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We study the two-dimensional Dirac operator with a class of 
interface conditions along a smooth closed curve, which model 
the so-called electrostatic and Lorentz scalar interactions of 
constant strengths, and we provide a rigorous description of 
their self-adjoint realizations and their qualitative spectral 
properties. We are able to cover in a uniform way all so-
called critical combinations of coupling constants, for which 
there is a loss of regularity in the operator domain. For the 
case of a non-zero mass term, this results in an additional 
point in the essential spectrum, which reflects the creation 
of an infinite number of eigenvalues in the central gap, 
and the position of this point can be made arbitrary by a 
suitable choice of the parameters. The analysis is based on a 
combination of the extension theory of symmetric operators 
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with a detailed study of boundary integral operators viewed 
as periodic pseudodifferential operators.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivations and state of the art

In the present paper we study the self-adjointness of Dirac operators in two dimen-
sions with a special type of transmission conditions along a smooth curve. The interest in 
such operators appeared originally in numerous works discussing quantum-mechanical 
Hamiltonians with interactions supported by zero measure sets such as points or hy-
persurfaces, see, e.g., [1,10,20]. Due to the singular nature of the interactions, special 
approaches are required to define and analyze the operators rigorously. For Schrödinger 
operators with such singular interactions, the quadratic form approach is an efficient 
tool, which uses in an essential way the semiboundedness of these operators [12]. For 
Dirac operators, the lack of semiboundedness imposes the use of other methods, such as 
suitable resolvent formulas or a definition through interface conditions, which involves 
much heavier analytical techniques. The case of one-dimensional Dirac operators with 
point interactions is well-studied, see [1,15,23,30]. However, the higher dimensional situ-
ations were only considered quite recently, mostly for three-dimensional Dirac operators 
with interactions supported by surfaces, see [3–7,9,19,24,28,29], and the recent contribu-
tion [31] is devoted to a particular problem in two dimensions. In the above works, it 
was observed that there are critical combinations of parameters (interaction strengths) 
for which the standard elliptic regularity fails, and the self-adjoint realization of the 
operator shows a loss of regularity in the operator domain. In some of these critical 
cases (for purely electrostatic critical interactions) in the three-dimensional setting the 
essential self-adjointness of the operators on the standard domain was shown and it was 
noted that the spectral properties can differ from what was observed for the non-critical 
case [9,29]; for general critical combinations of the parameters a systematic analysis is 
missing.

In the present paper we provide a complete treatment of the problem in two dimen-
sions. Our main advance is that we show the self-adjointness of the resulting operators 
and describe the spectral properties for all possible combinations of parameters, which 
include all critical cases. For this we use a systematic approach combining some tools 
of the operator extension theory with pseudodifferential techniques for the analysis of 
matrix-valued singular integral operators. This is partly inspired by the recent paper [14]
dealing with special transmission problems for Laplacians and which we expect to be of 
use for higher-dimensional operators as well. In particular, our work answers fully the 
question of [28, Open Problem 11] in dimension two. The main novelty of the results is 
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that the Dirac operator with a critical interface condition along a smooth compact curve 
has infinitely many eigenvalues in the gap of the essential spectrum, while the point at 
which the eigenvalues accumulate can be controlled by a suitable choice of parameters. 
Such effects were not observed previously for Dirac operators with singular interactions.

Let us now introduce the problem setting in greater detail. To set the stage, let Σ
be a smooth planar loop, i.e. a closed non-self-intersecting C∞-smooth curve in R2. It 
splits R2 into a bounded domain Ω+ and an unbounded domain Ω−, and we denote by 
ν = (ν1, ν2) the unit normal to Σ pointing outwards of Ω+. For a function f defined on 
R2 we will often use the notation f± := f � Ω±, where � Ω± stands for the restriction 
to Ω±. If a function f has suitably defined Dirichlet traces on both sides of Σ, we define 
the distribution δΣf by

〈δΣf, ϕ〉 :=
∫
Σ

1
2
(
TD

+ f+ + TD
−f−

)
ϕds, ϕ ∈ C∞

0 (R2),

where TD
±f± denotes the Dirichlet trace of f± at Σ and ds is the integration with respect 

to the arc-length. We are going to study Dirac operators Aη,τ in L2(R2; C2) given by 
the formal differential expression

Dη,τ := −i
(
σ1∂1 + σ2∂2

)
+ mσ3 + (ησ0 + τσ3)δΣ,

where σ0 is the identity matrix in C2×2, σ1, σ2, σ3 are the C2×2-valued Pauli spin ma-
trices defined in (1.3) below, and m, η, τ ∈ R. Following the standard language [37]
of relativistic quantum mechanics, one may interpret η and τ as the strengths of the 
electrostatic and Lorentz scalar interactions on Σ, respectively, while the parameter m is 
usually interpreted as the mass. Integration by parts shows that if the distribution Dη,τf

is generated by an L2-function, then the function f has to fulfill (at least formally) the 
transmission condition

−i (σ1ν1 + σ2ν2) (TD
+ f+ − TD

−f−) = 1
2(ησ0 + τσ3)(TD

+ f+ + TD
−f−). (1.1)

Our goal is to make this observation rigorous and to show that there is a unique reason-
ably defined self-adjoint operator Aη,τ in L2(R2; C2) for this transmission condition and 
then to study its qualitative spectral properties.

In our approach we consider Aη,τ as an extension of a suitably chosen symmetric 
operator and make use of the standard machinery of boundary triples [8,13,16,17] in 
order to reformulate the main questions in terms of integral operators on Σ. We note 
that a similar idea was used in [6,9,15,30]. The second main ingredient is the periodic 
pseudodifferential calculus, which is heavily used for a detailed study of various integral 
operators arising in this construction; cf. [3–7,9,29] for closely related objects in the 
three-dimensional case.
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1.2. Main results

Let us pass to the formulation and discussion of the main results of this paper. To 
define the operator Aη,τ rigorously, we introduce for an open set Ω ⊂ R2

H(σ,Ω) =
{
f ∈ L2(Ω;C2) : (σ1∂1 + σ2∂2)f ∈ L2(Ω;C2)

}
.

One can show that functions f± in H(σ, Ω±) admit Dirichlet traces TD
±f± in H− 1

2 (Σ; C2). 
With these notations in hand we define, following (1.1), for η, τ ∈ R the operator Aη,τ

in L2(R2; C2) by

Aη,τf :=
(
− i(σ1∂1 + σ2∂2) + mσ3

)
f+ ⊕

(
− i(σ1∂1 + σ2∂2) + mσ3

)
f−,

domAη,τ :=
{
f = f+ ⊕ f− ∈ H(σ,Ω+) ⊕H(σ,Ω−) : (1.2)

− i (σ1ν1 + σ2ν2)
(
TD

+ f+ − TD
−f−

)
= 1

2 (ησ0 + τσ3)
(
TD

+ f+ + TD
−f−

)}
.

It turns out that the value η2 − τ2 plays a special role. More precisely, if η2 − τ2 = 4 we 
will say that we are in a critical case, while all the cases with η2−τ2 �= 4 will be referred 
to as non-critical ones. We also remark that for some combinations of coupling constants 
the boundary condition in (1.2) leads to a so-called decoupling, i.e. the operator Aη,τ

becomes the direct sum of two operators acting in Ω±, see Lemma 4.1 below.
It appears that the non-critical case is easier to deal with, and the results for Aη,τ are 

summarized as follows:

Theorem 1.1 (Non-critical case). Let η, τ ∈ R with η2−τ2 �= 4. Then Aη,τ is self-adjoint 
in L2(R2; C2) with domAη,τ ⊂ H1(R2 \ Σ; C2), its essential spectrum is given by

specess Aη,τ = (−∞,−|m|] ∪ [|m|,+∞),

while the discrete spectrum in (−|m|, |m|) is finite.

The proof of Theorem 1.1 is given in Section 4.2. There, also some additional properties 
of Aη,τ like a Krein-type resolvent formula, an abstract version of the Birman-Schwinger 
principle, and some symmetry relations in the point spectrum of Aη,τ are shown. Similar 
results are known in the three-dimensional case, see [7].

Our main results in the critical case η2−τ2 = 4 are collected in the following theorem.

Theorem 1.2 (Critical case). Let η, τ ∈ R with η2 − τ2 = 4. Then Aη,τ is self-adjoint 
in L2(R2; C2), while its restriction onto domAη,τ ∩ H1(R2 \ Σ; C2) is only essentially 
self-adjoint, and domAη,τ �⊂ Hs(R2 \ Σ; C2) for any s > 0. The essential spectrum is

specess Aη,τ =
(
−∞,−|m|

]
∪
{
−τ

m

}
∪
[
|m|,+∞

)
.

η
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Theorem 1.2 is the main result of this paper, and it is proved in Section 4.3. There, 
also a Krein type resolvent formula, a Birman Schwinger principle, and several symmetry 
relations in the point spectrum of Aη,τ are shown. Some analogs in three dimensions 
are only known in the case of purely electrostatic interactions, i.e. when η = ±2 and 
τ = 0, see [9,29]. The additional point − τ

ηm of the essential spectrum can take any 
value in the gap (−|m|, |m|) under a suitable choice of η and τ , and this effect was not 
observed in previous works. Several papers addressed the question of presence of a non-
empty essential spectrum for Dirac operators in bounded domains with various boundary 
conditions, see, e.g., [11,22,35], and our results can also be regarded as a contribution in 
this direction.

By a minor modification of the argument, one can deal with an interaction supported 
on several loops. Let N ≥ 1 and consider a family of non-intersecting smooth loops 
Σ1, . . . , ΣN with unit normals νj , j ∈ {1, . . . , N}. We set Σ :=

⋃N
j=1 Σj , and for any 

f ∈ H(σ, R2 \Σ) we denote its Dirichlet traces on the two sides of Σj as TD
±,jf , where −

corresponds to the side to which νj is directed. In addition, consider a family of pairs of 
real parameters P := ((ηj , τj))j∈{1,...,N}, ηj , τj ∈ R, and define the associated operator 
AΣ,P by

AΣ,Pf :=
(
− i(σ1∂1 + σ2∂2) + mσ3

)
f in R2 \ Σ,

domAΣ,P :=
{
f ∈ H(σ,R2 \ Σ) : −i (σ1ν1 + σ2ν2)

(
TD

+,jf − TD
−,jf

)
= 1

2 (ηjσ0 + τjσ3)
(
TD

+,jf + TD
−,jf

)
, j = 1, . . . , N

}
.

Then the preceding results can be extended as follows:

Theorem 1.3 (Interaction supported on several loops). Let Icrit := {j : η2
j − τ2

j = 4}. 
Then the following is true:

(i) If Icrit = ∅, then AΣ,P is self-adjoint in L2(R2; C2) with domAΣ,P ⊂ H1(R2\Σ; C2), 
the essential spectrum of AΣ,P is

specess AΣ,P = (−∞,−|m|] ∪ [|m|,∞),

and the discrete spectrum of AΣ,P in (−|m|, |m|) is finite.
(ii) If Icrit �= ∅, then AΣ,P is self-adjoint and the restriction of AΣ,P onto the set 

domAΣ,P ∩ H1(R2 \ Σ; C2) is essentially self-adjoint in L2(R2; C2), but one has 
domAΣ,P �⊂ Hs(R2 \ Σ; C2) for any s > 0. The essential spectrum of AΣ,P is

specess AΣ,P =
(
−∞,−|m|

]
∪
{
− τj
ηj

m : j ∈ Icrit

}
∪
[
|m|,+∞

)
.

In particular, one easily observes that if Σ has N connected components, then for any 
finite set Ξ ⊂ (−|m|, |m|) with #Ξ ≤ N it is possible to find a combination of parameters 
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P such that the essential spectrum of AΣ,P in (−|m|, |m|) coincides with Ξ. Necessary 
modifications for the proof of Theorem 1.3 are sketched in Subsection 4.4.

1.3. Structure of the paper

Let us shortly describe the structure of the paper. First, in Section 2 we recall some 
facts on periodic pseudodifferential operators and boundary triples. With that we study 
then in Section 3 integral operators, which are associated to the Green function cor-
responding to the free Dirac operator in R2, and construct a boundary triple which is 
suitable to study the properties of Aη,τ . The two sections 2 and 3 occupy an important 
portion of the text, which is due to the big number of tools from various domains which 
are put together and which are rarely (if at all) used simultaneously. We believe that the 
construction can be of use for other two-dimensional boundary value problems with the 
help of the boundary triple machinery. Finally, Section 4 is devoted to the proofs of the 
main results of this paper, Theorems 1.1–1.3.

1.4. Notations

We use the convention 0 /∈ N and set N0 := N ∪ {0}. We denote the 2 × 2 identity 
matrix by σ0 and the 2 × 2 Pauli spin matrices by

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (1.3)

Recall that they fulfill

σjσk + σkσj = 2δjkσ0, j, k ∈ {1, 2, 3}. (1.4)

For x = (x1, x2) ∈ R2 we write σ · x := σ1x1 + σ2x2 and, similarly, σ · ∇ := σ1∂1 + σ2∂2.
Next, Σ ⊂ R2 is always a C∞-loop of length 	 > 0, which splits R2 into a bounded 

domain Ω+ and an unbounded domain Ω− with common boundary Σ. By ν we denote 
the unit normal vector field at Σ which points outwards of Ω+, and t denotes the unit 
tangent vector at Σ. If γ : [0, 	] → R2 is an arc length parametrization of Σ with 
positive orientation, then t = γ′ and ν = (γ′

2, −γ′
1). We sometimes identify the vector 

t = (t1, t2) ∈ R2 with the complex number T = t1 + it2.
If Ω is a measurable set, we write, as usual, L2(Ω) for the classical L2-spaces and 

L2(Ω; C2) := L2(Ω) ⊗C2. If Ω = Σ, then L2(Σ) is based on the inner product in which 
the integrals are taken with respect to the arc-length. By Hs(Ω) we denote the Sobolev 
spaces of order s ∈ R on Ω, and the Sobolev spaces on the curve Σ are reviewed in 
Section 2.1.

Next, we denote T := R/Z. Then C∞(T ) can be identified with the space of all 
1-periodic C∞(R)-functions. For α ∈ R we denote the set of periodic pseudodifferential 
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operators of order α on T by Ψα and the set of periodic pseudodifferential operators of 
order α on Σ by Ψα

Σ (see Definitions 2.1 and 2.3 below).
For a linear operator A in a Hilbert space H we write domA, ranA, and kerA for 

its domain, range, and kernel, respectively. The identity operator is often denoted by 1. 
If A is self-adjoint, then we denote by resA, specA, specp A, and specess A its resolvent 
set, spectrum, point, and essential spectrum, respectively. If A is self-adjoint and semi-
bounded from below, then N(A, z) is the number of eigenvalues smaller than z taking 
multiplicities into account. For z > inf specess A this is understood as N(A, z) = ∞.
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2. Preliminaries

In this section we provide some preliminary material from functional analysis and op-
erator theory. First, in Section 2.1 we recall the definition and some properties of periodic 
pseudodifferential operators on smooth curves and some special integral operators of this 
form. Furthermore, in Section 2.2 the concept of boundary triples is briefly reviewed.

2.1. Sobolev spaces and periodic pseudodifferential operators on closed curves

In this section some properties of periodic pseudodifferential operators on closed curves 
are discussed along the lines of [34, Chapters 5 and 7]. Special realizations of such 
operators will play an important role in the analysis of Dirac operators with singular 
interactions later.

Throughout this section Σ ⊂ R2 is a C∞-smooth loop of length 	 and let T = R/Z. 
By γ : 	T → Σ we denote a fixed arc-length parametrization of Σ, i.e. a C∞-function 
with |γ′(·)| ≡ 1 and γ(	T ) = Σ. First, we recall the construction of Sobolev spaces of 
periodic functions on a loop. For a distribution1 f ∈ D′(T ) := C∞(T )′ we write

f̂(n) := 〈f, e−n〉D′(T),D(T) ∈ C, en(t) = e2πnit, n ∈ Z,

1 In [34] the notation D′
1(R) is used instead of D′(T). The subindex 1 means the 1-periodicity.
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for its Fourier coefficients. Recall that a distribution f ∈ D′(T ) can be reconstructed 
from its Fourier coefficients by

f =
∑

n∈Z
f̂(n)en, (2.1)

where the series converges in D′(T ), see [34, Theorem 5.2.1]. For any two distributions 
f, g ∈ D′(T ) we denote by f � g their convolution which is defined (via its Fourier 
coefficients) by ̂f � g(n) = f̂(n) ̂g(n), n ∈ Z. In particular, for f, g ∈ L1(T ) one has

f � g =
∫
T

f(s)g(· − s) ds.

For convenience we set n := |n| for n ∈ Z \ {0} and n := 1 for n = 0. Then for s ∈ R, 
the Sobolev space Hs(T ) consists of the distributions f ∈ D′(T ) with

‖f‖2
Hs(T) :=

∑
n∈Z

n2s∣∣f̂(n)
∣∣2 < ∞.

The set Hs(T ) endowed with the above norm and induced scalar product becomes a 
Hilbert space. If s < t, then Ht(T ) is compactly embedded into Hs(T ).

The Sobolev spaces Hs on T can be translated to Sobolev spaces on Σ. For that we 
define on D′(Σ) := C∞(Σ)′ the linear map

U : D′(Σ) → D′(T ), (Uf)(ϕ) = f
(
	−1ϕ(	−1γ−1(·))

)
, ϕ ∈ C∞(T ). (2.2)

It is not difficult to verify that

Uf(t) = f(γ(	t)), f ∈ L1(Σ), t ∈ T ; (2.3)

this property will often be used. For s ∈ R we define the Hilbert space

Hs(Σ) :=
{
f ∈ D′(Σ) : Uf ∈ Hs(T )

}
, ‖f‖Hs(Σ) := ‖Uf‖Hs(T), f ∈ Hs(Σ).

By construction, the induced map U : Hs(Σ) → Hs(T ) is unitary for any s ∈ R. It is 
easily seen that C∞(Σ) is dense in Hs(Σ) for all s ∈ R.

Next, we recall the definition of periodic pseudodifferential operators on T and Σ. 
Define first the linear operator ω acting on mappings F : Z → C by

(ωF )(n) := F (n + 1) − F (n), n ∈ Z. (2.4)

Definition 2.1. A linear operator H acting on C∞(T ) is called a periodic pseudodif-
ferential operator of order α ∈ R, if there exists a function h : T × Z → C with 
h(·, n) ∈ C∞(T ) for each n ∈ Z and
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Hu(t) =
∑

n∈Z
h(t, n) û(n) en(t), u ∈ C∞(T ), (2.5)

and for all k, l ∈ N0 there exist constants ck,l > 0 such that

∣∣∣ ∂k

∂tk
ωl
nh(t, n)

∣∣∣ ≤ ck,l n
α−l, n ∈ Z,

where ωn means the application of ω to the second argument of h. The class of all periodic 
pseudodifferential operators of order α is denoted by Ψα, and we set Ψ−∞ := ∩α∈RΨα.

One has the obvious inclusions Ψα ⊂ Ψβ for α < β. Moreover, in the spirit of (2.1)
the periodic pseudodifferential operator H is determined by its Fourier coefficients

Ĥu(m) =
∑

n∈Z
û(n)

〈
h(·, n)en, e−m

〉
D′(T),D(T).

In particular, if h is independent of t, then we simply have Ĥu(n) = h(n)û(n). The 
following properties of periodic pseudodifferential operators can be found in [34, Theo-
rem 7.3.1 and Theorem 7.8.1].

Proposition 2.2.

(i) Let H ∈ Ψα. Then for any s ∈ R the operator H uniquely extends to a bounded 
operator Hs(T ) → Hs−α(T ); this extension will be denoted by the same symbol H.

(ii) For any H ∈ Ψα and G ∈ Ψβ one has H + G ∈ Ψmax{α,β}, HG ∈ Ψα+β, and 
HG −GH ∈ Ψα+β−1.

It is now straightforward to define periodic pseudodifferential operators on Σ.

Definition 2.3. A linear map H : C∞(Σ) → D′(Σ) is called a periodic pseudodifferential 
operator of order α ∈ R on Σ, if there exists a periodic pseudodifferential operator H0 of 
order α on T such that H = U−1H0U . We denote by Ψα

Σ the linear space of all periodic 
pseudodifferential operators of order α ∈ R on Σ and set Ψ−∞

Σ := ∩α∈RΨα
Σ.

In view of Proposition 2.2 and the fact that U is unitary it is clear that each H ∈ Ψα
Σ

induces a unique bounded operator H : Hs(Σ) → Hs−α(Σ).
In what follows we discuss several special periodic pseudodifferential operators which 

will play an important role in the main part of this paper. First, let c0 > 0 be a constant 
and consider the operator

Lαu(t) =
∑
n∈Z

(
c20 + |n|

)α
2 û(n) en(t), u ∈ C∞(T ), α ∈ R, (2.6)

on C∞(T ). Note that the Fourier coefficients of Lαu are L̂αu(n) = (c20 + |n|)α
2 û(n) for 

n ∈ Z. One can show that Lα ∈ Ψα
2 and hence Lα induces an isomorphism from Hs(T )
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to Hs−α
2 (T ) for any s ∈ R. The operator L = L1 will be of particular importance in the 

following.
Using the operator U from (2.2) we introduce

Λα := U−1LαU ∈ Ψ
α
2
Σ , α ∈ R, (2.7)

and conclude that Λα : Hs(Σ) → Hs−α
2 (Σ) is an isomorphism for any α, s ∈ R, and 

ΛαΛβ = Λα+β for all α, β ∈ R. We note that the realization of Λ = Λ1 for s = 1
2 is 

viewed as an unbounded self-adjoint operator in L2(Σ) satisfying Λ ≥ c0. In particular, 
by varying c0 we get that Λ is a uniformly positive operator and that its lower bound 
can be arbitrarily large.

The following lemma, in which the adjoint of a formally symmetric periodic pseudod-
ifferential operator is described and that can be proved with standard manipulations for 
distributions, will be useful later.

Lemma 2.4. For H ∈ Ψα
Σ consider the linear operator in L2(Σ) defined by H∞u = Hu

on C∞(Σ). If H∞ is symmetric, then its adjoint H∗
∞ is given by

H∗
∞f = Hf, domH∗

∞ =
{
f ∈ L2(Σ) : Hf ∈ L2(Σ)

}
.

Various integral operators on T are in fact periodic pseudodifferential operators, which 
allows us to deduce their mapping properties from the general theory, and which can 
be translated to integral operators on Σ using the map U from (2.2). The following 
proposition is borrowed from [34, Theorem 7.6.1]; recall that ω is given by (2.4).

Proposition 2.5. Let α ∈ R and κ ∈ D′(T ) such that for any j ∈ N0 there exists cj > 0
with 

∣∣ωj κ̂(n)
∣∣ ≤ cjn

α−j for all n ∈ Z. Let h ∈ C∞(T 2). Then the operator H defined by

(Hu)(t) :=
(
κ �

(
h(t, ·)u

))
(t), u ∈ C∞(T ), (2.8)

belongs to H ∈ Ψα. In particular, the integral operator acting as

Hu(t) :=
∫
T

h(t, s)u(s) ds, u ∈ C∞(T ),

belongs to Ψ−∞.

In the following proposition we discuss a class of integral operators that appear quite 
frequently in our applications.

Proposition 2.6. Let a : T 2 → C and ρ : T → C be C∞-functions, where ρ is injective 
with ρ′(t) �= 0 for all t ∈ T . For m ∈ N0 set κm(z) := zm log |z| for z ∈ C \ {0} and 
define an integral operator Hm by
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Hmu(t) :=
∫
T

κm

(
ρ(t) − ρ(s)

)
a(t, s)u(s) ds, u ∈ C∞(T ).

Then Hm ∈ Ψ−m−1. Furthermore, in the special case a ≡ 1 and m = 0 one has

1 + 2LH0L ∈ Ψ−1, (2.9)

where the operator L is defined by (2.6).

Proof. First, we treat the case m = 0. We introduce an auxiliary function χ0 : T → R

by χ0(t) := log | sin(πt)|, then its Fourier coefficients are

χ̂0(n) =
{
− log 2, n = 0,
− 1

2|n| , n �= 0,
(2.10)

see [34, Example 5.6.1]. Next, one has

log |ρ(t) − ρ(s)| = log
∣∣ sin (π(t− s)

)∣∣+ a0(t, s), (2.11)

a0(t, s) = log
∣∣∣∣ ρ(t) − ρ(s)
sin(π(t− s))

∣∣∣∣ , t �= s, and a0(t, t) = log
(
|ρ′(t)|
π

)
.

Using Taylor expansions one sees that there exist smooth functions f1 and f2 such that

1
sin(π(t− s)) = 1

π(t− s)f1(t, s) and ρ(t) − ρ(s) = (t− s)f2(t, s),

and since ρ is injective, we have (ρ(t) − ρ(s))/ sin(π(t − s)) �= 0. One concludes that 
a0 : T 2 → C is a C∞-function. Now we decompose H0 = C0 + D0, where

C0u(t) =
∫
T

χ0(t− s) a(t, s)u(s) ds =
(
χ0 � (a(t, ·)u)

)
(t),

D0u(t) =
∫
T

a0(t, s) a(t, s)u(s) ds.

It follows from (2.10) and Proposition 2.5 that C0 ∈ Ψ−1 and D0 ∈ Ψ−∞. Therefore 
H0 ∈ Ψ−1 by Proposition 2.2.

To show (2.9) consider LH0L = LC0L +LD0L and note that the second summand is 
in Ψ−∞. Furthermore, for a ≡ 1 the Fourier coefficients of C0Lu are given by

̂C0Lu(n) = χ̂0(n)L̂u(n) = χ̂0(n)(c20 + |n|) 1
2 û(n),

and using (2.10) one finds
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̂LC0Lu(n) =
(
c20 + |n|

) 1
2 χ̂0(n)(c20 + |n|) 1

2 û(n) = b(n)û(n)

with

b(n) =
(
c20 + |n|

)
χ̂0(n) =

⎧⎨⎩−c20 log 2, n = 0,

−1
2 − c20

2|n| , n �= 0,

which shows that the action of the operator K := 1 + 2LC0L is determined by

K̂u(n) = k(n)û(n) with k(n) =
{

1 − 2c20 log 2, n = 0,
− c20

|n| , n �= 0.

Proposition 2.5 implies K ∈ Ψ−1.
For m ≥ 1 we represent ρ(t) − ρ(s) = (e−2πi(t−s) − 1) a1(t, s) with

a1(t, s) = ρ(t) − ρ(s)
e−2πi(t−s) − 1

, t �= s, and a1(t, t) = ρ′(t)
−2πi ,

and note that a1 ∈ C∞(T 2). Then using the decomposition (2.11) we write

(ρ(t) − ρ(s))m log(|ρ(t) − ρ(s)|) =
(
e−2πi(t−s) − 1

)m log(| sin(π(t− s))|)a1(t, s)m

+
(
e−2πi(t−s) − 1

)m
a0(t, s)a1(t, s)m.

This shows that Hm = Cm + Dm, where Cm and Dm are integral operators

Cmu(t) =
∫
T

(
e−2πi(t−s) − 1

)m log(| sin(π(t− s))|)a1(t, s)m a(t, s)u(s) ds,

Dmu(t) =
∫
T

(
e−2πi(t−s) − 1

)m
a0(t, s)a1(t, s)ma(t, s)u(s) ds.

The integral kernel of Dm is smooth, which implies by Proposition 2.5 that Dm ∈ Ψ−∞. 
It remains to show that Cm ∈ Ψ−(m+1). For that consider the function

χm : T → C, χm(t) :=
(
e−2πit − 1

)m log
∣∣ sin(πt)

∣∣
and remark that χ̂m(n) =

(
ωmχ̂0

)
(n). With the help of equation (2.10) it follows that 

|ωjχ̂m(n)| = |ωm+jχ̂0(n)| ≤ cjn
−m−1−j . By Proposition 2.5 this yields Cm ∈ Ψ−(m+1), 

which completes the proof of this proposition. �
Next, recall that the Hilbert transform T0 on T is defined by

T0u(t) := i p.v.
∫

cot
(
π(t− s)

)
u(s)ds = (κ � u)(t), κ = i p.v. cot(π·), (2.12)
T
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where p.v. means the principal value of the integral. By [34, Section 5.7] for the distri-
bution κ one has κ̂(n) = sgnn. It follows that T̂ 2

0 u(n) = (1 − δ0,n)û(n), and

T0 ∈ Ψ0, T 2
0 − 1 ∈ Ψ−∞. (2.13)

In the following assume that a ∈ C∞(T 2). Then the operator

(T1u)(t) = i p.v.
∫
T

cot
(
π(t− s)

)
a(s, t)u(s) ds

satisfies for a0(t) := a(t, t) the relation

T1 − a0T0 ∈ Ψ−∞, (2.14)

see Section 7.6.2 in [34]. Since the commutator T2 := a0T0 − T0a0, which acts as

T2u(t) = i p.v.
∫
T

cot
(
π(t− s)

) (
a(t, t) − a(s, s)

)
u(s) ds,

has a C∞-smooth integral kernel, the principal value can be dropped, as the integral is 
convergent, and Proposition 2.5 implies that T2 ∈ Ψ−∞. Hence, we also have

T1 − T0a0 ∈ Ψ−∞. (2.15)

Corollary 2.7. Let ρ : T → C be C∞-smooth and injective with ρ′(t) �= 0 for all t ∈ T . 
Then the operator C given by

Cu(t) = i
π

p.v.
∫
T

u(s)
ρ(t) − ρ(s) ds, u ∈ C∞(T ),

satisfies

C − 1
ρ′

T0 ∈ Ψ−∞ and C − T0
1
ρ′

∈ Ψ−∞. (2.16)

Proof. We write

1
π

1
ρ(t) − ρ(s) = cot

(
π(t− s)

)
a(t, s) with a(t, s) = 1

π

tan
(
π(t− s)

)
ρ(t) − ρ(s) , t �= s,

and a(t, t) = 1/ρ′(t). Then a ∈ C∞(T 2) and a0(t) = a(t, t) = 1/ρ′(t). Thus (2.16) follows 
from (2.14) and (2.15). �
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Finally we recall the definition of the Cauchy transform CΣ on Σ. We identify R2

with C by

R2 � x = (x1, x2) ∼ x1 + ix2 =: ξ ∈ C, R2 � y = (y1, y2) ∼ y1 + iy2 =: ζ ∈ C,

then CΣ is defined by

CΣu(ξ) := i
π

p.v.
∫
Σ

u(ζ)
ξ − ζ

dζ, u ∈ C∞(Σ), ξ ∈ Σ. (2.17)

With an arc-length parametrization γ of Σ and x = γ(t), y = γ(s) one has

CΣu
(
γ(t)

)
= i

π
p.v.

�∫
0

(
γ′
1(s) + iγ′

2(s)
)
u
(
γ(s)

)(
γ1(t) + iγ2(t)

)
−
(
γ1(s) + iγ2(s)

) ds.

Recall that for the tangent vector field t at Σ and y = γ(s) ∈ Σ we use the notation 
T (y) := t1(y) + it2(y) = γ′

1(s) + iγ′
2(s). We shall also view y �→ T (y) as a function on 

Σ or s �→ T (γ(s)) as a function on the interval [0, 	]. The same holds for the function 
T (y) := t1(y) − it2(y) = γ′

1(s) − iγ′
2(s), and we will also denote the corresponding 

multiplication operators by T and T . With this we see for u ∈ C∞(Σ) and x = γ(t) ∈ Σ
that

(CΣTu)(x) = i
π

p.v.
�∫

0

(
γ′
1(s) + iγ′

2(s)
)(
γ′
1(s) − iγ′

2(s)
)
u
(
γ(s)

)(
γ1(t) + iγ2(t)

)
−
(
γ1(s) + iγ2(s)

) ds

= i
π

p.v.
∫
Σ

u(y)
(x1 + ix2) − (y1 + iy2)

ds(y).

(2.18)

We also consider the formal dual C ′
Σ of CΣ in L2(Σ), which acts as

C ′
Σu(γ(t)) = i

π
p.v.

�∫
0

(
γ′
1(t) − iγ′

2(t)
)
u
(
γ(s)

)(
γ1(t) − iγ2(t)

)
−
(
γ1(s) − iγ2(s)

) ds (2.19)

for u ∈ C∞(Σ) and x = γ(t) ∈ Σ. Note that C ′
Σ is the operator which satisfies 

(CΣu, v)L2(Σ) = (u, C ′
Σv)L2(Σ) for all u, v ∈ C∞(Σ). Similarly as in (2.18) we have

(TC ′
Σu)(x) = i

π
p.v.

�∫
0

(
γ′
1(t) + iγ′

2(t)
)(
γ′
1(t) − iγ′

2(t)
)
u
(
γ(s)

)(
γ1(t) − iγ2(t)

)
−
(
γ1(s) − iγ2(s)

) ds

= i
π

p.v.
∫

u(y)
(x1 − ix2) − (y1 − iy2)

ds(y).

(2.20)
Σ
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In the following proposition we summarize the basic properties of CΣ and C ′
Σ which 

are needed for our further considerations. They basically follow directly from (2.18), 
(2.20), Corollary 2.7, and (2.13).

Proposition 2.8. Let CΣ and C ′
Σ be defined by (2.17) and (2.19), let U be given by (2.2), 

and let the Hilbert transform T0 be defined by (2.12). Then the following is true:

(i) CΣ − U−1T0U ∈ Ψ−∞
Σ and, in particular, CΣ ∈ Ψ0

Σ.
(ii) C ′

Σ − U−1T0U ∈ Ψ−∞
Σ and, in particular, C ′

Σ ∈ Ψ0
Σ.

Furthermore, one has C ′
ΣCΣ − 1 ∈ Ψ−∞

Σ and CΣC
′
Σ − 1 ∈ Ψ−∞

Σ .

Proof. Let us prove (i). Denote by T and T the multiplication operators by the functions 
s �→ T (γ(s)) = γ′

1(s) + iγ′
2(s) and s �→ T (γ(s)) = γ′

1(s) − iγ′
2(s) respectively. Clearly, 

they both belong to Ψ0
Σ, see [34, Section 7.2]. Hence (i) is equivalent to

CΣT − U−1T0UT = CΣT − U−1T0T
(
γ(	·)

)
U ∈ Ψ−∞

Σ ,

which in turn is equivalent, by definition, to UCΣTU
−1 − T0T (γ(	·)) ∈ Ψ−∞. For v ∈

C∞(T ) and t ∈ T , we compute 
(
UCΣTU

−1v
)
(t). Note that for x = (x1, x2) ∈ Σ and 

w(x) := (U−1v)(x), (2.3) and (2.18) give

(CΣTw)(x) = i
π

p.v.
�∫

0

w(γ(s))
(x1 + ix2) −

(
γ1(s) + iγ2(s)

) ds

= i
π

p.v.
�∫

0

v(	−1s)
(x1 + ix2) −

(
γ1(s) + iγ2(s)

) ds.

Hence, a change of variable yields

(UCΣTU
−1v)(t) = 	

i
π

p.v.
∫
T

v(s)
ρ(t) − ρ(s) ds

with ρ(t) := γ1(	t) + iγ2(	t). For all t ∈ T we have ρ′(t) = 	T
(
γ(	t)

)
�= 0 and 

1/ρ′(t) = 	−1T
(
γ(	t)

)
, and Corollary 2.7 gives 	−1UCΣTU

−1 − 	−1T0T (	·) ∈ Ψ−∞, 
which completes the proof of (i). Item (ii) is proved in a similar fashion and the last 
statement is a consequence of (i), (ii), and (2.13). This can be seen by the equivalences

T 2
0 − 1 ∈ Ψ−∞ iff UC ′

ΣU
−1UCΣU

−1 − 1 ∈ Ψ−∞ iff C ′
ΣCΣ − 1 ∈ Ψ−∞

Σ ,

and a similar argument shows CΣC
′
Σ − 1 ∈ Ψ−∞

Σ . This completes the proof. �
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2.2. Boundary triples and their Weyl functions

We recall some basic facts about boundary triples following the first chapter of the 
paper [13], in which the proofs for all statements of this subsection can be found. We also 
refer the reader to [16,17] and the monographs [8,18] for more details and applications. 
Throughout this abstract section H stands for a separable Hilbert space.

Definition 2.9. Let S be a closed densely defined symmetric operator in H. A boundary 
triple for S∗ is a triple {G, Γ0, Γ1} consisting of a Hilbert space G and two linear maps 
Γ0, Γ1 : domS∗ → G satisfying the following two conditions:

(i) For all f, g ∈ domS∗ there holds (S∗f, g)H− (f, S∗g)H = (Γ1f, Γ0g)G− (Γ0f, Γ1g)G.
(ii) The map domS∗ � f �→ (Γ0f, Γ1f) ∈ G × G is surjective.

A boundary triple for S∗ exists if and only if S admits self-adjoint extensions in H. 
From now on we assume that this is satisfied and pick a boundary triple {G, Γ0, Γ1}. 
This induces a number of additional objects. First, the operator B0 := S∗ � ker Γ0 is 
self-adjoint, and for any z ∈ resB0 one has the direct sum decomposition

domS∗ = domB0 +̇ ker(S∗ − z) = ker Γ0 +̇ ker(S∗ − z), (2.21)

showing that Γ0 � ker(S∗ − z) is bijective. This allows to define the γ-field G and the 
Weyl function M associated to {G, Γ0, Γ1} by

resB0 � z �→ Gz :=
(
Γ0 � ker(S∗ − z)

)−1 : G → H,

resB0 � z �→ Mz := Γ1 Gz : G → G.

For z ∈ resB0 the operators Gz and Mz are bounded, and z �→ Gz and z �→ Mz are 
holomorphic. Their adjoints are given by G∗

z = Γ1(B0 − z)−1 and M∗
z = Mz̄.

Let GΠ be a closed subspace of G viewed as a Hilbert space when endowed with the 
induced inner product. In addition, let Π : G → GΠ be the orthogonal projection, then 
Π∗ : GΠ → G is the canonical embedding. Finally, let Θ be a linear operator in GΠ. We 
will be interested in the operator BΠ,Θ defined as the restriction of S∗ onto the set

domBΠ,Θ =
{
f ∈ domS∗ : ΠΓ1f = ΘΠΓ0f, (1− Π∗Π)Γ0f = 0

}
,

where the boundary condition ΠΓ1f = ΘΠΓ0f in domBΠ,Θ also contains the condition 
ΠΓ0f ∈ dom Θ. A number of properties of BΠ,Θ appear to be encoded in Θ. The most 
important of them for our purposes are summarized in the following theorem:

Theorem 2.10. The operator BΠ,Θ is (essentially) self-adjoint in H if and only if Θ is 
(essentially) self-adjoint in GΠ. Furthermore, if Θ is self-adjoint and z ∈ resB0, then 
the following assertions hold:
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(i) z ∈ specBΠ,Θ if and only if 0 ∈ spec(Θ − ΠMzΠ∗).
(ii) z ∈ specp BΠ,Θ if and only if 0 ∈ specp(Θ − ΠMzΠ∗), and in that case the 

eigenspaces are related by

ker(BΠ,Θ − z) = GzΠ∗ ker(Θ − ΠMzΠ∗).

(iii) z ∈ specess BΠ,Θ if and only if 0 ∈ specess(Θ − ΠMzΠ∗).
(iii) For all z ∈ resBΠ,Θ ∩ resB0 one has

(BΠ,Θ − z)−1 = (B0 − z)−1 + GzΠ∗(Θ − ΠMzΠ∗)−1ΠG∗
z̄.

Finally we recall a special approach for the construction of boundary triples using 
abstract trace maps developed in [32] and [33], see also [13, Section 1.4.2]. Let B be a 
self-adjoint operator in the Hilbert space H, let G be another Hilbert space, and assume 
that T : domB → G is a surjective linear operator which is bounded with respect to the 
graph norm of B and such that kerT is a dense subspace of the initial Hilbert space H. 
Then S := B � kerT is a densely defined closed symmetric operator. Next, define for any 
z ∈ resB the injective operator

Gz :=
(
T(B − z̄)−1)∗, (2.22)

which is bounded from G to H. Then one has ranGz = ker(S∗ − z) for z ∈ resB and 
(2.21) leads to the direct sum decomposition

domS∗ = domB+̇ ranGz, z ∈ resB, (2.23)

which shows that for all f ∈ domS∗ there exist unique fz ∈ domB and ξ ∈ G such that 
f = fz + Gzξ; one can show that the component ξ is independent of the choice of z. 
Having these notations in hand we can formulate now the following proposition:

Proposition 2.11. Let ζ ∈ resB be fixed and define the mappings Γ0, Γ1 : domS∗ → G

for f = fζ + Gζξ = fζ̄ + Gζ̄ξ ∈ domS∗ by

Γ0f := ξ and Γ1f := 1
2 T(fζ + fζ̄).

Then {G, Γ0, Γ1} is a boundary triple for S∗ with S∗ � ker Γ0 = B. Moreover, the γ-field 
and the Weyl function are given by (2.22) and Mz = T(Gz − 1

2 (Gζ + Gζ̄)).

3. The free Dirac operator and a boundary triple for its singular perturbations

In this section we first recall the definition of the free Dirac operator in R2, a minimal 
and a maximal realization of the Dirac operator in R2 \ Σ, and we introduce and study 
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some families of integral operators which will play an important role in our analysis in 
Section 4. Afterwards, we define a boundary triple which is useful in the treatment of 
Dirac operators with singular δ-interactions.

3.1. Dirac operators and associated integral operators

For m ∈ R the free Dirac operator in R2 is defined by

A0f = −iσ · ∇f + mσ3f, domA0 = H1(R2;C2), (3.1)

where σ := (σ1, σ2) and σ3 are the C2×2-valued Pauli spin matrices in (1.3). It is well-
known that A0 is self-adjoint in L2(R2; C2) with purely essential spectrum,

specA0 = specess A0 =
(
−∞,−|m|

]
∪
[
|m|,+∞

)
.

With (1.4) one gets A2
0 = (−Δ + m2)σ0, where −Δ is the free Laplacian defined on 

H2(R2), and this implies for z ∈ res(A0)

(A0 − z)−1f(x) = (A0 + z)(−Δ + m2 − z2)−1f(x)

= (A0 + z)

⎡⎣ 1
2π

∫
R2

K0
(√

m2 − z2| · −y|
)
f(y) dy

⎤⎦ (x)

=
∫
R2

φz(x− y)f(y) dy, f ∈ L2(R2;C2),

where

φz(x) = i
√
m2 − z2

2π K1

(√
m2 − z2|x|

)(
σ · x

|x|

)
+ 1

2πK0

(√
m2 − z2|x|

)(
mσ3 + zσ0

)
;

(3.2)
here Kj stands for the modified Bessel function of second kind of order j, and we take 
the principal square root function, i.e. for z ∈ C \ [0, ∞) the number 

√
z is determined 

by Re
√
z > 0.

Next we introduce a symmetric operator which is suitable for our purposes. More 
precisely, denote by S the restriction of A0 to the functions vanishing at Σ, i.e.

Sf = (−iσ · ∇ + mσ3)f, domS = H1
0 (R2 \ Σ;C2). (3.3)

Then the operator Aη,τ defined in (1.2) is an extension of S. The standard theory implies 
that the adjoint S∗ is the maximal realization of the same differential expression in R2\Σ,

S∗f = (−iσ · ∇ + mσ3)f+ ⊕ (−iσ · ∇ + mσ3)f−,
∗ { 2 2 2 2 } (3.4)
domS = f = f+ ⊕ f− ∈ L (Ω+;C ) ⊕ L (Ω−;C ) : f± ∈ H(σ,Ω±) ,
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and we recall that

H(σ,Ω±) =
{
f± ∈ L2(Ω±;C2) : (−iσ · ∇ + mσ3)f± ∈ L2(Ω±;C2)

}
, (3.5)

which becomes a Hilbert space if endowed with the norm

‖f±‖2
H(σ,Ω±) := ‖f‖2

L2(Ω±;C2) +
∥∥(−iσ · ∇ + mσ3)f±

∥∥2
L2(Ω±;C2).

For our further considerations, it is useful to extend the Dirichlet trace operator onto 
H(σ, Ω±). In the following lemma we summarize several known results; we refer to [11, 
Lemma 2.3 and Lemma 2.4] for compact proofs:

Lemma 3.1. The trace map TD
±,0 : H1(Ω±; C2) → H

1
2 (Σ; C2), TD

±,0f = f |Σ, extends 
uniquely to a bounded linear operator TD

± : H(σ, Ω±) → H− 1
2 (Σ; C2). Moreover, if one 

has TD
±f ∈ H

1
2 (Σ; C2) for f ∈ H(σ, Ω±), then f ∈ H1(Ω±; C2).

Now we introduce some families of integral operators corresponding to the Green 
function φz from (3.2). Let us denote the Dirichlet trace operator on H1(R2; C2) by 
TD : H1(R2; C2) → H

1
2 (Σ; C2). It is well-known that TD is bounded, surjective, and 

kerTD = H1
0 (R2 \ Σ; C2); cf. [25, Theorems 3.37 and 3.40]. For z ∈ resA0 we first 

consider the bounded operator

Φ′
z := TD(A0 − z̄)−1 : L2(R2;C2) → H

1
2 (Σ;C2) (3.6)

and its anti-dual

Φz :=
(
TD(A0 − z)−1)′ : H− 1

2 (Σ;C2) → L2(R2;C2). (3.7)

Using that Φz is defined as the anti-dual of Φ′
z one finds, in a similar way as in [6, 

Proposition 3.4], that Φz acts on ϕ ∈ L2(Σ; C2) as

Φzϕ(x) =
∫
Σ

φz(x− y)ϕ(y) ds(y) for a.e. x ∈ R2 \ Σ.

Moreover, similarly as in [9, Proposition 4.4] or [29, Proposition 2.21] one gets that 
ran Φz ⊂ ker(S∗− z) ⊂ H(σ, R2 \Σ). In fact, we will see later in Proposition 3.5 that Φz

is closely related to the γ-field for a boundary triple for S∗ and hence Φz is a bounded 
bijective operator from H− 1

2 (Σ; C2) onto ker(S∗ − z).
We will also need a family of boundary integral operators with integral kernel φz. For 

this purpose we first expose the structure of the Green function φz in more detail:

Lemma 3.2. Let z ∈ resA0 and consider the function φz in (3.2). Then there exist scalar 
analytic functions g1, g2, g3, and g4 and a constant c1 < 0 such that
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φz(x) = i
2π σ · x

|x|2 − 1
2π

(
log |x| + log

√
m2 − z2 + c1

)
(mσ3 + zσ0)

+ i
2π (m2 − z2)

[
g1
(
(m2 − z2)|x|2

)(
log

√
m2 − z2 + log |x|

)
+ g2

(
(m2 − z2)|x|2

)]
(σ · x) (3.8)

+ 1
2π (m2 − z2)|x|2

[
g3
(
(m2 − z2)|x|2

)(
log

√
m2 − z2 + log |x|

)
+ g4

(
(m2 − z2)|x|2

)]
(mσ3 + zσ0).

In particular, there exist C∞-smooth matrix valued functions f1 and f2 such that

φz(x) = i
2π

⎛⎜⎝ 0 1
x1 + ix21

x1 − ix2
0

⎞⎟⎠+ f1(x) log |x| + f2(x). (3.9)

Proof. In order to prove the claimed results, let us recall the series representations of 
Kj from, e.g., §10.25.2, 10.31.1, and 10.31.2 in [27], which read

Iμ(t) = tμ

2μ
∞∑
k=0

t2k

4kk!Γ(μ + k + 1) , μ ∈ {0, 1},

K1(t) = 1
t

+ (log t− log 2)I1(t) −
t

4

∞∑
k=0

(
ψ(k + 1) + ψ(k + 2)

) t2k

4kk!(k + 1)! ,

K0(t) = −(log t− log 2 + γ)I0(t) +
∞∑
k=1

k∑
j=1

1
j

t2k

4k(k!)2 ,

with ψ(t) = Γ′(t)/Γ(t) and γ = −ψ(1) < log 2. This implies first that I0(t) = 1 +t2h0(t2)
and I1(t) = th1(t2) with some analytic functions h0 and h1. Furthermore, with some 
analytic functions k0 and k1 we have

K1(t) = 1
t

+ th1(t2) log t + t
(
k1(t2) − h1(t2) log 2

)
,

K0(t) = − log t− c1 − t2h0(t2) log t− c1t
2h0(t2) + t2k0(t2)

with c1 := γ − log 2 < 0. This can be rewritten in a simplified form as

K1(t) = 1
t

+ tg1(t2) log t + tg2(t2), K0(t) = − log t− c1 + t2g3(t2) log t + t2g4(t2),

where g1, g2, g3, and g4 are analytic functions and c1 < 0. Using this now in the explicit 
expression for φz from (3.2) one immediately gets (3.8). The representation (3.9) follows 
from (3.8) after noting that
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i
2π σ · x

|x|2 = i
2π

⎛⎜⎝ 0 1
x1 + ix21

x1 − ix2
0

⎞⎟⎠ . �

For z ∈ resA0 we introduce the operator

Czϕ(x) := p.v.
∫
Σ

φz(x− y)ϕ(y)ds(y), ϕ ∈ C∞(Σ;C2), x ∈ Σ. (3.10)

The basic properties of Cz are stated in the following proposition. For the formulation of 
the result, recall the definition of the operator Λ from (2.7) and of the Cauchy transform 
CΣ and its dual C ′

Σ from (2.17) and (2.19), respectively.

Proposition 3.3. Let z ∈ resA0 and consider the operator Cz in (3.10). Then Cz ∈ Ψ0
Σ

and, in particular, Cz gives rise to a bounded operator in Hs(Σ; C2) for any s ∈ R. The 
realization in L2(Σ; C2) satisfies C∗

z = Cz̄. Moreover, if t = (t1, t2) is the tangent vector 
field at Σ and T = t1 + it2, T = t1 − it2, then with some Ψ ∈ Ψ−1

Σ one has

ΛCzΛ = 1
2

(
0 ΛCΣTΛ

ΛTC ′
ΣΛ 0

)
+ 	

4π

(
(z + m)1 0

0 (z −m)1

)
+ Ψ. (3.11)

Proof. We make use of (3.8) to decompose φz in the form φz(x) = χ1(x) +χ2(x) +χ3(x), 
where

χ1(x) = i
2π

⎛⎜⎝ 0 1
x1 + ix21

x1 − ix2
0

⎞⎟⎠ , χ2(x) = − 1
2π

(
z + m 0

0 z −m

)
log |x|,

χ3(x) =
[
h1
(
|x|2

)
log |x| + h2

(
|x|2

)]
(σ · x)

+
[
|x|2h3

(
|x|2

)
log |x| + h4

(
|x|2

)]
(mσ3 + zσ0),

and hj are analytic functions. Now use the decomposition Cz = P1 + P2 + P3,

(P1ϕ)(x) = p.v.
∫
Σ

χ1(x− y)ϕ(y) ds(y), (Pjϕ)(x) =
∫
Σ

χj(x− y)ϕ(y) ds(y), j = 2, 3;

we have removed the principal value in the expressions for P2 and P3 as the integral 
kernels are sufficiently regular and the integrals converge, see, e.g., [21, Proposition 3.10].

Let us discuss the operator P1 first. With the help of (2.18) and (2.20) we obtain

P1 = 1
2

(
0 CΣT

TC ′
Σ 0

)
(3.12)

and since T, T ∈ Ψ0
Σ we conclude from Proposition 2.8 that P1 ∈ Ψ0

Σ.
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Next, we claim that the integral operator P2 admits the representation

P2 = 	

4π

(
(z + m)Λ−2 0

0 (z −m)Λ−2

)
+ Ψ1 (3.13)

with some Ψ1 ∈ Ψ−2
Σ ; due to Λ−2 = U−1L−2U ∈ Ψ−1

Σ this implies P2 ∈ Ψ−1
Σ . In fact, 

using the parametrization γ : [0, 	] → R2 of Σ we find

(UP2f)(t) = − 	

2π

(
z + m 0

0 z −m

)∫
T

log
∣∣γ(	t) − γ(	s)

∣∣ f(γ(	s)
)
ds

for f ∈ C∞(Σ). Therefore, with f = U−1u and ρ(·) = γ1(	·) +iγ2(	·) ≡ γ(	·) we conclude

(UP2U
−1u)(t) = − 	

2π

(
z + m 0

0 z −m

)∫
T

log
∣∣ρ(t) − ρ(s)

∣∣u(s) ds

= − 	

2π

(
z + m 0

0 z −m

)
H0u(t)

with H0 as in Proposition 2.6. Now it follows from Proposition 2.6 (with m = 0, a ≡ 1, 
and ρ as above) that H0 ∈ Ψ−1 and 1 +2LH0L ∈ Ψ−1. Furthermore, Proposition 2.2 (ii) 
and L−1 ∈ Ψ− 1

2 yield 1
2L

−2 + H0 ∈ Ψ−2 and hence

− 	

4π

(
(z + m)L−2 0

0 (z −m)L−2

)
+ UP2U

−1 ∈ Ψ−2,

− 	

4π

(
(z + m)Λ−2 0

0 (z −m)Λ−2

)
+ P2 ∈ Ψ−2

Σ ,

which leads to (3.13).
It will be shown now that P3 ∈ Ψ−2

Σ . Indeed, setting again ρ(·) = γ1(	·) +iγ2(	·) ≡ γ(	·)
we see that χ3 decomposes as

χ3(ρ(t) − ρ(s)) = log |ρ(t) − ρ(s)|a1(t, s)
(

0 ρ(t) − ρ(s)
ρ(t) − ρ(s) 0

)
+ a2(t, s)

with the C∞-smooth matrix-valued functions

a1(t, s) := h1
(
|ρ(t) − ρ(s)|2

)
σ0

+ h3
(
|ρ(t) − ρ(s)|2

)
(mσ3 + zσ0)

(
0 ρ(t) − ρ(s)

ρ(t) − ρ(s) 0

)
,

a2(t, s) := h2
(
|ρ(t) − ρ(s)|2

)] ( 0 ρ(t) − ρ(s)
ρ(t) − ρ(s) 0

)
( 2)
+ h4 |ρ(t) − ρ(s)| (mσ3 + zσ0).
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Hence, it follows as above in the proof of (3.13) with Proposition 2.6 applied in the case 
m = 1 that UP3U

−1 = H1 ∈ Ψ−2, so that P3 ∈ Ψ−2
Σ . Together with (3.12) and (3.13)

this implies first Cz ∈ Ψ0
Σ and in a second step, together with Proposition 2.2 (i) and 

Λ ∈ Ψ
1
2
Σ, that also (3.11) is true.

Finally, since φz(y − x)∗ = φz(x − y), we find that the realization of Cz in L2(Σ; C2)
satisfies C∗

z = Cz̄. Hence, all claims have been shown. �
Finally, we prove a result on how Φz and Cz are related to each other by taking traces. 

Recall that TD
± is the Dirichlet trace operator on H(σ, Ω±), see Lemma 3.1, and that 

TD
±Φzϕ is well-defined for ϕ ∈ H−1/2(Σ; C2), as ran Φz ⊂ ker(S∗ − z) ⊂ H(σ, R2 \ Σ).

Proposition 3.4. For ϕ ∈ H− 1
2 (Σ; C2) one has TD

±Φzϕ = ∓ 
i
2 (σ · ν) ϕ + Czϕ.

Proof. It suffices to prove the equality for ϕ ∈ C∞(Σ; C2); it is then extended by 
continuity to all ϕ ∈ H− 1

2 (Σ; C2). The assertion essentially follows from the classical 
Plemelj-Sokhotskii formula, see, e.g., [34, Theorem 4.1.1], which states that the holo-
morphic function

C \ Σ � ξ �→ Φ(ξ) = 1
2πi

∫
Σ

ϕ(ζ)
ζ − ξ

dζ

satisfies

TD
±Φ(ξ) = 1

2πi p.v.
∫
Σ

ϕ(ζ)
ζ − ξ

dζ ± 1
2 ϕ(ξ), ξ ∈ Σ. (3.14)

In order to use it, recall that by (3.9) we can write φz(x) = χ1(x) + χ̃2(x) with

χ1(x) = − 1
2πi

⎛⎜⎝ 0 1
x1 + ix21

x1 − ix2
0

⎞⎟⎠ and χ̃2(x) = f1(x) log |x| + f2(x),

where f1 and f2 are C∞-smooth matrix functions. We decompose Φz = Ψ1 + Ψ2 and 
Cz = P1 + P2 with

Ψ1ϕ(x) =
∫
Σ

χ1(x− y)ϕ(y) ds(y) Ψ2ϕ(x) =
∫
Σ

χ̃2(x− y)ϕ(y) ds(y),

P1ϕ(x) = p.v.
∫
Σ

χ1(x− y)ϕ(y) ds(y), P2ϕ(x) =
∫
Σ

χ̃2(x− y)ϕ(y) ds(y).

As in the proof of Proposition 3.3 we have removed the principal value from the expression 
for P2, since the integral converges. One sees easily that Ψ2ϕ is continuous on R2, and 
its value on Σ coincides with P2ϕ, i.e.
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TD
±Ψ2ϕ = P2ϕ. (3.15)

In order to find the relation between Ψ1ϕ and P1ϕ, we write the normal vector field as a 
complex number N = ν1 + iν2 = γ′

2 − iγ′
1 and note that d(y1 + iy2) = iN(y) ds(y). With 

ϕ = (ϕ1, ϕ2) a computation leads to

Ψ1ϕ(x) =

⎛⎜⎜⎜⎜⎜⎝
1

2πi

∫
Σ

−iN(y)ϕ2(y)
(y1 + iy2) − (x1 + ix2)

d(y1 + iy2)

− 1
2πi

∫
Σ

−iN(y)ϕ1(y)
(y1 + iy2) − (x1 + ix2)

d(y1 + iy2)

⎞⎟⎟⎟⎟⎟⎠ .

Applying now (3.14) to each component of this vector we find that

TD
±Ψ1ϕ(x) =

⎛⎜⎜⎜⎜⎝
− 1

2πi p.v.
∫
Σ

ϕ2(y)
(x1 + ix2) − (y1 + iy2)

ds(y)

− 1
2πi p.v.

∫
Σ

ϕ1(y)
(x1 − ix2) − (y1 − iy2)

ds(y)

⎞⎟⎟⎟⎟⎠∓ i
2

(
N(x)ϕ2(x)
N(x)ϕ1(x)

)

= P1ϕ(x) ∓ i
2 (σ · ν(x))ϕ(x).

A combination of this and (3.15) leads to the claim of this proposition. �
3.2. A boundary triple for Dirac operators with singular interactions supported on a 
loop

We now follow the strategy from Section 2.2 to introduce a boundary triple which is 
suitable to study our main operator Aη,τ . The construction will heavily use the results of 
Section 3.1. The final formulas are closely related to those of [9] for the three dimensional 
case.

Recall that the free Dirac operator A0, its symmetric restriction S as well as the 
adjoint S∗ were defined in (3.1), (3.3), and (3.4). Moreover, TD

± is the Dirichlet trace 
operator defined on domS∗ from Lemma 3.1, the integral operators Φz and Cz are 

introduced for z ∈ resA0 in (3.7) and (3.10), respectively. The operator Λ ∈ Ψ
1
2
Σ is given 

by (2.7) and will sometimes be viewed as an isomorphism from L2(Σ; C2) to H− 1
2 (Σ; C2)

or from H
1
2 (Σ; C2) to L2(Σ; C2), and is also regarded as an unbounded strictly positive 

self-adjoint operator in L2(Σ; C2).

Proposition 3.5. Let ζ ∈ resA0 be fixed. Define Γ0, Γ1 : domS∗ → L2(Σ; C2) by

Γ0f = iΛ−1(σ · ν)
(
TD

+ f+ − TD
−f−),

Γ1f = 1 Λ
(
(TD

+ f+ + TD
−f−) − (Cζ + Cζ̄)ΛΓ0f

)
, f = f+ ⊕ f− ∈ domS∗.

(3.16)

2
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Then {L2(Σ; C2), Γ0, Γ1} is a boundary triple for S∗ such that A0 = S∗ � ker Γ0. More-
over, the corresponding γ-field and Weyl function are

resA0 � z �→ Gz = ΦzΛ and resA0 � z �→ Mz = Λ
(
Cz −

1
2
(
Cζ + Cζ̄

))
Λ.

Proof. Recall that the Dirichlet trace operator TD : H1(R2; C2) → H
1
2 (Σ; C2) is 

bounded and surjective with kerTD = H1
0 (R2 \ Σ; C2). Hence,

T := ΛTD : H1(R2;C2) = domA0 → L2(Σ;C2)

is bounded and surjective with kerT = domS. Following the constructions in Section 2.2
for B = A0 we consider T(A0 − z̄)−1 = ΛTD(A0 − z̄)−1 = ΛΦ′

z for z ∈ resA0 with Φ′
z

given by (3.6), so that the operator Gz from (2.22) in the present context is given by

Gz = ΦzΛ. (3.17)

Let ζ ∈ resA0 be fixed. Then, by (2.23) any function f ∈ domS∗ can be written as 
f = fζ +Gζξ = fζ̄ +Gζ̄ξ for some ξ ∈ L2(Σ; C2) and fζ , fζ̄ ∈ H1(R2; C2), and according 
to Proposition 2.11

Γ0f = ξ and Γ1f = 1
2
(
Tfζ + Tfζ̄

)
defines a boundary triple for S∗ such that A0 = S∗ � ker Γ0.

Next we show that the above boundary maps coincide with the more explicit rep-
resentations of Γ0 and Γ1 stated in the proposition. Let f = fζ + Gζξ = fζ + ΦζΛξ
with ξ ∈ L2(Σ; C2) and fζ ∈ H1(R2; C2) be fixed. Using that the jump of the trace of 
fζ ∈ H1(R2; C2) at Σ is zero and the trace formula from Proposition 3.4 we find

TD
+ f+ − TD

−f− = TD
+
(
ΦζΛξ

)
+ − TD

−
(
ΦζΛξ

)
−

= − i
2 (σ · ν)Λξ + CζΛξ −

i
2 (σ · ν)Λξ − CζΛξ = −i(σ · ν)Λξ.

Hence, Γ0f = ξ = iΛ−1(σ · ν)(TD
+ f+ − TD

−f−), which is the claimed formula for Γ0f . 
Employing again Proposition 3.4 we find

TDfζ = 1
2
(
TD

+ (f − ΦζΛξ)+ + TD
− (f − ΦζΛξ)−

)
= 1

2

(
TD

+ f+ − CζΛξ + i
2(σ · ν)Λξ + TD

−f− − CζΛξ −
i
2 (σ · ν)Λξ

)
= 1

2

(
TD

+ f+ + TD
−f−

)
− CζΛΓ0f

and analogously TDfζ̄ = 1
2
(
TD

+ f+ + TD
−f−

)
− Cζ̄ΛΓ0f . By summing up the last two 

formulae we find
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Γ1f = 1
2
(
Tfζ + Tfζ̄

)
= 1

2Λ
(
TDfζ + TDfζ̄

)
= 1

2Λ
(
(TD

+ f+ + TD
−f−) − (Cζ + Cζ̄)ΛΓ0f

)
,

which is the claimed formula for Γ1 in (3.16).
Finally, the claimed representation of the γ-field follows from Proposition 2.11 and the 

equality (3.17). Using again Proposition 3.4, we can simplify the formula for the Weyl 
function Mz from Proposition 2.11 and get for ϕ ∈ L2(Σ; C2)

Mzϕ = ΛTD
+

(
Φz −

1
2(Φζ + Φζ̄)

)
Λϕ

= Λ
(
Cz −

i
2 (σ · ν) − 1

2

(
Cζ −

i
2 (σ · ν) + Cζ̄ −

i
2 (σ · ν)

))
Λϕ

= Λ
(
Cz −

1
2
(
Cζ + Cζ̄

) )
Λϕ.

Remark that in the above computation we used the well-known regularization property 
(Gz− 1

2 (Gζ +Gζ̄))ϕ ∈ domA0 = H1(R2; C2), which holds automatically by the abstract 
theory (see the formula for the Weyl function in Proposition 2.11), and hence TD and TD

+
lead to the same trace in the second equality above. Therefore, all claimed statements 
have been shown. �

Finally, we state an auxiliary regularity result that will be used later.

Lemma 3.6. Let f ∈ domS∗. Then f ∈ H1(R2 \ Σ; C2) if and only if Γ0f ∈ H1(Σ; C2).

Proof. First, if f = f+ ⊕ f− ∈ H1(R2 \ Σ; C2), then one has TD
±f± ∈ H

1
2 (Σ; C2)

implying TD
+ f+ − TD

−f− ∈ H
1
2 (Σ; C2). As σ · ν is a C∞-matrix function it follows that 

i(σ ·ν)
(
TD

+ f+−TD
−f−

)
∈ H

1
2 (Σ; C2). Using that Λ is a bijection from Hs(Σ) to Hs− 1

2 (Σ)
for all s ∈ R, this yields

Γ0f = iΛ−1(σ · ν)
(
TD

+ f+ − TD
−f−

)
∈ H1(Σ;C2).

Conversely, let f = f+⊕f− ∈ domS∗ with Γ0f ∈ H1(Σ; C2). As Λ : H1(Σ) → H
1
2 (Σ)

is bijective and the C∞-matrix function σ ·ν is invertible we conclude from the definition 
of Γ0 that

TD
+ f+ − TD

−f− ∈ H
1
2 (Σ;C2). (3.18)

By Proposition 3.3 the operators Cζ and Cζ̄ are bounded in H
1
2 (Σ; C2), which gives 

(Cζ +Cζ̄)ΛΓ0f ∈ H
1
2 (Σ; C2). In addition, Γ1f ∈ L2(Σ; C2) implies Λ−1Γ1 ∈ H

1
2 (Σ; C2). 

With the definition of Γ1 this yields

1(
TD

+ f+ + TD
−f−

)
= Λ−1Γ1f + 1(Cζ + Cζ̄)ΛΓ0f ∈ H

1
2 (Σ;C2).
2 2
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Hence, together with (3.18) this implies TD
±f± ∈ H

1
2 (Σ; C2). Finally, Lemma 3.1 shows 

f± ∈ H1(Ω±; C2). �
3.3. Some basic properties of the self-adjoint extensions

In this subsection we prove two results which are valid for the essential and discrete 
spectra of a large class of self-adjoint extensions of S defined in (3.3) and which are 
independent of the preceding construction of a boundary triple. These properties will be 
used later for a more detailed spectral analysis of Aη,τ .

For the essential spectrum we have the following result, which can be proved using a 
singular Weyl sequence constructed in a similar way as in [9, Theorem 5.7 (i)]:

Proposition 3.7. For any self-adjoint extension A of S one has the inclusion(
−∞,−|m|

]
∪
[
|m|,+∞

)
⊂ specess A.

Some information about the discrete spectrum can be obtained under an additional 
regularity assumption:

Proposition 3.8. Let A be a self-adjoint extension of the symmetric operator S in 
L2(R2; C2) satisfying the inclusion domA ⊂ Hs(R2 \ Σ; C2) for some s > 0. Then 
the spectrum of A in (−|m|, |m|) is purely discrete and finite.

Proof. It is sufficient to show that A2 has at most finitely many eigenvalues in (−∞, m2). 
For that, consider the quadratic form

a[f, f ] =
∫
R2

|Af |2 dx, dom a = domA.

Since A is self-adjoint and hence closed, also the densely defined nonnegative form a
is closed. The self-adjoint operator associated to a via the first representation theorem 
is A2. Next, take 0 < r < R with r chosen sufficiently large, such that the open ball 
Br = {x ∈ R2 : |x| < r} contains Ω+ in its interior, and choose ϕ1, ϕ2 ∈ C∞(R2) which 
satisfy

0 ≤ ϕ1, ϕ2 ≤ 1, ϕ2
1 + ϕ2

2 = 1, ϕ1 = 1 in Br, ϕ2 = 1 in R2 \BR.

Let f ∈ domA be fixed. Then one has ϕjf ∈ domA and A(ϕjf) = ϕjAf − iσ · (∇ϕj)f . 
In particular, we note that ϕ2f ∈ H(σ, Ω−) with TD

−f = 0 ∈ H
1
2 (Σ; C2). Thus, it follows 

from Lemma 3.1 that ϕ2f ∈ H1(Ω−; C2).
Next, we remark that ∇ϕj is supported in BR \Br. Hence, we have for j ∈ {1, 2}

a[ϕjf, ϕjf ] =
∫ (

ϕ2
j |Af |2 + |iσ · (∇ϕj)f |2

)
dx + Ij ,
R2
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Ij :=
∫

BR\Br

2 Re
(
ϕj(−iσ · ∇ + mσ3)f,−iσ · (∇ϕj)f

)
C2 dx

=
∫

BR\Br

Re
(
(−iσ · ∇ + mσ3)f,−iσ · ∇(ϕ2

j )f
)
C2 dx.

From ϕ2
1 + ϕ2

2 = 1 we obtain ∇(ϕ2
1) = −∇(ϕ2

2) and hence I1 = −I2. Moreover, using 
(1.4) one verifies |iσ · (∇ϕj)f |2 = |∇ϕj |2|f |2 for j ∈ {1, 2}. Therefore, it follows that

a[ϕ1f, ϕ1f ] + a[ϕ2f, ϕ2f ] =
∫
R2

(ϕ2
1 + ϕ2

2)|Af |2 dx +
∫
R2

(
|∇ϕ1|2 + |∇ϕ2|2

)
|f |2

)
dx

=
∫
R2

|Af |2 dx +
∫
R2

V |f |2 dx,

where we have used the abbreviation V := |∇ϕ1|2 + |∇ϕ2|2 in the last step; note that V
is supported in BR \Br. This leads to

a[f, f ] = a[ϕ1f, ϕ1f ] −
∫
R2

V |ϕ1f |2 dx + a[ϕ2f, ϕ2f ] −
∫
R2

V |ϕ2f |2 dx. (3.19)

In the following we will often restrict functions in dom a to BR or R2 \ Br and view 
them as elements in L2(BR; C2) or L2(R2 \ Br; C2), or we will extend L2-functions on 
BR or R2 \ Br by zero onto R2 and view them as elements in L2(R2; C2). We find it 
convenient to use the same letter for the original and the restricted or extended function.

Let a1 be the quadratic form in L2(BR; C2) defined by

dom a1 =
{
g ∈ dom a : supp g ⊂ BR

}
, a1[g, g] = a[g, g] −

∫
BR

V |g|2 dx.

As V is bounded and a is nonnegative it follows that a1 is semibounded from below. It 
is also clear that a1 is densely defined in L2(BR; C2). To see that a1 is closed consider 
gn ∈ dom a1 such that gn → g in L2(BR; C2) for n → ∞ and a1(gn − gm, gn − gm) → 0
for n, m → ∞. Since V is bounded it follows that the zero extensions of gn and g satisfy 
gn → g in L2(R2; C2) for n → ∞ and a(gn − gm, gn − gm) → 0 for n, m → ∞. As a
is closed we conclude g ∈ dom a and a(gn − g, gn − g) → 0 for n → ∞. Furthermore, 
as supp g ⊂ BR we have g ∈ dom a1 and a1(gn − g, gn − g) → 0 for n → ∞, thus a1 is 
closed. Let A1 be the self-adjoint operator in L2(BR; C2) corresponding to a1. Then A1

has a compact resolvent since the form domain dom a1 ⊂ Hs(BR \ Σ; C2) is compactly 
embedded in L2(BR; C2) for s > 0. Hence, the number of eigenvalues N(A1, m2) of A1

below m2 is finite, that is, N(A1, m2) < ∞.
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Next, let a2 be the quadratic form in L2(R2 \Br; C2) defined by

dom a2 = H1
0
(
R2 \Br;C2), a2[g, g] = a[g, g] −

∫
R2\Br

V |g|2 dx.

As above it is clear that a2 is densely defined and semibounded from below. Using 
integration by parts and (1.4) one sees for g ∈ C∞

0 (R2 \Br; C2) that

a[g, g] =
∫

R2\Br

(
g, (−iσ · ∇ + mσ3)2g

)
C2 dx

=
∫

R2\Br

(
g, (−Δ + m2)g

)
C2 dx =

∫
R2\Br

(
|∇g|2 + m2|g|2

)
dx,

which then extends by density to all g ∈ H1
0
(
R2 \ Br; C2). Therefore, the form a2 is 

closed and the self-adjoint operator associated to a2 is A2 = −ΔD + m2 − V , where 
−ΔD denotes the Dirichlet Laplacian in R2 \Br.

Let us prove that N(A2, m2) < ∞. Recall that V is bounded and that its support is 
contained in BR. Consider the following closed sesquilinear forms a3 in L2(BR \Br) and 
a4 in L2(R2 \BR),

a3[g, g] =
∫

BR\Br

(
|∇g|2 + (m2 − V )|g|2

)
dx,

dom a3 =
{
g ∈ H1(BR \Br;C2) : g = 0 on ∂Br

}
,

a4[g, g] =
∫

R2\BR

(
|∇g|2 + m2|g|2

)
dx, dom a4 = H1(R2 \BR).

For g ∈ dom a2 one has f3 := g � BR \ Br ∈ dom a3, f4 := g � R2 \ BR ∈ dom a4, and 
a2(g, g) = a3(f3, f3) + a4(f4, f4). Therefore, if the self-adjoint operator in L2(BR \ Br)
generated by a3 is denoted by A3 and A4 is the self-adjoint operator in L2(R2 \ BR)
generated by a4, then it follows by the min-max principle that the eigenvalues of a2 are 
bounded from below by the respective eigenvalues of A3 ⊕A4. In particular, this implies 
N(A2, m2) ≤ N(A3, m2) + N(A4, m2). One clearly has N(A4, m2) = 0. On the other 
hand, the operator A3 is semibounded from below and has a compact resolvent, hence, 
N(A3, m2) < ∞. This implies N(A2, m2) < ∞.

Now we consider J : L2(R2; C2) → L2(BR; C2) ⊕ L2(R2 \ Br; C2), Jf = ϕ1f ⊕ ϕ2f . 
Due to the properties of ϕ1 and ϕ2 we get that J is an isometry. The above considerations 
show that J(dom a) ⊂ dom a1 ⊕ dom a2, and with the equality (3.19) we obtain

a[f, f ]
‖f‖2

2 2 2
= (a1 ⊕ a2)[Jf, Jf ]

‖Jf‖2
2 2 2 2 2

.

L (R ;C ) L (BR;C )⊕L (R \Br;C )
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It follows from the min-max principle that

N(A2,m2) ≤ N(A1 ⊕A2,m
2) = N(A1,m

2) + N(A2,m
2).

As we have seen above, the quantity on the right hand side is finite and hence 
N(A2, m2) < ∞. This completes the proof. �
4. Dirac operators with singular interactions

In this section we study the Dirac operator Aη,τ introduced in (1.2) and we prove 
the main results of this paper. First, in Section 4.1 we show how Aη,τ is related to the 
boundary triple {L2(Σ; C2), Γ0, Γ1} from Proposition 3.5. Then, in Section 4.2, we verify 
the self-adjointness of Aη,τ for non-critical interaction strengths, i.e. when η2 − τ2 �= 4, 
and investigate the spectral properties of Aη,τ in this setting. In Section 4.3 we study 
the self-adjointness and the spectral properties of Aη,τ in the case of critical interaction 
strengths. Finally, in Section 4.4 we provide a sketch of the proof of Theorem 1.3.

4.1. Definition of Aη,τ via the boundary triple

Recall the definition of the space H(σ, Ω±) from (3.5), the trace maps TD
± on H(σ, Ω±)

in Lemma 3.1, and that the operator Aη,τ in (1.2) is defined by

Aη,τf = (−iσ · ∇ + mσ3)f+ ⊕ (−iσ · ∇ + mσ3)f−,

domAη,τ =
{
f = f+ ⊕ f− ∈ H(σ,Ω+) ⊕H(σ,Ω−) :

− i(σ · ν)
(
TD

+ f+ − TD
−f−

)
= 1

2(ησ0 + τσ3)
(
TD

+ f+ + TD
−f−

)}
.

(4.1)

Before analyzing the properties of Aη,τ we would like to mention that for special 
values of the interaction strengths Aη,τ decouples to Dirac operators in L2(Ω+; C2)
and L2(Ω−; C2) subject to certain boundary conditions. Similar effects are known in 
dimension three, see [19, Section V], [4, Section 5], and [7, Lemma 3.1]. The result reads 
as follows:

Lemma 4.1. Let η, τ ∈ R. Then the following holds:

(i) If η2− τ2 �= −4, then there is an invertible matrix M , which is explicitly given below 
in (4.4), such that f = f+ ⊕ f− ∈ domAη,τ if and only if TD

+ f+ = MTD
−f−.

(ii) If η2− τ2 = −4, then Aη,τ = A+⊕A−, where A± is a Dirac operator in L2(Ω±; C2)
and f± ∈ domA± if and only if

TD
±f± = ± i (σ · ν) (ησ0 + τσ3)TD

±f±. (4.2)
2
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Remark 4.2. Assume that η2 − τ2 = −4, which is equivalent to η
2

τ2 + 4
τ2 = 1. Thus, there 

exists ϑ ∈ [0, 2π] \ {π
2 , 

3π
2 } such that η/τ = − sinϑ and 2/τ = cosϑ. Using (1.4) we see 

that (4.2) for f+ is equivalent to

0 = 2i
τ
σ3(σ ·ν)

(
σ0 −

i
2 (σ · ν) (ησ0 + τσ3)

)
TD

+ f+ =
(
σ0+iσ3(σ ·ν) cosϑ−sinϑσ3

)
TD

+ f+,

i.e. the operators A+ in the bounded domain Ω+ are exactly those investigated in [11]. 
The case ϑ = 0 corresponds to the well-known infinite mass boundary condition, which 
is the two dimensional analog of the MIT bag boundary condition, studied in [2,26,36]. 
We would like to point out that our results on Aη,τ obtained later in Section 4.2 can be 
used for a deeper understanding for A±.

Proof of Lemma 4.1. The transmission condition in the definition of Aη,τ takes the form(
i(σ · ν) + 1

2(ησ0 + τσ3)
)

TD
+ f+ =

(
i(σ · ν) − 1

2(ησ0 + τσ3)
)

TD
−f−.

Multiplying this equation with −i (σ · ν) we obtain the equivalent form

(σ0−R)TD
+ f+ = (σ0+R)TD

−f−, R := i
2 (σ ·ν)(ησ0+τσ3) = i

2 (ησ0−τσ3)(σ ·ν), (4.3)

where (1.4) was used. One computes

R2 = i
2 (ησ0 − τσ3)(σ · ν) i

2 (σ · ν)(ησ0 + τσ3) = −η2 − τ2

4 σ0,

which implies (σ0 −R)(σ0 + R) = σ0 −R2 = σ0 + η2−τ2

4 σ0. Assume now η2 − τ2 �= −4. 
Then both σ0 ± R are invertible with (σ0 ± R)−1 = 4

4+η2−τ2 (σ0 ∓ R). Therefore, the 
transmission condition can be equivalently rewritten as

TD
+ f+ = (σ0 −R)−1(σ0 + R)TD

−f− or TD
−f− = (σ0 + R)−1(σ0 −R)TD

+ f+, (4.4)

which shows assertion (i). On the other hand, for η2 − τ2 = −4 one has R2 = σ0 and 
multiplying (4.3) by σ0 −R or σ0 +R leads to the two conditions TD

±f± = ±RTD
±f±. It 

follows that the operator Aη,τ decouples in an orthogonal sum of operators A± acting 
in Ω± and hence, also statement (ii) has been shown. �

Let us represent Aη,τ using the boundary triple {L2(Σ; C2), Γ0, Γ1} constructed in 
Proposition 3.5. Note that the definition of Γ0 and Γ1 can be rewritten as

i(σ · ν)
(
TD

+ f+ − TD
−f−

)
= ΛΓ0f, (4.5)

1 (
TD

+ f+ + TD
−f−

)
= Λ−1Γ1f + 1 (Cζ + Cζ̄)ΛΓ0f. (4.6)
2 2
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Proposition 4.3. Let η, τ ∈ R. Then the following holds:

(i) Assume |η| �= |τ |. Let Θ be the linear operator in L2(Σ; C2) obtained as the maximal 
realization of the periodic pseudodifferential operator θ ∈ Ψ1

Σ given by

θ = −Λ
[

1
η2 − τ2 (ησ0 − τσ3) + 1

2 (Cζ + Cζ̄)
]
Λ, (4.7)

i.e. dom Θ =
{
ϕ ∈ L2(Σ; C2) : θϕ ∈ L2(Σ; C2)

}
and Θϕ = θϕ. Then

domAη,τ =
{
f ∈ domS∗ : Γ0f ∈ dom Θ, Γ1f = ΘΓ0f

}
. (4.8)

(ii) Assume η = τ �= 0, let Π+ : L2(Σ; C2) � (ϕ1, ϕ2) �→ ϕ1 ∈ L2(Σ) and let Θ+
be the linear operator in L2(Σ) obtained as the maximal realization of the periodic 
pseudodifferential operator θ+ ∈ Ψ1

Σ given by

θ+ = −Λ
(

1
2η + 1

2 Π+(Cζ + Cζ̄)Π∗
+

)
Λ, (4.9)

i.e. dom Θ+ =
{
ϕ ∈ L2(Σ) : θ+ϕ ∈ L2(Σ)

}
and Θ+ϕ = θ+ϕ. Then

domAη,τ =
{
f ∈ domS∗ : Π+Γ1f = Θ+Π+Γ0f, (σ0 − Π∗

+Π+)Γ0f = 0
}
. (4.10)

(iii) Assume η = −τ �= 0, let Π− : L2(Σ; C2) � (ϕ1, ϕ2) �→ ϕ2 ∈ L2(Σ) and let Θ−
be the linear operator in L2(Σ) obtained as the maximal realization of the periodic 
pseudodifferential operator θ− ∈ Ψ1

Σ given by

θ− = −Λ
(

1
2η + 1

2 Π−(Cζ + Cζ̄)Π∗
−

)
Λ, (4.11)

i.e. dom Θ− =
{
ϕ ∈ L2(Σ) : θ−ϕ ∈ L2(Σ)

}
and Θ−ϕ = θ−ϕ. Then

domAη,τ =
{
f ∈ domS∗ : Π−Γ1f = Θ−Π−Γ0f, (σ0 − Π∗

−Π−)Γ0f = 0
}
. (4.12)

Note that the case η = τ = 0 is not discussed in the previous statement because Aη,τ

simply becomes the free Dirac operator A0 introduced in (3.1).

Remark 4.4.

(i) The operators Θ and Θ± in Proposition 4.3 are well-defined due to the fact that θ
and θ± are periodic pseudodifferential operators of order 1. For example θϕ makes 
sense as an element of H−1(Σ; C2) for any ϕ ∈ L2(Σ; C2), and H1(Σ; C2) ⊂ dom Θ.
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(ii) In items (ii) and (iii) of Proposition 4.3 we decomposed G = L2(Σ; C2) = GΠ+⊕GΠ− ,

GΠ+ :=
{
ϕ = (ϕ1, ϕ2) ∈ L2(Σ;C2) : ϕ2 = 0

}
� L2(Σ),

GΠ− :=
{
ϕ = (ϕ1, ϕ2) ∈ L2(Σ;C2) : ϕ1 = 0

}
� L2(Σ).

Proof. With the help of (4.5) and (4.6) the transmission condition in (4.1) is

−ΛΓ0f = (ησ0 + τσ3)
(
Λ−1Γ1f + 1

2 (Cζ + Cζ̄)ΛΓ0f
)
. (4.13)

Now let us distinguish between several cases.
(i) For |η| �= |τ | the matrix ησ0 + τσ3 is invertible with

(ησ0 + τσ3)−1 = 1
η2 − τ2 (ησ0 − τσ3).

Hence, we can rewrite the equality (4.13) as

Γ1f = −Λ
[

1
η2 − τ2 (ησ0 − τσ3) + 1

2 (Cζ + Cζ̄)
]
ΛΓ0f = ΘΓ0f,

which gives the claimed representation in (4.8)
The cases (ii) are and (iii) are almost identical, so we only give a proof for (ii). By 

(4.13) we have that f ∈ domAη,τ if and only if

−ΛΓ0f = (ησ0 + τσ3)
(
Λ−1Γ1f + 1

2 (Cζ + Cζ̄)ΛΓ0f
)

=
(

2η 0
0 0

)(
Λ−1Γ1f + 1

2 (Cζ + Cζ̄)ΛΓ0f
)

= 2ηΠ∗
+Π+

(
Λ−1Γ1f + 1

2 (Cζ + Cζ̄)ΛΓ0f
)
.

Writing this equation in components it follows that this boundary condition is equivalent 
to the conditions (σ0 − Π∗

+Π+)Γ0f = 0 and

Π+Γ1f = −Λ
( 1

2η + 1
2 Π+(Cζ + Cζ̄)

)
ΛΓ0f

= −Λ
( 1

2η + 1
2 Π+(Cζ + Cζ̄)Π∗

+

)
ΛΠ+Γ0f = Θ+Π+Γ0f.

Hence, we find that (4.10) is true. �
In view of the general theory of boundary triples, see Subsection 2.2, many properties 

of Aη,τ can be deduced from the respective properties of the operators Θ and Θ± from 
Proposition 4.3. We prefer to consider separately the non-critical case η2 − τ2 �= 4 and 
the critical case η2 − τ2 = 4, where the latter one is more involved.
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4.2. Non-critical case

Throughout this subsection we assume that

η2 − τ2 �= 4.

In order to show the self-adjointness of Aη,τ we use Theorem 2.10. For that it is necessary 
to investigate the operators Θ and Θ± in Proposition 4.3.

Lemma 4.5. Let η, τ ∈ R with η2 − τ2 �= 4. Then the following holds:

(i) If η2 − τ2 �= 0, then dom Θ = H1(Σ; C2) and Θ is self-adjoint in L2(Σ; C2).
(ii) If η = ±τ , then dom Θ± = H1(Σ) and Θ± is self-adjoint in L2(Σ).

Proof. (i) Let us consider the restriction Θ1 := Θ � H1(Σ; C2). Since θ ∈ Ψ1
Σ, the 

operator Θ1 is well-defined as an operator in L2(Σ; C2). We show Θ = Θ1 and that Θ1
is self-adjoint in L2(Σ; C2).

First, it follows from Proposition 3.3 that (Cζ + Cζ̄)∗ = Cζ̄ + Cζ and hence Θ1 is a 
symmetric operator in L2(Σ; C2). Moreover, since Θ1 is a symmetric extension of the 
symmetric operator Θ∞ := Θ � C∞(Σ; C2), Lemma 2.4 implies Θ∗

1 ⊂ Θ∗
∞ = Θ. Hence, 

Θ = Θ1 and Θ1 = Θ∗
1 follows if we show Θ ⊂ Θ1, for which it suffices to check the 

inclusion

dom Θ ⊂ dom Θ1 = H1(Σ;C2). (4.14)

To see (4.14) fix some ϕ ∈ dom Θ. Then θϕ ∈ L2(Σ; C2). Using Proposition 3.3 we find

θϕ = −1
2ΛPΛϕ + Ψ̂ϕ, where P =

(
2

η+τ CΣT

TC ′
Σ

2
η−τ

)
and Ψ̂ ∈ Ψ0

Σ.

Hence, ΛPΛϕ ∈ L2(Σ; C2) and as Λ : H 1
2 (Σ; C2) → L2(Σ; C2) is bijective, this amounts 

to PΛϕ ∈ H
1
2 (Σ; C2). Since CΣ, C ′

Σ ∈ Ψ0
Σ by Proposition 2.8, these operators give rise 

to bounded operators in H
1
2 (Σ; C2), which implies that(

2
η−τ −CΣT

−TC ′
Σ

2
η+τ

)(
2

η+τ CΣT

TC ′
Σ

2
η−τ

)
Λϕ

=
(

4
η2−τ2 − CΣTTC

′
Σ 0

0 4
η2−τ2 − TC ′

ΣCΣT

)
Λϕ ∈ H

1
2 (Σ;C2).

Now we use that TT = TT is the multiplication operator with the constant function 
1 and that CΣC

′
Σ − 1, C ′

ΣCΣ − 1 ∈ Ψ−∞
Σ by Proposition 2.8. We then obtain from 

the last line that 4−η2+τ2

2 2 Λϕ + Ψ̃ϕ ∈ H
1
2 (Σ; C2) with some Ψ̃ ∈ Ψ−∞

Σ and hence we get 
η −τ
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4−η2+τ2

η2−τ2 Λϕ ∈ H
1
2 (Σ; C2). Since η2−τ2 �= 4 by assumption, this implies Λϕ ∈ H

1
2 (Σ; C2)

and thus, ϕ ∈ H1(Σ; C2). We have shown (4.14). This completes the proof of (i).
(ii) We consider the case η = τ , the other one being similar. Recall that Θ+ is the 

maximal operator in L2(Σ) associated to the periodic pseudodifferential operator

θ+ = −1
2 Λ

(
1
η

+ Π+(Cζ + Cζ̄)Π∗
+

)
Λ.

Using Proposition 3.3 we find for ϕ ∈ dom Θ+ that

Θ+ϕ = − 1
2ηΛ2ϕ− 1

2Π+

(
0 ΛCΣTΛ

ΛTC ′
ΣΛ 0

)
Π∗

+ϕ + Ψ̂ϕ = − 1
2ηΛ2ϕ + Ψ̂ϕ

with some symmetric operator Ψ̂ ∈ Ψ0
Σ. This implies dom Θ+ = dom Λ2 = H1(Σ; C)

and since Λ2 is self-adjoint we conclude that also Θ+ is self-adjoint in L2(Σ). �
After the preparatory considerations of Lemma 4.5 we are now ready to show the 

self-adjointness of Aη,τ for non-critical interaction strengths. To formulate the result we 
recall the definitions of the free Dirac operator A0 from (3.1), of Φz and Φ′

z from (3.7)
and (3.6), and of Cz in (3.10), respectively.

Theorem 4.6. Assume that η, τ ∈ R with η2 − τ2 �= 4 and (η, τ) �= (0, 0). Then the 
operator Aη,τ is self-adjoint in L2(R2; C2) with domAη,τ ⊂ H1(R2 \ Σ; C2). Moreover, 
for all z ∈ resAη,τ ∩ resA0 the operator σ0 + (ησ0 + τσ3)Cz is bounded and boundedly 
invertible in H

1
2 (Σ; C2) and

(Aη,τ − z)−1 = (A0 − z)−1 − Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Φ′
z̄ (4.15)

holds.

Proof. First, by Theorem 2.10 the self-adjointness of Θ and Θ± in L2(Σ; C2) and 
L2(Σ), respectively, implies the self-adjointness of Aη,τ in L2(R2; C2). In addition, 
since dom Θ = H1(Σ; C2) and dom Θ± = H1(Σ), Lemma 3.6 yields domAη,τ ⊂
H1(R2 \ Σ; C2).

It remains to show the Krein type resolvent formula in (4.15). First, for |η| �= |τ | we 
have by Theorem 2.10 that Θ − Mz, z ∈ resAη,τ ∩ resA0, is boundedly invertible in 
L2(Σ; C2) and

(Aη,τ − z)−1 = (A0 − z)−1 + Gz

(
Θ −Mz

)−1
G∗

z̄.

Taking the special form of Θ and Mz = Λ
(
Cz − 1

2
(
Cζ + Cζ̄

))
Λ into account and using 

1
2 2 (ησ0 − τσ3) = (ησ0 + τσ3)−1, we find
η −τ
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Θ −Mz = −Λ
[

1
η2 − τ2 (ησ0 − τσ3) + 1

2 (Cζ + Cζ̄)
]
Λ − Λ

(
Cz −

1
2
(
Cζ + Cζ̄

))
Λ

= −Λ
[

1
η2 − τ2 (ησ0 − τσ3) + Cz

]
Λ

= −Λ(ησ0 + τσ3)−1(σ0 + (ησ0 + τσ3)Cz

)
Λ.

(4.16)

As Θ − Mz is a bijective operator in L2(Σ; C2) defined on dom Θ = H1(Σ; C2) this 
implies that σ0 + (ησ0 + τσ3)Cz is bijective in H

1
2 (Σ; C2). In particular, the inverse 

(σ0 +(ησ0 + τσ3)Cz)−1 is well-defined and bounded in H
1
2 (Σ; C2). Using Gz = ΦzΛ and 

G∗
z̄ = ΛΦ′

z̄ we get

Gz

(
Θ −Mz

)−1
G∗

z̄ = −ΦzΛΛ−1(σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Λ−1ΛΦ′
z̄

= −Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Φ′
z̄,

(4.17)

which leads to (4.15).
The proof of (4.15) for |η| = |τ | �= 0 is similar as above. First, one notes in the same 

way as in (4.16) that

Θ± − Π±MzΠ∗
± = −Λ

(
1
2η + Π±CzΠ∗

±

)
Λ = − 1

2ηΠ±Λ
(
σ0 + 2ηΠ∗

±Π±Cz

)
ΛΠ∗

±, (4.18)

which implies with 2ηΠ∗
±Π± = ησ0 + τσ3

Π∗
±(Θ± − Π±MzΠ∗

±)−1Π± = Λ−1Π∗
±
(
Π±(σ0 + 2ηΠ∗

±Π+Cz)Π∗
±
)−12ηΠ±Λ−1

= Λ−1(Π∗
±Π±(σ0 + 2ηΠ∗

±Π+Cz)
)−12ηΠ∗

±Π±Λ−1

= Λ−1(σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Λ−1.

With this observation and the same ideas as above one shows (4.15) also in the case 
|η| = |τ |. This finishes the proof of this theorem. �

In the following proposition we discuss the basic spectral properties of Aη,τ :

Theorem 4.7. Let η, τ ∈ R be such that η2 − τ2 �= 4. Then the following holds:

(i) We have specess Aη,τ = (−∞, −|m|] ∪ [|m|, +∞). In particular, for m = 0 we have 
specAη,τ = specess Aη,τ = R.

(ii) Assume m �= 0. Then z ∈ (−|m|, |m|) is a discrete eigenvalue of Aη,τ if and only if 
there exists ϕ ∈ H

1
2 (Σ; C2) such that (σ0 + (ησ0 + τσ3)Cz)ϕ = 0.

(iii) If m �= 0, then Aη,τ has at most finitely many eigenvalues in (−|m|, |m|).

Proof. By Proposition 3.7, the set (−∞, −|m|] ∪ [|m|, +∞) is contained in the essential 
spectrum of Aη,τ . Moreover, by Theorem 4.6 we have domAη,τ ⊂ H1(R2 \Σ; C2), which 
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implies by Proposition 3.8 that the spectrum of Aη,τ in (−|m|, |m|) is discrete and finite. 
This proves the items (i) and (iii).

It remains to prove (ii). Assume first that |η| �= |τ |. By Theorem 2.10 a number 
z ∈ resA0 is an eigenvalue of Aη,τ if and only if zero is an eigenvalue of Θ − Mz. 
Using (4.16) this means that z ∈ resA0 is an eigenvalue of Aη,τ if and only if there exists 
ψ ∈ dom Θ = H1(Σ; C2) such that

−Λ(ησ0 + τσ3)−1(σ0 + (ησ0 + τσ3)Cz

)
Λψ = 0,

i.e. if and only if ϕ := Λψ ∈ H
1
2 (Σ; C2) satisfies (σ0 + (ησ0 + τσ3)Cz)ϕ = 0. The proof 

of (ii) for |η| = |τ | is similar, one just has to use (4.18) instead of (4.16). �
Finally, we provide some symmetry relations for the point spectrum of Aη,τ , which 

can be seen as consequences of commutator relations of Aη,τ . The following results are 
the two-dimensional analogues of [7, Proposition 4.2].

Proposition 4.8. Let η, τ ∈ R and assume that η2 − τ2 �= 4. Then the following holds:

(i) If |η| �= |τ |, then z ∈ specp Aη,τ if and only if z ∈ specp A− 4η
η2−τ2 ,− 4τ

η2−τ2
.

(ii) z ∈ specp Aη,τ if and only if −z ∈ specp A−η,τ .

Proof. (i) Consider the unitary and self-adjoint operator

U : L2(Ω+;C2)⊕L2(Ω−;C2) → L2(Ω+;C2)⊕L2(Ω−;C2), U(f+ ⊕ f−) = f+ ⊕ (−f−).

We claim that

Aη,τ = UA− 4η
η2−τ2 ,− 4τ

η2−τ2
U. (4.19)

For this purpose we note first that f = f+ ⊕ f− ∈ H1(Ω+; C2) ⊕H1(Ω−; C2) belongs to 
domAη,τ , if and only if

−i(σ · ν)
(
TD

+ f+ − TD
−f−

)
= 1

2(ησ0 + τσ3)
(
TD

+ f+ + TD
−f−

)
, (4.20)

which is equivalent to

−i(σ · ν)
(
TD

+ (Uf)+ + TD
− (Uf)−

)
= 1

2(ησ0 + τσ3)
(
TD

+ (Uf)+ − TD
− (Uf)−

)
.

By multiplying the last equation with (ησ0 + τσ3)−1 = 1
η2−τ2 (ησ0− τσ3) and using (1.4)

we find that f ∈ domAη,τ if and only if

−i(σ · ν) 1
2 2 (ησ0 + τσ3)

(
TD

+ (Uf)+ + TD
− (Uf)−

)
= 1(

TD
+ (Uf)+ − TD

− (Uf)−
)
,

η − τ 2
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which is equivalent to

− 4
η2 − τ2 (ησ0 + τσ3)

1
2
(
TD

+ (Uf)+ + TD
− (Uf)−

)
= −i(σ · ν)

(
TD

+ (Uf)+ − TD
− (Uf)−

)
i.e. to Uf ∈ domA−4η/(η2−τ2),−4τ/(η2−τ2). Hence, we have shown the domain equal-
ity domAη,τ = domA−4η/(η2−τ2),−4τ/(η2−τ2)U . Moreover, a straightforward calculation 
shows UAη,τf = A−4η/(η2−τ2),−4τ/(η2−τ2)Uf for any f ∈ domAη,τ . This gives (4.19), 
which yields (i).

(ii) Define the antilinear charge conjugation operator Cf = σ1f , f ∈ L2(R2; C2). 
Then we see immediately C2f = f for all f ∈ L2(R2; C2). We claim that

CAη,τ = −A−η,τC, (4.21)

which yields then the claim of statement (ii). To prove (4.21), we note first by taking 
the complex conjugate of equation (4.20) that f ∈ domAη,τ if and only if

i(σ · ν)
(
TD

+ f+ − TD
−f−

)
= 1

2(ησ0 + τσ3)
(
TD

+ f+ + TD
−f−

)
, (4.22)

where σ = (σ1, σ2) and σj is the matrix with the complex conjugate entries of σj. By 
multiplying this equation with σ1 and using (1.4), σ1 = σ1, and σ2 = −σ2 we find that 
(4.22) is equivalent to

i(σ · ν)
(
TD

+ (σ1f+) − TD
− (σ1f−)

)
= 1

2(ησ0 − τσ3)
(
TD

+ (σ1f+) + TD
− (σ1f−)

)
,

i.e. Cf ∈ domA−η,τ . Moreover, using again (1.4) and σ2 = −σ2 we get

(−iσ · ∇ + mσ3)Cf = (−iσ · ∇ + mσ3)σ1f = σ1(−iσ · ∇ −mσ3)f

= −σ1(−iσ · ∇ + mσ3)f = −C
(
− iσ · ∇ + mσ3)f

)
,

which implies (4.21). �
4.3. Critical case

In this subsection we study the self-adjointness and the spectral properties of Aη,τ

for the critical interaction strengths, i.e. when η2 − τ2 = 4. To show the self-adjointness 
of Aη,τ we prove that the corresponding operator Θ in Proposition 4.3 is self-adjoint in 
L2(Σ; C2).

Lemma 4.9. Let η, τ ∈ R be such that η2 − τ2 = 4. Then the operator Θ is self-
adjoint in L2(Σ; C2) and the restriction of Θ onto H1(Σ; C2) is essentially self-adjoint 
in L2(Σ; C2).
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Remark 4.10. According to Lemma 4.9 the operator Θ is essentially self-adjoint on 
H1(Σ; C2). It will turn out later in the proof of Proposition 4.12 that specess Θ is non-
empty. Hence, one has dom Θ �⊂ Hs(Σ; C2) for all s > 0.

Proof of Lemma 4.9. As in the proof of Lemma 4.5 we consider Θ1 := Θ � H1(Σ; C2). 
It follows in the same way as in the proof of Lemma 4.5 that Θ1 is a symmetric operator 
in L2(Σ; C2) and together with Lemma 2.4 we see Θ1 ⊂ Θ∗

1 ⊂ Θ. To see Θ ⊂ Θ1, which 
then implies the claims, we will show (the slightly stronger fact) that

dom Θ = dom Θ1. (4.23)

For this we consider the associated periodic pseudodifferential operator θ defined in (4.7)
and recall that with the aid of Proposition 3.3 we have

θ = −1
2 υ + Ψ, where υ =

(
2

η+τ Λ2 ΛCΣTΛ
ΛTC ′

ΣΛ 2
η−τ Λ2

)
,

with some operator Ψ ∈ Ψ0
Σ, which is symmetric and hence self-adjoint in L2(Σ; C2). In 

the following we denote by Υ the maximal realization of υ in L2(Σ; C2), that is

Υϕ = υϕ, dom Υ =
{
ϕ ∈ L2(Σ;C2) : υϕ ∈ L2(Σ;C2)

}
= dom Θ,

and Υ1 = Υ � H1(Σ; C2). Note that dom Υ1 = dom Θ1. Since Λ and hence also Λ2 are 
invertible, we get (as operators on distributions)

υ =
(

1 0
η+τ

2 ΛTC ′
ΣΛ−1 1

)( 2
η+τ Λ2 0

0 S(υ)

)(
1 η+τ

2 Λ−1CΣTΛ
0 1

)
, (4.24)

where the Schur complement S(υ) has the form

S(υ) = 2
η − τ

Λ2−η + τ

2 ΛTC ′
ΣΛ(Λ2)−1ΛCΣTΛ = 2

η − τ
Λ2−η + τ

2 ΛTC ′
ΣCΣTΛ. (4.25)

Using that C ′
ΣCΣ = 1 + R with R ∈ Ψ−∞

Σ , see Proposition 2.8, we can rewrite this 
expression as

S(υ) = 2
η − τ

Λ2 − η + τ

2 ΛTTΛ − η + τ

2 ΛTRTΛ = −η + τ

2 ΛTRTΛ ∈ Ψ−∞
Σ , (4.26)

where we used in the last step that TT is the identity operator and η2 − τ2 = 4. From 
this, (4.24), and dom Λ2 = H1(Σ) we obtain now

dom Θ = dom Υ =
{

(ϕ1, ϕ2) ∈ L2(Σ;C2) : ϕ1 + η + τ Λ−1CΣTΛϕ2 ∈ H1(Σ)
}
.
2
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Let us now consider the operator realizations Θ1, Υ1 of θ, υ and their closures Θ1, Υ1 in 
L2(Σ; C2). In the following we view Λ2 as an operator defined on H1(Σ) and note that 
Λ2 is self-adjoint and 0 ∈ res(Λ2). Moreover, since η+τ

2 Λ−1CΣTΛ ∈ Ψ0
Σ, we get that the 

operator

A1ϕ = η + τ

2 Λ−2ΛCΣTΛϕ, domA1 = H1(Σ),

which is the product of the inverse of the upper left corner and the upper right corner of 
Υ1, is bounded in L2(Σ) and has a bounded and everywhere defined closure. Since the 
Schur complement S1(υ) of Υ1, which is the expression from (4.25) defined on H1(Σ), 
has a bounded closure in L2(Σ) by (4.26), we conclude from [38, Theorem 2.2.14] applied 
for μ = 0 that

dom Θ1 = dom Υ1 =
{
(ϕ1, ϕ2) ∈ L2(Σ;C2) : ϕ1 + A1ϕ2 ∈ dom Λ2, ϕ2 ∈ domS1(υ)

}
=
{

(ϕ1, ϕ2) ∈ L2(Σ;C2) : ϕ1 + η + τ

2 Λ−1CΣTΛϕ2 ∈ H1(Σ)
}

= dom Θ.

Hence, we have shown (4.23), which finishes the proof of this proposition. �
With Lemma 4.9 we are now ready to show the self-adjointness of Aη,τ for critical 

interaction strengths. To formulate the result we recall the definitions of the free Dirac 
operator A0 from (3.1), of Φz and Φ′

z from (3.7) and (3.6), and of Cz in (3.10), respec-
tively.

Theorem 4.11. Let η, τ ∈ R with η2 − τ2 = 4. Then the operator Aη,τ is self-adjoint 
and its restriction to domAη,τ ∩H1(R2 \Σ; C2) is essentially self-adjoint in L2(R2; C2). 
Moreover, for all z ∈ resAη,τ ∩ resA0 the operator σ0 +(ησ0 + τσ3)Cz admits a bounded 
inverse from H

1
2 (Σ; C2) to H− 1

2 (Σ; C2), and

(Aη,τ − z)−1 = (A0 − z)−1 − Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Φ′
z̄. (4.27)

Proof. First, according to Theorem 2.10 the self-adjointness of Θ in L2(Σ; C2) implies the 
self-adjointness of Aη,τ in L2(R2; C2), and the essential self-adjointness of the restriction 
Θ1 = Θ � H1(Σ; C2) in L2(Σ; C2) implies the essential self-adjointness of Aη,τ restricted 
to domAη,τ ∩H1(R2 \Σ; C2) in L2(R2; C2). For the latter observation we have also used 
that by Lemma 3.6

S∗ � ker(Γ1 − Θ1Γ0) = Aη,τ �
(
domAη,τ ∩H1(R2 \ Σ;C2)

)
.

It remains to verify the Krein type resolvent formula in (4.27). By Theorem 2.10 we 
have that Θ −Mz is boundedly invertible in L2(Σ; C2) and

(Aη,τ − z)−1 = (A0 − z)−1 + Gz

(
Θ −Mz

)−1
G∗

z̄.
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Taking the special form of Θ and Mz = Λ
(
Cz − 1

2
(
Cζ + Cζ̄

))
Λ into account we find with 

a similar calculation as in (4.16)-(4.17) that

(Θ −Mz)−1 = −Λ−1(σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Λ−1.

As (Θ −Mz)−1 is bounded in L2(Σ; C2) we deduce that (σ0+(ησ0+τσ3)Cz)−1 is bounded 
from H

1
2 (Σ; C2) to H− 1

2 (Σ; C2). Using Gz = ΦzΛ and G∗
z̄ = ΛΦ′

z̄ we get

Gz

(
Θ −Mz

)−1
G∗

z̄ = −ΦzΛΛ−1(σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Λ−1ΛΦ′
z̄

= −Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1(ησ0 + τσ3)Φ′
z̄,

and thus (4.27). �
In the next proposition we analyze the essential spectrum of the self-adjoint operator 

Θ. Note that our assumption η2−τ2 = 4 implies |τ | < |η|, and hence − τ
η m ∈ (−|m|, |m|).

Proposition 4.12. Let η, τ ∈ R be such that η2 − τ2 = 4 and let m �= 0. Then for 
z ∈ (−|m|, |m|) one has 0 ∈ specess(Mz − Θ) if and only if z = − τ

η m.

Proof. Throughout the proof we assume that z ∈ (−|m|, |m|). In particular, Mz is a 
bounded self-adjoint operator in L2(Σ; C2). Recall that

Mz − Θ = Λ 1
η2 − τ2 (ησ0 − τσ3)Λ + ΛCzΛ,

and using Proposition 3.3 we decompose Mz − Θ = Ξ1 + Ξ2, where

Ξ1 :=
(

1
η+τ Λ2 + �

4π (z + m)1 1
2ΛCΣTΛ

1
2ΛTC ′

ΣΛ 1
η−τ Λ2 + �

4π (z −m)1

)

and Ξ2 ∈ Ψ−1
Σ is a compact self-adjoint operator in L2(Σ; C2). We note that Ξ1 defined 

on dom(Mz − Θ) = dom Θ is a self-adjoint operator in L2(Σ; C2). Therefore, it follows 
that specess(Mz − Θ) = specess Ξ1 and, in particular,

0 ∈ specess(Mz − Θ) if and only if 0 ∈ specess Ξ1.

In the following we will show that 0 ∈ specess Ξ1 if and only if z = − τ
η m. For this, 

the Schur complement of Ξ1 and [38, Theorem 2.4.6] (applied for μ = 0) will be used. To 
proceed, let Ξ1,1 := Ξ1 � H1(Σ; C2). Then, by Lemma 4.9 we have Ξ1 = Ξ1,1. We shall 
use the operator Λ ∈ Ψ

1
2
Σ from (2.7) (see also (2.6)). Recall also that Λ2 ≥ c20 for c0 > 0. 

Now we choose c0 such that c20 > |m|�
2π |η + τ |. Then the upper left corner of Ξ1,1,

A := 1 Λ2 + 	 (z + m)1,

η + τ 4π
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is self-adjoint in L2(Σ) with 0 ∈ resA. Hence, the Schur complement S := S(Ξ1,1), that 
is defined on dom S = H1(Σ) and given by

S = 1
η − τ

Λ2 + 	(z −m)
4π 1− η + τ

4 ΛTC ′
ΣΛ

(
Λ2 + 	(z + m)(η + τ)

4π 1

)−1

ΛCΣTΛ,

is well-defined. It is easy to see that S is symmetric and hence closable. We leave it to the 
reader to check that the other assumptions in [38, Theorem 2.4.6] are also satisfied for the 
block operator matrix Ξ1,1. Thus, it follows from [38, Theorem 2.4.6] that 0 ∈ specess Ξ1
if and only if 0 ∈ specess S. We are going to prove that S is bounded in L2(Σ) and that 
0 ∈ specess S if and only if z = − τ

η m.
To simplify the last summand in the above expression of S we use the identity

(Λ2 + a1)−1 = Λ−2 − aΛ−1(Λ2 + a1)−1Λ−1 = Λ−2 − aΛ−2(Λ2 + a1)−1 (4.28)

and rewrite S = S1 + S2 with

S1 = 1
η − τ

Λ2 + 	(z −m)
4π 1− η + τ

4 ΛTC ′
ΣCΣTΛ,

S2 = (η + τ)2

4 · 	(z + m)
4π ΛTC ′

Σ

(
Λ2 + 	(z + m)(η + τ)

4π 1

)−1

CΣTΛ.

By Proposition 2.8 one has C ′
ΣCΣ = 1 + K1 with K1 ∈ Ψ−∞

Σ , so

η + τ

4 ΛTC ′
ΣCΣTΛ = η + τ

4 Λ2 + K2

with K2 ∈ Ψ−∞
Σ . Because of η2 − τ2 = 4 one arrives at

S1 = 1
η − τ

Λ2 + 	(z −m)
4π 1− η + τ

4 Λ2 −K2 = 	(z −m)
4π 1−K2.

In order to deal with S2 we use again the identity (4.28), which gives

4
(η + τ)2 · 4π

	(z + m)S2 = ΛTC ′
Σ

(
Λ2 + 	(z + m)(η + τ)

4π 1

)−1

CΣTΛ = K3 + K4,

where K3 = ΛTC ′
ΣΛ−2CΣTΛ and

K4 = −	(z + m)(η + τ)
4π ΛTC ′

ΣΛ−2
(

Λ2 + 	(z + m)(η + τ)
4π 1

)−1

CΣTΛ.

Using Proposition 2.2 one finds that K4 ∈ Ψ−1
Σ and hence this operator is compact in 

L2(Σ; C2). In order to simplify K3 we note first that
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K5 := TC ′
ΣΛ−2 − Λ−2TC ′

Σ ∈ Ψ−2
Σ

by Proposition 2.2 (ii). Hence,

K3 = ΛΛ−2TC ′
ΣCΣTΛ + ΛK5CΣTΛ =: ΛΛ−2TC ′

ΣCΣTΛ + K6

with K6 ∈ Ψ−1
Σ . Using again C ′

ΣCΣ − 1 ∈ Ψ−∞, see Proposition 2.8, we arrive at 
K3 = 1 + K7 with K7 ∈ Ψ−1

Σ . With this we find

S2 = (η + τ)2

4 · 	(z + m)
4π (K3 + K4) = (η + τ)2

4 · 	(z + m)
4π 1 + K8

with K8 ∈ Ψ−1
Σ . Using this in the expression of the Schur complement S we conclude, 

with some K9 ∈ Ψ−1
Σ , that

S = S1 + S2 =
(
	(z −m)

4π + (η + τ)2

4 · 	(z + m)
4π

)
1 + K9

= 	

4π

[(
(η + τ)2

4 + 1
)
z +

( (η + τ)2

4 − 1
)

m

]
1 + K9.

From this we conclude that S is bounded and admits a bounded closure S. Moreover, as 
K9 is compact and symmetric, it does not influence the essential spectrum, and we have

0 ∈ specess S if and only if z = − (η + τ)2 − 4
(η + τ)2 + 4 m.

With η2 − τ2 = 4 we can simplify the last expression to

(η + τ)2 − 4
(η + τ)2 + 4 = η2 + τ2 + 2ητ − η2 + τ2

η2 + τ2 + 2ητ + η2 − τ2 = 2τ2 + 2ητ
2η2 + 2ητ = 2τ(η + τ)

2η(η + τ) = τ

η
.

Hence, 0 ∈ specess S if and only if z = − τ
η m. This finishes the proof. �

We are now ready to describe the spectral properties of Aη,τ for critical interaction 
strengths. Compared to Proposition 4.7, the following theorem shows that the spectral 
properties of Aη,τ differ significantly from the non-critical case.

Theorem 4.13. Let η, τ ∈ R with η2 − τ2 = 4. Then the following is true:

(i) There holds specess Aη,τ = (−∞, −|m|] ∪ {− τ
η m} ∪ [|m|, +∞). In particular, for 

m = 0 we have specAη,τ = specess Aη,τ = R.
(ii) Assume m �= 0. Then z /∈ specess Aη,τ is a discrete eigenvalue of Aη,τ if and only if 

there exists ϕ ∈ H− 1
2 (Σ; C2) such that (σ0 + (ησ0 + τσ3)Cz)ϕ = 0.

(iii) For all s > 0 we have domAη,τ �⊂ Hs(R2 \ Σ; C2).
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Remark 4.14. Item (ii) in the above theorem is slightly weaker as Proposition 4.7 (ii), 
since one has to search for eigenfunctions ϕ of σ0 + (ησ0 + τσ3)Cz in the larger space 
H− 1

2 (Σ; C2). However, as there is no Sobolev regularity in domAη,τ the smoothness of 
the eigenfunctions of σ0 + (ησ0 + τσ3)Cz can not be improved.

Proof of Theorem 4.13. (i) The inclusion (−∞, −|m|] ∪ [|m|, +∞) ⊂ specess Aη,τ holds 
by Proposition 3.7. In addition, due to Theorem 2.10 and Proposition 4.12 one has 
specess Aη,τ ∩ (−|m|, |m|) = {− τ

ηm}, which gives the claim.
To prove item (ii) we note first that by Theorem 2.10 a point z ∈ resA0 is an eigenvalue 

of Aη,τ if and only if zero is an eigenvalue of Θ − Mz. Using a similar calculation as 
in (4.16) this shows that z ∈ resA0 is an eigenvalue of Aη,τ if and only if there exists 
ψ ∈ dom Θ ⊂ L2(Σ; C2) such that −Λ(ησ0 + τσ3)−1(σ0 + (ησ0 + τσ3)Cz)Λψ = 0, i.e. if 
and only if ϕ := Λψ ∈ H− 1

2 (Σ; C2) satisfies 
(
σ0 + (ησ0 + τσ3)Cz

)
ϕ = 0.

Eventually, since domAη,τ is independent of m, it suffices to prove statement (iii) for 
m �= 0. In this case the claim is a consequence of Proposition 3.8, as we have in this case 
specess(Aη,τ ) ∩ (−|m|, |m|) �= ∅. �

Finally, we state several symmetry relations in the spectrum of Aη,τ . The following 
proposition is the counterpart of Proposition 4.8 for critical interaction strengths.

Proposition 4.15. Let η, τ ∈ R with η2 − τ2 = 4. Then the following holds:

(i) z ∈ specp Aη,τ if and only if z ∈ specp A−η,−τ .
(ii) z ∈ specp Aη,τ if and only if −z ∈ specp A−η,τ .

Proof. In the following set A1
η,τ := Aη,τ � (domAη,τ ∩H1(R2 \ Σ; C2)). Then by The-

orem 4.11 the operator A1
η,τ is essentially self-adjoint in L2(R2; C2) and, in particular, 

A1
η,τ = Aη,τ .
(i) Consider the unitary and self-adjoint mapping

U : L2(Ω+;C2)⊕L2(Ω−;C2) → L2(Ω+;C2)⊕L2(Ω−;C2), U(f+ ⊕ f−) = f+ ⊕ (−f−).

As in the proof of Proposition 4.8 (i) one verifies A1
η,τ = UA1

−η,−τU . By taking closures 
we find Aη,τ = UA−η,−τU and hence the claim follows.

(ii) Consider the nonlinear charge conjugation operator Cf = σ1f , f ∈ L2(R2; C2). 
Then C2f = f for f ∈ L2(R2; C2) and in the same way as in the proof of Proposi-
tion 4.8 (ii) one obtains CA1

η,τ = −A1
−η,τC. Taking closures leads to CAη,τ = −A−η,τC, 

which implies (ii). �
4.4. Case of several loops

To prove Theorem 1.3 we use similar constructions as in the case of one loop. We 
give some comments on necessary modifications in this subsection. Let N ≥ 1 and 
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let Σj , j ∈ {1, . . . , N}, be non-intersecting C∞-smooth loops with normals νj . We set 
Σ :=

⋃N
j=1 Σj , and for f ∈ H(σ, R2 \ Σ) we denote its Dirichlet traces from Lemma 3.1

on the two sides of Σj by TD
±,jf , where − corresponds to the side to which νj is directed. 

The Sobolev spaces on Σ are defined by Hs(Σ) :=
⊕N

j=1 H
s(Σj), and for ϕ ∈ Hs(Σ) we 

denote by ϕj its restriction on Σj . Furthermore, if Λj denotes the isomorphism defined 
in (2.7) on Σj , then we set Λ :=

⊕N
j=1 Λj . As in the case of one loop one starts with 

the symmetric operator S := A0 � H1
0 (R2 \Σ; C2). For z ∈ resA0 and ϕ ∈ L2(Σ; C2) we 

introduce

Φzϕ(x) =
∫
Σ

φz(x− y)ϕ(y) ds(y), x ∈ R2 \ Σ.

As for the single loop one shows that the map Φz extends to a bounded linear operator 
Φz : H− 1

2 (Σ; C2) → L2(R2; C2) with ran Φz = ker(S∗ − z). The associated principal 
value operator Cz,

(
Czϕ

)
(x) := p.v.

∫
Σ

φz(x− y)ϕ(y) ds(y), ϕ ∈ C∞(Σ;C2), x ∈ Σ,

has a block structure of the form

(Czϕ)j(x) = Cj
zϕj(x) +

∑
k �=j

(Kj,k
z ϕk)(x), ϕ ∈ C∞(Σ;C2), x ∈ Σj , (4.29)

(Cj
zϕj)(x) = p.v.

∫
Σj

φz(x− y)ϕj(y) ds(y), x ∈ Σj , (4.30)

(Kj,k
z ϕk)(x) =

∫
Σk

φz(x− y)ϕk(y) ds(y), x ∈ Σj . (4.31)

The operators Cj
z are the same as in the one loop case, while the operators Kj,k

z have 
smooth integral kernels and are bounded from Hs(Σk, C2) to Ht(Σj , C2) for any s, t ∈ R. 
Using Proposition 3.4, the trace equality TD

±,jΦzϕ = ∓ i2 (σ·νj) ϕj+(Czϕ)j can be shown. 
The construction of the boundary triple takes then literally the same form as for a single 
loop. Let ζ ∈ resA0 be fixed and set (TD

±f) := (TD
±,jf)Nj=1. Then {L2(Σ; C2), Γ0, Γ1},

Γ0f = iΛ−1(σ · ν)
(
TD

+ f − TD
−f), Γ1f = 1

2 Λ
(
(TD

+ f+ + TD
−f−) − (Cζ + Cζ̄)ΛΓ0f

)
,

is a boundary triple for S∗. The corresponding γ-field G and Weyl function M are 
z �→ Gz = ΦzΛ and z �→ Mz = Λ(Cz − 1

2 (Cζ + Cζ̄))Λ.
Assume first that |ηj | �= |τj | for all j ∈ {1, . . . , N}. Define an operator Θ in L2(Σ; C2)

by Θ = −Λ
[
Ξ + 1 (Cζ + Cζ̄)

]
Λ, (Ξϕ)j := 1

2 2 (ηjσ0 − τjσ3) ϕj , on its maximal domain, 
2 ηj−τj
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then AΣ,P corresponds to the boundary condition Γ1f = ΘΓ0f . Using (4.29) one sees 
that Θ can be written as Θ =

⊕N
j=1 Θj + Θ̃, where Θj acts in L2(Σj ; C2) by

Θj = −Λj

[
1

η2
j − τ2

j

(ηjσ0 − τjσ3) + 1
2 (Cj

ζ + C
j

ζ̄
)
]

Λj ,

with maximal domain, while Θ̃ is a bounded operator from Hs(Σ, C2) to Ht(Σ, C2) for 
any s, t ∈ R and self-adjoint in L2(Σ; C2). Hence, the self-adjointness of Θ is determined 
by the self-adjointness of 

⊕N
j=1 Θj , and each Θj is exactly of the form as in the single-

loop case. Hence, Θj is self-adjoint by Lemma 4.5 and Lemma 4.9 and thus, also Θ
is self-adjoint in L2(Σ; C2). This implies also the statements concerning the domain 
regularity.

In order to study the essential spectrum we decompose Mz to blocks as in (4.29) and 
remark that the terms Kj,k

z produce compact remainders, which do not influence the 
essential spectrum. Hence, the condition 0 ∈ specess(Mz − Θ) is equivalent to

0 ∈ specess

(⊕N

j=1

(
Λj

1
η2
j − τ2

j

(ηjσ0 − τjσ3)Λj + ΛjC
j
zΛj

))
.

As each of the terms on the right-hand side is covered by the analysis of the single-loop 
case, the statement on the essential spectrum of Mz − Θ and thus, with the help of 
Theorem 2.10, also of AΣ,P, follows.

If for some j one has |ηj | = |τj |, then one follows the same technical strategy as the 
one in Section 4.2 for |η| = |τ |, i.e. one has to deal with additional orthogonal projectors, 
and all other constructions are easily adapted.
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