane waves eiaz and functions
Fn(z) of the form (1.11) as

Ute
iaz = eiH(a)teiaz and UtFn(z) =

∫ k0

−k0

eiH(k)teikzdµn(k), (5.4)

respectively. Moreover, for every F ∈ A1(C), the function Ψ(t, z) = UtF (z), t, z ∈ C, is a
solution of the generalized Schrödinger equation (5.1) with initial condition Ψ(0, z) = F (z).

Proof. The fact that the operator Ut is continuous in A1(C) was already shown in [15, The-
orem 2.7]. To investigate the action (5.4) of Ut on plane waves eiaz, we start with the power
series representation H(z) =

∑∞
l=0 hlz

l. Then the operator H(−i ddz ) acts on plane waves eiaz

as multiplication

H
(
− i d

dz

)
eiaz =

∞∑
l=0

hl(−i)l
dl

dzl
eiaz =

∞∑
l=0

hla
leiaz = H(a)eiaz

and hence the operator Ut acts as

Ute
iaz =

∞∑
m=0

(it)m

m!
H
(
− i d

dz

)m
eiaz =

∞∑
m=0

(iH(a)t)m

m!
eiaz = eiH(a)teiaz. (5.5)

To determine the action of Ut on functions Fn(z) =
∫ k0

−k0
eikzdµn(k) we have to interchange

the complex derivatives with the integral. In the first step we use a version of the dominated
convergence theorem and obtain

dl

dzl

∫ k0

−k0

eikzdµn(k) =

∫ k0

−k0

dl

dzl
eikzdµn(k).

Applying the dominated convergence theorem once more, we are also allowed to carry the
infinite sum

∑∞
l=0 of the operator H(−i ddz ) inside the integral. This gives

H
(
− i d

dz

)∫ k0

−k0

eikzdµn(k) =

∫ k0

−k0

H
(
− i d

dz

)
eikzdµn(k).

Using the dominated convergence a third time for the series
∑∞

m=0 of the operator Ut finally
gives

Ut

∫ k0

−k0

eikzdµn(k) =

∫ k0

−k0

Ute
ikzdµn(k) =

∫ k0

−k0

eiH(k)teikzdµn(k),

where in the second equation we used (5.5).
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In the last part of the proof let F ∈ A1(C) and consider Ψ(t, z) := UtF (z), t, z ∈ C.
Interchanging derivatives and sums for similar reasons as above, we obtain that

i
∂

∂t
Ψ(t, z) = i

∂

∂t

∞∑
m=0

(it)m

m!
H
(
− i d

dz

)m
F (z)

= −
∞∑
m=1

(it)m−1

(m− 1)!
H
(
− i d

dz

)m
F (z)

= −H
(
− i d

dz

) ∞∑
m=0

(it)m

m!
H
(
− i d

dz

)m
F (z)

= −H
(
− i d

dz

)
Ψ(t, z).

Hence Ψ(t, z) in indeed a solution of the generalized Schrödinger equation (5.1). Since U0 = id
reduces to the identity operator, the solution also satisfies the initial condition Ψ(0, z) =
F (z). �

The novelty of Theorem 5.2 below is that arbitrary superoscillating functions of the form
(1.11) are allowed, while in [7, 8, 9, 14] only the standard example (1.1) was considered.

Furthermore, it is shown that the resulting functions F
(1)
n and F

(2)
n in (5.7) and (5.8) converge

in A1(C), while only uniform convergence on compact sets was proven in [7, 8, 9, 14].

Theorem 5.2. Let k0 > 0, a ∈ R \ [−k0, k0], and µn be complex Borel measures on [−k0, k0].
Assume that the functions

Fn(z) =

∫ k0

−k0

eikzdµn(k), z ∈ C, (5.6)

are superoscillating with limit limn→∞ Fn(z) = eiaz in A1(C). Then one can construct the
following two new families of superoscillating functions:

(i) For every entire function H : C→ C the functions

F (1)
n (z) := e−H(a)

∫ k0

−k0

eH(k)eikzdµn(k), z ∈ C, (5.7)

are superoscillating with limn→∞ F
(1)
n (z) = eiaz in A1(C).

(ii) For every entire function H : C → C with satisfies ran
(
H|[−k0,k0]

)
⊆ [−h0, h0] and

H(a) ∈ R \ [−h0, h0] for some h0 > 0 the sequence

F (2)
n (z) :=

∫ k0

−k0

eiH(k)zdµn(k), z ∈ C, (5.8)

is superoscillating with limn→∞ F
(2)
n (z) = eiH(a)z in A1(C).

Proof. For the proof of (i) we consider the operator (5.3) with t = −i. From the action of
this operator in (5.4) we obtain

U−iFn(z) =

∫ k0

−k0

eH(k)eikzdµn(k) = eH(a)F (1)
n (z), z ∈ C.
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Since U−i is continuous in A1(C) due to Lemma 5.1 we conclude the convergence

lim
n→∞

F (1)
n (z) = e−H(a) lim

n→∞
U−iFn(z) = e−H(a)U−ie

iaz = eiaz in A1(C), (5.9)

where the first identity in (5.4) was used in the last step. The fact that F
(1)
n is of the form

(1.11) is clear using the complex Borel measure

σn(B) = e−H(a)

∫
B
H(k)dµn(k)

for Borel setsB ⊆ [−k0, k0]. Hence, the functions F
(1)
n are superoscillating with limn→∞ F

(1)
n (z) =

eiaz in A1(C).

(ii) According to the A1-convergence (1.12), there exists some B ≥ 0, such that

An := sup
z∈C
|Fn(z)− eiaz|e−B|z| → 0, as n→∞.

By the choice of the constants An, we obtain the estimate

|Fn(z)− eiaz| ≤ AneB|z|, z ∈ C.

In the proof of [15, Theorem 2.7] the authors obtain the estimate

|Ut(Fn(z)− eiaz)| ≤ AneD̃|t|eB̃|z|, t, z ∈ C,

for some B̃, D̃ ≥ 0. For z = 0 this estimate shows the convergence

lim
n→∞

sup
t∈C

∣∣Ut(Fn(z)− eiaz)|z=0

∣∣e−D̃|t| ≤ lim
n→∞

An = 0.

In other words, we conclude the A1-convergence

lim
n→∞

UtFn(z)|z=0 = Ute
iaz|z=0

in the variable t. Using the identities (5.4) this convergence can be written as

lim
n→∞

F (2)
n (t) = lim

n→∞

∫ k0

−k0

eiH(k)tdµn(k) = lim
n→∞

UtFn(z)|z=0 = Ute
iaz|z=0 = eiH(a)t. (5.10)

Since ran
(
H|[−k0,k0]

)
⊆ [−h0, h0] by assumption, we can choose the complex Borel measures

σn(B) := µn
(
{ k ∈ [−k0, k0] | H(k) ∈ B }

)
for Borel sets B ⊆ [−h0, h0] and transform F

(2)
n into the form

F (2)
n (t) =

∫ h0

−h0

eiktdσn(k), z ∈ C, (5.11)

which is the representation (1.11). Together with the convergence (5.10) to a plane wave with

frequency H(a) ∈ R \ [−h0, h0] this shows that the functions F
(2)
n are superoscillating. �
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Appendix A

This appendix contains two technical results which are used in Section 2 and Section 3. In
Lemma A.1 we prove an elementary estimate for the difference of two complex exponentials
and in Lemma A.2 we derive an integral representation of the sinc-function.

Lemma A.1. For every z1, z2 ∈ C one has

|ez1 − ez2 | ≤ |z1 − z2|emax{|z1|,|z2|}. (A.1)

Proof. First we write for every z = x+ iy ∈ C
|1− ez|2 = (1− cos(y)ex)2 + sin2(y)e2x = 1− 2 cos(y)ex + e2x.

Using cos(y) ≥ 1− y2

2 we can estimate this by

|1− ez|2 ≤ (1− ex)2 + y2ex.

Since |1 − ex| ≤ |x|e|x|, which follows directly from the power series representation of the
exponential, the above inequality becomes

|1− ez|2 ≤ x2e2|x| + y2ex ≤ (x2 + y2)e2|x| = |z|2e2|Re(z)|, z ∈ C. (A.2)

Next consider z1, z2 ∈ C and assume Re(z1) ≤ Re(z2). Then (A.2) implies

|ez1 − ez2 | = eRe(z1)|1− ez2−z1 | ≤ eRe(z1)|z2 − z1|eRe(z2−z1) = |z2 − z1|eRe(z2) ≤ |z2 − z1|e|z2|,

and in the same way for Re(z2) ≤ Re(z1) one obtains |ez1 − ez2 | ≤ |z1 − z2|e|z1|. These
estimates immediately lead to (A.1). �

To verify the integral representation (1.11) of the function (3.1) in the proof of Corollary 2.2
we need the following integral representation of the sinc-function. A sketch of this proof is
already given in [18, Appendix C].

Lemma A.2. For any b > 0 one has

sinc
(√

z2 + b2
)

=
1

2

∫ 1

−1
eikzJ0(b

√
1− k2)dk, z ∈ C. (A.3)

where J0 is the Bessel function of order zero.

Proof. We start by deriving the so called Mehler-Sonine integral representation of the Bessel
function

J0(x) =
2

π
lim
R→∞

∫ R

0
sin(x cosh(t))dt, x > 0. (A.4)

Using the Cauchy theorem we can transform for every R > 0 the integral∫ R

0
eix cosh(t)dt = i

∫ π
2

0
eix cosh(it)dt+

∫ R

0
eix cosh(t+i

π
2
)dt− i

∫ π
2

0
eix cosh(R+it)dt

= i

∫ π
2

0
eix cos(t)dt+

∫ R

0
e−x sinh(t)dt− i

∫ π
2

0
eix cosh(R) cos(t)e−x sinh(R) sin(t)dt.

Performing the limit R → ∞, the last integral vanishes due to the dominated convergence
theorem and we get

lim
R→∞

∫ R

0
eix cosh(t)dt = i

∫ π
2

0
eix cos(t)dt+

∫ ∞
0

e−x sinh(t)dt.



22 JUSSI BEHRNDT, FABRIZIO COLOMBO, PETER SCHLOSSER, AND DANIELE C. STRUPPA

Using the classical integral representation of the Bessel function [1, Eq. (9.1.18)] we get

J0(x) =
1

π

∫ π

0
cos(x cos(t))dt =

2

π

∫ π
2

0
cos(x cos(t))dt

=
2

π
Im
(

lim
R→∞

∫ R

0
eix cosh(t)dt

)
=

2

π
lim
R→∞

∫ R

0
sin
(
x cosh(t)

)
dt,

which is exactly the stated integral representation (A.4).

For the main part of the proof let us consider the function

S(z) := sinc
(√

z2 + b2
)
, z ∈ C.

Since the restriction S|R is square integrable, its Fourier transform is given by the improper
Riemann integral

F [S|R](k) =
1√
2π

lim
R1,R2→∞

∫ R2

−R1

e−ikxS(x)dx =
1√
2π

lim
R1,R2→∞

∫ R2

−R1

cos(kx)S(x)dx, k ∈ R,

where the imaginary part of the integral vanishes in the limit due to the symmetry of S.
Starting with |k| < 1, we substitute x = b sinh(t), to write this integral as

F [S|R](k) =
b√
2π

lim
R̃1,R̃2→∞

∫ R̃2

−R̃1

cos
(
kb sinh(t)

)
S
(
b sinh(t)

)
cosh(t)dt, (A.5)

where we used R̃i := arsinh(Rib ), i = 1, 2. Using the trigonometric identity 2 sin(u) cos(v) =
sin(u+ v) + sin(u− v) we can write the integrand as

2b cos
(
kb sinh(t)

)
S
(
b sinh(t)

)
cosh(t) = 2 cos

(
kb sinh(t)

)
sin
(
b cosh(t)

)
= sin

(
b cosh(t) + kb sinh(t)

)
+ sin

(
b cosh(t)− kb sinh(t)

)
.

Since |k| < 1 there exists some t0 ∈ R such that e2t0 = 1+k
1−k . Then, it is easy to verify that

cosh(t0) = 1√
1−k2

and sinh(t0) = k√
1−k2

and consequently

cosh(t)± k sinh(t) =
√

1− k2 cosh(t± t0).

Using this identity we can further rewrite the integrand as

2b cos
(
kb sinh(t)

)
S
(
b sinh(t)

)
cosh(t) = sin

(
b
√

1− k2 cosh(t+ t0)
)

+ sin
(
b
√

1− k2 cosh(t− t0)
)
.
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Plugging this representation in the integral (A.5) gives

F [S|R](k) =
1

2
√

2π
lim

R̃1,R̃2→∞

∫ R̃2

−R̃1

(
sin
(
b
√

1− k2 cosh(t+ t0)
)

+ sin
(
b
√

1− k2 cosh(t− t0)
))
dt

=
1√
2π

lim
R̂1,R̂2→∞

∫ R̂2

−R̂1

sin
(
b
√

1− k2 cosh(t)
)
dt

=

√
2√
π

lim
R̂2→∞

∫ R̂2

0
sin
(
b
√

1− k2 cosh(t)
)
dt

=

√
π√
2
J0
(
b
√

1− k2
)
,

where in the second line we substituted t→ t∓ t0, used R̂1 := R̃1 ∓ t0, R̂2 := R̃2 ± t0, in the
two respective integrals and added them together. Moreover, in the last equation we used the
representation (A.4).

For k > 1 we use the Cauchy theorem to change the integration path to a semicircle in the
lower half space

F [S|R](k) =
1√
2π

lim
R1,R2→∞

∫ R2

−R1

e−ikxS(x)dx

=
1√
2π

lim
R→∞

∫ R

−R
e−ikxS(x)dx

=
i√
2π

lim
R→∞

∫ 2π

π
Re−ikRe

iϕ
S(Reiϕ)eiϕdϕ.

(A.6)

Choosing R > b and using that

R2 − b2 ≤ |R2e2iϕ + b2| ≤ R2 + b2, ϕ ∈ [π, 2π], (A.7)

the function S in the integrand can be estimated by

|S(Reiϕ)| =
∣∣∣∣sin(

√
R2e2iϕ + b2)√
R2e2iϕ + b2

∣∣∣∣ ≤ e| Im(
√
R2e2iϕ+b2)|

√
R2 − b2

, ϕ ∈ [π, 2π]. (A.8)

Writing any w ∈ C as w = |w|eiArg(w) with Arg(w) ∈ [0, 2π), our choice (3.2) of the complex

square root shows
√
w =

√
|w| ei

Arg(w)
2 . Using this, we rewrite the imaginary part

Im(
√
w) =

√
|w| sin

(Arg(w)

2

)
=

√
|w|√
2

√
1− cos(Arg(w)) =

1√
2

√
|w| − Re(w), w ∈ C.

This representation and the estimate (A.7) can now be used to estimate the exponent in (A.8)
by

2
∣∣ Im (√R2e2iϕ + b2

)∣∣2 = |R2e2iϕ + b2| − Re(R2e2iϕ + b2) ≤ R2 −R2 cos(2ϕ) = 2R2 sin2(ϕ).

Hence we can further estimate (A.8) by

|S(Reiϕ)| ≤ e−R sin(ϕ)

√
R2 − b2

, ϕ ∈ [π, 2π].
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Using this inequality, the Fourier transform (A.6) can be estimated by

|F [S|R](k)| ≤ 1√
2π

lim
R→∞

∫ 2π

π

R√
R2 − b2

e(k−1)R sin(ϕ)dϕ

=
1√
2π

∫ 2π

π
lim
R→∞

R√
R2 − b2

e(k−1)R sin(ϕ)dϕ

= 0.

For k < −1 we also conclude F [S|R](k) = 0 by the symmetry of S.

Summing up, we have now shown that

F [S|R](k) =

{√
π√
2
J0(b
√

1− k2), if |k| < 1,

0, if |k| > 1.
(A.9)

Applying the inverse Fourier transform to (A.9) we obtain

S(x) =
1

2

∫ 1

−1
eikxJ0(b

√
1− k2)dk, x ∈ R.

Since J0 is a bounded function, the right hand side extends to an entire function when x ∈ R
is replaced by z ∈ C. Since the holomorphic extension is unique it coincides with S and we
conclude the stated integral representation (A.3). �
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