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3
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Abstract. In this paper, the spectral and scattering properties of a family
of self-adjoint Dirac operators in L2(Ω;C4), where Ω ⊂ R

3 is either a
bounded or an unbounded domain with a compact C2-smooth boundary,
are studied in a systematic way. These operators can be viewed as the nat-
ural relativistic counterpart of Laplacians with boundary conditions as of
Robin type. Our approach is based on abstract boundary triple techniques
from extension theory of symmetric operators and a thorough study of
certain classes of (boundary) integral operators, that appear in a Krein-
type resolvent formula. The analysis of the perturbation term in this
formula leads to a description of the spectrum and a Birman–Schwinger
principle, a qualitative understanding of the scattering properties in the
case that Ω is an exterior domain, and corresponding trace formulas.
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1. Introduction

In recent years, the mathematical study of Dirac operators acting on domains
Ω ⊂ R

d with special boundary conditions that make them self-adjoint gained
a lot of attention. The motivation for this arises from several aspects: From
the physical point of view, they are used in relativistic quantum mechanics to
describe particles that are confined to a predefined area or box. One important
model in 3D (dimension three) is the MIT bag model suggested in the 1970s by
physicists in [30–32,34,43] to study confinement of quarks. In the 2D (dimen-
sion two) case, Dirac operators with special boundary conditions similar to the
MIT bag model are used in the description of graphene; cf. [1,25,29,58]. From
the mathematical point of view, Dirac operators with special boundary condi-
tions can be seen as the relativistic counterpart of Laplacians with boundary
conditions as, e.g., of Robin type. Moreover, Dirac operators with boundary
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conditions are also closely related to Dirac operators with singular δ–shell in-
teractions supported on surfaces for special choices of the interaction strengths
in the so-called confinement case, i.e., when the δ-potential is impenetrable for
the particle; cf. [5,12,16,37].

To set the stage, let Ω ⊂ R
3 be either a bounded or unbounded domain

with a compact C2-smooth boundary and let ν be the unit normal vector
field at ∂Ω which points outwards of Ω. Choose units such that the Planck
constant � and the speed of light are both equal to one. Moreover, assume
that ϑ : ∂Ω → R is a Hölder continuous function of order a > 1

2 , denoted by
ϑ ∈ Lipa(∂Ω), and consider in L2(Ω; C4) the operator

Aϑf = − iα · ∇f + mβf = −i
3∑

j=1

αj · ∂jf + mβf,

dom Aϑ =
{
f ∈ H1(Ω; C4) : ϑ

(
I4 + iβ(α · ν)

)
f |∂Ω =

(
I4 + iβ(α · ν)

)
βf |∂Ω

}
,

(1.1)

where α = (α1, α2, α3) and β are the C
4×4 Dirac matrices defined in (1.6) and

α · x = α1x1 + α2x2 + α3x3 for x = (x1, x2, x3)� ∈ R
3. The time-dependent

equation with the Hamiltonian given by Aϑ models the propagation of a rela-
tivistic particle subject to the boundary conditions in domAϑ with mass m > 0
contained in Ω.

The existing mathematical literature on such types of Dirac operators
contains different approaches. In differential geometry, there are several ar-
ticles dealing with self-adjoint Dirac operators on smooth manifolds, see, for
instance, [7,8,59]. The class of boundary conditions treated in [8] contains also
the physically particularly interesting MIT bag boundary conditions, which
will be rigorously defined below and which yield a vanishing normal flux at
the boundary of Ω ⊂ R

3. It was already shown in [61] that the 2D Dirac
operator with so-called zigzag boundary conditions (in the massless case) is
self-adjoint and that zero is an eigenvalue of infinite multiplicity, see also [39].
The zigzag boundary conditions arise from the termination of a lattice in a
graphene quantum dot, when the direction of the boundary is perpendicular
to the bonds [41]. Very recent related publications in the 2D case are [22,23],
where the self-adjointness of Dirac operators in bounded C2-domains Ω ⊂ R

2

for a wide class of boundary conditions describing quantum dots was shown.
Many considerations in [22,23,61] are based on complex analysis techniques,
which are not available in the 3D situation. We also refer to [28,47,48,57] for
self-adjointness and spectral problems of 2D Dirac operators on different types
of domains with special boundary conditions. In contrast to the 2D setting,
Aϑ was not directly investigated for general boundary parameters in 3D, as far
as we know only the particular MIT bag operator is well studied. We empha-
size the recent papers [2,56] for the analysis of general properties of the MIT
bag operator and [3,9,24,54,62], where it is shown that the MIT bag boundary
conditions and their 2D analogues can be interpreted as infinite mass boundary
conditions (i.e., Ω is surrounded by a medium with infinite mass). The strategy
developed in [56] employing Calderón projections can also be used to study the
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self-adjointness of Dirac operators of the form (1.1). However, this approach
does not allow directly a systematic spectral analysis of these operators. Fi-
nally, we mention that in recent years the self-adjointness and the spectral
and scattering properties of the closely related Dirac operators with singular
δ–shell interactions were studied comprehensively in [4–6,10,12,15,16,42,49–
51,55,56].

The main objective of this paper is to develop a systematic approach to
the spectral analysis and scattering theory for self-adjoint Dirac operators in
the 3D case. Here, we are particularly interested in boundary conditions as in
(1.1), since these are the 3D analogue of the 2D boundary conditions in [22]
used to describe graphene quantum dots (cf. Remark 5.2). Furthermore, Dirac
operators with boundary conditions as in (1.1) can be viewed as relativistic
counterparts of Schrödinger operators with Robin-type (and possibly other)
boundary conditions, as it is argued for the MIT bag model in [2]. This could be
made rigorous by computing the non-relativistic limit [63, Chapter 6]. Another
important goal in the present paper is to allow variable parameters in the
boundary conditions. To the best of our knowledge, this is a novelty in the
3D case and it requires substantial technical effort. We believe that many of
our results in this regard are also of interest for studying similar problems for
Dirac operators with singular δ–shell interactions with varying strength.

Our mathematical treatment of the operators Aϑ in (1.1) is based on
the application of a suitable so-called quasi boundary triple. Quasi boundary
triples and their Weyl functions are an abstract concept from extension and
spectral theory for symmetric and self-adjoint operators which were originally
introduced to investigate boundary value problems for elliptic partial differen-
tial operators in [17], but proved to be useful in many other situations, see, e.g.,
[11,19,20]. Quasi boundary triples were also applied more recently in [10,15]
to Dirac operators with singular potentials. Once a quasi boundary triple and
Weyl function in the present situation are available, they allow to deduce in
an efficient way the spectral properties of Aϑ from the properties of certain
(boundary) integral operators which are induced by the Green’s function of
the free Dirac operator in R

3. These operators also appeared in [4,5,10,15,56]
in the study of Dirac operators with δ–shell potentials, and many of their prop-
erties were derived there; see also [26,33,52] for earlier results related to this
framework. In the present paper, in particular to handle non-constant bound-
ary parameters ϑ, additional mapping properties of these integral operators are
required and, in fact, this analysis covers a great part of this paper. We would
like to point out that this approach is independent of the space dimension.

One of the key features in the quasi boundary triple approach is a Krein-
type resolvent formula that relates the resolvent of Aϑ via a perturbation term
to the resolvent of a reference operator, which in our model is the MIT bag
operator TMIT. More precisely, making use of the quasi boundary triple in The-
orem 4.1 and the properties of the corresponding γ-field γ and Weyl function
M in Proposition 4.2 we conclude the self-adjointness of Aϑ in L2(Ω; C4) and
the relation
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(Aϑ − λ)−1 =
(
TMIT − λ

)−1 + γ(λ)
(
ϑ − M(λ)

)−1
γ(λ)∗ (1.2)

for all λ ∈ ρ(Aϑ) ∩ ρ(TMIT), where ϑ ∈ Lipa(∂Ω) is any real-valued Hölder
continuous function with a > 1

2 ; cf. Theorem 5.3. Our arguments here also
rely on the self-adjointness of the reference operator TMIT proved in [8,56] for
C2 -boundaries; cf. Proposition 3.3. Based on (1.2), we show several spectral
and scattering properties of Aϑ, which are, of course, different for bounded
and for unbounded domains Ω. It turns out in Theorem 5.4 that in the case of
an unbounded domain Ω with a compact C2-boundary the essential spectrum
of Aϑ is given by (−∞,−m] ∪ [m,∞), and there are at most finitely many
discrete eigenvalues in the gap (−m,m) that can be characterized by a Birman–
Schwinger principle implied by (1.2), which states that λ ∈ σp(Aϑ) ∩ (−m,m)
if and only if 0 ∈ σp(ϑ − M(λ)). Furthermore, in Theorem 5.7 we provide
Schatten–von Neumann estimates on the differences of resolvent powers of Aϑ

and TMIT and, in particular, conclude in Corollary 5.8 that the resolvent power
difference (Aϑ −λ)−3 −(TMIT −λ)−3 is a trace class operator for any λ ∈ C\R,
which leads to a trace formula and also implies the existence and completeness
of the wave operators for the scattering pair {Aϑ, TMIT}. If Ω is a bounded
C2-domain, then the spectrum of Aϑ is purely discrete and all eigenvalues of
Aϑ can be characterized by a modified Birman–Schwinger principle formulated
in Proposition 5.5, which again can be viewed as a consequence of the abstract
quasi boundary triple approach.

The above-mentioned results are proved for any real-valued ϑ ∈ Lipa(∂Ω)
with a > 1

2 under the additional assumption ϑ(x)2 	= 1 for all x ∈ ∂Ω, which we
refer to as the non-critical case. We expect that in the critical case ϑ(x)2 = 1
for some x ∈ ∂Ω the spectral properties of Aϑ may significantly differ from the
non-critical case, e.g., essential spectrum may arise also for bounded domains
or in the gap (−m,m). Similar difficulties and effects were observed in the 2D
situation in [22,61] and also in the analysis of Dirac operators with singular
interactions in [4,10,15,16,56].

For some models, it is more convenient to consider Dirac operators A[ω]

in L2(Ω; C4) with boundary conditions of the form
(
I4 + iβ(α · ν)

)
f |∂Ω = ω

(
I4 + iβ(α · ν)

)
βf |∂Ω, (1.3)

where again ω ∈ Lipa(∂Ω) is any real-valued Hölder continuous function with
a > 1

2 . Comparing with the boundary conditions in (1.1), one formally has
ω = ϑ−1. Note that the particularly interesting MIT bag model corresponds
to ω ≡ 0. Using the abstract quasi boundary triple approach, the spectral and
scattering properties of A[ω] can be studied in the same way as those of Aϑ,
and similar results as sketched above for Aϑ follow; cf. Sect. 5.2.

In the last part of this paper, we briefly explain the connection of the
Dirac operators Aϑ and A[ω] on domains with Dirac operators with δ–shell
interactions. More precisely, operators and boundary conditions of the form
(1.1) and (1.3) appear in the treatment of Dirac operators

Bη,τ = −iα · ∇ + mβ + (ηI4 + τβ)δΣ (1.4)
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in R
3 with singular δ–shell potentials supported on Σ = ∂Ω± in the confine-

ment (or decoupling) case, where Ω+ is a bounded C2-domain and Ω− =
R

3\Ω+ is an exterior domain. Note that so far such operators Bη,τ were
only studied for constant interaction strengths η, τ ∈ R. It is known that
for η2 − τ2 = −4 the operator Bη,τ can be written as the orthogonal sum
of operators acting in L2(Ω+; C4) and L2(Ω−; C4), respectively, and it turns
out that these operators are exactly of the form (1.1) with a certain constant
ϑ ∈ R. In Sect. 5.3, we allow variable real-valued coefficients ϑ, η, τ ∈ Lipa(∂Ω)
with a > 1

2 , and we specify in Proposition 5.14 relations between the functions
ϑ, η, τ such that

Bη,τ = A
Ω+
ϑ ⊕ A

Ω−
ϑ (1.5)

holds, where A
Ω±
ϑ denote the self-adjoint Dirac operators defined in (1.1) acting

in L2(Ω±; C4). With the help of such identities, one can then translate results
for Dirac operators A

Ω±
ϑ to Dirac operators with δ-interactions with variable

interaction strengths η, τ , and vice versa; cf. Lemma 5.16 and Theorem 5.17
for a simple illustration of this idea. With the same approach, we also study
the relationship between A

Ω±
[ω] and Bη,τ , and the results are also described in

detail in Sect. 5.3. From a physical point of view, the orthogonal decoupling in
(1.5) means that A

Ω±
ϑ and A

Ω±
[ω] can be used to describe a relativistic particle

actually living in R
3, but which is confined to Ω+ or Ω− for all time, see [5,

Section 5].

Structure of the Paper

In Sect. 2, we review the definitions of quasi boundary triples and their associ-
ated Weyl functions. Then, in Sect. 3 we recall some knowledge on a minimal
and a maximal realization of the Dirac operator in Ω, the MIT bag model,
and the properties of several families of integral operators associated with the
resolvent of the free Dirac operator. Next, in Sect. 4 we introduce and study
a quasi boundary triple which is suitable to investigate Dirac operators in Ω
with boundary conditions. Section 5 contains the main results of the present
paper. In Sect. 5.1, we first define Aϑ with the help of the quasi boundary triple
from Sect. 4 and then conclude its self-adjointness and the resolvent formula in
Theorem 5.3. This allows to prove various spectral properties in Theorem 5.4,
Proposition 5.5, Theorem 5.7, and Corollary 5.8. Section 5.2 is then devoted
to the study of the operator A[ω] with the boundary conditions (1.3), while in
Sect. 5.3 we discuss the above-mentioned connection of Aϑ and A[ω] to the op-
erator Bη,τ formally given in (1.4). Finally, in “Appendix A” we collect some
material on integral operators and their mapping properties in Sobolev spaces
on the boundary ∂Ω, which is applied in the proofs of the main results of this
paper.
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Notations

Throughout this paper, m is always a positive constant that stands for the
mass of a particle. The Dirac matrices α1, α2, α3, β ∈ C

4×4 are defined by

αj :=
(

0 σj

σj 0

)
and β :=

(
I2 0
0 −I2

)
, (1.6)

where In is the n × n-identity matrix and σj , j ∈ {1, 2, 3}, are the Pauli spin
matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (1.7)

The Dirac matrices satisfy the anti-commutation relations

αjαk + αkαj = 2δjkI4, and αjβ + βαj = 0, j, k ∈ {1, 2, 3}. (1.8)

For vectors x = (x1, x2, x3)� ∈ R
3, we shall often use the notation α · x :=∑3

j=1 αjxj .
The upper/lower complex half plane is denoted by C±. The square root√· is fixed by Im

√
λ > 0 for λ ∈ C\[0,∞) and

√
λ ≥ 0 for λ ≥ 0. The open

ball of radius r > 0 centered at x ∈ R
3 is denoted by B(x, r). For a C2-

domain Ω ⊂ R
3, we write ∂Ω for its boundary and σ is the two-dimensional

Hausdorff measure on ∂Ω. We shall mostly work with the L2-spaces L2(Ω; Cn)
and L2(∂Ω; Cn) of C

n-valued square integrable functions, the corresponding
inner products being denoted by (·, ·)Ω and (·, ·)∂Ω, respectively. We write
C∞

0 (Ω; Cn) for the space of C
n-valued smooth functions with compact support

in Ω and we set

C∞(Ω; Cn) :=
{
f � Ω : f ∈ C∞

0 (R3; Cn)
}
.

We write Hk(R3; Cn) for the usual L2(R3; Cn)-based Sobolev space of k-
times weakly differentiable functions, and similarly Hk(Ω; Cn). In addition,
H1

0 (Ω; Cn) denotes the closure of C∞
0 (Ω; Cn) in H1(Ω; Cn). Sobolev spaces on

Cl-surfaces ∂Ω, l ∈ N, are denoted by Hs(∂Ω; Cn), s ∈ (0, l), and the symbol
H−s(∂Ω; Cn) is used for their duals. The corresponding norm for s ∈ (0, 1) is

‖f‖2
s :=

∫

∂Ω

|f(x)|2dσ(x) +
∫

∂Ω

∫

∂Ω

|f(x) − f(y)|2
|x − y|2+2s

dσ(y)dσ(x). (1.9)

The trace of a function f ∈ H1(Ω; Cn), which belongs by the trace theorem to
H1/2(∂Ω; Cn), is denoted by f |∂Ω. Eventually, given 0 < a ≤ 1 we denote the
Hölder continuous functions on ∂Ω of order a by

Lipa(∂Ω) :=
{
f : ∂Ω → C : |f(x) − f(y)| ≤ C|x − y|a for all x, y ∈ ∂Ω

}
.

For two Hilbert spaces G and H, the space B(G,H) is the set of all
bounded and everywhere defined operators from G to H. If G = H, then
we simply write B(H). We write Sp,∞(G,H) for the weak Schatten–von Neu-
mann ideal of order p > 0; this is the set of all compact operators K : G → H
for which there exists a constant κ such that the singular values sk(K) of K
satisfy sk(K) ≤ κk−1/p for all k ∈ N, see [40] or [19, Section 2.1]. Again we
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use Sp,∞(G) if G = H and sometimes we suppress the spaces and just write
Sp,∞.

For a linear operator T : G → H, we denote the domain, range, and
kernel by domT , ranT , and kerT , respectively. If T is a self-adjoint operator
in H, then its resolvent set, spectrum, essential spectrum, discrete, and point
spectrum are denoted by ρ(T ), σ(T ), σess(T ), σdisc(T ), and σp(T ), respectively.
Next, for a Banach space X we use the notation (·, ·)X′×X for the duality
product in X ′ × X which is linear in the first and anti-linear in the second
entry. Moreover, for T ∈ B(X,Y ) we denote by T ′ ∈ B(Y ′,X ′) the anti-dual
operator, which is uniquely determined by the relation

(y, Tx)Y ′×Y = (T ′y, x)X′×X

for all x ∈ X and y ∈ Y ′.
Finally, we call a closed symmetric operator S in a Hilbert space H simple,

if for any orthogonal decomposition H = H1 ⊕ H2 such that H1 and H2 are
invariant under S and S1 := S � H1 is self-adjoint in H1 it follows H1 = {0}.
It was observed in [46] that a closed symmetric operator S is simple, if and
only if

span
{

ker(S∗ − λ) : λ ∈ C\R
}

= H. (1.10)

2. quasi boundary Triples and Their Weyl Functions

This section is devoted to a short introduction to quasi boundary triples and
their Weyl functions; the presentation is chosen such that the results can be
applied directly in the main part of this paper. For a more detailed exposition
and proofs in a general scenario we refer to [17,18]. Throughout this abstract
section, H is always a complex Hilbert space with inner product (·, ·)H; if no
confusion arises, we skip the index in the inner product.

Definition 2.1. Let S be a densely defined, closed, symmetric operator in H
and assume that T is a linear operator in H such that T = S∗. Moreover, let
G be a complex Hilbert space and let Γ0,Γ1 : dom T → G be linear mappings.
Then, {G,Γ0,Γ1} is called a quasi boundary triple for T ⊂ S∗ if the following
conditions are fulfilled:

(i) For all f, g ∈ dom T the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds.
(ii) (Γ0,Γ1)� : dom T → G × G has dense range.
(iii) The operator A0 := T � ker Γ0 is self-adjoint in H.

The concept of quasi boundary triples is a generalization of ordinary and
generalized boundary triples; cf. [14,27,35,36]. We note that the operator T in
the above definition is not unique if the dimension of G is infinite. Moreover,
we remark that a quasi boundary triple exists if and only if dim ker(S∗ − i) =
dim ker(S∗ + i), that is, if and only if S admits self-adjoint extensions in H.
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Next, we introduce the γ-field and the Weyl function associated with a
given quasi boundary triple. Let {G,Γ0,Γ1} be a quasi boundary triple for
T ⊂ S∗ and let A0 := T � ker Γ0. The definition of the γ-field and the Weyl
function is based on the direct sum decomposition

dom T = dom A0+̇ ker(T − λ) = ker Γ0+̇ ker(T − λ), λ ∈ ρ(A0), (2.1)

and is formally the same as in the case of ordinary boundary triples, see [14,35].
Note that (2.1) implies, in particular, that Γ0 � ker(T − λ) is injective for
λ ∈ ρ(A0).

Definition 2.2. Let S be a densely defined, closed, symmetric operator in H,
let T be a linear operator such that T = S∗, and let {G,Γ0,Γ1} be a quasi
boundary triple for T ⊂ S∗.

(i) The γ-field associated with {G,Γ0,Γ1} is the mapping

ρ(A0) � λ �→ γ(λ) :=
(
Γ0 � ker(T − λ)

)−1
.

(ii) The Weyl function associated with {G,Γ0,Γ1} is the mapping

ρ(A0) � λ �→ M(λ) := Γ1

(
Γ0 � ker(T − λ)

)−1 = Γ1γ(λ).

Let us now assume that {G,Γ0,Γ1} is a quasi boundary triple for T ⊂ S∗

and set A0 := T � ker Γ0. In the following, we collect several useful properties of
the associated γ-field γ and Weyl function M ; for the proofs, see, for instance,
[17, Proposition 2.6] and [18, Propositions 6.13 and 6.14]. First, for any λ ∈
ρ(A0) the mapping γ(λ) is densely defined and bounded from G into H with
dom γ(λ) = ran Γ0. Using the abstract Green’s identity, it is not difficult to see
that the adjoint γ(λ)∗ : H → G is given by γ(λ)∗ = Γ1(A0−λ)−1. This implies,
in particular, γ(λ)∗ ∈ B(H,G). In a similar manner, we have for any λ ∈ ρ(A0)
that the mapping M(λ) is densely defined in G with dom M(λ) = ran Γ0 and
ran M(λ) ⊂ ran Γ1. By definition, we have M(λ)Γ0fλ = Γ1fλ for λ ∈ ρ(A0)
and fλ ∈ ker(T − λ). Next, for any λ, μ ∈ ρ(A0) and ϕ ∈ ran Γ0 the identity

M(λ)ϕ = M(μ)∗ϕ + (λ − μ)γ(μ)∗γ(λ)ϕ

holds. In particular, the operator M(λ) is closable, M(λ) ⊂ M(λ)∗, and M(λ)
is symmetric for λ ∈ ρ(A0) ∩ R.

In the main part of this paper, we will use quasi boundary triples to
introduce special extensions of a symmetric operator S. Let {G,Γ0,Γ1} be a
quasi boundary triple for T ⊂ S∗ and let Θ be a symmetric operator in G.
Then, we define the operator AΘ acting in H by

AΘ := T � ker(Γ1 − ΘΓ0). (2.2)

In other words, a vector f ∈ dom T belongs to dom AΘ if Γ0f ∈ dom Θ and if it
satisfies the abstract boundary condition Γ1f = ΘΓ0f . It follows immediately
from the abstract Green’s identity that AΘ is symmetric. Of course, one is
typically interested in the self-adjointness of AΘ. However, in general, for quasi
boundary triples the self-adjointness of Θ in G does not necessarily imply that
AΘ is self-adjoint in H. Nevertheless, the next theorem provides an explicit
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Krein-type resolvent formula which allows to deduce several properties of AΘ

from Θ; for a proof of this result see, for instance, [17, Theorem 2.8].

Theorem 2.3. Let S be a densely defined, closed, symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗, set A0 := T � ker Γ0, and let
γ and M be the associated γ-field and Weyl function, respectively. Moreover,
let Θ be a symmetric operator in G and let the associated operator AΘ be
defined by (2.2). Then, the following statements hold for λ ∈ ρ(A0):

(i) λ ∈ σp(AΘ) if and only if 0 ∈ σp(Θ − M(λ)). Furthermore, one has

ker(AΘ − λ) =
{
γ(λ)ϕ : ϕ ∈ ker(Θ − M(λ))

}
.

(ii) If λ /∈ σp(AΘ) and γ(λ)∗f ∈ ran(Θ − M(λ)), then f ∈ ran(AΘ − λ).
(iii) If λ /∈ σp(AΘ), then

(AΘ − λ)−1f = (A0 − λ)−1f + γ(λ)(Θ − M(λ))−1γ(λ)∗f

for all f ∈ ran(AΘ − λ).

We point out that assertion (ii) in Theorem 2.3 gives an efficient tool to
check the self-adjointness of AΘ. Since AΘ is symmetric by Green’s identity,
it suffices to show that ran(AΘ − λ±) = H for some λ± ∈ C±. According to
Theorem 2.3 (ii) this is true if ran γ(λ±)∗ ⊂ ran(Θ − M(λ±)). Furthermore,
if λ ∈ ρ(AΘ) 	= ∅, then the resolvent formula in Theorem 2.3 (iii) holds for all
f ∈ H, that is, for λ ∈ ρ(AΘ) ∩ ρ(A0) we have

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)(Θ − M(λ))−1γ(λ)∗.

Note that if {G,Γ0,Γ1} is a quasi boundary triple for T ⊂ S∗, then The-
orem 2.3 shows how the eigenvalues of self-adjoint extensions of S, which are
contained in ρ(A0), can be characterized by the Weyl function M . If the sym-
metric operator S is simple, then all eigenvalues can be characterized with the
help of M , in particular, also those that are embedded in σ(A0), compare [20,
Corollary 3.4]. Note that there are also similar characterizations for the other
types of the spectrum available in [20], but in our applications we restrict
ourselves to find the eigenvalues.

Proposition 2.4. Let S be a densely defined, closed, symmetric operator in H,
let {G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗, and let M be the associ-
ated Weyl function. Moreover, let Θ be a bounded and self-adjoint operator in
G and assume that the associated operator AΘ defined by (2.2) is self-adjoint.
Assume, in addition, that S is simple. Then, ran(M(λ) − Θ) is independent
of λ ∈ C\R, and λ ∈ R is an eigenvalue of AΘ if and only if there exists
ϕ ∈ ran(M(λ + iε) − Θ) such that

lim
ε↘0

iε
(
M(λ + iε) − Θ

)−1
ϕ 	= 0.

Proof. Define the boundary mappings ΓΘ
0 ,ΓΘ

1 : dom T → G by

ΓΘ
0 f := Γ1f − ΘΓ0f and ΓΘ

1 f = −Γ0f, f ∈ dom T.

We claim that {G,ΓΘ
0 ,ΓΘ

1 } is a quasi boundary triple for T ⊂ S∗ with the
additional property T � ker ΓΘ

0 = AΘ. In fact, using that Θ is bounded and
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self-adjoint we deduce from the abstract Green’s identity for {G,Γ0,Γ1} and
for f, g ∈ dom T that

(Tf, g)H − (f, Tg)H
= (Γ1f,Γ0g)G − (Γ0f,Γ1g)G − (ΘΓ0f,Γ0g)G + (Γ0f,ΘΓ0g)G
=

( − Γ0f, (Γ1 − ΘΓ0)g
)
G − (

(Γ1 − ΘΓ0)f,−Γ0g
)
G

=
(
ΓΘ

1 f,ΓΘ
0 g

)
G − (

ΓΘ
0 f,ΓΘ

1 g
)
G ,

and hence, the abstract Green’s identity holds also for the triple {G,ΓΘ
0 ,ΓΘ

1 }.
Next, the definition of ΓΘ

0 ,ΓΘ
1 can be written equivalently as

(
ΓΘ

0

ΓΘ
1

)
= B

(
Γ0

Γ1

)
, B :=

(−Θ 1
−1 0

)
.

Since Θ is bounded, it follows that B is boundedly invertible with

B−1 =
(

0 −1
1 −Θ

)
.

Since ran(Γ0,Γ1) is dense in G × G, also ran(ΓΘ
0 ,ΓΘ

1 ) is dense. Finally, the re-
striction T � ker(ΓΘ

0 ) = T � ker(Γ1 −ΘΓ0) = AΘ is self-adjoint by assumption.
Therefore, {G,ΓΘ

0 ,ΓΘ
1 } is a quasi boundary triple for S∗.

Next, we compute on C\R the Weyl function MΘ corresponding to the
triple {G,ΓΘ

0 ,ΓΘ
1 }. For a fixed λ ∈ C\R, this is the mapping which is deter-

mined uniquely by the relation MΘ(λ)ΓΘ
0 fλ = ΓΘ

1 fλ for fλ ∈ ker(T − λ). For
such an fλ, we compute

ΓΘ
0 fλ = (Γ1 − ΘΓ0)fλ =

(
M(λ) − Θ

)
Γ0fλ = −(

M(λ) − Θ
)
ΓΘ

1 fλ.

Note that M(λ)−Θ is invertible by Theorem 2.3, as otherwise the self-adjoint
operator AΘ would have the non-real eigenvalue λ. Thus, we conclude

MΘ(λ) = −(M(λ) − Θ)−1.

In particular, this implies that domMΘ(λ) = ran(M(λ) − Θ) = ran ΓΘ
0 is

independent of λ ∈ ρ(AΘ).
After all these preparations, the claim of the proposition follows from [20,

Corollary 3.4] applied to the quasi boundary triple {G,ΓΘ
0 ,ΓΘ

1 }, as S is simple.
�

Let {G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗ and let B be
a symmetric operator in G. In some applications, it is more convenient to
consider

A[B] := T � ker(BΓ1 − Γ0) (2.3)

instead of (2.2). Similarly as above, a symmetric operator B leads to a sym-
metric extension A[B] of S, but B being self-adjoint does not imply that also
A[B] is self-adjoint. But we have the following counterpart of Theorem 2.3,
which gives in item (ii) similarly as above an efficient tool to check the self-
adjointness of A[B]; cf. [19, Theorem 2.6].
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Theorem 2.5. Let S be a densely defined, closed, symmetric operator in H, let
{G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗, set A0 := T � ker Γ0, and let
γ and M be the associated γ-field and Weyl function, respectively. Moreover,
let B be a symmetric operator in G and let the associated operator A[B] be
defined by (2.3). Then, the following statements hold for λ ∈ ρ(A0):

(i) λ ∈ σp(A[B]) if and only if 1 ∈ σp(BM(λ)). Furthermore, one has

ker(A[B] − λ) =
{
γ(λ)ϕ : ϕ ∈ ker(I − BM(λ))

}
.

(ii) If λ /∈ σp(A[B]) and Bγ(λ)∗f ∈ ran(I −BM(λ)), then f ∈ ran(A[B] −λ).
(iii) If λ /∈ σp(A[B]), then

(A[B] − λ)−1f = (A0 − λ)−1f + γ(λ)(I − BM(λ))−1Bγ(λ)∗f

for all f ∈ ran(A[B] − λ).

Note that for λ ∈ ρ(A[B])∩ρ(A0) the resolvent formula in Theorem 2.5 (iii)
reads as

(A[B] − λ)−1 = (A0 − λ)−1 + γ(λ)(I − BM(λ))−1Bγ(λ)∗.

Finally, we state the counterpart of Proposition 2.4 for extensions A[B]

given by (2.3) to detect all eigenvalues of A[B].

Proposition 2.6. Let S be a densely defined, closed, symmetric operator in H,
let {G,Γ0,Γ1} be a quasi boundary triple for T ⊂ S∗, and let M be the associ-
ated Weyl function. Moreover, let B be a bounded and self-adjoint operator in
G and assume that the associated operator A[B] defined by (2.3) is self-adjoint.
Assume, in addition, that S is simple. Then, ran(I − BM(λ)) is independent
of λ ∈ C\R, and λ ∈ R is an eigenvalue of A[B] if and only if there exists
ϕ ∈ ran(I − BM(λ + iε)) such that

lim
ε↘0

iεM(λ + iε)
(
I − BM(λ + iε)

)−1
ϕ 	= 0.

Proof. The proof is very similar as the one of Proposition 2.4, so we only sketch
the main differences here. Define the mappings Γ[B]

0 ,Γ[B]
1 : dom T → G by

Γ[B]
0 f := Γ0f − BΓ1f and Γ[B]

1 f = Γ1f, f ∈ dom T.

Then, one verifies with the same arguments as in the proof of Proposition 2.4
that {G,Γ[B]

0 ,Γ[B]
1 } is a quasi boundary triple for T ⊂ S∗ with T � Γ[B]

0 = A[B].
If we are able to compute the Weyl function M[B](λ) corresponding to the

triple {G,Γ[B]
0 ,Γ[B]

1 } for λ ∈ C\R, then we can apply again [20, Corollary 3.4]
to characterize all eigenvalues of A[B]. Let λ ∈ C\R and fλ ∈ ker(T − λ)
be fixed. Note that M(λ) is invertible, as otherwise the symmetric operator
T � ker Γ1 would have the non-real eigenvalue λ, cf. Theorem 2.3 (i). Hence,
M(λ)Γ0fλ = Γ1fλ implies Γ0fλ = M(λ)−1Γ1fλ, which yields

Γ[B]
0 fλ = (Γ0 − BΓ1)fλ = (I − BM(λ))M(λ)−1Γ[B]

1 fλ.
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Note that I−BM(λ) is invertible by Theorem 2.5, as otherwise the self-adjoint
operator A[B] would have the non-real eigenvalue λ. Thus, we conclude

M[B](λ) = M(λ)(I − BM(λ))−1.

This implies, in particular, that domM[B](λ) = ran(I − BM(λ)) = ran Γ[B]
0 is

independent of λ ∈ ρ(A[B]).
After all these preparations, the claim of the proposition follows from

[20, Corollary 3.4] applied to the quasi boundary triple {G,Γ[B]
0 ,Γ[B]

1 }, as S is
simple. �

3. The Minimal, the Maximal, the MIT Bag, and Some
Associated Integral Operators

In this section, we provide some facts on Dirac operators and associated inte-
gral operators. First, we collect some properties of the minimal and the maxi-
mal realization of the Dirac operator on a domain Ω ⊂ R

3. Then, we introduce
and discuss the MIT bag operator, which is a distinguished self-adjoint realiza-
tion of the Dirac operator in Ω, and which serves as a reference operator later.
Finally, we introduce several families of integral operators which will play a
crucial role in Sects. 4 and 5 in the proofs of the main results of this paper.
Throughout this section, let Ω be a C2-domain in R

3 with compact boundary,
that is, Ω is either a bounded C2-domain or the complement of the closure of
such a set. The unit normal vector field at ∂Ω pointing outwards Ω is denoted
by ν.

3.1. The Minimal and the Maximal Dirac Operator

We are going to study the following two operators acting in L2(Ω; C4): The
maximal Dirac operator

Tmaxf = − iα · ∇f + mβf,

dom Tmax =
{
f ∈ L2(Ω; C4) : α · ∇f ∈ L2(Ω; C4)

}
, (3.1)

where the derivatives are understood in the distributional sense, and the mini-
mal Dirac operator Tmin = Tmax � H1

0 (Ω; C4), which is given in a more explicit
form by

Tminf = −iα · ∇f + mβf, dom Tmin = H1
0 (Ω; R3). (3.2)

Some basic and well-known properties of Tmin and Tmax are collected in the
following lemma; cf. [15, Proposition 3.1], [22, Lemma 2.1], and [56, Proposi-
tions 2.10 and 2.12].

Lemma 3.1. Let Ω ⊂ R
3 be a C2-domain with compact boundary and let Tmax

and Tmin be defined by (3.1) and (3.2), respectively. Then, Tmin is a densely
defined, closed, symmetric operator in L2(Ω; C4) and we have

T ∗
min = Tmax and Tmin = T ∗

max.

Moreover, C∞(Ω; C4) is dense in dom Tmax with respect to the graph norm.
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Observe that for f, g ∈ H1(Ω; C4), the integration by parts formula(
α · ∇f, g

)
Ω

+
(
f, α · ∇g

)
Ω

=
(
(α · ν)f |∂Ω, g|∂Ω

)
∂Ω

implies the identity(
(−iα · ∇ + mβ)f, g

)
Ω

− (
f, (−iα · ∇ + mβ)g

)
Ω

=
( − i(α · ν)f |∂Ω, g|∂Ω

)
∂Ω

.

(3.3)

In the next proposition, we verify that Tmin is a simple symmetric opera-
tor, that is, there exists no non-trivial invariant subspace for Tmin in L2(Ω; C4)
on which Tmin reduces to a self-adjoint operator. The simplicity of Tmin is es-
sential in Propositions 5.5 and 5.11 for the characterization of eigenvalues of
self-adjoint extensions of Tmin which are embedded in the spectrum of the MIT
bag operator.

Proposition 3.2. The operator Tmin in (3.2) is simple.

Proof. Assume that Tmin = T1 ⊕ T2, where Tj acts in an invariant subspace
Hj ⊂ L2(Ω; C4) for Tmin, j ∈ {1, 2}, and that T1 = T ∗

1 . We prove that H1 =
{0}. For that, note (Tmin)2 = T 2

1 ⊕ T 2
2 and T 2

1 = (T 2
1 )∗ in H1 by the spectral

theorem. Since T 2
1 is closed, we have (Tmin)2 = T 2

1 ⊕ T 2
2 . Let us show that

(Tmin)2 is simple. We define the operator

AΩf = (−iα · ∇ + mβ)2f = (−Δ + m2)f, dom AΩ = H2(Ω; C4),

and we claim that AΩ ⊂ ((Tmin)2)∗. In fact, consider arbitrary f ∈ dom AΩ

and let g ∈ dom (Tmin)2. Then, g, (−iα · ∇ + mβ)g ∈ H1
0 (Ω; C4) and the

identity (3.3) shows
(
AΩf, g

)
Ω

=
(
(−iα · ∇ + mβ)2f, g

)
Ω

=
(
(−iα · ∇ + mβ)f, (−iα · ∇ + mβ)g

)
Ω

=
(
f, (−iα · ∇ + mβ)2g

)
Ω

=
(
f, (Tmin)2g

)
Ω
,

which implies AΩ ⊂ ((Tmin)2)∗. Now we use that

L2(Ω; C4) = span
{

ker(AΩ − λ) : λ ∈ C\R
}
;

if Ω is bounded, this is essentially a consequence of unique continuation (for
details see [14, Section 8.3]) and if Ω is unbounded this fact can be found in
[21, Proposition 2.2]. As AΩ ⊂ ((Tmin)2)∗ and ((Tmin)2)∗ = ((Tmin)2)∗, we
have

ker(AΩ − λ) ⊂ ker
((

(Tmin)2
)∗ − λ

)
, λ ∈ C\R,

and we conclude

L2(Ω; C4) = span
{

ker
((

(Tmin)2
)∗ − λ

)
: λ ∈ C\R

}
.

This implies that (Tmin)2 is simple (see (1.10)). Therefore, H1 = {0} and hence
Tmin is simple. �
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3.2. The MIT Bag Operator

In this subsection, we discuss the MIT bag Dirac operator in Ω which will
often play the role of a self-adjoint reference operator in this paper. The MIT
bag operator is the partial differential operator in L2(Ω; C4) defined by

TMITf = (−iα · ∇ + mβ)f,

dom TMIT =
{
f ∈ H1(Ω; C4) : f |∂Ω = −iβ(α · ν)f |∂Ω

}
. (3.4)

In the following proposition, we summarize the basic properties of TMIT. For
some further results on TMIT, as, e.g., symmetry relations of the spectrum or
asymptotics of eigenvalues for large masses m we refer to [2]. Moreover, we
note that the orthogonal sum of the MIT bag operator in Ω and R

3\Ω is a
Dirac operator with a Lorentz scalar δ–shell interaction, see Proposition 5.15.
Using this, one can show even some further properties of TMIT; cf. (5.33).

Proposition 3.3. The operator TMIT defined by (3.4) is self-adjoint in L2(Ω; C4)
and the following statements hold:

(i) (−m,m) ⊂ ρ(TMIT).
(ii) If Ω is bounded, then σ(TMIT) = σdisc(TMIT) = σp(TMIT).
(iii) If Ω is unbounded, then σ(TMIT) = σess(TMIT) = (−∞,−m] ∪ [m,∞).

Proof. First, the self-adjointness of TMIT is shown in [56, Theorem 3.2]. The
proof of assertion (i) follows similar considerations in [2, Theorem 1.5] for C3-
domains, but the arguments are basically independent of the smoothness of
∂Ω. Indeed, one can show for f ∈ dom TMIT with the help of (3.3) and (1.8)
that

‖TMITf‖2
Ω =

(
(−iα · ∇ + mβ)f, (−iα · ∇ + mβ)f

)
Ω

= ‖α · ∇f‖2
Ω + m2‖f‖2

Ω + (−iα · ∇f,mβf)Ω + (mβf,−iα · ∇f)Ω

= ‖α · ∇f‖2
Ω + m2‖f‖2

Ω + m
( − iβ(α · ν)f |∂Ω, f |∂Ω

)
∂Ω

= ‖α · ∇f‖2
Ω + m2‖f‖2

Ω + m‖f |∂Ω‖2
∂Ω

holds, where the boundary condition for f ∈ dom TMIT was used in the last
step. Hence, we have ‖TMITf‖Ω ≥ m‖f‖Ω for all f ∈ dom TMIT, which shows
that σ(TMIT) ∩ (−m,m) = ∅.

To verify item (ii), we note that domTMIT ⊂ H1(Ω; C4) is compactly
embedded in L2(Ω; C4), as Ω is a bounded C2-domain. Hence, σ(TMIT) is
purely discrete.

It remains to show point (iii). By (i), we have σ(TMIT) ⊂ (−∞,−m] ∪
[m,∞). To prove the other inclusion, fix some λ ∈ (−∞,−m] ∪ [m,∞),
a number R > 0 such that R

3\B(0, R) ⊂ Ω, a vector ζ ∈ C
4 such that(√

λ2 − m2α1 + mβ + λI4

)
ζ 	= 0, a cutoff-function χ ∈ C∞

0 (R) with χ(r) = 1
for r < 1

2 and χ(r) = 0 for r > 1 and set xn := (R + n2, 0, 0)�, n ∈ N. Then,
we define the function ψλ

n by

ψλ
n(x) :=

1
n3/2

χ

(
1
n

|x − xn|
)

ei
√

λ2−m2x·e1

(√
λ2 − m2α1 + mβ + λI4

)
ζ.
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Then, one verifies in the same way as in [15, Theorem 5.7] that ψλ
n ∈ dom TMIT,

that ψλ
n converge weakly to zero, that

‖ψλ
n‖Ω = const. > 0 and (TΩ

MIT − λ)ψλ
n → 0, as n → ∞.

Thus, (ψλ
n)n is a singular sequence for TMIT and λ, which shows λ ∈ σess(TMIT).

This finishes the proof of this proposition. �

In a similar fashion as for the MIT bag model, we also state some basic
properties of another distinguished self-adjoint realization of the Dirac oper-
ator on Ω. This operator has similar boundary conditions as TMIT, but with
opposite sign, and is given by

T−MITf = (−iα · ∇ + mβ)f,

dom T−MIT =
{
f ∈ H1(Ω; C4) : f |∂Ω = iβ(α · ν)f |∂Ω

}
. (3.5)

The next proposition is the counterpart of Proposition 3.3 for T−MIT. How-
ever, in contrast to Proposition 3.3 (i) the interval (−m,m) may also contain
spectrum; cf. Theorem 5.4 and Proposition 5.5.

Proposition 3.4. The operator T−MIT defined by (3.5) is self-adjoint in
L2(Ω; C4), and the following statements hold:

(i) If Ω is bounded, then σ(T−MIT) = σdisc(T−MIT) = σp(T−MIT).
(ii) If Ω is unbounded, then (−∞,−m] ∪ [m,∞) ⊂ σess(T−MIT).

Remark 3.5. We will show later in Theorem 5.4 (i) that the inclusion in
item (ii) of the above proposition is in fact an equality, i.e.,

σess(T−MIT) = (−∞,−m] ∪ [m,∞).

This holds, as the operator T−MIT corresponds to T � ker Γ1 defined as in (5.2)
with the parameter ϑ = 0. But for our next considerations, the above inclusion
is sufficient.

Proof of Proposition 3.4. Define the auxiliary operator

T̃ f = (−iα · ∇ − mβ)f, dom T̃ =
{
f ∈ H1(Ω; C4) : f |∂Ω = iβ(α · ν)f |∂Ω

}
,

and consider the unitary and self-adjoint matrix

γ5 =
(

0 I2

I2 0

)
.

We claim that
TMIT = γ5T̃ γ5. (3.6)

To see this, we note that γ5β = −βγ5 and (α · x)γ5 = γ5(α · x) for all x ∈ R
3.

This implies

(−iα · ∇ + mβ)f = γ5(−iα · ∇ − mβ)γ5f, f ∈ H1(Ω; C4).

Furthermore, we have f ∈ dom TMIT if and only if γ5f ∈ H1(Ω; C4) and

iβ(α · ν)γ5f |∂Ω = −γ5iβ(α · ν)f |∂Ω = γ5f |∂Ω,

so that f ∈ dom TMIT if and only if γ5f ∈ dom T̃ . Hence, we have shown (3.6).
In particular, this implies together with Proposition 3.3 that T̃ is self-adjoint.
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Since multiplication by mβ is a bounded and self-adjoint operator in L2(Ω; C4),
we conclude that also T−MIT = T̃ + 2mβ is self-adjoint.

Eventually, assertions (i) and (ii) can be shown in exactly the same way
as Proposition 3.3 (ii) and (iii); in particular, for the proof of item (ii) the
same singular sequence as in Proposition 3.3 (iii) can be used. �

3.3. Integral Operators

In this section, we introduce several families of integral operators that will
play an important role in the analysis of Dirac operators on domains. We also
summarize some of their well-known properties. Define for λ ∈ C\((−∞,−m]∪
[m,∞)) the function

Gλ(x) =
(

λI4 + mβ +
(
1 − i

√
λ2 − m2|x|

) i

|x|2 (α · x)
)

· ei
√

λ2−m2|x|

4π|x| .

(3.7)

Recall that Gλ is the integral kernel of the resolvent of the free Dirac operator
in R

3, see [63, Section 1.E]. We introduce the families of integral operators
Φλ : L2(∂Ω; C4) → L2(Ω; C4),

Φλϕ(x) =
∫

∂Ω

Gλ(x − y)ϕ(y)dσ(y), x ∈ Ω, ϕ ∈ L2(∂Ω; C4), (3.8)

and Cλ : L2(∂Ω; C4) → L2(∂Ω; C4),

Cλϕ(x) = lim
ε↘0

∫

∂Ω\B(x,ε)

Gλ(x − y)ϕ(y)dσ(y), x ∈ ∂Ω, ϕ ∈ L2(∂Ω; C4).

(3.9)
It is well known that Φλ and Cλ are bounded and everywhere defined and that

C∗
λ = Cλ (3.10)

holds; cf. [4, Lemmas 2.1 and 3.3] or [10, Proposition 3.4]. Furthermore, the
adjoint of Φλ is given by Φ∗

λ : L2(Ω; C4) → L2(∂Ω; C4),

Φ∗
λf(x) =

∫

Ω

Gλ(x − y)f(y)dy, x ∈ ∂Ω, f ∈ L2(Ω; C4), (3.11)

and this operator is also bounded when viewed as an operator from L2(Ω; C4)
to H1/2(∂Ω; C4); cf. [12, equation (2.12) and the discussion below]. Hence, we
can define the anti-dual of Φ∗

λ by

Φλ,−1/2 := (Φ∗
λ)′ : H−1/2(∂Ω; C4) → L2(Ω; C4). (3.12)

Since we have for ϕ ∈ L2(∂Ω; C4) and f ∈ L2(Ω; C4)

(Φλ,−1/2ϕ, f)Ω = (ϕ,Φ∗
λf)H−1/2(∂Ω;C4)×H1/2(∂Ω;C4)

= (ϕ,Φ∗
λf)∂Ω = (Φλϕ, f)Ω,

Φλ,−1/2 is an extension of Φλ. Some further properties of Φλ are summarized
in the following proposition.

Proposition 3.6. Let λ ∈ C\((−∞,−m] ∪ [m,∞)) and let Φλ be the operator
in (3.8). Then, the following statements hold:
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(i) For any s ∈ [− 1
2 , 1

2 ] the operator Φλ gives rise to a bounded and every-
where defined operator Φλ,s : Hs(∂Ω; C4) → Hs+1/2(Ω; C4).

(ii) ran Φλ,−1/2 = ker(Tmax − λ).

Remark 3.7. For s ∈ (− 1
2 , 1

2 ] the map Φλ,s is the restriction of Φλ,−1/2 onto
Hs(∂Ω; C4), i.e., Φλ,sϕ is for ϕ ∈ Hs(∂Ω; C4) the uniquely determined L2-
function Φλ,−1/2ϕ.

Proof of Proposition 3.6. The claim of statement (i) for s = − 1
2 follows from

the definition of Φλ,−1/2 in (3.12), and it is contained for s = 1
2 and Ω =

R
3\Σ for a C2-surface Σ in [15, Proposition 4.2] (see also Remark 3.7); for

that, one has to note that the map γ(λ) in [15] coincides with Φλ,1/2. The
claim for Ω follows from this by restriction and for intermediate s ∈ (− 1

2 , 1
2 )

by an interpolation argument. Assertion (ii) follows immediately from [15,
Propositions 4.4 and 2.6] by noting that Φλ,−1/2 coincides with γ̃(λ) in [15].

�

In the next proposition we collect some additional properties of Cλ that
will be useful in the sequel.

Proposition 3.8. Let λ ∈ C\((−∞,−m] ∪ [m,∞)) and let Cλ be the operator
in (3.9). Then, the following statements hold:

(i) For any s ∈ [− 1
2 , 1

2 ] the operator Cλ gives rise to a bounded and ev-
erywhere defined operator Cλ,s : Hs(∂Ω; C4) → Hs(∂Ω; C4) and for the
anti-dual of Cλ,s one has C′

λ,s = Cλ,−s.
(ii) If λ ∈ (−m,m) and s ∈ [− 1

2 , 1
2 ], then the operator Cλ,s is invertible and

− 4
(Cλ,s(α · ν)

)2 = −4
(
(α · ν)Cλ,s

)2 = I4. (3.13)

Proof. First, by [15, Proposition 4.2] the restriction Cλ,1/2 := Cλ � H1/2(∂Ω; C4)
is bounded in H1/2(∂Ω; C4). Moreover, by [15, Proposition 4.4] the map-
ping Cλ,1/2 can be extended by continuity to a bounded operator Cλ,−1/2 in
H−1/2(∂Ω; C4) and it is also shown there that

(Cλ,1/2ϕ,ψ)H1/2(∂Ω;C4)×H−1/2(∂Ω;C4) = (ϕ, Cλ,−1/2ψ)H1/2(∂Ω;C4)×H−1/2(∂Ω;C4)

holds for all ϕ ∈ H1/2(∂Ω; C4) and ψ ∈ H−1/2(∂Ω; C4); for this, one just
has to note that the operators M(λ) and M̃(λ) in [15] coincide with Cλ,1/2

and Cλ,−1/2, respectively. Hence, assertion (i) holds for s = ± 1
2 . Now the

continuity claim in item (i) for the restriction Cλ,s := Cλ,−1/2 � Hs(∂Ω; C4) for
intermediate s ∈ (− 1

2 , 1
2 ) follows via interpolation. Moreover, for s ∈ (− 1

2 , 0)
the map Cλ,s is the anti-dual of Cλ,−s. To see the last claim, we note that for
ϕ ∈ L2(∂Ω; C4) and ψ ∈ H−s(∂Ω; C4), one has

(Cλ,sϕ,ψ)Hs(∂Ω;C4)×H−s(∂Ω;C4) = (Cλϕ,ψ)∂Ω = (ϕ, Cλψ)∂Ω

= (ϕ, Cλ,−sψ)Hs(∂Ω;C4)×H−s(∂Ω;C4),

where (3.10) was used. By density, this can be extended for all ϕ ∈ Hs(∂Ω; C4),
which implies that indeed C′

λ,s = Cλ,−s.
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Identity (3.13) in (ii) is shown for λ = s = 0 in [4, Lemma 3.3] and can
be shown for λ 	= 0 and s = 0 in a similar way. Clearly, this also implies
the invertibility of Cλ. For s ∈ (0, 1

2 ], the claim follows from Cλ,s = Cλ �
Hs(∂Ω; C4). This and C′

λ,s = Cλ,−s imply (3.13) also for s ∈ [− 1
2 , 0). �

For ϕ ∈ H1/2(∂Ω; C4), the trace of Φλ,1/2ϕ and the function Cλ,1/2ϕ
are closely related. The formula in the next lemma will be useful in the next
sections.

Lemma 3.9. Let λ ∈ C\((−∞,−m] ∪ [m,∞)) and let Φλ,1/2 and Cλ,1/2 be the
operators in Proposition 3.6 and Proposition 3.8, respectively. Then, one has

(Φλ,1/2ϕ)|∂Ω = Cλ,1/2ϕ − i

2
(α · ν)ϕ, ϕ ∈ H1/2(∂Ω; C4).

Proof. The formula is shown for λ = 0 in [4, Lemma 3.3] in terms of the non-
tangential limit of Φλ,1/2ϕ ∈ H1(Ω; C4). Since the non-tangential limit and
the trace coincide (see, e.g., [13, Lemma 3.1]), the claim follows for λ = 0; the
claim for general λ can be deduced in the same way. �

In the following proposition, we show that the commutator of the sin-
gular integral operator Cλ and a Hölder continuous function of order a > 0
is bounded from L2(∂Ω; C4) to Hs(∂Ω; C4), s ∈ [0, a), and hence compact in
Hs(∂Ω; C4) for a > s ≥ 0. This has important consequences for the analysis
of self-adjoint Dirac operators on domains and will be used in the proofs of
many of the main results in this paper. The proof of the next result relies on
the properties of integral operators established in Appendix A.

Proposition 3.10. Let λ ∈ C\((−∞,−m] ∪ [m,∞)), let Cλ be the operator
in (3.9), and assume that ϑ ∈ Lipa(∂Ω) for some a ∈ (0, 1]. Then, the com-
mutator

ϕ �→ Cλ(ϑϕ) − ϑ Cλϕ

is bounded from L2(∂Ω; C4) to Hs(∂Ω; C4) for any s ∈ [0, a). In particular,
the restriction Cλ,sϑ − ϑ Cλ,s is compact in Hs(∂Ω; C4) for every s ∈ [0, a).

Proof. To prove the claimed mapping properties we show that each component
kjl, j, l ∈ {1, . . . , 4}, of the matrix-valued integral kernel

K(x, y) := Gλ(x − y)(ϑ(y) − ϑ(x))

of Cλϑ − ϑCλ satisfies the estimates in (A.4). As a > s the claim of this
proposition follows from Theorem A.3 applied to the scalar integral oper-
ators with integral kernels kjl, j, l ∈ {1, . . . , 4}. Since the embedding ιs :
Hs(∂Ω; C4) → L2(∂Ω; C4) is compact for s ∈ (0, a), this implies then also
the compactness of Cλ,sϑ − ϑCλ,s in Hs(∂Ω; C4). Indeed, for s > 0 it fol-
lows that Cλ,sϑ − ϑCλ,s = (Cλϑ − ϑCλ)ιs is compact in Hs(∂Ω; C4), and for
s = 0, one can choose r ∈ (0, a) and sees with the result of this propo-
sition that Cλϑ − ϑCλ : L2(∂Ω; C4) → Hr(∂Ω; C4) is bounded, and hence
Cλϑ − ϑCλ = ιr(Cλϑ − ϑCλ) is compact in L2(∂Ω; C4).
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In the sequel, we use the matrix norm

|M | := max
1≤k,l≤4

|mkl|, M = (mkl)4k,l=1 ∈ C
4×4.

Throughout the proof of this proposition, C is a generic constant with different
values on different places. First, due to the Hölder continuity of ϑ we conclude
immediately from the definition of Gλ in (3.7) that

|K(x, y)| = |Gλ(x − y)| · |ϑ(y) − ϑ(x)| ≤ C
|y − x|a
|x − y|2 =

C

|x − y|2−a

holds for all x, y ∈ ∂Ω, x 	= y. Hence, the first estimate in (A.4) is satisfied.
To show the second one, we take x, y, z ∈ ∂Ω with |x − y| ≤ 1

4 |x − z|, write

K(x, z) − K(y, z)

= Gλ(x − z)(ϑ(y) − ϑ(x)) +
(
Gλ(x − z) − Gλ(y − z)

)
(ϑ(z) − ϑ(y)),

(3.14)

and show that each of the two terms on the right-hand side of (3.14) fulfills this
growth condition. Clearly, using the Hölder continuity of ϑ and the definition
of Gλ from (3.7) we find first that

∣∣Gλ(x − z)(ϑ(y) − ϑ(x))
∣∣ ≤ C

|x − y|a
|x − z|2 . (3.15)

To get an estimate for the second term in (3.14), we note first that the Hölder
continuity of ϑ, the triangle inequality, and |x − y| ≤ 1

4 |x − z| yield

|ϑ(z) − ϑ(y)| ≤ C|y − z|a ≤ C
(|x − y| + |x − z|)a ≤ C|x − z|a. (3.16)

In the next calculation, we use for ξ, ζ ∈ R
3\{0} the notation

∇Gλ(ξ) · ζ := ∂1Gλ(ξ) · ζ1 + ∂2Gλ(ξ) · ζ2 + ∂3Gλ(ξ) · ζ3.

Then, we deduce with the main theorem of calculus applied to each entry of
the matrix Gλ(x − z) − Gλ(y − z)

∣∣Gλ(x − z) − Gλ(y − z)
∣∣ =

∣∣∣∣
∫ 1

0

d
dt

Gλ(t(x − y) + y − z)dt

∣∣∣∣

≤
∫ 1

0

∣∣∇Gλ(t(x − y) + y − z) · (x − y)
∣∣dt. (3.17)

Using (3.7), we find

∂jGλ(x)

=

[ (
λI4 + mβ +

(
1 − i

√
λ2 − m2|x|

) i(α · x)
|x|2

)(
i
√

λ2 − m2 − 1
|x|

)
∂j |x|

+
(
1 − i

√
λ2 − m2|x|

) i

|x|2
(

αj − 2α · x

|x| ∂j |x|
)

+
√

λ2 − m2
α · x

|x|2 ∂j |x|
]

ei
√

λ2−m2|x|

4π|x| ,
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which implies |∂jGλ(x)| ≤ C|x|−3. Substituting this in (3.17) yields

∣∣Gλ(x − z) − Gλ(y − z)
∣∣ ≤ C

∫ 1

0

|t(x − y) + y − z|−3dt · |x − y|. (3.18)

Since |x − y| ≤ 1
4 |x − z|, we can estimate for t ∈ [0, 1]

|t(x − y) + y − z| ≥ |y − z| − t|x − y| ≥ |x − z| − (1 + t)|x − y| ≥ 1
2
|x − z|

and
|x − y| = |x − y|a · |x − y|1−a ≤ C|x − y|a · |x − z|1−a.

Using these two observations in (3.18), we conclude
∣∣Gλ(x − z) − Gλ(y − z)

∣∣ ≤ C
|x − y|a · |x − z|1−a

|x − z|3 = C
|x − y|a

|x − z|2+a
.

Together with (3.16), this leads to
∣∣(Gλ(x − z) − Gλ(y − z)

)
(ϑ(z) − ϑ(y))

∣∣ ≤ C
|x − y|a
|x − z|2 .

It follows now easily from (3.14), the triangle inequality, (3.15), and the last
estimate that the components of K also satisfy the second condition in (A.4).
This completes the proof of this proposition. �

We now provide some useful anti-commutator properties of Cλ and the
Dirac matrices. These facts are also important ingredients to prove the self-
adjointness of Dirac operators on domains later.

Proposition 3.11. Let λ ∈ C\((−∞,−m] ∪ [m,∞)) and let Cλ be the operator
in (3.9). Then, the following statements hold:

(i) The mapping Aλ := C2
λ − 1

4I4 can be extended to a bounded operator

Ãλ : H−1/2(∂Ω; C4) → H1/2(∂Ω; C4).

(ii) The anti-commutator Bλ := Cλβ + βCλ can be extended to a bounded
operator

B̃λ : H−1/2(∂Ω; C4) → H1/2(∂Ω; C4).
In particular, the restrictions

Aλ,1/2 = C2
λ,1/2 − 1

4
I4 and Bλ,1/2 = Cλ,1/2β + βCλ,1/2

onto H1/2(∂Ω; C4) are both compact operators in H1/2(∂Ω; C4).

Proof. The proof of item (i) can be found in [15, Proposition 4.4] and [56,
Proposition 2.8]. It remains to show statement (ii). Using the anti-commutation
relation (1.8), we see that Bλ is an integral operator with kernel

bλ(x − y) = 2 (λβ + mI4)
ei

√
λ2−m2|x−y|

4π|x − y|
and thus Bλ = 2

(
λβ + mI4

)
SLλ2−m2 , where SLμ denotes the single-layer

boundary integral operator for −Δ−μ, see, e.g., [53, equation (9.15)]. It is well
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known that SLλ2−m2 gives rise to a bounded operator from H−1/2(∂Ω; C) to
H1/2(∂Ω; C), see, for instance, [53, Theorem 6.11]. This yields assertion (ii).

�

Next, we state a result on the invertibility of ± 1
2β + Cλ,s which will

be used in the construction of the γ-field and the Weyl function associated
with a quasi boundary triple for a Dirac operator. To formulate the result,
we recall the definitions of TMIT and T−MIT from (3.4) and (3.5), respectively,
and denote by TΩc

MIT and TΩc

−MIT the Dirac operator in L2(R3\Ω; C4) with the
same boundary conditions on ∂Ω as TMIT and T−MIT, respectively.

Proposition 3.12. Let s ∈ [− 1
2 , 1

2 ] and let Cλ,s be the operator in Proposi-
tion 3.8. Then, the following statements hold:

(i) For all λ 	∈ (−∞,−m]∪ [m,∞), the operator 1
2β +Cλ,s admits a bounded

and everywhere defined inverse in Hs(∂Ω; C4).
(ii) For all λ /∈ (−∞,−m] ∪ [m,∞) ∪ σp(T−MIT) ∪ σp(TΩc

−MIT), the oper-
ator − 1

2β + Cλ,s admits a bounded and everywhere defined inverse in
Hs(∂Ω; C4).

Proof. (i) We prove the claim for s = 1
2 and λ ∈ C\((−∞,−m] ∪ [m,∞)). For

this it suffices to verify that 1
2β+Cλ,1/2 is bijective in H1/2(∂Ω; C4). Then, the

claim for s = − 1
2 follows by duality, as Cλ,−1/2 = C′

λ,1/2, and for s ∈ (− 1
2 , 1

2 )
by interpolation.

Let us verify that 1
2β + Cλ,1/2 is injective. Indeed, assume that we have(

1
2β + Cλ,1/2

)
ϕ = 0 for some ϕ ∈ H1/2(∂Ω; C4), ϕ 	= 0. We claim that then λ

is an eigenvalue of the MIT bag operator in Ω or in Ωc, which is not possible
by Proposition 3.3 (i). Define the functions

fΩ(x) := Φλ,1/2ϕ(x) =
∫

∂Ω

Gλ(x − y)ϕ(y)dσ(y), x ∈ Ω, (3.19)

and
fΩc(x) :=

∫

∂Ω

Gλ(x − y)ϕ(y)dσ(y), x ∈ R
3\Ω. (3.20)

We claim first that fΩ ∈ dom TMIT and fΩc ∈ dom TΩc

MIT. This is shown for fΩ,
the proof for fΩc is similar using that the unit normal vector field for Ωc is −ν.
First, since ϕ ∈ H1/2(∂Ω; C4), one has fΩ ∈ H1(Ω; C4) by Proposition 3.6 (i).
Moreover, according to Lemma 3.9 the trace of fΩ is

fΩ|∂Ω = − i

2
(α · ν)ϕ + Cλ,1/2ϕ,

and, because of (α · ν)2 = I4 (which follows from (1.8)), it satisfies
(
I4 + iβ(α · ν)

)
fΩ|∂Ω =

(
I4 + iβ(α · ν)

) (
− i

2
(α · ν)ϕ + Cλ,1/2ϕ

)

=
(

1
2
β + Cλ,1/2

)
ϕ + iβ(α · ν)

(
1
2
β + Cλ,1/2

)
ϕ

= 0,
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i.e., fΩ ∈ dom TMIT. Since the unit normal vector field of Ωc is −ν, one con-
cludes from Proposition 3.6 (iv) that the trace of fΩc is

fΩc |∂Ω =
i

2
(α · ν)ϕ + Cλ,1/2ϕ,

and hence,
fΩ|∂Ω − fΩc |∂Ω = −i(α · ν)ϕ 	= 0,

which shows that at least one of the functions fΩ and fΩc is not trivial. From
Proposition 3.6 (ii), we get (TMIT−λ)fΩ = 0 and in the same way one concludes
(TΩc

MIT − λ)fΩc = 0, i.e. λ ∈ C\((−∞,−m] ∪ [m,∞)) is an eigenvalue of TMIT

or TΩc

MIT, which leads to a contradiction. Therefore, 1
2β + Cλ,1/2 is injective.

It remains to prove that 1
2β + Cλ,1/2 is surjective. For that, we note first

that
ran

(
1
2β + Cλ,1/2

) ⊃ ran
(

1
2β + Cλ,1/2

)2
,

and from Proposition 3.11, we obtain
(

1
2
β + Cλ,1/2

)2

=
1
2
I4 +

1
2
(Cλ,1/2β + βCλ,1/2

)
+ (Cλ,1/2)2 − 1

4
I4

=
1
2
I4 +

1
2
Bλ,1/2 + Aλ,1/2,

where 1
2Bλ,1/2 + Aλ,1/2 is a compact operator in H1/2(∂Ω; C4). Therefore,

as the operator
(

1
2β + Cλ,1/2

)2 is injective (since 1
2β + Cλ,1/2 is injective),

Fredholm’s alternative shows that
(

1
2β + Cλ,1/2

)2, and hence also 1
2β + Cλ,1/2,

is surjective. This finishes the proof of item (i).
The proof of item (ii) follows the lines of assertion (i); one just has to note

that for ϕ ∈ ker
( − 1

2β + Cλ,1/2

)
, the functions fΩ and fΩc defined by (3.19)

and (3.20) belong to dom T−MIT and dom TΩc

−MIT, respectively. �

We now discuss that the derivatives of the integral operators Φλ and Cλ

belong to certain (weak) Schatten–von Neumann ideals. For that, we use the
following result on operators with range in the Sobolev space Hs(∂Ω; C). Its
proof follows word-by-word the one of [11, Proposition 2.4]; hence, we omit it
here.

Proposition 3.13. Let l ∈ N, let ∂Ω ⊂ R
3 be the boundary of a compact Cl-

smooth domain, and let k ∈ {1, . . . , 2l − 1}. Let H be a separable Hilbert
space and assume that A : H → L2(∂Ω; C4) is continuous with ran A ⊂
Hk/2(∂Ω; C4). Then, A ∈ S4/k,∞

(H, L2(∂Ω; C4)
)
.

With the help of Proposition 3.13, one can show in exactly the same way
as in [10, Lemma 4.5] the following result; note that the operators γ(λ) and
M(λ) in [10] coincide with Φλ and Cλ, respectively.

Lemma 3.14. Let l ∈ N with l ≥ 2 and let ∂Ω ⊂ R
3 be the boundary of a

compact Cl-smooth domain. Moreover, let λ ∈ C\((−∞,−m]∪ [m,∞)) and let
Φλ and Cλ be the operators in (3.8) and (3.9), respectively. Then, the following
statements hold:
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(i) The operator-valued functions λ �→ Φλ and λ �→ Φ∗
λ
are holomorphic and,

for any k ∈ {0, 1, . . . , l − 1},
dk

dλk
Φλ ∈ S4/(2k+1),∞

(
L2(∂Ω; C4), L2(Ω; C4)

)

and
dk

dλk
Φ∗

λ
∈ S4/(2k+1),∞

(
L2(Ω; C4), L2(∂Ω; C4)

)
.

In particular, Φλ and Φ∗
λ are compact.

(ii) The mapping λ �→ Cλ is holomorphic, d
dλ

Cλ = Φ∗
λ
Φλ and, for any integer

k ∈ {1, . . . , l},
dk

dλk
Cλ ∈ S2/k,∞

(
L2(∂Ω; C4)

)
.

4. A Quasi Boundary Triple for Dirac Operators on Domains

In this section, we introduce a quasi boundary triple which is useful to define
self-adjoint Dirac operators on domains via suitable boundary conditions on
∂Ω. Throughout this section, let Ω be a bounded or unbounded domain in R

3

with a compact C2-smooth boundary. As before, we denote the normal vector
field at ∂Ω pointing outwards of Ω by ν. In the following, the operators

P± : L2(∂Ω; C4) → L2(∂Ω; C4), ϕ �→ 1
2
(
I4 ± iβ(α · ν)

)
ϕ, (4.1)

will play an important role. The relation P− = I − P+ is clear. Furthermore,
using the anti-commutation relation (1.8) it is easy to see that P 2

± = P± and
P+P− = P−P+ = 0, that is, P± are orthogonal projections in L2(∂Ω; C4). We
also note that (1.8) implies

P+β = βP−. (4.2)

We shall make use of the spaces

Gs
Ω := P+

(
Hs(∂Ω; C4)

)
, s ∈ [

0, 1
2

]
. (4.3)

For convenience of notation, we simply write GΩ := G0
Ω. As P+ is an orthogonal

projection in L2(∂Ω; C4) the space GΩ is a Hilbert space. Moreover, since ∂Ω
is C2-smooth, the normal vector field ν is Lipschitz continuous and hence it
follows from Lemma A.2 that Gs

Ω ⊂ Hs(∂Ω; C4) for s ∈ [0, 1
2 ]. Furthermore, it

is not difficult to check that Gs
Ω is a closed subspace of Hs(∂Ω; C4) for s ∈ [0, 1

2 ].
In the sequel the spaces Gs

Ω are always equipped with the norm of Hs(∂Ω; C4).
Next, we define the operator T in L2(Ω; C4) by

Tf = (−iα · ∇ + mβ)f, dom T = H1(Ω; C4), (4.4)

and the mappings Γ0,Γ1 : dom T → GΩ acting as

Γ0f = P+f |∂Ω and Γ1f = P+βf |∂Ω, f ∈ dom T. (4.5)
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In the following theorem, we show that {GΩ,Γ0,Γ1} is a quasi boundary triple
and that T coincides with the maximal Dirac operator Tmax from (3.1). More-
over, it turns out that the reference operator T � ker Γ0 is the MIT bag operator
studied in Sect. 3.2.

Theorem 4.1. Let Tmin be the closed symmetric operator from (3.2), let GΩ be
given by (4.3), and let T, Γ0, and Γ1 be as in (4.4) and (4.5), respectively.
Then, T = T ∗

min = Tmax and {GΩ,Γ0,Γ1} is a quasi boundary triple for T ⊂
Tmax such that

TMIT = T � ker Γ0 and T−MIT = T � ker Γ1. (4.6)

Moreover,

ran(Γ0 � ker Γ1) = ran(Γ1 � ker Γ0) = G1/2
Ω , (4.7)

and hence, in particular, ran(Γ0,Γ1)� = G1/2
Ω × G1/2

Ω .

Proof. First, we have T ∗
min = Tmax by Lemma 3.1. Furthermore, Lemma 3.1

also implies that the closure of T coincides with Tmax , as C∞(Ω; C4) ⊂ dom T
is dense in dom Tmax equipped with the graph norm.

Now we verify that the abstract Green’s identity is valid. For this, con-
sider f, g ∈ dom T = H1(Ω; C4). Then, (3.3) and the self-adjointness of α · ν
yield

(Tf, g)Ω − (f, Tg)Ω =
(
(−iα · ∇ + mβ)f, g

)
Ω

− (
f, (−iα · ∇ + mβ)g

)
Ω

=
( − i(α · ν)f |∂Ω, g|∂Ω

)
∂Ω

=
1
2
( − i(α · ν)f |∂Ω, g|∂Ω

)
∂Ω

− 1
2
(
f |∂Ω,−i(α · ν)g|∂Ω

)
∂Ω

.

Using that β is unitary and self-adjoint, we see that the last expression is equal
to

1
2
( − iβ(α · ν)f |∂Ω, βg|∂Ω

)
∂Ω

− 1
2
(
βf |∂Ω,−iβ(α · ν)g|∂Ω

)
∂Ω

=
1
2
(
βf |∂Ω, g|∂Ω + iβ(α · ν)g|∂Ω

)
∂Ω

− 1
2
(
f |∂Ω + iβ(α · ν)f |∂Ω, βg|∂Ω

)
∂Ω

= (βf |∂Ω, P+g|∂Ω)∂Ω − (P+f |∂Ω, βg|∂Ω)∂Ω.

Since P+ is an orthogonal projection in L2(∂Ω; C4), we conclude

(Tf, g)Ω − (f, Tg)Ω = (P+βf |∂Ω, P+g|∂Ω)∂Ω − (P+f |∂Ω, P+βg|∂Ω)∂Ω

= (Γ1f,Γ0g)∂Ω − (Γ0f,Γ1g)∂Ω,

which is the abstract Green’s identity.
Next, we check the range property (4.7). Clearly, by the definition of Γ0

and Γ1, dom Γ0 = dom Γ1 = H1(Ω; C4), and by standard properties of the
trace map and Lemma A.2 one has ran Γ0 ⊂ G1/2

Ω and ran Γ1 ⊂ G1/2
Ω , and

hence also

ran(Γ0 � ker Γ1) ⊂ G1/2
Ω and ran(Γ1 � ker Γ0) ⊂ G1/2

Ω . (4.8)
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To prove G1/2
Ω ⊂ ran(Γ0 � ker Γ1), let ϕ ∈ G1/2

Ω and choose f ∈ H1(Ω; C4) such
that f |∂Ω = ϕ. Since ϕ ∈ GΩ, we have P+ϕ = ϕ and P−ϕ = 0. Hence,

Γ0f = P+f |∂Ω = P+ϕ = ϕ,

and using (4.2), we obtain

Γ1f = P+βf |∂Ω = P+βϕ = βP−ϕ = 0,

that is, ϕ ∈ ran(Γ0 � ker Γ1). To prove G1/2
Ω ⊂ ran(Γ1 � ker Γ0), let ψ ∈ G1/2

Ω

and choose g ∈ H1(Ω; C4) such that g|∂Ω = βψ. Since ψ ∈ GΩ, we have
P+ψ = ψ and P−ψ = 0. Hence, using (4.2) we obtain

Γ0g = P+g|∂Ω = P+βψ = βP−ψ = 0

and
Γ1g = P+βg|∂Ω = P+β2ψ = ψ,

that is, ψ ∈ ran(Γ1 � ker Γ0). Together with (4.8), we conclude (4.7).
Finally, observe that

ker Γ0 = {f ∈ H1(Ω; C4) : f |∂Ω = −iβ(α · ν)f |∂Ω} = dom TMIT,

ker Γ1 = {f ∈ H1(Ω; C4) : f |∂Ω = iβ(α · ν)f |∂Ω} = dom T−MIT.

Therefore, T � ker Γ0 coincides with the MIT bag Dirac operator TMIT and
T � ker Γ1 coincides with T−MIT, which shows (4.6). Note that both operators
are self-adjoint; cf. Propositions 3.3 and 3.4. Thus, {GΩ,Γ0,Γ1} is a quasi
boundary triple for T ⊂ Tmax. �

Now we compute the γ-field and the Weyl function associated with the
quasi boundary triple in Theorem 4.1. It turns out that these operators are
closely related to the integral operators Φλ and Cλ defined in Sect. 3.3. For
the next proposition, recall that 1

2β + Cλ,1/2 admits a bounded and every-
where defined inverse in H1/2(∂Ω; C4) for λ ∈ C\((−∞,−m] ∪ [m,∞)), see
Proposition 3.12.

Proposition 4.2. Let {GΩ,Γ0,Γ1} be the quasi boundary triple from Theorem 4.1,
let λ ∈ C\((−∞,−m] ∪ [m,∞)) ⊂ ρ(TMIT), and let Φλ,1/2 and Cλ,1/2 be the
operators in Propositions 3.6 and 3.8, respectively. Then, the following state-
ments hold:

(i) The value of the γ-field corresponding to {GΩ,Γ0,Γ1} is given by

γ(λ) = Φλ,1/2

(
1
2
β + Cλ,1/2

)−1

, dom γ(λ) = G1/2
Ω . (4.9)

Each γ(λ) is a densely defined bounded operator from GΩ to L2(Ω; C4),
and a bounded and everywhere defined operator from G1/2

Ω to H1(Ω; C4).
(ii) The adjoint γ(λ)∗ of the γ-field corresponding to {GΩ,Γ0,Γ1} is given by

γ(λ)∗ = P+

(
1
2
β + Cλ,1/2

)−1

Φ∗
λ.

Each γ(λ)∗ is bounded from L2(Ω; C4) to G1/2
Ω , and, in particular, com-

pact from L2(Ω; C4) to GΩ.
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(iii) The value of the Weyl function corresponding to {GΩ,Γ0,Γ1} is given by

M(λ) = −P+

(
1
2
β + Cλ,1/2

)−1

P+, dom M(λ) = G1/2
Ω . (4.10)

Each M(λ) is a densely defined and bounded operator in GΩ, and a
bounded and everywhere defined operator in G1/2

Ω .

Proof. In the following, let λ ∈ C\((−∞,−m] ∪ [m,∞)) be fixed. From (4.7)
and the definition of the γ-field and Weyl function, it follows that

dom γ(λ) = dom M(λ) = ran Γ0 = G1/2
Ω .

For the proof of item (i), consider ϕ ∈ ran Γ0 = G1/2
Ω and recall that

γ(λ)ϕ is the unique solution of the boundary value problem

(T − λ)f = 0 and Γ0f = ϕ. (4.11)

We set

fλ = Φλ,1/2

(
1
2
β + Cλ,1/2

)−1

ϕ.

Then, due to the mapping properties of Φλ,1/2 and
(

1
2β+Cλ,1/2

)−1, see Propo-
sitions 3.6 and 3.12, we have fλ ∈ H1(Ω; C4) = dom T . For (4.9), it suffices to
check that fλ solves the boundary value problem (4.11). In fact, by Proposi-
tion 3.6 (ii) we have (T − λ)fλ = 0 and using Lemma 3.9 we get

Γ0fλ = P+fλ|∂Ω = P+

(
− i

2
(α · ν) + Cλ,1/2

) (
1
2
β + Cλ,1/2

)−1

ϕ

= P+

(
− i

2
(α · ν) − 1

2
β +

1
2
β + Cλ,1/2

)(
1
2
β + Cλ,1/2

)−1

ϕ

= P+

(
− i

2
(α · ν)β − 1

2
I4

)
β

(
1
2
β + Cλ,1/2

)−1

ϕ + P+ϕ.

Using that ϕ ∈ GΩ, (1.8), and P+P− = 0, we obtain then

Γ0fλ = −P+
1
2
(
I4 − iβ(α · ν)

)
β

(
1
2
β + Cλ,1/2

)−1

ϕ + ϕ

= −P+P−β

(
1
2
β + Cλ,1/2

)−1

ϕ + ϕ = ϕ.

Hence, fλ is the unique solution of the boundary value problem (4.11). This
implies γ(λ)ϕ = fλ and leads to representation (4.9).

It remains to check the mapping properties of γ(λ) in (i). From the defi-
nition of the γ-field, it is clear that γ(λ) is a densely defined bounded operator
from GΩ to L2(Ω; C4). Moreover, from Propositions 3.6 (i) and 3.12 (i) it also
follows that γ(λ) is a bounded and everywhere defined operator from G1/2

Ω to
H1(Ω; C4).
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Next we prove item (ii). Let f ∈ L2(Ω; C4) and ϕ ∈ G1/2
Ω = dom γ(λ) be

fixed. Then, using (3.10) we find that

(
ϕ, γ(λ)∗f

)
∂Ω

=
(
γ(λ)ϕ, f

)
Ω

=

(
Φλ,1/2

(
1
2
β + Cλ,1/2

)−1

ϕ, f

)

Ω

=

((
1
2
β + Cλ

)−1

ϕ,Φ∗
λf

)

∂Ω

=

(
ϕ,

(
1
2
β + Cλ

)−1

Φ∗
λf

)

∂Ω

.

Since this holds for all ϕ ∈ G1/2
Ω and Φ∗

λ : L2(Ω; C4) → H1/2(∂Ω; C4) by (3.11),
we find the claimed representation for γ(λ)∗. Moreover, since (1

2β + Cλ,1/2)
−1

is bounded in H1/2(∂Ω; C4) by Proposition 3.12, we get that γ(λ)∗ is bounded
from L2(Ω; C4) to G1/2

Ω and compact from L2(Ω; C4) to GΩ, since G1/2
Ω

= P+(H1/2(∂Ω; C4)) is compactly embedded in GΩ = P+(L2(∂Ω; C4)).
Finally, we show assertion (iii). For this, we use (4.9), Lemma 3.9, and

compute for ϕ ∈ G1/2
Ω

M(λ)ϕ = Γ1γ(λ)ϕ = P+β

(
Φλ,1/2

(
1
2
β + Cλ,1/2

)−1

ϕ

)∣∣∣∣∣
∂Ω

= P+β

(
− i

2
(α · ν) − 1

2
β +

1
2
β + Cλ,1/2

) (
1
2
β + Cλ,1/2

)−1

ϕ

= P+

(
− i

2
β(α · ν) − 1

2
I4

) (
1
2
β + Cλ,1/2

)−1

ϕ + P+βϕ

= −P 2
+

(
1
2
β + Cλ,1/2

)−1

ϕ + P+βϕ.

Since P 2
+ = P+ and P+βϕ = βP−ϕ = 0 (see (4.2)) for ϕ ∈ G1/2

Ω , the represen-
tation (4.10) for the Weyl function follows.

It is a consequence of mapping properties of (1
2β +Cλ,1/2)−1 from Propo-

sition 3.12 (i) that each M(λ) is a densely defined and bounded operator in
GΩ, and a bounded and everywhere defined operator in G1/2

Ω . �

In the next proposition, we derive a useful formula for the inverse of M(λ).
Let T−MIT be given by (3.5) and let TΩc

−MIT be the Dirac operator acting in
L2(R3\Ω; C4) with the same boundary conditions as T−MIT. Recall that by
Proposition 3.4, we have

(
ρ(T−MIT) ∩ ρ(TΩc

−MIT)
) ⊂ C\(

(−∞,−m] ∪ [m,∞)
)
,

that the latter set is contained in ρ(TMIT) ∩ ρ(TΩc

MIT), and that by Proposi-
tion 3.12 (ii) the operator − 1

2β+Cλ,1/2 is boundedly invertible in H1/2(∂Ω; C4)
for any number λ ∈ ρ(T−MIT) ∩ ρ(TΩc

−MIT).

Proposition 4.3. Let M be the Weyl function corresponding to the quasi
boundary triple {GΩ,Γ0,Γ1}, assume that λ ∈ ρ(T−MIT) ∩ ρ(TΩc

−MIT), and let
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Cλ,1/2 be the operator from Proposition 3.8. Then, M(λ) admits a bounded and
everywhere defined inverse in G1/2

Ω which is given by

M(λ)−1 = P+β

(
−1

2
β + Cλ,1/2

)−1

βP+. (4.12)

Proof. Observe first that {GΩ, Γ̂0, Γ̂1}, where

Γ̂0 = Γ1 and Γ̂1 = −Γ0, (4.13)

is a quasi boundary triple for T ⊂ Tmax such that T � ker Γ̂0 = T−MIT. In fact,
using that {GΩ,Γ0,Γ1} is quasi boundary triple it follows that the abstract
Green identity is satisfied by the boundary mappings in (4.13) and that the
range of (Γ̂0, Γ̂1)� is dense. Moreover, T−MIT = T � ker Γ̂0 is a self-adjoint
operator by Proposition 3.4. Note that Weyl function M̂ corresponding to the
quasi boundary triple {GΩ, Γ̂0, Γ̂1} is given for our choice of λ ∈ ρ(T−MIT) ∩
ρ(TΩc

−MIT) ⊂ ρ(TMIT) ∩ ρ(TΩc

MIT) by

M̂(λ) = Γ̂1

(
Γ̂0 � ker(T − λ)

)−1 = −(M(λ))−1.

Thus, it remains to compute the value of the Weyl function M̂(λ). We
first show the explicit formula

γ̂(λ) = Φλ,1/2

(
−1

2
β + Cλ,1/2

)−1

β, dom γ̂(λ) = G1/2
Ω , (4.14)

for the γ-field corresponding to the quasi boundary triple {GΩ, Γ̂0, Γ̂1} using
a similar argument as in the proof of Proposition 4.2. In fact, it is clear that
dom γ̂(λ) = ran Γ̂0 = G1/2

Ω . Next, consider ϕ ∈ dom γ̂(λ) and recall that γ̂(λ)ϕ
is the unique solution of the boundary value problem

(T − λ) = 0 and Γ̂0fλ = ϕ.

We set

fλ = Φλ,1/2

(
−1

2
β + Cλ,1/2

)−1

βϕ.

Then, we have (T − λ)fλ = 0, and using P+P− = 0 and ϕ ∈ GΩ, we obtain in
a similar way as in the proof of Proposition 4.2 that

Γ̂0fλ = Γ1fλ = P+β

(
Φλ,1/2

(
−1

2
β + Cλ,1/2

)−1

βϕ

)∣∣∣∣∣
∂Ω

= P+β

(
− i

2
(α · ν) +

1
2
β − 1

2
β + Cλ,1/2

) (
−1

2
β + Cλ,1/2

)−1

βϕ

= P+P−

(
−1

2
β + Cλ,1/2

)−1

βϕ + P+β2ϕ

= ϕ,

which leads to (4.14).
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Let us now compute the Weyl function M̂ . Using (4.14) and Lemma 3.9,
we find

M̂(λ)ϕ = Γ̂1γ̂(λ)ϕ = −Γ0γ̂(λ)ϕ

= −P+

(
Φλ,1/2

(
−1

2
β + Cλ,1/2

)−1

βϕ

)∣∣∣∣∣
∂Ω

= −P+

(
− i

2
(α · ν) +

1
2
β − 1

2
β + Cλ,1/2

)(
−1

2
β + Cλ,1/2

)−1

βϕ

= −P+βP−

(
−1

2
β + Cλ,1/2

)−1

βϕ − P+βϕ.

Thanks to (4.2), P 2
+ = P+, and that ϕ ∈ GΩ, we finally obtain

M̂(λ)ϕ = −P+β

(
−1

2
β + Cλ,1/2

)−1

βP+ϕ − βP−ϕ

= −P+β

(
−1

2
β + Cλ,1/2

)−1

βP+ϕ,

which gives (4.12). �

Finally, we state a lemma on the invertibility of ϑ − M(λ) for a Hölder
continuous function ϑ. This result will be needed in the proofs of several results
of this paper. Recall that the closure M(λ) of the Weyl function corresponding
to the triple {GΩ,Γ0,Γ1} is bounded in GΩ, see Proposition 4.2.

Lemma 4.4. Let M be the Weyl function corresponding to the quasi boundary
triple {GΩ,Γ0,Γ1} and let ϑ ∈ Lipa(∂Ω) for some a ∈ (1

2 , 1] be a real-valued
function such that |ϑ(x)| 	= 1 for all x ∈ ∂Ω. Then, the following statements
hold:

(i) For all λ ∈ C\R, the operator ϑ − M(λ) has a bounded and everywhere
defined inverse in G1/2

Ω .
(ii) For all λ ∈ C\R, the operator ϑ − M(λ) has a bounded and everywhere

defined inverse in GΩ.

Proof. To prove (i) and (ii), some preparations are needed. First, due to the
explicit form of the operators M(λ) and M(λ)−1 from Propositions 4.2 and
4.3 it is easy to see with the help of Proposition 3.12 that M(λ) and M(λ)−1

have bounded extensions onto GΩ given by

M(λ) = −P+

(
1
2
β + Cλ

)−1

P+

and

M(λ)−1 = P+β

(
−1

2
β + Cλ

)−1

βP+ = P+

(
−1

2
β + βCλβ

)−1

P+,

respectively. We claim that the operator

Kλ = ϑM(λ)−1 − M(λ)ϑ : GΩ → G1/2
Ω (4.15)
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is bounded. In particular, since G1/2
Ω = P+(H1/2(∂Ω; C4)) is compactly em-

bedded in GΩ = P+(L2(∂Ω; C4)), this implies that Kλ is a compact operator
in GΩ and that Kλ,1/2 = Kλ � G1/2

Ω is a compact operator in G1/2
Ω .

To verify the boundedness of Kλ in (4.15), we note first that

ϑM(λ) − M(λ)ϑ = −P+ϑ

(
1
2
β + Cλ

)−1

P+ + P+

(
1
2
β + Cλ

)−1

ϑP+

= −P+

(
1
2
β + Cλ,1/2

)−1

(Cλϑ − ϑCλ)
(

1
2
β + Cλ

)−1

P+, (4.16)

which, by Propositions 3.10 and 3.12, is a bounded operator from GΩ to G1/2
Ω .

Next, we have

M(λ) − M(λ)−1 = −P+

(
1
2
β + Cλ

)−1

P+ − P+

(
−1

2
β + βCλβ

)−1

P+

= −P+

(
−1

2
β + βCλ,1/2β

)−1

(Cλβ + βCλ) β

(
1
2
β + Cλ

)−1

P+, (4.17)

which, by Propositions 3.11 and 3.12, is also a bounded operator from GΩ

to G1/2
Ω , as L2(∂Ω; C4) is continuously embedded in H−1/2(∂Ω; C4). Combin-

ing (4.16) with (4.17) and Lemma A.2, we conclude that the operator

Kλ = ϑM(λ)−1 − M(λ)ϑ = ϑ
(
M(λ)−1 − M(λ)

)
+ ϑM(λ) − M(λ)ϑ

in (4.15) is bounded.
For what follows, it is important to note that the assumptions |ϑ(x)| 	= 1

for all x ∈ ∂Ω and a > 1
2 ensure that the functions (ϑ2 − 1), (ϑ2 − 1)−1 ∈

Lipa(∂Ω) give rise to bounded and boundedly invertible multiplication opera-
tors in GΩ and G1/2

Ω , see Lemma A.2.
Let us now prove (i), i.e., that ϑ − M(λ) has a bounded inverse in G1/2

Ω .
Since ϑ − M(λ) is bounded in G1/2

Ω by Lemma A.2 and Proposition 4.2, it
suffices to show that this operator is bijective in G1/2

Ω . Note that the operator
T � ker(Γ1 − ϑΓ0) is symmetric since ϑ is a real-valued function. (This is an
immediate consequence of the abstract Green’s identity.) Hence, ϑ − M(λ) is
injective as otherwise the symmetric operator T � ker(Γ1 − ϑΓ0) would have
the non-real eigenvalue λ by Theorem 2.3. Moreover, we have

ran(ϑ − M(λ)) ⊃ ran
[
(ϑ − M(λ))

(
ϑ + M(λ)−1

)]

= ran
[
ϑ2 − 1 + ϑM(λ)−1 − M(λ)ϑ

]
. (4.18)

The operators ϑ − M(λ) and ϑ + M(λ)−1 = (I4 + ϑM(λ))M(λ)−1 are both
injective as otherwise one of the symmetric operators T � ker(Γ1 − ϑΓ0) and
T � ker(Γ0 + ϑΓ1) would have the non-real eigenvalue λ by Theorems 2.3 and
2.5, respectively. Therefore,

(ϑ − M(λ))
(
ϑ + M(λ)−1

)
= (ϑ2 − 1)

[
1 +

1
ϑ2 − 1

Kλ,1/2

]
(4.19)
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is injective, and since Kλ,1/2 = Kλ � G1/2
Ω is a compact operator in G1/2

Ω , we
conclude from Fredholm’s alternative and the bijectivity of ϑ2 − 1 in G1/2

Ω

that the operator (4.19) is bijective in G1/2
Ω . From (4.18), we conclude G1/2

Ω ⊂
ran(ϑ − M(λ)) and hence we have shown that ϑ − M(λ) is bijective in G1/2

Ω .
Let us now focus on (ii). The proof that ϑ−M(λ) has a bounded inverse

in GΩ follows the same lines as above. The only difference is in the argument
that ϑ − M(λ) and ϑ + M(λ)−1 are injective. To see this for, e.g., ϑ − M(λ),
assume that ϕ ∈ GΩ is such that (ϑ − M(λ))ϕ = 0. Then,

0 =
(
ϑ + M(λ)−1

)(
ϑ − M(λ)

)
ϕ = (ϑ2 − 1)

[
1 +

1
ϑ2 − 1

K̃λ

]
ϕ

with

K̃λ := M(λ)−1ϑ − ϑM(λ) =
(
M(λ)−1 − M(λ)

)
ϑ + M(λ)ϑ − ϑM(λ).

From the second equality in the last line, we conclude in the same way as in
the proof of (4.15) from (4.16) and (4.17) that K̃λ maps GΩ into G1/2

Ω . Using
this and the bijectivity of ϑ2 − 1 in G1/2

Ω , we get

ϕ = − 1
ϑ2 − 1

K̃λϕ ∈ G1/2
Ω ,

that is, ϕ ∈ ker(ϑ−M(λ)). By the above considerations this implies ϕ = 0, i.e.,
ϑ−M(λ) is injective. Similarly, one shows that also ϑ+M(λ)−1 is injective. To
show that ϑ − M(λ) is surjective, one can use a similar argument as in (4.18)
with M(λ) and M(λ)−1 replaced by M(λ) and M(λ)−1, respectively. The
details are left to the reader. �

5. Dirac Operators on Domains

This section contains the main results of this paper. First, in Sect. 5.1 we
introduce Dirac operators Aϑ on Ω with boundary conditions of the form

ϑP+f |∂Ω = P+βf |∂Ω (5.1)

for a real-valued Hölder continuous function ϑ : ∂Ω → R of order a > 1
2 and P+

given by (4.1). Using the quasi boundary triple {GΩ,Γ0,Γ1} from Theorem 4.1
we show that Aϑ is self-adjoint if |ϑ(x)| 	= 1 for all x ∈ ∂Ω. We also obtain a
Krein-type resolvent formula and some qualitative spectral properties of Aϑ.
In Sect. 5.2, we sketch how Dirac operators A[ω] with boundary conditions of
the form

P+f |∂Ω = ωP+βf |∂Ω

for a real-valued Hölder continuous function ω : ∂Ω → R of order a > 1
2 can be

handled with similar arguments. Finally, in Sect. 5.3 we relate the operators
Aϑ to Dirac operators Bη,τ with singular δ–shell potentials of the form (1.4).
This relation allows to translate results for Bη,τ to Aϑ, and vice versa.
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Throughout this section, let Ω be a bounded or unbounded domain in R
3

with a compact C2-smooth boundary, and denote by ν the normal vector field
at ∂Ω pointing outwards of Ω.

5.1. Self-Adjointness and Spectral Properties of Aϑ

We start with the rigorous mathematical definition of the Dirac operator
Aϑ with boundary conditions (5.1). We shall use the quasi boundary triple
{GΩ,Γ0,Γ1} from Theorem 4.1 in the next definition.

Definition 5.1. Let a ∈ ( 1
2 , 1] and let ϑ ∈ Lipa(∂Ω) be real-valued. We define

Aϑ = T � ker(Γ1 − ϑΓ0), which in a more explicit form is given by

Aϑf = (−iα · ∇ + mβ)f,

dom Aϑ =
{
f ∈ H1(Ω; C4) : ϑP+f |∂Ω = P+βf |∂Ω

}
. (5.2)

Remark 5.2. The boundary conditions in (5.1) are the 3D analogue of the
boundary conditions used in [22]. In fact, let Ω ⊂ R

2 be a bounded C2-domain.
In [22], the boundary conditions

[
I2 + iσ3(σ · ν) cos η − sin ησ3

]
u|∂Ω = 0 (5.3)

for C1-functions η : ∂Ω → R with cos[η(x)] /∈ {0, 1} for all x ∈ ∂Ω are treated.
Here, σ = (σ1, σ2) and σ3 are the Pauli spin matrices in (1.7), ν = (ν1, ν2) is the
normal vector field at ∂Ω, and σ·ν = σ1ν1+σ2ν2. To see that (5.3) is equivalent
to the boundary conditions in [22], one has to note that σ · t = −iσ3(σ · ν),
where t = (−ν2, ν1) is the tangential vector at ∂Ω. We use the splitting

u|∂Ω = Q+u|∂Ω + Q−u|∂Ω, Q± =
1
2
(I2 ± iσ3(σ · ν)),

and remark that Q± is the 2D-analogue of P± from (4.1). Hence, we can
rewrite (5.3) as
[
I2+iσ3(σ ·ν) cos η−sin ησ3

]
Q+u|∂Ω = −[

I2+iσ3(σ ·ν) cos η−sin ησ3

]
Q−u|∂Ω.

With the help of the relations iσ3(σ · ν)Q± = ±Q± and Q− = σ3Q+σ3, we
find that (5.3) is equivalent to

[
I2 + cos ηI2 − sin ησ3

]
Q+u|∂Ω =

[
I2 + iσ3(σ · ν) cos η − sin ησ3

]
Q+u|∂Ω

= − [
I2 + iσ3(σ · ν) cos η − sin ησ3

]
Q−u|∂Ω

= − [
I2 − cos ηI2 − sin ησ3

]
Q−u|∂Ω

= − [
(1 − cos η)σ3 − sin ηI2

]
Q+σ3u|∂Ω.

By multiplying this equation with

−[
(1 − cos η)σ3 − sin ηI2

]−1 =
1

2 cos η(1 − cos η)
[
(1 − cos η)σ3 + sin ηI2

]
,

which exists since cos[η(x)] /∈ {0, 1} is assumed, we see that (5.3) is equivalent
to

sin(2η)
2 cos η(1 − cos η)

Q+u|∂Ω = Q+σ3u|∂Ω,
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which is the 2D analogue of the boundary conditions in (5.2) for the parameter
ϑ
= sin(2η)

2 cos η(1−cos η) .

It follows immediately from the abstract Green’s identity that Aϑ is sym-
metric for any real-valued function ϑ. In order to prove self-adjointness, we
shall use Theorem 2.3, which also leads to a resolvent formula in terms of the
resolvent of the MIT bag operator TMIT in (3.4) and the γ-field and Weyl
function. We note that in (5.33) an explicit formula for (TMIT −λ)−1 is shown.

Theorem 5.3. Let a ∈ (1
2 , 1] and let ϑ ∈ Lipa(∂Ω) be a real-valued function

such that |ϑ(x)| 	= 1 for all x ∈ ∂Ω. Moreover, let γ and M be as in Proposi-
tion 4.2. Then, the operator Aϑ in (5.2) is self-adjoint in L2(Ω; C4) and the
resolvent formula

(Aϑ − λ)−1 =
(
TMIT − λ

)−1 + γ(λ)
(
ϑ − M(λ)

)−1
γ(λ)∗

holds for all λ ∈ ρ(Aϑ) ∩ ρ(TMIT).

Proof. As mentioned above, it follows from the abstract Green’s identity that
the operator Aϑ is symmetric. Thus, for the self-adjointness it suffices to check
that ran(Aϑ − λ) = L2(Ω; C4) holds for some, and hence for all λ ∈ C±.

Let f ∈ L2(Ω; C4) and λ ∈ C\R. According to Theorem 2.3 (ii), we
would have f ∈ ran(Aϑ − λ) if we can show that γ(λ)∗f ∈ ran(ϑ − M(λ))
holds. In fact, from γ(λ)∗ = Γ1

(
TMIT − λ

)−1 and dom TMIT ⊂ H1(Ω; C4) we
obtain γ(λ)∗f ∈ G1/2

Ω . Furthermore, by Lemma 4.4 (i) the operator ϑ−M(λ) is
bijective in G1/2

Ω and hence γ(λ)∗f ∈ ran(ϑ − M(λ)), that is, f ∈ ran(Aϑ − λ).
As f was arbitrary we get ran(Aϑ − λ) = L2(Ω; C4) for λ ∈ C\R, so that Aϑ

is self-adjoint in L2(Ω; C4). Finally, the formula for the resolvent of Aϑ follows
from Theorem 2.3 and (4.6). �

Next, we discuss the basic spectral properties of the operator Aϑ. Since
these are of a very different nature whether Ω is bounded or unbounded, the
two cases are treated separately. Assume first that Ω is an unbounded C2-
domain with compact boundary. The proof of (ii) is based on the same argu-
ment as the proof of [16, Proposition 3.8].

Theorem 5.4. Let Ω be the complement of a bounded C2-domain, let a ∈ ( 1
2 , 1],

let ϑ ∈ Lipa(∂Ω) be a real-valued function such that |ϑ(x)| 	= 1 for all x ∈ ∂Ω,
and let Aϑ be defined by (5.2). Then, the following statements hold:

(i) σess(Aϑ) = (−∞,−m] ∪ [m,∞).
(ii) The number of discrete eigenvalues of Aϑ is finite.
(iii) λ ∈ σp(Aϑ) ∩ (−m,m) if and only if 0 ∈ σp(ϑ − M(λ)).

Proof. We first deal with (i). Let γ and M be the γ-field and the Weyl function
corresponding to the quasi boundary triple {GΩ,Γ0,Γ1}, respectively, from
Proposition 4.2, and let γ(λ) ∈ B(GΩ, L2(Ω; C4)) and M(λ) ∈ B(GΩ) be the
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closures of γ(λ) and M(λ), λ ∈ ρ(TMIT). For λ ∈ ρ(Aϑ)∩ρ(TMIT) the resolvent
formula in Theorem 5.3 can be written in the form

(Aϑ − λ)−1 − (
TMIT − λ

)−1 = γ(λ)
(
ϑ − M(λ)

)−1
γ(λ)∗. (5.4)

By Proposition 4.2 (ii), the operator γ(λ)∗ is compact from L2(Ω; C4) to GΩ.
Furthermore, by Lemma 4.4 the inverse (ϑ−M(λ))−1 is bounded in GΩ. Since
γ(λ) : GΩ → L2(Ω; C4) is bounded, we deduce that the right-hand side in (5.4)
is compact in L2(Ω; C4) and hence the same holds for the left-hand side. To-
gether with Proposition 3.3 (iii) this implies

σess(Aϑ) = σess(TMIT) = (−∞,−m] ∪ [m,∞).

To verify assertion (ii), consider the quadratic form

a[f ] = ‖Aϑf‖2
Ω, dom a = dom Aϑ.

Since Aϑ is a self-adjoint operator, it follows that a is a closed, nonnegative
form and by [44, Theorem VI 2.1] the unique self-adjoint operator representing
this form is A2

ϑ. Note that the number of eigenvalues (counted with multiplici-
ties) of Aϑ in the gap of the essential spectrum (−m,m) is equal to the number
of eigenvalues of A2

ϑ below m2 (counted with multiplicities).
To estimate the number of eigenvalues of A2

ϑ with the help of the qua-
dratic form a, let 0 < r < R such that ∂Ω ⊂ B(0, r) and choose real-valued
functions g1, g2 ∈ C∞(Ω; C) with the properties

0 ≤ g1, g2 ≤ 1, g1 � (B(0, r) ∩ Ω) ≡ 1, g2 � B(0, R)c ≡ 1, and g2
1 + g2

2 ≡ 1.

Note that the properties of g1 and g2 imply that the mapping

U : L2(Ω; C4) → L2
(
Ω∩B(0, R); C4

)⊕L2(R3\B(0, r); C4), Uf = g1f ⊕ g2f,

is an isometry. Our next goal is to rewrite the form a as a sesquilinear form in
L2(Ω∩B(0, R); C4)⊕L2(R3\B(0, r); C4). For that, we will often identify func-
tions defined in Ω with their restrictions onto Ω ∩ B(0, R) or onto R

3\B(0, r)
and we also identify functions on Ω ∩ B(0, R) or R

3\B(0, r) with their ex-
tensions by zero onto Ω. In both cases, we will use the same letters for the
restrictions and the extended functions.

Let f ∈ dom a = dom Aϑ be fixed. Then, also g1f, g2f ∈ dom a. Using
the relation

Aϑ(gjf) = gjAϑf − i(α · ∇gj)f, j = 1, 2,

we find that

a[gjf ] =
(
gjAϑf − i(α · ∇gj)f, gjAϑf − i(α · ∇gj)f

)
Ω

=
(
g2

j Aϑf,Aϑf
)
Ω

+
∥∥(α · ∇gj)f

∥∥2

Ω
+ Re

(
Aϑf, (−iα · ∇(g2

j ))f
)
Ω
.

Note that (1.8) implies (α · ∇gj)2 = |∇gj |2I4, which gives
∥∥(α · ∇gj)f

∥∥2

Ω
=

(
(α · ∇gj)2f, f

)
Ω

=
(|∇gj |2f, f

)
Ω
.

Moreover, since g2
1 + g2

2 ≡ 1, we have
(
Aϑf, (α · ∇(g2

1))f
)
Ω

+
(
Aϑf, (α · ∇(g2

2))f
)
Ω

=
(
Aϑf, (α · ∇(g2

1 + g2
2))f

)
Ω

= 0.



Vol. 21 (2020) Self-Adjoint Dirac Operators on Domains in R
3 2715

We set V = |∇g1|2 + |∇g2|2 and conclude

a[f ] =
(
(g2

1 + g2
2)Aϑf,Aϑf

)
Ω

= a[g1f ] − (|∇g1|2f, f
)
Ω

+ a[g2f ] − (|∇g2|2f, f
)
Ω

− Re
(
Aϑf, (α · ∇(g2

1 + g2
2))f

)
Ω

= a[g1f ] − (
V (g2

1 + g2
2)f, f

)
Ω

+ a[g2f ]

= a[g1f ] − (
V g1f, g1f

)
Ω

+ a[g2f ] − (
V g2f, g2f

)
Ω

=: b1[g1f ] + b2[g2f ], (5.5)

where b1 and b2 are the semibounded sesquilinear forms in L2(Ω∩B(0, R); C4)
and L2(R3\B(0, r); C4) given by

b1[h] = a[h] − (
V h, h

)
Ω∩B(0,R)

, dom b1 = {h ∈ dom Aϑ : supph ⊂ B(0, R)},

and

b2[h] = a[h] − (
V h, h

)
R3\B(0,r)

, dom b2 = H1
0 (R3\B(0, r); C4),

respectively.
In the following, let us have a closer look at b1 and b2. First, we note

that with the aid of (3.3) and (1.8) one has for h ∈ C∞
0 (R3\B(0, r); C4) that

b2[h] = ‖(−iα · ∇ + mβ)h‖2
R3\B(0,r)

− (V h, h)
R3\B(0,r)

=
(
(−iα · ∇ + mβ)2h, h

)
R3\B(0,r)

− (V h, h)
R3\B(0,r)

=
(
(−Δ + m2)h, h

)
R3\B(0,r)

− (V h, h)
R3\B(0,r)

= ‖∇h‖
R3\B(0,r) + m2‖h‖2

R3\B(0,r)
− (V h, h)

R3\B(0,r).

By density, this extends to

b2[h] = ‖∇h‖
R3\B(0,r) + m2‖h‖2

R3\B(0,r)
− (V h, h)

R3\B(0,r)

for all h ∈ H1
0 (R3\B(0, r); C4) = dom b2, i.e., b2 is the closed semibounded

form associated with the self-adjoint operator B2 := −ΔD + m2 − V , where
−ΔD is the self-adjoint Dirichlet Laplacian in R

3\B(0, r) and V = |∇g1|2 +
|∇g2|2 is compactly supported in B(0, R)\B(0, r) due to the construction of
g1 and g2. Thus, B2 has only finitely many eigenvalues below m2; for a proof
see, e.g., [16, Proof of Proposition 3.8].

Next, we claim that b1 is closed. In fact, let (hn) be a sequence in dom b1

and let h ∈ L2(Ω ∩ B(0, R)) such that

b1[hn − hm] → 0 and ‖hn − h‖Ω∩B(0,R) → 0, as m,n → ∞.

By the definition of b1, this implies that a[hn − hm] → 0 and ‖hn − h‖Ω → 0,
as m,n → ∞. As a is closed we have h ∈ dom a = dom Aϑ and a[h − hn] → 0
as n → ∞. Moreover, it follows from ‖hn − h‖Ω → 0 that supph ⊂ B(0, R).
Hence, h ∈ dom b1 and b1[h − hn] → 0 as n → ∞; thus, b1 is closed. The
semibounded self-adjoint operator B1 associated with b1 defined on dom B1 ⊂
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dom b1 ⊂ H1(Ω∩B(0, R); C4) has a compact resolvent in L2(Ω∩B(0, R); C4),
which implies that the spectrum of B1 is purely discrete and accumulates only
to ∞.

By combining the above considerations, we are now prepared to show the
claim of assertion (ii). First, we have by (5.5) for f ∈ dom a

a[f ]
‖f‖2

Ω

=
(b1 ⊕ b2)[Uf ]

‖Uf‖2
L2(Ω∩B(0,R);C4)⊕L2(R3\B(0,r);C4)

,

where it was used that U is an isometry, and U(dom a) ⊂ dom (b1 ⊕ b2).
Hence, it follows from the min–max principle that the number of eigenvalues
of A2

ϑ below m2 is less or equal to the number of eigenvalues of the operator
B1 ⊕B2 associated with b1 ⊕b2 below m2. As we have seen above, the number
of eigenvalues of B1 and B2 below m2 is finite. Hence, also the number of
eigenvalues of B1 ⊕ B2 below m2 is finite. This shows that the number of
eigenvalues of A2

ϑ below m2 is finite, which yields the claimed result.
Finally, item (iii) is an immediate consequence of Theorem 2.3 (i). �

If Ω is a bounded C2-domain, then domAϑ ⊂ H1(Ω; C4) is compactly
embedded in L2(Ω; C4) and hence the spectrum of Aϑ is purely discrete. It
is clear that the Birman–Schwinger principle from Theorem 2.3 can be used
to detect discrete eigenvalues of Aϑ that belong to ρ(TMIT). The next result,
which is a direct consequence of Propositions 2.4 and 3.2, goes beyond the
standard Birman–Schwinger principle in two ways: First, it allows to detect
eigenvalues of Aϑ that may be eigenvalues of TMIT at the same time, and
second, it enables to use the explicit expression for the values M(λ) of the
Weyl function in Proposition 4.2 in terms of integral operators (which we have
available only for λ ∈ C\((−∞,−m] ∪ [m,∞))).

Proposition 5.5. Let Ω be a bounded C2-smooth domain, let a ∈ ( 1
2 , 1], let

ϑ ∈ Lipa(∂Ω) be a real-valued function such that |ϑ(x)| 	= 1 for all x ∈ ∂Ω,
and let Aϑ be defined by (5.2). Then, σ(Aϑ) = σdisc(Aϑ) and λ is an eigenvalue
of Aϑ if and only if there exists ϕ ∈ G1/2

Ω such that

lim
ε↘0

iε
(
M(λ + iε) − ϑ

)−1
ϕ 	= 0,

where M is the Weyl function corresponding to the quasi boundary triple
{GΩ,Γ0,Γ1} from Proposition 4.2.

Remark 5.6. In Theorem 5.4 we discuss the spectral properties of Aϑ for un-
bounded domains Ω, but we do not address the question of eigenvalues which
are embedded in σess(Aϑ) = (−∞,−m] ∪ [m,∞). In fact, if the domain Ω is
connected, then it is not difficult to show that Aϑ has no embedded eigenvalues
in R\[−m,m]; this can be done in the same way as in [5, Theorem 3.7], see also
the discussion of this result. If Ω is not connected, then there exist a bounded
set Ω1 and an unbounded connected domain Ω2 such that Ω = Ω1 ∪ Ω2. This
implies that also Aϑ decomposes as Aϑ = Aϑ,1 ⊕ Aϑ,2, where Aϑ,j is a self-
adjoint operator of the form (5.2) in L2(Ωj ; C4), j ∈ {1, 2}. By the same
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reasoning as above Aϑ,2 has no eigenvalues in R\[−m,m]. Therefore, the em-
bedded eigenvalues of Aϑ are those of Aϑ,1, which can be found with the help
of Proposition 5.5.

Next, we compare the differences of powers of the resolvents of Aϑ and
TMIT and show that these operators belong to certain weak Schatten–von
Neumann ideals. In the proof of this result, we will make several times use of

ST ∈ Sr,∞ for S ∈ Sp,∞, T ∈ Sq,∞, and
1
r

=
1
p

+
1
q
. (5.6)

Moreover, for holomorphic operator functions A(·), B(·), C(·) the formula

dm

dλm

(
A(λ)B(λ)C(λ)

)
=

∑

p+q+r=m

m!
p!q!r!

dp

dλp
A(λ)

dq

dλq
B(λ)

dr

dλr
C(λ) (5.7)

(see, e.g., [19, equation (2.7)]) will be employed several times. Furthermore, if
the operator function A(·) is holomorphic and invertible with bounded every-
where defined inverses, then also A(·)−1 is holomorphic and one has

d
dλ

(
A(λ)−1

)
= −A(λ)−1

(
d
dλ

A(λ)
)

A(λ)−1; (5.8)

cf. [19, equation (2.8)]. The proof of the following theorem is based on the result
of Lemma 3.14 and on the same strategy as in [19] or in [10, Theorem 4.6].
Hence, we have to assume some additional smoothness of ∂Ω.

Theorem 5.7. Let Ω be a C2-domain with compact boundary, let TMIT be the
MIT bag operator in (3.4), let a ∈ (1

2 , 1], let ϑ ∈ Lipa(∂Ω) be a real-valued
function such that |ϑ(x)| 	= 1 for all x ∈ ∂Ω, and let Aϑ be defined by (5.2).
Moreover, let l ∈ N and, if l > 2, assume that Ω has a Cl-smooth boundary.
Then,

(Aϑ − λ)−l − (TMIT − λ)−l ∈ S2/l,∞
(
L2(Ω; C4)

)

holds for all λ ∈ C\R.

Proof. Let λ ∈ C\R be fixed. By Proposition 4.2, we have

γ(λ) = Φλ,1/2

(
1
2
β + Cλ,1/2

)−1

.

Hence, using Propositions 3.6 and 3.12 we find

γ(λ) = Φλ

(
1
2
β + Cλ

)−1

. (5.9)

In a similar way, one gets

M(λ) = −P+

(
1
2
β + Cλ

)−1

P+. (5.10)
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With the resolvent formula from Theorem 5.3 and (5.7), we obtain

(Aϑ − λ)−l − (TMIT − λ)−l =
1

(l − 1)!
dl−1

dλl−1

(
(Aϑ − λ)−1 − (TMIT − λ)−1

)

=
1

(l − 1)!
dl−1

dλl−1

[
γ(λ)

(
ϑ − M(λ)

)−1
γ(λ)∗]

=
∑

p+q+r=l−1

1
p!q!r!

dp

dλp
γ(λ)

dq

dλq

(
ϑ − M(λ)

)−1 dr

dλr
γ(λ)∗.

(5.11)

We are going to study now all the terms on the right-hand side of (5.11)
and show that they belong to certain Schatten–von Neumann ideals. For this
purpose, we claim that

dk

dλk

(
1
2
β + Cλ

)−1

∈ S2/k,∞
(
L2(∂Ω; C4)

)
(5.12)

for k ∈ {1, . . . , l − 1}. This will be shown by induction. First, for k = 1 we
have by (5.8)

d
dλ

(
1
2
β + Cλ

)−1

= −
(

1
2
β + Cλ

)−1 d
dλ

Cλ

(
1
2
β + Cλ

)−1

.

Hence, the statement for k = 1 holds by Lemma 3.14 and Proposition 3.12.
Let us assume now that the statement holds for k = 1, . . . , q with q < l − 1.
With the aid of (5.7), we get

dq+1

dλq+1

(
1
2
β + Cλ

)−1

=
dq

dλq

[
d
dλ

(
1
2
β + Cλ

)−1
]

= − dq

dλq

[(
1
2
β + Cλ

)−1 d
dλ

Cλ

(
1
2
β + Cλ

)−1
]

= −
∑

k+m+n=q

q!
k!m!n!

dk

dλk

(
1
2
β + Cλ

)−1 dm+1

dλm+1
Cλ

dn

dλn

(
1
2
β + Cλ

)−1

.

Now Lemma 3.14, the induction hypothesis, and (5.6) show that the operator
dq+1

dλq+1(
1
2β + Cλ

)−1 belongs to S2/(q+1),∞, and (5.12) is proved.
Thanks to (5.10), it is now easy to see that (5.12) implies

dk

dλk
M(λ) ∈ S2/k,∞(GΩ). (5.13)

Similarly, using (5.9), (5.7), Lemma 3.14, and (5.6) we obtain

dk

dλk
γ(λ) =

∑

s+t=k

k!
s!t!

ds

dλs
Φλ

dt

dλt

(
1
2
β + Cλ

)−1
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and hence
dk

dλk
γ(λ) ∈ S4/(2k+1),∞

(GΩ, L2(∂Ω; C4)
)
. (5.14)

By taking adjoints, this implies that also

dk

dλk
γ(λ)∗ ∈ S4/(2k+1),∞

(
L2(∂Ω; C4),GΩ

)
. (5.15)

Note that (5.13) yields

dk

dλk

(
ϑ − M(λ)

)−1 ∈ S2/k,∞(GΩ); (5.16)

this can be shown in the same way as (5.12). Thus, using (5.11), (5.14), (5.15),
(5.16), and (5.6), we finally get that

(Aϑ − λ)−l − (TMIT − λ)−l ∈ S2/l,∞
(
L2(∂Ω; C4)

)
,

which is the claimed result. �

In the following corollary, we discuss the special case l = 3 in Theo-
rem 5.7. Then, the difference of the third powers of the resolvents of Aϑ and
TMIT belongs to the trace class ideal. By [64, Chapter 0, Theorem 8.2] or
[60, Problem 25], this implies that the wave operators for the scattering pair
{Aϑ, TMIT} exist and are complete, and hence the absolutely continuous parts
of Aϑ and TMIT are unitarily equivalent. Moreover, we state an explicit formula
for the trace of (Aϑ − λ)−3 − (TMIT − λ)−3 in terms of the Weyl function M ;
this formula can be shown in exactly the same way as in [10, Theorem 4.6].

Corollary 5.8. Assume that Ω has a C3-smooth boundary, let a ∈ ( 1
2 , 1], and

let ϑ ∈ Lipa(∂Ω) be a real-valued function such that |ϑ(x)| 	= 1 for all x ∈ ∂Ω.
Let Aϑ be defined by (5.2) and let TMIT be the MIT bag operator in (3.4).
Then, the operator (Aϑ − λ)−3 − (TMIT − λ)−3 belongs to the trace class ideal
and

tr
[
(Aϑ − λ)−3 − (TMIT − λ)−3

]
=

1
2
tr

[
d2

dλ2

((
ϑ − M(λ)

)−1 d
dλ

M(λ)
)]

holds for all λ ∈ C\R. Moreover, the wave operators for the scattering system
{Aϑ, TMIT} exist and are complete, and the absolutely continuous parts of Aϑ

and TMIT are unitarily equivalent.

5.2. Self-Adjointness and Spectral Properties of A[ω ]

To complement the class of boundary conditions (5.1) discussed in the previous
section, now boundary conditions of the form

P+f |∂Ω = ωP+βf |∂Ω (5.17)

will be treated; here ω : ∂Ω → R is Hölder continuous of order a > 1
2 , as before.

In particular, (5.17) for ω ≡ 0 leads to the MIT bag operator TMIT introduced
in (3.4). Of course, if ω is invertible, then (5.1) and (5.17) are equivalent by
setting ϑ = ω−1, but if ω = 0 on some parts of ∂Ω, then this correspondence
is only formal.
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More precisely, let {GΩ,Γ0,Γ1} be the quasi boundary triple from The-
orem 4.1 and let ω : ∂Ω → R be Hölder continuous of order a > 1

2 . Then,
the Dirac operator A[ω] acting in L2(Ω; C4) with boundary conditions (5.17)
is defined by

A[ω]f := (−iα · ∇ + mβ)f,

dom A[ω] := {f ∈ H1(Ω; C4) : Γ0f = ωΓ1f}, (5.18)

i.e., (5.17) corresponds to the abstract boundary conditions Γ0f − ωΓ1f = 0,
see also (2.3). Employing Theorem 2.5 instead of Theorem 2.3 one can show in
a similar manner as in Theorem 5.3 the following result on the self-adjointness
of A[ω]:

Theorem 5.9. Let a ∈ (1
2 , 1] and let ω ∈ Lipa(∂Ω) be a real-valued function

such that |ω(x)| 	= 1 for all x ∈ ∂Ω. Moreover, let γ and M be as in Proposi-
tion 4.2. Then, the operator A[ω] in (5.18) is self-adjoint in L2(Ω; C4) and the
resolvent formula

(A[ω] − λ)−1 =
(
TMIT − λ

)−1 + γ(λ)
(
I4 − ωM(λ)

)−1
ωγ(λ)∗

holds for all λ ∈ ρ(Aϑ) ∩ ρ(TMIT).

Similarly to Sect. 5.1, one can prove now several results about the spec-
tral properties of A[ω]. The following assertions follow from Theorem 2.5 and
the Krein-type resolvent formula from Theorem 5.9 in the same way as in
Theorem 5.4.

Theorem 5.10. Let Ω be the complement of a bounded C2-domain, let a ∈
(1
2 , 1], let ω ∈ Lipa(∂Ω) be a real-valued function such that |ω(x)| 	= 1 for all

x ∈ ∂Ω, and let A[ω] be defined by (5.18). Then, the following statements hold:
(i) σess(A[ω]) = (−∞,−m] ∪ [m,∞).
(ii) The number of discrete eigenvalues of A[ω] is finite.
(iii) λ ∈ σp(A[ω]) ∩ (−m,m) if and only if 1 ∈ σp(ωM(λ)).

Furthermore, like in Proposition 5.5, one can use the Weyl function M
also to detect all eigenvalues of A[ω] in the case that Ω is a bounded domain.
Here one has to use Proposition 2.6 instead of Proposition 2.4 to obtain the
following result:

Proposition 5.11. Let Ω be a bounded C2-smooth domain, let a ∈ (1
2 , 1], let

ω ∈ Lipa(∂Ω) be real-valued such that |ω(x)| 	= 1 for all x ∈ ∂Ω, and let A[ω]

be defined by (5.18). Then σ(A[ω]) = σdisc(A[ω]) and λ is an eigenvalue of A[ω]

if and only if there exists ϕ ∈ G1/2
Ω such that

lim
ε↘0

iεM(λ + iε)
(
I4 − ωM(λ + iε)

)−1
ϕ 	= 0.

Finally, also the proof of Theorem 5.7 can be adapted in a straightforward
way to obtain a similar result for A[ω]. A summary of the counterpart of
Theorem 5.7 and Corollary 5.8 reads as follows:
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Theorem 5.12. Let Ω be a C2-domain with compact boundary, let TMIT be the
MIT bag operator in (3.4), let a ∈ ( 1

2 , 1], let ω ∈ Lipa(∂Ω) be a real-valued
function such that |ω(x)| 	= 1 for all x ∈ ∂Ω, and let A[ω] be defined by (5.18).
Moreover, let l ∈ N and, if l > 2, assume that Ω has a Cl-smooth boundary.
Then

(A[ω] − λ)−l − (TMIT − λ)−l ∈ S2/l,∞
(
L2(Ω; C4)

)
(5.19)

holds for all λ ∈ C\R. In particular, for l = 3 the operator in (5.19) belongs
to the trace class ideal and

tr
[
(A[ω] − λ)−3 − (TMIT − λ)−3

]
=

1
2
tr

[
d2

dλ2

((
I4 − ωM(λ)

)−1
ω

d
dλ

M(λ)
)]

holds for all λ ∈ C\R. Moreover, the wave operators for the scattering system
{A[ω], TMIT} exist and are complete, and the absolutely continuous parts of
A[ω] and TMIT are unitarily equivalent.

5.3. On the Connection of Aϑ , A[ω ], and Dirac Operators with δ–Shell In-
teractions

In this section we assume that Ω+ ⊂ R
3 is a bounded C2-domain, we set

Ω− := R
3\Ω+, and Σ := ∂Ω±. By ν±, we denote the unit normal vector

field pointing outwards of Ω± and for functions f ∈ L2(R3; C4) we will use
the notation f± := f � Ω±. Assume that a ∈ ( 1

2 , 1], let η, τ ∈ Lipa(Σ) be
real-valued functions on Σ, and consider the formal differential expression

−iα · ∇ + mβ + (ηI4 + τβ)δΣ,

where δΣ stands for the δ-distribution supported on the interface Σ. In analogy
to the case of constant interaction strengths in [12, Section 3], we introduce
the associated Dirac operator in L2(R3; C4) as

Bη,τf := (−iα · ∇ + mβ)f+ ⊕ (−iα · ∇ + mβ)f−,

dom Bη,τ :=
{

f = f+ ⊕ f− ∈ H1(Ω+; C4) ⊕ H1(Ω−; C4) :

i(α · ν+)(f+|Σ − f−|Σ) = −1
2
(ηI4 + τβ)(f+|Σ + f−|Σ)

}
.

(5.20)

Note that so far singularly perturbed Dirac operators of this form with elec-
trostatic and Lorentz scalar δ–shell interactions have been studied only for
constant coefficients η, τ ∈ R, see, e.g., [4–6,10,12,15,16,42,49–51,55,56]. In
particular, it is known that for constant η, τ ∈ R such that η2 − τ2 = −4 the
operator Bη,τ decouples into two self-adjoint operators acting in L2(Ω±; C4)
with certain boundary conditions; cf. [12, Lemma 3.1 (ii)] and [37, Section V],
[5, Section 5]. This phenomenon is referred to as confinement, since a parti-
cle which is located in Ω± will stay in Ω± for all times; in other words, the
δ-potential is impenetrable.

Define the projections

P
Ω+
± :=

1
2
(
I4 ± iβ(α · ν+)

)
and P

Ω−
± :=

1
2
(
I4 ± iβ(α · ν−)

)
.
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Moreover, for a ∈ ( 1
2 , 1] and real-valued ϑ ∈ Lipa(Σ) denote by A

Ω±
ϑ the self-

adjoint operators defined in (5.2) acting in L2(Ω±; C4). Our aim is to show
that

Bη,τ = A
Ω+
ϑ ⊕ A

Ω−
ϑ (5.21)

for suitable ϑ, η, τ ∈ Lipa(Σ). With the help of this identity, one can translate
(under the appropriate assumptions on the interaction strengths ϑ, η, τ) results
for Dirac operators with δ-interactions to the operators A

Ω±
ϑ studied in this

paper, and vice versa; cf. Lemma 5.16 and Theorem 5.17 for an illustration.
The following preparatory lemma will be useful.

Lemma 5.13. Let η and τ be real-valued functions on Σ, assume that the iden-
tity η2(x) − τ2(x) = −4 holds for all x ∈ Σ, and let f± ∈ H1(Ω±; C4). Then,
the jump condition

i(α · ν+)(f+|Σ − f−|Σ) = −1
2
(ηI4 + τβ)(f+|Σ + f−|Σ) (5.22)

is equivalent to the boundary conditions
(
(2 + τ)β − ηI4

)
P

Ω±
+ f±|Σ = −(

(2 − τ)I4 + ηβ
)
P

Ω±
+ βf±|Σ. (5.23)

Proof. Observe first that separating terms with f± in (5.22) leads to
(

i(α · ν+) +
1
2
(ηI4 + τβ)

)
f+|Σ =

(
i(α · ν+) − 1

2
(ηI4 + τβ)

)
f−|Σ. (5.24)

We multiply (5.24) by ±i(α ·ν+)+ 1
2 (ηI4 − τβ) and use β2 = I4, η2 − τ2 = −4,

(1.8), which implies

i(α · ν+)(ηI4 + τβ) = (ηI4 − τβ)i(α · ν+),

and ν− = −ν+, and arrive at the following equivalent form of (5.22):
(
2I4 − (ηI4 − τβ)i(α · ν±)

)
f±|Σ = 0. (5.25)

From β2 = I4 and (4.2), we see that I4 = P
Ω±
+ + P

Ω±
− = P

Ω±
+ + βP

Ω±
+ β, and

thus (5.25) is equivalent to
(
2I4 −(ηI4 −τβ)i(α ·ν±)

)
P

Ω±
+ f±|Σ = −(

2I4 −(ηI4 −τβ)i(α ·ν±)
)
βP

Ω±
+ βf±|Σ.

Multiplying both sides by β and using iβ(α ·ν±)PΩ±
+ = P

Ω±
+ , we conclude that

the jump condition (5.22) is equivalent to the boundary condition (5.23). �

The next proposition provides conditions on ϑ, η, τ ∈ Lipa(Σ) such that
(5.21) holds.

Proposition 5.14. Let a ∈ (1
2 , 1] and let η, τ, ϑ be real-valued functions on Σ.

Then, the following statements hold:
(i) Assume that η, τ ∈ Lipa(Σ), η(x)2 − τ(x)2 = −4, and τ(x) 	= 2 for all

x ∈ Σ, and define
ϑ =

η

2 − τ
. (5.26)

Then, ϑ ∈ Lipa(Σ), |ϑ(x)| 	= 1 for all x ∈ Σ, and (5.21) holds.
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(ii) Assume that ϑ ∈ Lipa(Σ), |ϑ(x)| 	= 1 for all x ∈ Σ, and define

η =
4ϑ

1 − ϑ2
and τ =

2(1 + ϑ2)
ϑ2 − 1

. (5.27)

Then η, τ ∈ Lipa(Σ), η2(x)− τ2(x) = −4 for all x ∈ Σ, and (5.21) holds.
In particular, in both situations (i) and (ii) the operator Bη,τ in (5.20) is
self-adjoint in L2(R3; C4).

Proof. Assertion (5.21) in (i) and (ii) follows from Lemma 5.13; the remaining
assertions on η, τ, ϑ in (i) and (ii) are easy to check. In fact, to verify (5.21) in
item (i) we multiply (5.23) by the matrix ((2 − τ)I4 − ηβ), which is invertible
by our assumptions on the functions η and τ . Using η2 − τ2 = −4, we obtain
for the left-hand side of (5.23)

(
(2 − τ)I4 − ηβ

)(
(2 + τ)β − ηI4

)
P

Ω±
+ f±|Σ = −4ηP

Ω±
+ f±|Σ

and for the right-hand side of (5.23)

−(
(2 − τ)I4 − ηβ

)(
(2 − τ)I4 + ηβ

)
P

Ω±
+ βf±|Σ = −(8 − 4τ)PΩ±

+ βf±|Σ.

Therefore, if {GΩ± ,ΓΩ±
0 ,ΓΩ±

1 } denote the quasi boundary triples from Theo-
rem 4.1, then (5.23) is equivalent to

η

2 − τ
ΓΩ±

0 f± = ΓΩ±
1 f±. (5.28)

With ϑ in (5.26), we now conclude from Lemma 5.13 that f = f+ ⊕ f− ∈
dom Bη,τ if and only if f± ∈ dom A

Ω±
ϑ , that is, the identity (5.21) is valid.

To show (5.21) in item (ii), note first that (5.27) yields ϑ = η
2−τ . The

above observation that (5.28) is equivalent to (5.23), and hence equivalent to
(5.22) by Lemma 5.13, implies that f± ∈ dom A

Ω±
ϑ if and only if f = f+⊕f− ∈

dom Bη,τ . Hence, (5.21) holds.
Finally, note that under the assumptions on η, τ, ϑ in (i) and (ii), the

operators A
Ω±
ϑ are both self-adjoint in L2(Ω±; C4) by Theorem 5.3. Hence, it

follows from (5.21) that the operator Bη,τ in (5.20) is self-adjoint in L2(R3; C4).
�

For a ∈ ( 1
2 , 1] and real-valued ω ∈ Lipa(Σ) denote by A

Ω±
[ω] the self-adjoint

operators defined in (5.18) acting in L2(Ω±; C4). Now we verify

Bη,τ = A
Ω+

[ω] ⊕ A
Ω−
[ω] (5.29)

for suitable ω, η, τ ∈ Lipa(Σ), which is the counterpart of the identity (5.21).
As above, one may use (5.29) to translate results for Dirac operators with
δ-interactions to the operators A

Ω±
[ω] , and vice versa. The next proposition

provides the necessary relations between the functions ω, η, τ . The proof follows
the same strategy as the proof of Proposition 5.14.

Proposition 5.15. Let a ∈ ( 1
2 , 1] and let η, τ, ω be real-valued functions on Σ.

Then, the following statements hold:
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(i) Assume that η, τ ∈ Lipa(Σ), η(x)2 − τ(x)2 = −4, and τ(x) 	= −2 for all
x ∈ Σ, and define

ω = − η

2 + τ
. (5.30)

Then, ω ∈ Lipa(Σ), |ω(x)| 	= 1 for all x ∈ Σ, and (5.29) holds.
(ii) Assume that ω ∈ Lipa(Σ), |ω(x)| 	= 1 for all x ∈ Σ, and define

η =
4ω

ω2 − 1
and τ =

2(1 + ω2)
1 − ω2

. (5.31)

Then η, τ ∈ Lipa(Σ), η2(x)− τ2(x) = −4 for all x ∈ Σ, and (5.29) holds.
In particular, in both situations (i) and (ii) the operator Bη,τ in (5.20) is
self-adjoint in L2(R3; C4).

Proof. Assertion (5.29) in (i) and (ii) follows from Lemma 5.13; the remaining
assertions on η, τ, ω in (i) and (ii) are easy to check. In fact, to verify (5.29) in
item (i) we shall multiply the identity (5.23) by

(
(2 + τ)β − ηI4

)−1 =
1

4(2 + τ)
(
(2 + τ)β + ηI4

)
,

where η2 − τ2 = −4 was used. It follows that (5.23) is equivalent to

P
Ω±
+ f±|Σ = − 1

4(2 + τ)
(
(2 + τ)β + ηI4

)(
(2 − τ)I4 + ηβ

)
P

Ω±
+ βf±|Σ

= − η

2 + τ
P

Ω±
+ βf±|Σ.

Using the quasi boundary triples {GΩ± ,ΓΩ±
0 ,ΓΩ±

1 } from Theorem 4.1, we find
that (5.23) is equivalent to

ΓΩ±
0 f± = − η

2 + τ
ΓΩ±

1 f±.

With ω in (5.30), we now conclude from Lemma 5.13 that f = f+ ⊕ f− ∈
dom Bη,τ if and only if f± ∈ dom A

Ω±
[ω] , that is, the identity (5.29) is valid.

To show (5.29) in (ii), one argues in the same way as in the proof of Proposi-
tion 5.14. The details are left to the reader. �

A particularly interesting case in Proposition 5.15 (ii) corresponds to the
choice ω = 0. Since A

Ω±
[0] = T

Ω±
MIT by (5.18), identity (5.29) reduces to

B0,2 = T
Ω+
MIT ⊕ T

Ω−
MIT,

and hence identifies the orthogonal sum of the MIT bag operators with a Dirac
operator with a purely Lorentz scalar δ–shell potential; cf. [42, Remark 2.1].

Now we return to identities (5.21) and (5.29), and illustrate how one can
translate known results for Dirac operators with δ-potentials to self-adjoint
Dirac operators on domains studied in this paper. Some preparation is nec-
essary to formulate Theorem 5.17. For a C2-domain Ω ⊂ R

3 with compact
boundary, we introduce the orthogonal projection

PΩ : L2(R3; C4) → L2(Ω; C4), PΩf = f � Ω,



Vol. 21 (2020) Self-Adjoint Dirac Operators on Domains in R
3 2725

and the corresponding embedding

ιΩ : L2(Ω; C4) → L2(R3; C4), ιΩg =

{
g in Ω,

0 in Ωc.

Moreover, for λ ∈ C\((−∞,−m] ∪ [m,∞)) we consider the integral operator
Rλ : L2(Ω; C4) → L2(Ω; C4),

Rλf(x) =
∫

Ω

Gλ(x − y)f(y)dy, x ∈ Ω, f ∈ L2(Ω; C4), (5.32)

with Gλ defined by (3.7). Note that Rλ is the compression of the resolvent of
the free Dirac operator A in R

3, that is,

Rλ = PΩ(A − λ)−1ιΩ;

cf. [63, Section 1.E]. The resolvent formulas in the next preparatory lemma are
now an immediate consequence of [12, Theorem 3.4], Proposition 5.14 (ii), and
Proposition 5.15 (ii). We emphasize that in contrast to the previous discussion,
the coefficients are first assumed to be real constants since Dirac operators with
electrostatic and Lorentz scalar δ–shell interactions have been studied in this
case only. To avoid confusion, we use a subindex here.

Lemma 5.16. Let Ω ⊂ R
3 be a C2-domain with compact boundary and let Rλ,

Φλ, and Cλ, λ ∈ C\R, be the operators in (5.32), (3.8), and (3.9), respectively.
Then, the following statements hold:

(i) Assume that ϑ∗ ∈ R\{±1} and let

η∗ =
4ϑ∗

1 − ϑ2∗
and τ∗ =

2(1 + ϑ2
∗)

ϑ2∗ − 1
.

Then, the resolvent formula

(Aϑ∗ − λ)−1 = Rλ − Φλ

(
I4 + (η∗I4 + τ∗β)Cλ

)−1(η∗I4 + τ∗β)Φ∗
λ

holds for all λ ∈ C\R.
(ii) Assume that ω∗ ∈ R\{±1} and let

η∗ =
4ω∗

ω2∗ − 1
and τ∗ =

2(1 + ω2
∗)

1 − ω2∗
.

Then, the resolvent formula

(A[ω∗] − λ)−1 = Rλ − Φλ

(
I4 + (η∗I4 + τ∗β)Cλ

)−1(η∗I4 + τ∗β)Φ∗
λ

holds for all λ ∈ C\R.

For the special choice ω∗ = 0, the resolvent formula in Lemma 5.16 (ii)
has the form

(TMIT − λ)−1 = Rλ − Φλ

(
I4 + 2βCλ

)−12βΦ∗
λ
, λ ∈ C\R. (5.33)

Using (5.33), we now obtain a more explicit description of the resolvents of the
self-adjoint operators Aϑ and A[ω] for general real-valued ϑ, ω ∈ Lipa(∂Ω) in
terms of the compressed resolvent of the free Dirac operator and the operators
Φλ and Cλ in (3.8) and (3.9), respectively. The next theorem is an immediate



2726 J. Behrndt et al. Ann. Henri Poincaré

consequence of the resolvent formulas in Theorem 5.3 and Theorem 5.9 and
of (5.33).

Theorem 5.17. Let Ω ⊂ R
3 be a C2-domain with compact boundary, let Rλ,

Φλ, and Cλ, λ ∈ C\R, be the operators in (5.32), (3.8), and (3.9), respectively,
and let γ and M be as in Proposition 4.2. Then the following assertions hold:

(i) If a ∈ ( 1
2 , 1] and ϑ ∈ Lipa(∂Ω) is a real-valued function which satisfies

|ϑ(x)| 	= 1 for all x ∈ ∂Ω, then the resolvent of the self-adjoint operator
Aϑ in (5.2) admits the representation

(Aϑ − λ)−1 = Rλ − Φλ

(
I4 + 2βCλ

)−12βΦ∗
λ

+ γ(λ)
(
ϑ − M(λ)

)−1
γ(λ)∗

for all λ ∈ C\R.
(ii) If a ∈ ( 1

2 , 1] and ω ∈ Lipa(∂Ω) is a real-valued function which satisfies
|ω(x)| 	= 1 for all x ∈ ∂Ω, then the resolvent of the self-adjoint operator
A[ω] in (5.18) admits the representation

(A[ω] − λ)−1 = Rλ − Φλ

(
I4 + 2βCλ

)−12βΦ∗
λ

+ γ(λ)
(
I4 − ωM(λ)

)−1
ωγ(λ)∗

for all λ ∈ C\R.

Finally, we remark that the resolvent formulas above also hold for certain
λ ∈ R which belong to the resolvent sets of the involved Dirac operators.
This straightforward, but slightly more technical, generalization is not pursued
further here.
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Appendix A. Mapping Properties of Integral Operators
Between Sobolev Spaces

Throughout this appendix, let Ω be a C2-domain in R
3 with compact bound-

ary ∂Ω. The aim of this section is to provide results on integral operators
acting between Sobolev spaces on the boundary ∂Ω which are applied in the
main part of the paper to prove Proposition 3.10. Recall that the norm in
Hs(∂Ω; C) for s ∈ (0, 1) is given by

‖ϕ‖2
s :=

∫

∂Ω

|ϕ(x)|2dσ(x) +
∫

∂Ω

∫

∂Ω

|ϕ(x) − ϕ(y)|2
|x − y|2+2s

dσ(y)dσ(x)

for ϕ ∈ Hs(∂Ω; C); cf. (1.9). To prove the main results of this appendix, we
need some preliminary considerations. First, we recall a standard result on the
growth of the integral of |x − y|b−2 with respect to the surface measure σ. A
proof can be found, e.g., in [45, Lemma 3.2 (b)].

Lemma A.1. Given b > 0, there exists C > 0 such that
∫

|x−y|≤ρ

|x − y|b−2dσ(y) ≤ Cρb

for all x ∈ ∂Ω and ρ > 0. In particular,
∫

∂Ω
|x − y|b−2dσ(y) ≤ C uniformly in

x ∈ ∂Ω.

Next, we show that the multiplication operator with a Hölder continuous
function ϑ ∈ Lipa(∂Ω) is bounded in Hs(∂Ω; C) for any 0 ≤ s < a.

Lemma A.2. Let 0 ≤ s < a ≤ 1 and ϑ ∈ Lipa(∂Ω). Then, the operator given
by the multiplication with ϑ is bounded in Hs(∂Ω; C).

Proof. Throughout the proof, let C be a generic constant, which changes its
value several times, and let ϕ ∈ Hs(∂Ω; C) be fixed. In order to get the desired
result, we estimate in

‖ϑϕ‖2
s =

∫

∂Ω

|(ϑϕ)(x)|2dσ(x) +
∫

∂Ω

∫

∂Ω

|(ϑϕ)(x) − (ϑϕ)(y)|2
|x − y|2+2s

dσ(y)dσ(x)

(A.1)
both terms on the right-hand side separately. First, since ϑ ∈ Lipa(∂Ω) and
∂Ω is bounded, we have ‖ϑ‖L∞(∂Ω) < ∞. Therefore,

∫

∂Ω

|(ϑϕ)(x)|2dσ(x) ≤ ‖ϑ‖2
L∞(∂Ω)

∫

∂Ω

|ϕ(x)|2dσ(x) ≤ ‖ϑ‖2
L∞(∂Ω)‖ϕ‖2

s.

(A.2)
To find an upper bound for the second term in (A.1), we note first that by
ϑ ∈ Lipa(∂Ω)

|ϑ(x)ϕ(x) − ϑ(y)ϕ(y)| ≤ |ϑ(x)||ϕ(x) − ϕ(y)| + |ϑ(x) − ϑ(y)||ϕ(y)|
≤ ‖ϑ‖L∞(∂Ω)|ϕ(x) − ϕ(y)| + C|x − y|a|ϕ(y)|.
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This, Fubini’s theorem, and Lemma A.1 applied with b = 2(a − s) > 0 imply
now ∫

∂Ω

∫

∂Ω

|ϑ(x)ϕ(x) − ϑ(y)ϕ(y)|2
|x − y|2+2s

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

|ϕ(x) − ϕ(y)|2
|x − y|2+2s

dσ(y)dσ(x)

+ C

∫

∂Ω

|ϕ(y)|2
∫

∂Ω

|x − y|2(a−s)−2dσ(x)dσ(y)

≤ C‖ϕ‖2
s. (A.3)

Using (A.2) and (A.3) in (A.1), we conclude that ‖ϑϕ‖s ≤ C‖ϕ‖s for s < a.
�

Given now 0 < a ≤ 1 and an integral kernel k : ∂Ω × ∂Ω → C such that

|k(x, y)| ≤ C

|x − y|2−a
for all x 	= y,

|k(x, z) − k(y, z)| ≤ C
|x − y|a
|x − z|2 for all |x − y| <

1
4

|x − z|, (A.4)

define
Tϕ(x) :=

∫

∂Ω

k(x, y)ϕ(y)dσ(y) for x ∈ ∂Ω. (A.5)

It is well known that if the integral kernel satisfies (A.4), then T is bounded in
L2(∂Ω; C) and, in particular, the integral on the right-hand side of (A.5) exists
a.e. on ∂Ω, see, e.g., [38, Proposition 3.10]. In the following theorem, which
is the main result of this appendix, we show that T has even better mapping
properties between Sobolev spaces on ∂Ω:

Theorem A.3. Let 0 < s < a ≤ 1. Then, T defined by (A.5) gives rise to a
bounded operator

T : L2(∂Ω; C) → Hs(∂Ω; C).

Proof. Throughout the proof, let C be a generic constant, which changes its
value several times, and let ϕ ∈ L2(∂Ω; C) be fixed. Let us estimate the two
terms in

‖Tϕ‖2
s =

∫

∂Ω

|Tϕ(x)|2dσ(x) +
∫

∂Ω

∫

∂Ω

|Tϕ(x) − Tϕ(y)|2
|x − y|2+2s

dσ(y)dσ(x) (A.6)

separately. To control the first one, we use (A.4), the Cauchy–Schwarz inequal-
ity, Lemma A.1, and Fubini’s theorem and get

∫

∂Ω

|Tϕ(x)|2dσ(x) ≤ C

∫

∂Ω

(∫

∂Ω

|ϕ(y)|
|x − y|2−a

dσ(y)
)2

dσ(x)

≤ C

∫

∂Ω

(∫

∂Ω

dσ(y)
|x − y|2−a

)(∫

∂Ω

|ϕ(y)|2dσ(y)
|x − y|2−a

)
dσ(x)

≤ C

∫

∂Ω

|ϕ(y)|2dσ(y). (A.7)
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Let us now focus on the second term in (A.6). We set

A1 := {(x, y, z) ∈ ∂Ω × ∂Ω × ∂Ω : 4|x − y| < |x − z|},
A2 := {(x, y, z) ∈ ∂Ω × ∂Ω × ∂Ω : 4|x − y| < |y − z|},
A3 := {(x, y, z) ∈ ∂Ω × ∂Ω × ∂Ω : 4|x − y| ≥ max(|x − z|, |y − z|)},

and

Kj(x, y, z) :=
k(x, z) − k(y, z)

|x − y|1+s
χAj

(x, y, z) for j = 1, 2, 3.

Then,
∫

∂Ω

∫

∂Ω

|Tϕ(x) − Tϕ(y)|2
|x − y|2+2s

dσ(y)dσ(x)

=
∫

∂Ω

∫

∂Ω

∣∣∣∣
∫

∂Ω

k(x, z) − k(y, z)
|x − y|1+s

ϕ(z)dσ(z)
∣∣∣∣
2

dσ(y)dσ(x)

≤ C

3∑

j=1

∫

∂Ω

∫

∂Ω

(∫

∂Ω

|Kj(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x). (A.8)

The three terms in the sum in the right-hand side of (A.8) are also estimated
separately. In order to deal with the first one, let ε ∈ (0, a − s) be fixed. By
(A.4), the Cauchy–Schwarz inequality, and Lemma A.1, we get first

∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K1(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

( ∫

∂Ω

χA1(x, y, z)|ϕ(z)|
|x − z|2|x − y|1+s−a

dσ(z)
)2

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

( ∫

∂Ω

dσ(z)
|x − z|2(1−ε)

)

·
( ∫

∂Ω

χA1(x, y, z)|ϕ(z)|2
|x − z|2(1+ε)|x − y|2−2(a−s)

dσ(z)
)

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

∫

∂Ω

χA1(x, y, z)|ϕ(z)|2
|x − z|2(1+ε)|x − y|2−2(a−s)

dσ(z)dσ(y)dσ(x).

(A.9)

Using now twice Lemma A.1, first for the integral with respect to y with
b = 2(a − s) > 0 and ρ = 1

4 |x − z| and then for the integral with respect to x
with b = 2(a − s − ε) > 0, we conclude that

∫

∂Ω

∫

∂Ω

χA1(x, y, z)
|x − z|2(1+ε)|x − y|2−2(a−s)

dσ(y)dσ(x)

=
∫

∂Ω

1
|x − z|2(1+ε)

∫

|x−y|<|x−z|/4

1
|x − y|2−2(a−s)

dσ(y)dσ(x)

≤ C

∫

∂Ω

|x − z|2(a−s−ε)−2dσ(x) ≤ C.
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Combining this with (A.9) and Fubini’s theorem, we finally obtain
∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K1(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x) ≤ C

∫

∂Ω

|ϕ(z)|2dσ(z).

(A.10)
Regarding the term in (A.8) containing K2, we simply note the symmetry

relation K2(x, y, z) = −K1(y, x, z) and thus, Fubini’s theorem and (A.10) give
∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K2(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x) ≤ C

∫

∂Ω

|ϕ(z)|2dσ(z).

(A.11)
Let us finally estimate the term in (A.8) containing K3. For this purpose,

set

A0 := {(x, y, z) ∈ ∂Ω × ∂Ω × ∂Ω : 4|x − y| ≥ |x − z|}
and

K0(x, y, z) :=
k(x, z)

|x − y|1+s
χA0(x, y, z).

Then, because of A3 ⊂ A0 we easily see that

|K3(x, y, z)| ≤ |K0(x, y, z)| + |K0(y, x, z)|. (A.12)

Clearly, (A.12), the triangle inequality, and Fubini’s theorem imply that
∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K3(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K0(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x). (A.13)

To estimate the right-hand side of (A.13), we perform similar estimates as
in (A.9). Choose ε ∈ (0, a − s). Then, it follows from (A.4) and the Cauchy–
Schwarz inequality that

∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K0(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

(∫

∂Ω

χA0(x, y, z)
|x − z|2−a

|ϕ(z)|
|x − y|1+s

dσ(z)
)2

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

(∫

∂Ω

|ϕ(z)|2
|x − y|2+2s|x − z|2(1−ε)

dσ(z)
)

·
( ∫

|x−z|≤4|x−y|

1
|x − z|2(1−a+ε)

dσ(z)
)

dσ(y)dσ(x)

≤ C

∫

∂Ω

∫

∂Ω

∫

∂Ω

|ϕ(z)|2
|x − y|2(1+s−a+ε)|x − z|2(1−ε)

dσ(z)dσ(y)dσ(x), (A.14)

where Lemma A.1 with b = 2(a − ε) > 0 and ρ = 4|x − y| was applied in the
last step. Applying now two more times Lemma A.1, first for the integral with
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respect to y with b = 2(a − s − ε) > 0 and then for the integral with respect
to x with b = 2ε, we find that

∫

∂Ω

∫

∂Ω

1
|x − y|2(1+s−a+ε)|x − z|2(1−ε)

dσ(y)dσ(x)

≤ C

∫

∂Ω

1
|x − z|2(1−ε)

dσ(x) ≤ C

holds independently of z. Using this in (A.14), we conclude
∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K0(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x) ≤ C

∫

∂Ω

|ϕ(z)|2dσ(z).

(A.15)
Hence, it follows from (A.13) and (A.15) that

∫

∂Ω

∫

∂Ω

(∫

∂Ω

|K3(x, y, z)ϕ(z)|dσ(z)
)2

dσ(y)dσ(x) ≤ C

∫

∂Ω

|ϕ(z)|2dσ(z).

(A.16)
Finally, a combination of (A.8), (A.10), (A.11), and (A.16) shows that

∫

∂Ω

∫

∂Ω

|Tϕ(x) − Tϕ(y)|2
|x − y|2+2s

dσ(y)dσ(x) ≤ C

∫

∂Ω

|ϕ(z)|2dσ(z)

which, together with (A.7), implies ‖Tϕ‖s ≤ C‖ϕ‖Ω. �
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