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The fate of Landau levels under ı-interactions

Jussi Behrndt, Markus Holzmann, Vladimir Lotoreichik, and
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Abstract. We consider the self-adjoint Landau Hamiltonian H0 in L2.R2/ whose spectrum

consists of infinitely degenerate eigenvalues ƒq , q 2 ZC, and the perturbed Landau Hamilto-

nian H� D H0 C �ı� , where � � R
2 is a regular Jordan C 1;1-curve and � 2 Lp.�IR/, p > 1,

has a constant sign. We investigate ker.H� � ƒq/, q 2 ZC, and show that generically

0 � dim ker.H� � ƒq/ � dim ker.Tq.�ı� // < 1;

where Tq.�ı� / D pq.�ı� /pq , is an operator of Berezin–Toeplitz type, acting in pqL2.R2/,

and pq is the orthogonal projection onto ker.H0 � ƒq/. If � ¤ 0 and q D 0, then we prove

that ker.T0.�ı� // D ¹0º. If q � 1 and � D Cr is a circle of radius r , then we show that

dim ker.Tq.ıCr
// � q, and the set of r 2 .0; 1/ for which dim ker.Tq.ıCr

// � 1 is infinite

and discrete.

1. Introduction

The aim of this article is to study the spectral type of the Landau levels of the singu-

larly perturbed Landau Hamiltonian

H� D .�ir � A/2 C �ı� ; (1.1)

where A.x/ WD b
2
.�x2; x1/, x D .x1; x2/ 2 R

2, is a magnetic potential which gener-

ates a constant scalar magnetic field b > 0, and the singular perturbation is supported

on a C 1;1-smooth Jordan curve � � R2 and has strength � 2 Lp.�I R/, p > 1. The

expression (1.1) is of formal nature here and the self-adjoint operator H� will be

defined rigorously via the corresponding quadratic form in Section 2. If the singular

perturbation is absent, that is, � D 0 in (1.1), then the operator reduces to the usual

self-adjoint Landau Hamiltonian H0 D .�ir � A/2. It is well known that

�.H0/ D �ess.H0/ D
[

q2ZC

¹ƒqº;
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where the Landau levels ƒq WD b.2q C 1/, q 2 ZC D ¹0; 1; 2; : : : º, are eigenvalues

of H0 of infinite multiplicity. Under our assumption on � and � it turns out that H� is

a compact perturbation of H0 in the resolvent sense and hence the essential spectrum

remains invariant, that is,

�ess.H�/ D �ess.H0/ D
[

q2ZC

¹ƒqº:

In the spectral gaps .ƒq�1; ƒq/, where q 2 ZC and ƒ�1 WD �1, of H0 there may

appear discrete eigenvalues of H� which can only accumulate at the Landau levels

ƒq , q 2 ZC. Some results on the asymptotic distribution near any fixed ƒq of these

discrete eigenvalues were obtained in [7]. In particular, it was shown that if either

� � 0 or � � 0 on � , � 6� 0, and certain additional regularity assumptions hold,

then in a neighborhood of any ƒq there are infinitely many discrete eigenvalues of

H� and their accumulation rate to the Landau levels is described in terms of the

logarithmic capacity of the interaction support; cf. [10, 20, 35, 37] for similar results

on the clustering of eigenvalues of Landau Hamiltonians on unbounded domains with

Dirichlet, Neumann, and Robin boundary conditions.

Our main objective in this article is to obtain a deeper understanding of the spectral

points ƒq , q 2 ZC, of the perturbed operator H� ; in other words, we are interested

in the fate of the Landau levels ƒq under ı-potentials of strength � . In particular, we

would like to know what part of the infinite-dimensional eigenspace ker.H0 � ƒq/ is

transformed into an eigenspace ker.H� � ƒq/ under the singular perturbation �ı� .

The analogous problem on the fate of Landau levels under regular perturbations of

the Landau Hamiltonian H0 was investigated earlier in [28]. Roughly speaking, it was

shown that for any non-negative potential V 2 L1.R2IR/, V 6� 0, with kV kL1.R2/ <

2b one has

ker.H0 ˙ V � ƒq/ D ¹0º: (1.2)

The assumption that V is sign-definite is essential here. In fact, in [28] it was also

shown that for every q 2 ZC, there exists a compactly supported V 2 L1.R2I R/

with kV kL1.R2/ < b of non-constant sign, such that

dim ker.H0 C V � ƒq/ D 1:

The key idea in the proof of (1.2) is to show that ker.H0 ˙ V � ƒq/ � ker. yTq.V //

and ker. yTq.V // D ¹0º if kV kL1.R2/ < 2b, where yTq.V / WD pqVpq is a Berezin–

Toeplitz type operator and pq denotes the orthogonal projection onto the eigenspace

ker.H0 � ƒq/.

In our treatment of the perturbed Landau Hamiltonian with a ı-potential in (1.1)

a singular analogue of the Berezin–Toeplitz operator plays a key role; cf. the dis-

cussion below (2.11) for more details and references. More precisely, if � is the
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restriction operator onto � we consider the operator Tq.�ı�/ WD .�pq/��.�pq/ and

in our main results we show that the analysis of ker.H˙� � ƒq/ can be reduced to

that of ker.Tq.�ı�//. Namely, under the definiteness assumption � � 0, we prove in

Theorem 3.1 that

ker.Tq.�ı� // � ker.H˙� � ƒq/; q 2 ZC;

and 0 � dim ker .H˙� � ƒq/ � dim ker .Tq.�ı�// < 1 for all q 2 ZC. Furthermore,

if k�kLp.�/ is not too large it turns out that

ker.H˙� � ƒq/ D ker.Tq.�ı�//; q 2 ZC:

As we will see, for � � 0 the kernel of Tq.�ı�/ consists of eigenfunctions of H0

for ƒq which vanish on the support of � . Intuitively, it is clear that such functions

u 2 ker.Tq.�ı� // are also eigenfunctions of H� , as in this case one formally has

�ı�u D 0, i.e., the singular interaction does not have an effect on u, and hence

H�u D H0u D ƒqu. This allows one to show with the help of [7, Lemma 3.7] that

the kernel of Tq.�ı�/ is finite-dimensional under the assumption that � is strictly

positive. Moreover, this connection provides a direct link to nodal sets for eigenfunc-

tions of H0 and the non-emptiness of ker .H� � ƒq/. The above observation means,

in particular, that for all � 2 Lp.�/ one has ker.H˙� � ƒq/ ¤ ¹0º, whenever � is

contained in a nodal set of an eigenfunction of H0. This is in strong contrast to the

case of regular potentials; cf. (1.2). Additionally, for the first Landau level ƒ0 we find

ker.T0.�ı�// D ¹0º in Theorem 3.6, which leads to

ker.H� � ƒ0/ D ¹0º:

At present it is not clear if dim ker .Tq.�ı�// can be further estimated for higher

Landau levels and general curves � . However, we find it worthwhile to discuss the

special case that � D Cr is a circle of radius r 2 .0; 1/. In this situation we find that

dim ker .Tq.ıCr
// � q; q D 1; 2; : : : ;

and the radii r 2 .0; 1/ for which dim ker.Tq.ıCr
// � 1 form an infinite and discrete

set; cf. Theorem 3.9. The idea to prove these results is again to study when a circle is

a nodal set for an eigenfunction of H0 and use the fact, that this can be characterized

explicitly in terms of zeros of Laguerre polynomials. Translating this observation to

the spectral points ƒq of the perturbed Landau operator (1.1) leads to a precise under-

standing of the fate of Landau levels under ı-perturbations supported on circles. For

example, if � 6� 0 and � � 0 on some non-empty open subset of � , then ƒq can only

be an eigenvalue of finite multiplicity; cf. Section 3.2 for details.

The article is organized as follows. In the next section we introduce the Landau

Hamiltonian perturbed by singular ı-interactions. In Section 3 we formulate our main
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results. Section 4 contains some auxiliary facts from the spectral theory of the Landau

Hamiltonian. Finally, in Section 5 we prove our main theorems.

Note by J. Behrndt, M. Holzmann, and V. Lotoreichik. Our coauthor Georgi

Raikov passed away unexpectedly on 9 March 2021, while the work on this manu-

script was in its active phase. The topics in the present paper result from various

discussions with Georgi dating back to 2018 and the first draft of this paper was writ-

ten by him. When preparing the final text it was our aim to preserve Georgis original

handwriting and genuine style. This paper is a tribute to the memory of Georgi Raikov,

an influential mathematician, respected colleague, and good friend. We will miss him.

2. Landau Hamiltonians with ı-interactions supported on curves

Let b > 0 be a constant scalar magnetic field. Then

A.x/ WD b

2
.�x2; x1/; x D .x1; x2/ 2 R

2;

is a magnetic potential which generates b, i.e.,

b D @A2

@x1

� @A1

@x2

:

Denote by

….A/ D .…1.A/; …2.A// WD �ir � A

the magnetic gradient. In the following, for ` D .`1;`2/ 2 Z
2
C with ZC D ¹0;1;2; : : :º,

the notations j`j WD `1 C `2 and ….A/` WD …1.A/`1…2.A/`2 are used. For an open

non-empty set � � R
2 and an index s 2 ZC introduce the magnetic Sobolev spaces

Hs
A.�/ WD ¹u 2 D 0.�/ j ….A/`u 2 L2.R2/; ` 2 Z

2
C; 0 � j`j � sº

with a norm defined by

kuk2
Hs

A
.�/ WD

X

`2Z
2
C

W 0�j`j�s

Z

�

j….A/`uj2dx:

Throughout this paper it is assumed that � � R
2 is a C 1;1-smooth Jordan curve,

i.e., a closed simple curve which is mapped onto the unit circle by a C 1;1-smooth

diffeomorphism. Let H1=2.�/ be the L2-based Sobolev space of order 1=2 on � .

The Dirichlet trace operator � W H1
A.R2/ ! H1=2.�/ is the continuous extension of

the restriction map

H1
A.R2/ \ C.R2/ 3 u 7! uj� :
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Assume that � 2 Lp.�I R/ with p > 1. Denote by H� the self-adjoint operator

generated in L2.R2/ by the symmetric, densely defined, lower-bounded, and closed

quadratic form
Z

R2

j….A/uj2dx C
Z

�

�j� uj2 ds; u 2 H1
A.R2/I (2.1)

cf. Appendix A. In particular, for � D 0 one obtains

H0 D …1.A/2 C …2.A/2 D .�ir � A/2;

which is the Landau Hamiltonian, self-adjoint on H2
A.R2/ (see, for example, [18,

Appendix A]), and essentially self-adjoint on C 1
0 .R2/ (see [30, Theorem 2]). As

mentioned in the introduction, one has

�.H0/ D �ess.H0/ D
[

q2ZC

¹ƒqº;

where ƒq WD b.2q C 1/, q 2 ZC, are the Landau levels which are eigenvalues of H0

of infinite multiplicity (see [4, 17, 29]). In particular,

inf �.H0/ D ƒ0 D b > 0:

Note that integration by parts allows to find an explicit characterization of H� . Denote

by �in and �ex the interior and the exterior of � , respectively, and by � the unit

normal vector on � pointing outwards of �in. Then one can show in the same way as

in [7, Section 4] that

.H�u/\ D .�ir � A/2u\ for \ D in; ex

D.H�/ D
°

u 2 H1
A.R2/

ˇ

ˇ

ˇ .�ir � A/2u\ 2 L2.�\/ for \ D in; ex;

@uex

@�
� @uin

@�
D �u on �

±

: (2.2)

In the next lemma it is shown that the difference of the resolvents of H0 and H�

is compact, which implies that the essential spectra of H0 and H� coincide. In order

to formulate the lemma, define for � > �b the operator

G� .�/ WD j�j1=2�.H0 C �/�1=2W L2.R2/ ! L2.�/: (2.3)

Lemma 2.1. Let � > �b and set J� WD sign � . Then G� .�/ is compact and there

exists �0 > �b such that for all � > �0 the resolvent difference of H0 and H� is a

compact operator in L2.R2/ and admits the factorization

.H� C �/�1 � .H0 C �/�1

D �.H0 C �/�1=2G� .�/�J�G� .�/.I C G�.�/�J�G� .�//�1.H0 C �/�1=2:
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In particular, one has

�ess.H0/ D �ess.H�/ D
[

q2ZC

¹ƒqº: (2.4)

Proof. Note first that the operator G�.�/ in (2.3) depends only on j�j but not on the

sign of � . The assumption � 2 Lp.�IR/ with p > 1, and the compactness of the trace

H1
A.R2/ ! Lr .�/ for any r > 1 (see [33, Section 2.6, Theorem 6.2]), easily imply

that G� .�/ is compact, and

kG� .�/k2 D sup
0¤w2L2.R2/

kj�j1=2�.H0 C �/�1=2wk2
L2.�/

kwk2
L2.R2/

D sup
0¤u2H1

A
.R2/

kj�j1=2� uk2
L2.�/

k.H0 C �/1=2uk2
L2.R2/

D sup
0¤u2H1

A
.R2/

R

� j�jj� uj2ds
R

R2.j….A/uj2 C �juj2/ dx
;

so that the Hölder inequality leads to the estimate

kG�.�/k2 � Cp.�/k�kLp.�/ (2.5)

with

Cp.�/ WD sup
0¤u2H1

A
.R2/

.
R

� j� uj2p0

ds/1=p0

R

R2.j….A/uj2 C �juj2/ dx
; p0 WD p

p � 1
; � > �b: (2.6)

Set

J� D sign � WD
´

�j�j�1 if � ¤ 0;

0 if � D 0:

Let � > �b. Then one has for u 2 L2.R2/, w WD .H0 C �/�1=2u 2 H1
A.R2/, and the

self-adjoint operator G� .�/�J�G�.�/

h.I C G�.�/�J�G� .�//u; uiL2.R2/ D
Z

R2

.j….A/wj2 C �jwj2/dx C
Z

�

�j�wj2ds

(2.7)

and hence, with (2.1) one concludes that

� > � inf �.H�/ (2.8)

is equivalent to

I C G� .�/�J�G�.�/ > 0: (2.9)
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Assume in the following that � > � inf �.H�/ is fixed. Due to the compactness of

G�.�/�J�G�.�/, it follows from (2.9) that the operator

I C G� .�/�J�G�.�/W L2.R2/ ! L2.R2/

is boundedly invertible. Thus, we have

H� C � D M� .�/�M� .�/ (2.10)

where the operator

M� .�/ WD .I C G� .�/�J�G�.�//1=2.H0 C �/1=2; D.M� .�// D H1
A.R2/;

is closed in L2.R2/, as it is a product of a bijective operator in L2.R2/ and the

operator .H0C�/1=2, which is bijective from H1
A.R2/ to L2.R2/. The representa-

tion in (2.10) can be seen with the help of the quadratic form in (2.1) associated with

H� and a similar calculation as in (2.7). Therefore, the operators H� C � and, hence,

H� are self-adjoint on

D.H�/ WD ¹u 2 H1
A.R2/ j M�.�/u 2 D.M�.�/�/º

(see [40, Theorem X.25]). In the above construction we have obtained an alternative

characterisation of the operator domain of H� ; cf. (2.2). Moreover,

.H� C �/�1 � .H0 C �/�1

D .H0 C �/�1=2.I C G� .�/�J�G�.�//�1.H0 C �/�1=2 � .H0 C �/�1

D �.H0 C �/�1=2G�.�/�J�G� .�/.I C G�.�/�J�G�.�//�1.H0 C �/�1=2:

Bearing in mind the compactness of the operator G�.�/�J�G�.�/, and applying a

suitable version of the Weyl theorem on the invariance of the essential spectrum (see,

e.g., [9, Chapter 9, Section 1, Theorem 4]), we obtain (2.4).

Consider the operator

Tq.�ı�/ WD .�pq/��.�pq/; q 2 ZC; (2.11)

which can be viewed as a singular analogue of a Berezin–Toeplitz operator. The

relation of Landau Hamiltonians coupled with regular potentials V and the Berezin–

Toeplitz type operators yTq.V / D pqVpq was discovered in [38] and further studied

in many publications. Singular Toeplitz operators as in (2.11) play an important role

in modern operator theory and are also of independent interest. They were already

considered in [2], and in connection with magnetic Laplacians with different types of

boundary conditions these types of operators appear in [20, 21, 37]; we also refer the
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reader to [3, 10, 11, 13, 16, 32, 36, 41, 42] for some other recent related works in this

context. Note that the operator Tq.�ı�/ corresponds to the quadratic form

tq.�ı� /Œu� WD
Z

�

�.x/ju.x/j2ds; u 2 pqL2.R2/: (2.12)

Lemma 2.2. The operator Tq.�ı�/, q 2 ZC, is a compact self-adjoint operator in

pqL2.R2/. For � > �b and G� .�/ in (2.3) one has

Tq.�ı� / D .ƒq C �/pqG�.�/�J�G� .�/pq: (2.13)

Moreover, if � has a constant sign, then there exists �0 > �b such that for all � > �0

ker .pqQ�.�/pq/ D ker .Tq.�ı�//; (2.14)

where Q�.�/ WD .H� C �/�1 � .H0 C �/�1.

Proof. Recall that J� denotes the sign of � . A simple calculation involving the form

tq.�ı� / shows for any u 2 pqL2.R2/ and � > �b that

tq.�ı�/Œu� D
Z

�

�.x/ju.x/j2ds

D .ƒq C �/

Z

�

�.x/j.�.H0 C �/�1=2u/.x/j2ds

D .ƒq C �/hJ�G�.�/pqu; G� .�/pquiL2.�/:

Thus, we get the representation (2.13), which also shows with Lemma 2.1 that Tq.�ı�/

is compact and self-adjoint. Moreover, (2.13) immediately implies

ker .Tq.�ı�// D ker.pqG� .�/�J�G�.�/pq/: (2.15)

It remains to prove equation (2.14). For this, assume that � has a constant sign, i.e.,

˙� � 0, and fix � > �b sufficiently large such that H� C � is strictly positive. Then

the equivalence of (2.8) and (2.9) shows that I C G� .�/�J�G�.�/ is strictly positive

and bounded. Thus, we get for K�.�/ WD G�.�/�G�.�/ � 0 by Lemma 2.1 that

hpqQ�.�/pqu; uiL2.R2/

D �J�.ƒq C �/�1hK�.�/.I C J�K�.�//�1pqu; pquiL2.R2/

D �J�.ƒq C �/�1h.I C J�K�.�//�1.K�.�//1=2pqu; .K�.�//1=2pquiL2.R2/:

Taking the bijectivity of I C G�.�/�J�G� .�/ and (2.15) into account, this leads

to (2.14).



The fate of Landau levels under ı-interactions 1211

Via the form tq.�ı�/, one also gets another interesting characterization of

ker.Tq.�ı�// in the case that � � 0 almost everywhere on � , as then it follows

from (2.12) that Tq.�ı�/ is a non-negative operator and that ker .Tq.�ı�// ¤ ¹0º
if and only if there exists a u 2 pqL2.R2/ such that �u D 0 on � . This yields

ker .Tq.�ı�// D ¹u 2 pqL2.R2/ j u D 0 on supp �º; (2.16)

where supp � denotes the essential support of � . In other words, this means that

ker .Tq.�ı� // ¤ ¹0º if and only if the essential support of � is contained in a nodal

set of an eigenfunction of H0 for ƒq . Furthermore, the dimension of ker.Tq.�ı�// is

equal to the number of linearly independent eigenfunctions u of H0 for ƒq such that

u D 0 on supp � . For studies on nodal sets of eigenfunctions, we refer the reader to,

e.g., [24–26, 34]. Clearly, a similar consideration is true if � � 0 almost everywhere

on � .

3. Main results

In this section we formulate our main results on the fate of Landau levels under

ı-perturbations supported on curves. The case of general C 1;1-smooth Jordan curves

is treated first and, roughly speaking, we show that the analysis of the eigenspaces

ker.H˙� � ƒq/ of the perturbed Landau Hamiltonian can be reduced to the analysis

of the kernels ker.Tq.�ı�// of the Berezin–Toeplitz type operators defined in (2.11).

This connection is of independent interest, but also turns out to be useful for a more

explicit analysis of the Landau levels. We illustrate this for the special case of ı-per-

turbations supported on circles.

3.1. Singular interactions supported on C 1;1-smooth Jordan curves

Throughout this section, let � � R
2 be a C 1;1-smooth Jordan curve and assume that

� 2 Lp.�I R/ for some p > 1 is such that � � 0 on � and � 6� 0. Our first the-

orem contains two independent statements which concern the operators H� and H��

respectively. The proof of Theorem 3.1 can be found in Section 5.1.

Theorem 3.1. Let q 2 ZC and let Tq.�ı�/ be the operator of Berezin–Toeplitz type

in (2.11).

i. There holds

ker.Tq.�ı�// � ker.H˙� � ƒq/:

ii. There exist n˙
q 2 ZC depending on � such that

dim ker .H˙� � ƒq/ � dim ker.Tq.�ı�// C n˙
q (3.1)

and for q D 0 one can choose nC
0 D 0.
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iii. There exist �˙
q > 0 such that k�kLp.�/ < �˙

q implies

ker.H˙� � ƒq/ D ker.Tq.�ı�// (3.2)

and for q D 0 one can choose �C
0 D 1. Moreover, there is a constant c > 0

independent of b and q such that

�C
q � 2bc

.ƒq C 1/.ƒq�1 C 1/
and ��

q � 2bc

2b C .ƒq C 1/.ƒqC1 C 1/
:

(3.3)

Remark 3.2. Writing (3.2), we mean that u 2 ker.H˙� � ƒq/ implies u D pqu, and

u 2 ker.Tq.�ı�// � pqL2.R2/;

and vice versa. A similar remark applies to all further inclusions of the same kind. We

also mention that the inequality (3.1) will be obtained by showing that ker.H˙� � ƒq/

is the sum of ker.Tq.�ı�// and a finite-dimensional space.

Remark 3.3. The definitions of the numbers �˙
q in Theorem 3.1 (iii) are given

in (5.36) and (5.45), respectively. Their precise values are not obvious. However,

equation (3.2) is also true, if one replaces �˙
q by the lower bounds in (3.3). Since

ƒq D b.2q C 1/, we see that these lower bounds are decreasing in q; the same is true

for �˙
q defined in (5.36) and (5.45).

Remark 3.4. The operator H� can be introduced as a self-adjoint extension of the

symmetric operator S given by

Su D .�ir � A/2u; D.S/ D ¹u 2 H2
A.R2/ j uj� D 0º; (3.4)

i.e., S is the restriction of H0 onto functions in H2
A.R2/ that vanish on �; cf. [7] for

the case � 2 L1.�IR/. In view of (2.16), if u 2 ker.Tq.�ı�// for � > 0 or � < 0, then

u 2 ker.S � ƒq/ and thus, as H� was defined as an extension of S , u 2 ker.H� � ƒq/.

Thus, the result of Theorem 3.1 (i) can also be interpreted from an extension theoretic

point of view.

Remark 3.5. Considering (3.1) the question arises, if dim ker .Tq.�ı� // is finite, as

then dim ker .H˙� � ƒq/ < 1. If � is strictly positive, i.e., if � � c > 0 everywhere

on � , then by [7, Lemma 3.7] and (2.16) one indeed has dim ker .Tq.�ı� // < 1.

Theorem 3.1 reduces the analysis of ker.H� � ƒq/ to that of ker.Tq.�ı�//. This

is why our further results concern ker.Tq.�ı�//. The situation is particularly simple

for the Berezin–Toeplitz operator T0.�ı�/ as the next theorem shows. Its proof can

be found in Section 5.2.
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Theorem 3.6. For q D 0 we have

ker.T0.�ı�// D ¹0º: (3.5)

Combining (3.5) and (3.1)–(3.2) with q D 0 we obtain the following corollary.

Corollary 3.7. We have

ker.H� � ƒ0/ D ¹0º and dim ker .H�� � ƒ0/ < 1:

Moreover, if k�kLp.�/ is sufficiently small, then ker.H�� � ƒ0/ D ¹0º:

The next remark concerns regular perturbations of the Landau Hamiltonian and

the fate of the Landau levels as investigated earlier in [28].

Remark 3.8. Assume that V 2 L1.R2I R/ satisfies V 6� 0, V � 0, and

lim
jxj!1

V.x/ D 0:

Then, applying the general scheme of the proof of Theorem 3.1 below, one can verify

that

dim ker .H0 ˙ V � ƒq/ < 1 (3.6)

and

ker.H0 ˙ V � ƒq/ D ker. yTq.V //; (3.7)

if kV kL1.R2/ < V ˙
q for some constants V ˙

q > 0; here yTq.V / D pqVpq ; and pq is

the orthogonal projection onto ker.H0 � ƒq/.

The main idea of the proof of [28, Theorem 1] is to show that, under the assump-

tions kV kL1.R2/ < 2b and V � 0, one has

ker.H0 ˙ V � ƒq/ � ker. yTq.V //; q 2 ZC: (3.8)

On the other hand, if additionally V 6� 0, then the results of [28, 39] imply

ker. yTq.V // D ¹0º; q 2 ZC; (3.9)

and (1.2) follows from (3.8) and (3.9).

If one compares (3.6)–(3.7) (following our approach) with (3.8)–(3.9) (following

the approach in [28]), then the upper bounds V ˙
q for kV kL1.R2/ in (3.7) are not as

explicit as the upper bound 2b in (3.8), but one gets in (3.6) also results for potentials

with kV kL1.R2/ � 2b.
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3.2. Singular interactions supported on circles

Now, we illustrate the above results for the special case that � D Cr is a circle of radius

r 2 .0; 1/. In this situation, more explicit results on the structure of ker.Tq.ıCr
// are

obtained, as one can use an explicit basis of ker.H0 � ƒq/ in polar coordinates. Using

this and the simple characterization of ker.Tq.ıCr
// from (2.16), it will turn out that

ker.Tq.ıCr
// ¤ ¹0º is equivalent to the fact that br2=2 is a zero of a suitable Laguerre

polynomial. Since (2.16) implies ker.Tq.ıCr
// D ker.Tq.�ıCr

//, if � is strictly pos-

itive or negative everywhere on � , this yields further results on ker .H˙� � ƒq/. The

obtained result on ker.Tq.ıCr
// is the following:

Theorem 3.9. Let q 2 N, assume that � D Cr is a circle of radius r 2 .0; 1/, and

let Tq.ıCr
/ be the corresponding operator of Berezin–Toeplitz type in (2.11).

i. For any r 2 .0; 1/ we have

dim ker.Tq.ıCr
// � q: (3.10)

ii. The set

Dq WD ¹r 2 .0; 1/ j dim ker.Tq.ıCr
// � 1º

is infinite and discrete.

Theorem 3.9 will be proved in Section 5.3. Since (2.16) implies the relation

ker.Tq.ıCr
// D ker.Tq.�ıCr

//;

if � is strictly positive, a combination of (3.1) and (3.10) leads to the following corol-

lary.

Corollary 3.10. Let q 2 N, let � D Cr be a circle of radius r 2 .0; 1/, and assume

that � 2 Lp.Cr I R/ with p > 1 satisfies � � c on Cr with some constant c > 0. Then

dim ker .H˙� � ƒq/ < 1:

Remark 3.11. For q 2 N set

Dq;j WD ¹r 2 .0; 1/ j dim ker.Tq.ıCr
// D j º; j D 1; : : : ; q;

so that Dq D
Sq

j D1 Dq;j ; note that the union stops at j D q by Theorem 3.9 (i). In the

proof of Theorem 3.9, we will describe the dimension of ker.Tq.ıCr
// in terms of the

zeros of Laguerre polynomials of q-th degree (see (5.50)–(5.51) below). If q D 1; 2,

these zeros can be easily calculated, and we obtain explicitly the sets Dq and their

components Dq;j , namely

D1 D D1;1 D
p

.2=b/N; (3.11)
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D2 D
q

.2=b/..N C 1/ �
p

.N C 1// [
q

.2=b/.N C
p

N/; (3.12)

D2;2 D
p

.2=b/.N2 C N/; D2;1 D D2 n D2;2; (3.13)

where b > 0 is the magnetic field.

Remark 3.12. Taking the explicit representation (4.6) of the orthonormal basis of

ran.pq/ D ker.H0 � ƒq/, q 2 N, into account, we conclude that ƒq is still an eigen-

value of the symmetric operator S defined in (3.4) provided that br2=2 is a root of a

Laguerre polynomial of q-th degree. Since H� is a self-adjoint extension of S for all

� 2 Lp.�IR/, ƒq remains an eigenvalue of H� under the same assumption on r > 0.

4. Auxiliary results from the spectral theory of H0

In this section we recall several known facts about H0 that are necessary for our con-

siderations; the first part follows [37, Section 4.2], while the second part on the basis

of ker.H0 � ƒq/ can be found in [39, Section 3.1], see also [23]. In the following, we

describe a suitable spectral representation of H0. Set

�.x/ WD bjxj2
4

; x D .x1; x2/ 2 R
2:

Introduce the magnetic creation operator

a� D …1.A/ � i…2.A/ D �2ie� @

@z
e�� ; z D x1 C ix2; (4.1)

and the magnetic annihilation operator

a D …1.A/ C i…2.A/ D �2ie�� @

@Nz e� ; Nz D x1 � ix2: (4.2)

The operators a and a� are closed on D.a/ D D.a�/ D H1
A.R2/, and are mutually

adjoint in L2.R2/. Moreover,

Œa; a�� D 2b; (4.3)

and

H0 D a�a C b D aa� � b:

Further,

ker.H0 � ƒq/ D .a�/q ker.a/; q 2 ZC: (4.4)

By (4.2), we have

ker.a/ D
°

u 2 L2.R2/
ˇ

ˇ

ˇ u D e�� g;
@g

@Nz D 0
±

: (4.5)
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Thus, e� ker.H0 � ƒ0/ D e� ker.a/ coincides with the Fock–Segal–Bargmann space

of entire functions g 2 L2.R2Ie�2�dx/ (see, e.g., [23, Section 3.2]). Assume now that

u 2 ker.H0 � ƒq/; q 2 N:

By (4.4) and (4.1), there exists an entire function g 2 L2.R2I e�2�dx/ such that

.e�u/.x/ DW f .x/ D ..e�.a�/qe��/g/.x/ D .�2i/q
��

e2� @q

@zq
e�2�

�

g
�

.x/

D .�2i/q

q
X

`D0

�

q

`

�

�

�b Nz
2

�`

g.q�`/.z/; x 2 R
2; z D x1 C ix2:

Evidently, f 2 L2.R2I e�2�dx/ is a polyanalytic function of order q C 1, i.e., f is a

solution of the equation

@qC1f

@NzqC1
.z/ D 0; z 2 C;

(see [1, 5, 6] and also [42, Section 2.2]). We have

²

h 2 L2.R2I e�2�dx/

ˇ

ˇ

ˇ

ˇ

@qC1h

@NzqC1
D 0

³

D
q

M

j D0

e� ker.H0 � ƒj /

and the spaces e� ker.H0 � ƒj /, j D 0; : : : ; q, are called sometimes true poly-Fock

spaces of order j (see [1, 44]).

Next, we introduce an explicit orthonormal basis of every ker.H0 � ƒq/, q 2 ZC,

called sometimes the angular-momentum basis. Let at first q D 0. Then the functions

Q'k;0.x/ D zke��.x/; x 2 R
2; z D x1 C ix2; k 2 ZC;

form an orthogonal basis of ker.a/ D ran.p0/ (see, e.g., [23, Sections 3.1–3.2]). Nor-

malizing, we obtain an orthonormal basis of ran.p0/, consisting of the functions

'k;0.x/ WD Q'k;0.x/

k Q'k;0kL2.R2/

D
r

b

2�

r

1

kŠ

�

r

b

2
z

�k

e��.x/; x 2 R
2; k 2 ZC:

Let now q � 1. Set

Q'k;q D .a�/q 'k;0; k 2 ZC:

The commutation relation (4.3) easily implies

h Q'k;q; Q'`;qiL2.R2/ D .2b/qqŠık`; k; ` 2 ZC:

Therefore, the functions

'k;q WD Q'k;q

k Q'k;qkL2.R2/

D Q'k;q
p

.2b/qqŠ
; k 2 ZC;
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form an orthonormal basis of ran.pq/, q 2 N. They admit a more explicit representa-

tion (see [39, Section 3.1]), namely

'k;q.x/ D 1

iq

r

b

2�

r

qŠ

kŠ

�

r

b

2
z

�k�q

L.k�q/
q

�

bjxj2
2

�

e��.x/;

x 2 R
2; z D x1 C ix2; k 2 ZC; (4.6)

where

L.˛/
q .t/ WD t�˛et

qŠ

dq

dtq
.tqC˛e�t /; t > 0; ˛ 2 R; q 2 ZC;

are the (generalized) Laguerre polynomials (see [22, eq. 8.970 (1)]). In particular,

L
.˛/
1 .t/ D �t C ˛ C 1; (4.7)

L
.˛/
2 .t/ D 1

2
.t2 � 2.˛ C 2/t C .˛ C 2/.˛ C 1//: (4.8)

The Laguerre polynomials L
.˛/
q with q 2 ZC and ˛ > �1 satisfy

1
Z

0

e�t t˛L.˛/
q .t/L.˛/

p .t/dt D �.˛ C 1/

�

q C ˛

q

�

ıqp; q; p 2 ZC; (4.9)

(see [43, (5.1.1)]).

Finally, for y 2 R2, introduce the magnetic translations

.Tyu/.x/ WD e�i b
2 .x^y/ u.x � y/; x 2 R

2; (4.10)

where

x ^ y WD x1y2 � x2y1:

Evidently, for each y 2 R
2, the operator Ty is unitary in L2.R2/. A direct calculation

yields

T �
y …j .A/ Ty D …j .A/; j D 1; 2;

and, therefore,

T �
y H0 Ty D H0; y 2 R

2:

Then the spectral theorem implies

T �
y pq Ty D pq; y 2 R

2; q 2 ZC: (4.11)
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5. Proofs of the main results

5.1. Proof of Theorem 3.1

We start with the proof of item (i). Denote by �in and �ex the interior and the exterior

of � , respectively, and by � the unit normal vector on � pointing outwards of �in. For

w 2 L2.R2/ set

w\ WD wj�\
; \ D in; ex:

In view of (2.2) we have that w 2 D.H˙�/ is equivalent to the following conditions:

a. w 2 H1
A.R2/;

b. .�ir � A/2w\ 2 L2.�\/, \ D in; ex;

c. . @wex

@�
� @win

@�
� �w/� D 0.

Moreover, if w 2 D.H˙�/, then

.H˙�w/\ D .�ir � A/2w\; \ D in; ex: (5.1)

Assume u 2 ker.Tq.�ı�//, q 2 ZC. Since � � 0, by (2.16) this is equivalent to

u 2 ker.H0 � ƒq/ � D.H0/ D H2
A.R2/ (5.2)

and

�u D 0 on �: (5.3)

By u 2 H2
A.R2/ conditions (a)–(b) are fulfilled and, moreover,

@uex

@�
D @uin

@�
on �: (5.4)

Combining (5.3) with (5.4) we find that also (c) holds, i.e., u 2 D.H˙�/. By (5.2) we

have

H0u D .�ir � A/2u D ƒqu in R
2

and, hence,

.�ir � A/2u\ D ƒqu\ in �\; \ D in; ex: (5.5)

Bearing in mind (5.1), we now find that (5.5) implies H˙�u D ƒqu, i.e.,

u 2 ker.H˙� � ƒq/:

The remaining items (ii) and (iii) will be proved together. To make the proof

accessible in an easier way, we have split it into several steps. First, the case � � 0 is

treated. In Step 1 the claims for the first Landau level ƒ0 are shown. In Steps 2–5 the

claims for ƒq , q 2 N, are verified. More precisely, in Step 2 the eigenvalue equation is
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reduced to equations for operators which are easier accessible for our purposes. Then,

in Step 3 a representation of ker.Tq.�ı� // involving these new operators is proved. In

Step 4 we are putting all this together to verify assertion (ii) for � � 0, while in Step 5

the proof of item (iii) in this case is concluded. Finally, in Step 6 the case � � 0 is

treated.

Let us introduce the notations which will be used throughout the proof. Assume,

as usual, that � 2 Lp.�I R/ with p > 1, � � 0, � ¤ 0, and (2.9) holds true. Set

QC
� .�/ WD .H0 C �/�1 � .H� C �/�1;

Q�
� .�/ WD �.H0 C �/�1 C .H�� C �/�1:

By Lemma 2.1, we have Q˙
� .�/ � 0, and the operators Q˙

� .�/ are compact in L2.R2/.

Note that Lemma 2.1 also implies

Q˙
� .�/ D .H0 C �/�1=2G�.�/�.I ˙ G� .�/G�.�/�/�1G� .�/.H0 C �/�1=2: (5.6)

Further, put

P C
q WD

1
X

j Dq

pj and P �
q WD I � P C

q ;

so that P C
0 D I , and P �

0 D 0. For q � 1 the projections P ˙
q have infinite rank. Finally,

set

�q.�/ WD .ƒq C �/�1; q 2 ZC; � > �b:

Step 1. We first prove the part of Theorem 3.1 (ii) and (iii) concerning positive per-

turbations H� and start with the case q D 0. Assume that

u 2 ker.H� � ƒ0/:

Then u satisfies

.H� C �/�1u D �0.�/u

or, equivalently,

..H0 C �/�1 � �0.�//u � QC
� .�/u D 0; � > �b: (5.7)

Thus,

h..H0 C �/�1 � �0.�//u; uiL2.R2/ � hQC
� .�/u; uiL2.R2/ D 0: (5.8)

Both terms on the left-hand side of (5.8) are non-positive, and hence they both should

vanish. Since .H0 C �/�1 � �0.�/ is non-positive, the equality

h..H0 C �/�1 � �0.�//u; uiL2.R2/ D 0
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and the min-max principle imply u D p0u. Then,

hQC
� .�/u; uiL2.R2/ D hp0QC

� .�/p0u; uiL2.R2/ D 0;

where the operator p0QC
� .�/p0 is self-adjoint and non-negative in the space

p0L2.R2/ D ran.p0/:

Hence, by Lemma 2.2

u 2 ker.p0QC
� .�/p0/ D ker.T0.�ı�//: (5.9)

Thus, we obtain the inclusion � in (3.2) for H� and q D 0. The remaining inclu-

sion � in (3.2) is clear by (i). Therefore, item (iii) is shown in the case of positive

perturbations and q D 0, which also implies assertion (ii) in the same case.

Step 2. Assume now

u 2 ker.H� � ƒq/; q 2 N:

In this step we reduce the eigenvalue equation for u to equations for operators which

are easier accessible for our purposes. Similarly to (5.7) we have

..H0 C �/�1 � �q.�//u � QC
� .�/u D 0; � > �b: (5.10)

Set

uC WD P C
q u and u� WD P �

q u; (5.11)

so that

u D uC C u�: (5.12)

Since P ˙
q are functions of H0, they commute with .H0 C �/�1 and thus, their applic-

ation to (5.10) implies

..H0 C �/�1 � �q.�//uC D P C
q QC

� .�/uC C P C
q QC

� .�/u�; (5.13)

..H0 C �/�1 � �q.�//u� D P �
q QC

� .�/uC C P �
q QC

� .�/u�: (5.14)

Let

SC
q .�/ WD P �

q QC
� .�/P �

q (5.15)

and observe that by Lemma 2.1 the operator SC
q .�/ is compact, self-adjoint, and non-

negative in P �
q L2.R2/. Set

mC
q .�/ WD inf�

�

..H0 C �/�1� �q.�//jP �
q L2.R2/

�

D 2b

.ƒq C �/.ƒq�1 C �/
; (5.16)
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and

SC
q;>.�/ WD SC

q .�/1
Œm

C
q .�/;1/

.SC
q .�//; SC

q;<.�/ WD SC
q .�/ � SC

q;>.�/I

here and in the sequel 1J.T / denotes the spectral projection of the operator T D T �

associated with the Borel set J � R. Note that

rank.SC
q;>.�// < 1:

Moreover, if

kSC
q .�/k < mC

q .�/;

then SC
q;>.�/ D 0. Now, (5.14) is equivalent to

..H0 C �/�1 � �q.�/ � SC
q;<.�//u� D P �

q QC
� .�/uC C SC

q;>.�/u�
>; (5.17)

where

u�
> WD P �

q;>u (5.18)

and

P �
q;> D P �

q;>.�/ WD 1
Œm

C
q .�/;1/

.SC
q .�// P �

q : (5.19)

Note that

rank.P �
q;>.�// D rank.SC

q;>.�// < 1: (5.20)

Since SC
q .�/ is compact and mC

q .�/ > 0, there exists " > 0 such that

�.SC
q .�// \ .mC

q .�/ � "; mC
q .�// D ;

and hence kSC
q;<.�/k � mC

q .�/ � " < mC
q .�/. By definition of mC

q .�/, we have

..H0 C �/�1 � �q.�//jP �
q L2.R2/ � mC

q .�/

and thus, the operator

..H0 C �/�1 � �q.�//jP �
q L2.R2/ � SC

q;<.�/

is positive and boundedly invertible on P �
q L2.R2/. Set

RC
q .�/ WD

�

..H0 C �/�1 � �q.�//jP �
q L2.R2/ � SC

q;<.�/
��1

:

Then (5.17) implies

u� D RC
q .�/P �

q QC
� .�/uC C RC

q .�/SC
q;>.�/u�

>: (5.21)

Inserting (5.21) into (5.13) we get

P C
q XC

q .�/P C
q uC D �P C

q Y C
q .�/u�

>; (5.22)
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where

XC
q .�/ WD �.H0 C �/�1 C �q.�/ C QC

� .�/ C QC
� .�/RC

q .�/P �
q QC

� .�/

and

Y C
q .�/ WD QC

� .�/RC
q .�/ SC

q;>.�/:

Step 3. Define the operator

KC
q WD P C

q XC
q .�/P C

q ; (5.23)

which is self-adjoint and non-negative in P C
q L2.R2/. In this step we show

ker.KC
q / D ker.Tq.�ı�//: (5.24)

In order to check (5.24), assume first that w 2 ker.Tq.�ı�//. Then w D pqw, see

Remark 3.2, and

hKC
q w; wiL2.R2/ D h.�.H0 C �/�1 C �q.�//pqw; pqwiL2.R2/

C hQC
� .�/pqw; pqwiL2.R2/

C hQC
� .�/RC

q .�/P �
q QC

� .�/pqw; pqwiL2.R2/: (5.25)

Using Lemma 2.2 and ker.A�A/ D ker.A/, one has

ker.Tq.�ı� // D ker.pqQC
� .�/pq/ D ker.QC

� .�/1=2pq/: (5.26)

Moreover, the definitions of �q.�/ and pq yield

..H0 C �/�1 � �q.�//pq D 0: (5.27)

Thus, (5.25)–(5.27) imply

hKC
q w; wiL2.R2/ D 0:

Since KC
q � 0 we conclude that w 2 ker.KC

q /, i.e.,

ker.Tq.�ı� // � ker.KC
q /: (5.28)

Let now w 2 ker.KC
q /. Then

h.�.H0 C �/�1 C �q.�//P C
q w; P C

q wiL2.R2/ C hQC
� .�/P C

q w; P C
q wiL2.R2/

C hQC
� .�/RC

q .�/P �
q QC

� .�/P C
q w; P C

q wiL2.R2/ D 0: (5.29)

The three terms on the left-hand side of (5.29) are non-negative and therefore all of

them vanish. The equality

h..H0 C �/�1 � �q.�//P C
q w; P C

q wiL2.R2/ D 0
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implies that P C
q w D pqw. Inserting this into

hQC
� .�/P C

q w; P C
q wiL2.R2/ D 0

we obtain

hQC
� .�/pqw; pqwiL2.R2/ D 0;

i.e., with (5.26)

w 2 ker.pqQC
� .�/pq/ D ker.Tq.�ı� //:

Therefore,

ker.KC
q / � ker.Tq.�ı� //;

which combined with (5.28) yields (5.24).

Step 4. Now, we have everything in hands to finish the proof of assertion (ii) for

� � 0. For this purpose we show that the element u 2 ker.H� � ƒq/ can be written

as u D uC
0 C W C

q u�
>, where uC

0 2 ker .Tq.�ı�//, u�
> 2 ran.P �

q;>.�//, and W C
q is a

suitable operator; this implies (3.1) as rank.P �
q;>.�// < 1 by (5.20). Let �C

0 be the

orthogonal projection onto ker .KC
q / and �C

? WD P C
q � �C

0 . Set

uC
0 WD �C

0 uC and uC
? WD �C

? uC;

where uC is the function defined in (5.11). Thus,

uC D uC
0 C uC

?: (5.30)

Denote by KC
q;? the operator �C

? KC
q �C

? , which is self-adjoint and positive on the

space ran.�C
? /. Then, as uC

0 2 ker.KC
q /, (5.22) and (5.23) imply

KC
q;?uC

? D �P C
q Y C

q .�/u�
>: (5.31)

Since we started with an arbitrary u 2 ker.H� � ƒq/ we have by (5.18)

u�
> 2 P �

q;> ker.H� � ƒq/:

Then (5.31) implies

P C
q Y C

q .�/P �
q;> ker.H� � ƒq/ � ran.KC

q;?/: (5.32)

Recall that KC
q;? is positive and hence invertible. Therefore, we can define on

P �
q;> ker .H� � ƒq/ the operator

LC
q WD �.KC

q;?/�1P C
q Y C

q .�/:

By (5.31) we have

uC
? D LC

q u�
>: (5.33)
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Putting together the equations (5.12), (5.21), (5.30), and (5.33), we find that for any

u 2 ker.H� � ƒq/ we have

u D uC
0 C W C

q u�
>; (5.34)

where

uC
0 2 ker.KC

q / D ker.Tq.�ı�//; u�
> 2 P �

q;> ker .H� � ƒq/;

and

W C
q D RC

q .�/SC
q;>.�/ C .I C RC

q .�/P �
q QC

� .�//LC
q :

Deriving (5.34) we have also taken into account that

RC
q .�/P �

q QC
� .�/uC

0 D 0

due to uC
0 2 ker.KC

q /, (5.24), and (5.26). Now, (5.34) and (5.32) entail (3.1) for the

case of H� with

nC
q WD inf

�2.�b;1/
rank.P �

q;>.�//; q 2 N:

Step 5. Let us prove item (iii) for H� and q 2 N. Note that we have already shown

assertion (i) and hence it suffices to verify the inclusion � in (3.2). Since

k.I C G�.�/�G� .�//�1k � 1

we get by (5.15) and (2.6),

kSC
q .�/k � kG� .�/k2 � k�kLp.�/Cp.�/; � > �b C 1: (5.35)

Let

k�kLp.�/ < �C
q WD sup

�2.�bC1;1/

mC
q .�/

Cp.�/
; (5.36)

where mC
q .�/ is the quantity defined in (5.16). Let R > 0 be such that � is contained

in the open ball BR with radius R. Observe that by the diamagnetic inequality

Cp.1/ D sup
0¤u2H1

A
.R2/

.
R

� j� uj2p0

ds/1=p0

R

R2.j….A/uj2 C juj2/dx

� sup
0¤u2H1

A
.R2/

.
R

� j� uj2p0

ds/1=p0

R

R2.jrjujj2 C juj2/dx

� sup
0¤u2H1

A
.R2/

.
R

� j� uj2p0

ds/1=p0

R

BR
.jrjujj2 C juj2/dx

D sup
0¤u2H1.BR/

.
R

� j� uj2p0

ds/1=p0

R

BR
.jrjujj2 C juj2/dx

DW c�1; p0 D p

p � 1
;

(5.37)



The fate of Landau levels under ı-interactions 1225

where the constant c > 0 does not depend on the magnetic field. Hence, the constant

�C
q can be estimated from below as

�C
q �

mC
q .1/

Cp.1/
� 2bc

.ƒq C 1/.ƒq�1 C 1/
;

which is the bound in (3.3). Furthermore, (5.35) implies that there exist � > �b C 1

such that

kSC
q .�/k < mC

q .�/;

so that P �
q;>.�/ D 0 by (5.19). By (5.34), we conclude that if u 2 ker.H� � ƒq/,

then u 2 ker.Tq.�ı�//, as u�
> 2 ran.P �

q;>.�// D ¹0º. Therefore, together with (i) we

conclude that (3.2) holds.

Step 6. Let us now consider H�� , i.e., the Landau Hamiltonian perturbed by a neg-

ative ı-potential. The proof of Theorem 3.1 (ii) and (iii) in this case is quite similar to

the one concerning H� , so that we omit certain details. Assume

u 2 ker.H�� � ƒq/; q 2 ZC:

Then, similarly to (5.10), we have

..H0 C �/�1 � �q.�//u C Q�
� .�/u D 0; � > � inf �.H��/: (5.38)

Put

uC WD P C
qC1u and u� WD P �

qC1u;

so that again

u D uC C u�:

Then (5.38) implies

.�q.�/ � .H0 C �/�1/u� D P �
qC1Q�

� .�/u� C P �
qC1Q�

� .�/uC; (5.39)

.�q.�/ � .H0 C �/�1/uC D P C
qC1Q�

� .�/u� C P C
qC1Q�

� .�/uC: (5.40)

Let

S�
q .�/ WD P C

qC1Q�
� .�/P C

qC1

and observe that by Lemma 2.1 the operator S�
q .�/ is compact, self-adjoint, and non-

negative in P C
qC1L2.R2/. Set

m�
q .�/ WD inf �

�

.�q.�/ � .H0 C �/�1/j
P

C

qC1
L2.R2/

�

D 2b

.ƒq C �/.ƒqC1 C �/
(5.41)
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and

S�
q;>.�/ WD S�

q .�/1Œm�
q .�/;1/.S

�
q .�//; S�

q;<.�/ WD S�
q .�/ � S�

q;>.�/:

Now, (5.40) is equivalent to

�

.�q.�/ � .H0 C �/�1/ � S�
q;<.�/

�

uC D P C
qC1Q�

� .�/u� C S�
q;>.�/uC

> ; (5.42)

where

uC
> WD P C

qC1;>u

and

P C
qC1;> D P C

qC1;>.�/ WD 1Œm�
q .�/;1/.S

�
q .�// P C

qC1:

Note that

rank.P C
qC1;>.�// D rank.S�

q;>.�// < 1:

The operator

.�q.�/ � .H0 C �/�1/j
P

C

qC1
L2.R2/

� S�
q;<.�/

is positive and boundedly invertible in P C
qC1L2.R2/. Set

R�
q .�/ WD

�

.�q.�/ � .H0 C �/�1/j
P

C
qC1

L2.R2/
� S�

q;<.�/
��1

:

Then (5.42) implies

uC D R�
q .�/P C

qC1Q�
� .�/u� C R�

q .�/S�
q;>.�/uC

> : (5.43)

Inserting (5.43) into (5.39), we obtain

P �
qC1X�

q .�/P �
qC1u� D �P �

qC1Y �
q .�/uC

> ;

with

X�
q .�/ WD .H0 C �/�1 � �q.�/ C Q�

� .�/ C Q�
� .�/R�

q .�/P C
qC1Q�

� .�/

and

Y �
q .�/ WD Q�

� .�/R�
q .�/ S�

q;>.�/:

Then, similarly to (5.34), we find that for any u 2 ker.H� � ƒq/ we have

u D u�
0 C W �

q uC
> ; (5.44)

with

u�
0 2 ker.Tq.�ı�//; uC

> 2 P C
qC1;> ker .H�� � ƒq/;
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and an appropriate operator

W �
q W P C

qC1;> ker.H�� � ƒq/ ! L2.R2/:

Now, (5.44) entails (3.1) for H�� with

n�
q WD inf

�2.� inf �.H� /;1/
rank.P C

qC1;>.�// < 1:

Finally, we prove (3.2) for H�� . Assume that

k�kLp.�/ < ��
q WD sup

�2.�bC1;1/

m�
q .�/

Cp.�/.1 C m�
q .�//

; (5.45)

where Cp.�/ and m�
q .�/ are the quantities defined in (2.6) and (5.41), respectively.

Note that using (5.37) we can estimate ��
q from below as

��
q �

m�
q .1/

Cp.1/.1 C m�
q .1//

� 2bc

2b C .ƒq C 1/.ƒqC1 C 1/
:

Furthermore, there exists � 2 .�b C 1; 1/ such that

k�kLp.�/ Cp.�/ <
m�

q .�/

1 C m�
q .�/

< 1:

By (2.5)

kG� .�/k2 � Cp.�/k�kLp.�/ �
m�

q .�/

1 C m�
q .�/

< 1: (5.46)

On the other hand, since k.I � G�.�/�G�.�//�1k � .1 � kG� .�/k2/�1, similarly

to (5.35) we have

kS�
q .�/k � kG� .�/k2

1 � kG� .�/k2
: (5.47)

Putting together (5.47) and (5.46) we get

kS�
q .�/k < m�

q .�/;

so that P C
qC1;>.�/ D 0, and (5.44) implies that for u 2 ker.H�� � ƒq/ we have u 2

ker.Tq.�ı�//, i.e., (3.2) holds for H�� .

5.2. Proof of Theorem 3.6

Assume that

u D p0u 2 ker.T0.�ı�//;
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which is equivalent to �1=2.uj�/ D 0 as an element of L2.�/. Since we assume that

� ¤ 0 as an element of Lp.�I R/, p > 1, we have u D 0 on a subset of � of positive

measure. Since e�u is entire, cf. (4.5), and its zeros are isolated if u ¤ 0, we easily

find that u D 0, i.e., (3.5) holds.

Remark 5.1. The above argument is not applicable in the case q � 1, because there

exist polyanalytic functions u which do not vanish identically on C but vanish on

certain regular Jordan curves (see [6, Section 5]).

5.3. Proof of Theorem 3.9

Due to the invariance of pq under the magnetic translations (see (4.10) and (4.11)) we

may assume without loss of generality that Cr is centered at the origin.

Let u 2 ker.H0 � ƒq/ D ran.pq/, q 2 N. Then we have

u.x/ D
X

k2ZC

ck'k;q.x/; x 2 R
2; (5.48)

with c WD ¹ckºk2ZC
2 `2.ZC/, where ¹'k;qºk2ZC

is the orthonormal basis of the

space ker.H0 � ƒq/ defined in (4.6). Hence, the representation in (5.48) generates a

unitary operator UqW ker.H0 � ƒq/ ! `2.ZC/ which maps u to c. On the other hand,

we have

hTq.ıCr
/'k;q; '`;qiL2.R2/ D �k;q.r/ık`;

where

�k;q.r/ WD hTq.ıCr
/'k;q; 'k;qiL2.R2/

D b
qŠ

kŠ
.br2=2/k�q L.k�q/

q .br2=2/2e�br2=2; r 2 .0; 1/: (5.49)

Then we have

UqTq.ıCr
/U�

q D �q;r ;

where �q;r W `2.ZC/ ! `2.ZC/ is a compact self-adjoint operator defined by

.�q;rc/k D �k;q.r/ck; k 2 ZC;

with c D ¹ckºk2ZC
2 `2.ZC/. In particular, the functions 'k;q are eigenfunctions of

Tq.ıCr
/ with eigenvalues equal to �k;q.r/. For r 2 .0; 1/ set

mq.r/ WD #¹k 2 ZC j L.k�q/
q .br2=2/ D 0º: (5.50)

Then (5.49) implies

dim ker.Tq.ıCr
// D #¹k 2 ZC j �k;q.r/ D 0º D mq.r/; r 2 .0; 1/; (5.51)
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and

Dq D ¹r 2 .0; 1/ j dim ker.Tq.ıCr
// � 1º D ¹r 2 .0; 1/ j mq.r/ � 1º: (5.52)

Bearing in mind the expressions for the Laguerre polynomials L
.k�q/
q with q D 1; 2,

given in (4.7)–(4.8), we find that the zero of L
.k�1/
1 is equal to k, while the zeros of

L
.k�2/
2 are equal to k ˙

p
k, k 2 ZC. Thus, (5.51)–(5.52) easily entail the expli-

cit description of the sets Dq , q D 1; 2, and their components Dq;j , available in

(3.11)–(3.13).

Let us estimate mq.r/ and describe Dq in the general case. Note that the poly-

nomial L
.˛/
q with ˛ > �1 has exactly q simple strictly positive zeros (see [43, The-

orem 3.3.1] and (4.9)). Denote by ¹�`.˛/ºq

`D1
, ˛ 2 Œ0; 1/, the set of the zeros of L

.˛/
q ,

enumerated in decreasing order. The functions �`, ` D 1; : : : ; q, are smooth strictly

increasing functions (see [43, Section 6.21 (4)]) which tend to infinity as ˛ ! 1 (see

[12]). Thus, we can classify the zeros of L
.k�q/
q with k � q. In order to handle the

polynomials L
.k�q/
q with 0 � k < q we note that

L.k�q/
q .t/ D kŠ

qŠ
.�t/q�kL

.q�k/

k
.t/; t 2 R; (5.53)

(see [43, (5.2.1)]), so that if k D 0 the polynomial L
.�q/
q .t/ is proportional to tq , while

if q � 2 and 1 � k < q � 1 the polynomial L
.k�q/
q has k simple positive zeros and a

null root of order q � k. If k D 1; : : : ; q, denote by ¹zm;kºk
mD1 the set of the positive

zeros of L
.k�q/
q , enumerated in decreasing order. Note that

z`;q D �`.0/; ` D 1; : : : ; q:

Moreover, we have

d

dt
L

.q�k/

k
.t/ D �L

.q�kC1/

k�1
.t/; t 2 R; (5.54)

(see [43, (5.1.14)]), so that (5.53), (5.54), and Rolle’s theorem imply that the zeros

zm;k interlace, i.e.,

zmC1;k < zm;k�1 < zm;k

(see [14, 15] for further details). If q � 2, let us extend the functions �`, ` D 1; : : : ;

q � 1, to the interval Œ�q C `; 1/. To this end, set

�`.�n/ D z`;q�n; n D 1; : : : ; q � `;

and interpolate by linear functions on the intervals .�n; �n C 1/. Thus, we obtain

a family of q increasing Lipschitz functions �`.˛/, ` D 1; : : : ; q, defined on ˛ 2
Œ�q C `; 1/, which tend to infinity as ˛ ! 1 and, if q � 2, we have

�`C1.˛/ < �`.˛/; ˛ 2 Œ�q C `; 1/; ` D 1; : : : ; q � 1:



J. Behrndt, M. Holzmann, V. Lotoreichik, and G. Raikov 1230

Set

�`.˛/ WD
p

2�`.˛/=b; ˛ 2 Œ�q C ` C 1; 1/; ` D 1; : : : ; q:

Thus, we find that for any r 2 .0; 1/ the quantity mq.r/ defined in (5.50) is equal

to the number of integers ` 2 ¹1; : : : ; qº for which r 2 ran.�`/ and ��1
`

.r/ 2 N � ¹qº.

Then, evidently, mq.r/ � q and combined with (5.51) this implies (3.10).

Finally, the set Dq is infinite since it contains, for example, all the points r D
�1.k � q/ with k 2 N. On the other hand, Dq is discrete because it is locally finite.

A. Closedness and semiboundedness of the quadratic form in (2.1)

Recall that we consider for � 2 Lp.�I R/ the following quadratic form:

Z

R2

j….A/uj2dx C
Z

�

�j� uj2 ds; u 2 H1
A.R2/: (A.1)

The function � can be decomposed as � D �1 C �2, where �1 2 L1.�/ and where

k�2kLp.�/ � ı for arbitrarily small ı > 0. First, we get the following elementary

estimate:
ˇ

ˇ

ˇ

ˇ

Z

�

�j� uj2 ds

ˇ

ˇ

ˇ

ˇ

�
Z

�

j�1jj� uj2 ds C
Z

�

j�2jj� uj2 ds: (A.2)

Next, we estimate the two terms on the right-hand side separately. Combining [8,

Lemma 2.6], the diamagnetic inequality [31, Theorem 7.21], and that �1 is a bounded

function, we obtain that for any " > 0 there exists C."/ > 0 such that

Z

�

j�1jj� uj2 ds � "k….A/uk2
L2.R2/

C C."/kuk2
L2.R2/

: (A.3)

By [19, Lemma 5.3], the operator of multiplication Mj�2j with j�2j is bounded from

H1=2.�/ into H�1=2.�/ and, moreover, its norm between these two spaces is estimated

from above by

kMj�2 jkH1=2.�/!H�1=2.�/ � ck�2kLp.�/ � cı;

where c D c.�; p/ > 0. Using the above estimate of the norm of Mj�2j and that the

mapping � is bounded from H1
A.R2/ into H1=2.�/ we get

Z

�

j�2jj� uj2 ds � kMj�2 j� ukH�1=2.�/k� ukH1=2.�/

� cık�k2

H1
A

.R2/!H1=2.�/
kuk2

H1
A

.R2/
: (A.4)
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Combining the estimates (A.2), (A.3), (A.4), and taking into account that the decom-

position of � can be chosen such that the parameter ı is arbitrarily small, we conclude

that for any "0 > 0 there exists C 0."0/ > 0 so that

ˇ

ˇ

ˇ

ˇ

Z

�

�j� uj2 ds

ˇ

ˇ

ˇ

ˇ

� "0k….A/uk2
L2.R2/

C C 0."0/kuk2
L2.R2/

:

Hence, it follows from the perturbation result [27, Theorem VI.1.33] that the quadratic

form in (A.1) is closed and semibounded.
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