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Abstract. In this note the two dimensional Dirac operator Aη with an
electrostatic δ-shell interaction of strength η ∈ R supported on a straight
line is studied. We observe a spectral transition in the sense that for the
critical interaction strengths η = ±2 the continuous spectrum of Aη

inside the spectral gap of the free Dirac operator A0 collapses abruptly
to a single point.
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1. Introduction

Differential operators that admit a spectral transition are of particular inter-
est in mathematical analysis and its applications. Typically, one expects that
the properties of a model described by a differential operator depend contin-
uously on the parameters. However, in some cases it turns out that there is
an abrupt change in the spectral properties-in other words, a spectral transi-
tion. A well known example in this regard is the Smilansky model [29,30] (see
also [4–6]) or the indefinite Laplacian studied in [13,20]. A spectral transi-
tion was also observed for Dirac operators with singular potentials supported
on bounded curves in R

2 and surfaces in R
3. More precisely, when studying

perturbations Aη of the free Dirac operator by an electrostatic δ-shell poten-
tial of strength η ∈ R, it turned out that there is an abrupt change in the
spectral properties for η = ±2. While for η �= ±2-which is referred to as the
non-critical case-it is shown in the three dimensional situation in [2,3,7,8]
that the essential spectrum consists of two unbounded rays and finitely many
eigenvalues between these rays, the critical case η = ±2 remained initially
open. In the critical case it was then proved in [10,18,27] that there is a
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loss of smoothness in the operator domain and that there may be one addi-
tional point in the essential spectrum; for general combinations of interaction
strengths in the two dimensional setting see [12]. We note that similar effects
also appear in the study of Dirac operators on bounded domains with suitable
boundary conditions; cf. [11,17,18,21,26].

In this note we study the spectrum of a Dirac operator in R
2 with an

electrostatic δ-shell potential of strength η ∈ R supported on the straight line
Σ ∼= R which is formally given by

Aη = −i(σ1∂1 + σ2∂2) + mσ3 + ησ0δΣ;

here and in the following σ1, σ2, σ3 are the C
2×2-valued Pauli spin matrices

defined in (1.3), σ0 is the 2 × 2-identity matrix, and m ∈ R \ {0}. In order
to define this expression rigorously, we denote by R

2
+ and R

2
− the upper and

lower half plane, respectively, and we use the notation f± := f � R
2
± for the

restriction of a function f defined on R
2. Next, let

H(σ,R2
±) :=

{
f ∈ L2(R2

±;C2) : (σ1∂1 + σ2∂2)f ∈ L2(R2
±;C2)

}
.

Then there exists a bounded Dirichlet trace map H(σ,R2
±) → H−1/2(Σ;C2),

f± �→ f±|Σ (one shows this in the same way as in [17, Lemma 2.1] and [17,
Lemma 2.3] for bounded domains), and this allows us to define for η ∈ R and
m ∈ R \ {0} the operator

Aηf :=
( − i(σ1∂1 + σ2∂2) + mσ3

)
f+ ⊕ ( − i(σ1∂1 + σ2∂2) + mσ3

)
f−,

dom Aη :=
{

f = f+ ⊕ f− ∈ H(σ,R2
+) ⊕ H(σ,R2

−) :

iσ2(f+|Σ − f−|Σ) =
η

2
(f+|Σ + f−|Σ)

}
,

(1.1)

in L2(R2;C2). This operator is the rigorous mathematical definition of a Dirac
operator with an electrostatic δ-shell interaction of strength η and models,
for m > 0, the propagation of a particle with mass m and spin 1/2 under
the influence of such a potential; cf. [2,8,12,21]. Observe that for η = 0 the
operator in (1.1) coincides with the free Dirac operator

A0f = −i(σ1∂1 + σ2∂2)f + mσ3f, dom A0 = H1(R2;C2), (1.2)

and recall that A0 is self-adjoint in L2(R2;C2) with purely (absolutely) con-
tinuous spectrum

σ(A0) = (−∞,−|m|] ∪ [|m|,+∞).

The main result of this paper is the following theorem on the self-adjointness
and the spectra of the operators Aη. It turns out that the continuous spec-
trum grows under the influence of the δ-shell interaction and also half of
the gap (−|m|, |m|) is filled when η approaches the critical values ±2 from
above or below. In the critical case η = ±2 a spectral transition appears: the
continuous spectrum inside (−|m|, |m|) vanishes abruptly and 0 becomes an
infinite dimensional eigenvalue.

Theorem 1.1. The operator Aη is self-adjoint in L2(R2;C2) and the following
holds for the spectrum of Aη:
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(i) If η < −2, then σ(Aη) =
( − ∞,−|m|η2−4

η2+4

] ∪ [|m|,+∞).
(ii) If η = −2, then σ(Aη) = (−∞,−|m|] ∪ {0} ∪ [|m|,+∞).

(iii) If −2 < η < 0, then σ(Aη) = (−∞,−|m|] ∪ [|m|4−η2

η2+4 ,+∞)
.

(iv) If η = 0, then σ(A0) = (−∞,−|m|] ∪ [|m|,+∞)
.

(v) If 0 < η < 2, then σ(Aη) =
( − ∞,−|m|4−η2

η2+4

] ∪ [|m|,+∞).

(vi) If η = 2, then σ(Aη) = (−∞,−|m|] ∪ {0} ∪ [|m|,+∞).
(vii) If 2 < η, then σ(Aη) = (−∞,−|m|] ∪ [|m|η2−4

η2+4 ,+∞)
.

For η �= ±2 the spectrum of Aη is purely continuous and for η = ±2 the point
0 is an isolated eigenvalue of Aη with infinite multiplicity and the remaining
spectrum is purely continuous.

Note that the spectrum of Aη is invariant under the transformation
η �→ − 4

η . This symmetry would also follow from the stronger fact that Aη

and A−4/η are unitary equivalent; this can be shown in the same way as in
[12, Proposition 4.8 (i) and Proposition 4.15 (i)].

The proof of Theorem 1.1 is based on an efficient abstract technique that
was applied in a similar form also in [12,21]: We use a so-called boundary
triple and its Weyl function to reduce the spectral analysis of Aη in the gap
(−|m|, |m|) of A0 to a certain boundary operator in L2(Σ;C2) 
 L2(R;C2);
cf. [9,19,22,23] for details on boundary triples and Weyl functions in the
extension theory of symmetric operators. Since Σ is a straight line the spec-
tral properties of this boundary operator can be studied with the help of
the Fourier transform. From the limit behaviour of the Weyl function and
the boundary operator towards the real line we also conclude that the set
(−∞,−|m|] ∪ [|m|,+∞) consists of purely continuous spectrum of Aη for all
η ∈ R. For m = 0 this method is also applicable, then it follows for all η ∈ R

that σ(Aη) = R, i.e. there is no spectral transition. We note that the method
of direct integrals decomposing Aη in its fibers would yield a similar result;
cf. [24] for a related problem on Dirac operators with Robin type boundary
conditions. In this note we prefer to work with the boundary triple technique,
since it allows generalizations for more complicated curves Σ in a natural way,
which we plan to study in the near future.

Notations

Let

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, (1.3)

be the Pauli spin matrices and denote by σ0 the 2 × 2-identity matrix. Note
that the Pauli matrices satisfy σjσk + σkσj = 2δjkσ0, j, k ∈ {1, 2, 3}. For
x = (x1, x2) we will often write σ · x = σ1x1 + σ2x2 and σ · ∇ = σ1∂1 + σ2∂2.

2. Proof of Theorem 1.1

Let A0 be the free Dirac operator in (1.2) and recall that for z ∈ ρ(A0) the
resolvent of A0 is given by
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[
(A0 − z)−1f

]
(x) =

∫

R2
Gz(x − y)f(y)dy, f ∈ L2(R2;C2), x ∈ R

2,

where

Gz(x) =
i
√

m2−z2

2π
K1

(√
m2−z2|x|)σ · x

|x| +
1
2π

K0

(√
m2−z2|x|)(zσ0 + mσ3

)

and Kj is the modified Bessel functions of the second kind and order j; cf.
[1] and [31]. Here and in the following the complex square root is chosen such
that it is holomorphic in C \ (−∞, 0] and Re

√
z > 0. An important object in

our analysis is the mapping Cz which is defined for z ∈ ρ(A0) by

Czϕ := Gz ∗ ϕ, ϕ ∈ S(Σ;C2),

where S(Σ;C2) 
 S(R;C2) denotes the Schwartz space and the convolution
is understood in the sense of distributions. The action of Cz is

Czϕ(x) := lim
ε↘0

∫

R\(x1−ε,x1+ε)

Gz(x − y)ϕ(y)dy1, x = (x1, 0), y = (y1, 0) ∈ Σ.

In the following we will denote by F the Fourier transform on Σ 
 R.

Lemma 2.1. The map FCzF−1 is the multiplication operator with the matrix
valued function

p �→
⎛

⎝
z+m

2
√

p2+m2−z2

p

2
√

p2+m2−z2

p

2
√

p2+m2−z2

z−m

2
√

p2+m2−z2

⎞

⎠ .

In particular, Cz gives rise to a bounded operator in Hs(Σ;C2) for any s ∈ R.

Proof. Let φz(x1) := 1
2π K0(

√
m2 − z2|x1|), x1 ∈ R \ {0}. Since the Fourier

transform takes K0(κ|x|) to
√

π/2(p2 + κ2)−1/2 we obtain

F(φz ∗ ϕ)(p) =
1

2
√

p2 + m2 − z2
Fϕ(p), ϕ ∈ S(R).

Now observe that

Gz(x) =
(

−iσ1
d

dx1
+ mσ3 + zσ0

)
φz(x1), x = (x1, 0) ∈ Σ,

and hence the calculation rules for the Fourier transform of distributions [28,
Chapter IX] lead to

FCzF−1ϕ(p) = (σ1p + mσ3 + zσ0)
1

2
√

p2 + m2 − z2
ϕ(p)

=

⎛

⎝
z+m

2
√

p2+m2−z2

p

2
√

p2+m2−z2

p

2
√

p2+m2−z2

z−m

2
√

p2+m2−z2

⎞

⎠ ϕ(p)

for ϕ ∈ S(Σ;R2), which yields the claimed result about the representation of
FCzF−1. Finally, taking the definition of the norm in Hs(Σ;C2) 
 Hs(R;C2)
with the help of the Fourier transform into account, one sees that Cz gives
rise to a bounded operator in Hs(Σ;C2) for all s ∈ R. �
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In the following we shall make use of the closed symmetric restriction

Sf = (−iσ · ∇ + mσ3)f, dom S = H1
0 (R2 \ Σ;C2), (2.1)

of the free Dirac operator A0, and its adjoint
S∗f = (−iσ · ∇ + mσ3)f+ ⊕ (−iσ · ∇ + mσ3)f−,

dom S∗ = H(σ,R2
+) ⊕ H(σ,R2

−);

the above mentioned properties of S and S∗ can be shown in the same way as
in [10, Proposition 3.1], where similar operators in R

3 with compact surfaces
Σ have been studied.

Fix some ζ ∈ ρ(A0). Define the maps Γ0,Γ1 : dom S∗ → L2(Σ;C2) by

Γ0f := −iΛ−1σ2

(
f+|Σ − f−|Σ

)
,

Γ1f :=
1

2
Λ

(
(f+|Σ + f−|Σ) − (Cζ + Cζ)ΛΓ0f

)
, f = f+ ⊕ f− ∈ dom S∗,

(2.2)

where Λ = (−Δ + 1)
1
4 = F−1(p2 + 1)

1
4 F is viewed as a bijective operator

from Hs(Σ) onto Hs−1/2(Σ) for s = 1/2 or s = 0, or as a self-adjoint un-
bounded operator in L2(Σ) defined on H1/2(Σ). It follows in the same way
as in [12, Proposition 3.5] or [21, Proposition 6.1] that {L2(Σ;C2),Γ0,Γ1}
is a boundary triple for S∗ with A0 = S∗ � ker Γ0 and corresponding Weyl
function

ρ(A0) � z �→ M(z) = Λ
(

Cz − 1
2
(Cζ + Cζ)

)
Λ;

cf. [9,19,22,23] for details on boundary triples and Weyl functions in the
extension theory of symmetric operators.

Next we describe the operators Aη with the help of the boundary triple
(2.2) and also conclude their self-adjointness in L2(R2;C2). The proof of this
result follows the lines of [21, Proposition 6.3] and [12, Proposition 4.3].

Lemma 2.2. For η ∈ R \ {0} the operator

Θϕ := −Λ
[

1
η
σ0 +

1
2
(Cζ + Cζ)

]
Λϕ,

dom Θ =
{

ϕ ∈ L2(Σ;C2) :
[

1
η
σ0 +

1
2
(Cζ + Cζ)

]
Λϕ ∈ H1/2(Σ;C2)

}
,

is self-adjoint in L2(Σ;C2) and we have

Aη = S∗ � ker(Γ1 − ΘΓ0). (2.3)

In particular, the operator Aη is self-adjoint in L2(R2;C2).

Proof. Define the C
2×2-valued function

θ(p) := −
√

p2 + 1

⎛

⎝
1
η + Re ζ+m

2
√

p2+m2−ζ2
Re p

2
√

p2+m2−ζ2

Re p

2
√

p2+m2−ζ2

1
η + Re ζ−m

2
√

p2+m2−ζ2

⎞

⎠ .

Then, by Lemma 2.1 we have

FΘF−1ϕ(p) = θ(p)ϕ(p),

dom FΘF−1 = {ϕ ∈ L2(R;C2) : θϕ ∈ L2(R;C2)}.



   33 Page 6 of 13 J. Behrndt et al. IEOT

Since θ is a symmetric matrix and F is unitary, we conclude that Θ is self-
adjoint in L2(Σ;C2) 
 L2(R;C2). Using (2.2) it is not difficult to verify
that (2.3) holds and hence the self-adjointness of Aη follows, see, e.g., [9,
Corollary 2.1.4 (v)]. �

In the next lemma we analyze, when zero belongs to the point spectrum
or continuous spectrum of Θ − M(z) for z ∈ (−|m|, |m|).
Lemma 2.3. Let η ∈ R \ {0}. For z ∈ (−|m|, |m|) the following holds:

(i) If η �= ±2, then 0 /∈ σp(Θ−M(z)) and 0 ∈ σc(Θ−M(z)) if and only if
zη

η2 − 4
> 0 (2.4)

and

z ≤ −|m(η2 − 4)|
η2 + 4

or z ≥ |m(η2 − 4)|
η2 + 4

.

(ii) If η = ±2, then 0 ∈ σp(Θ − M(0)) with dim ker(Θ − M(0)) = +∞, and
0 ∈ ρ(Θ − M(z)) for z �= 0.

Proof. Let z ∈ (−|m|, |m|) and observe that

Θ − M(z) = −Λ
[

1
η
σ0 + Cz

]
Λ, dom (Θ − M(z)) = dom Θ. (2.5)

Using Lemma 2.1 we conclude

F(Θ − M(z))F−1ϕ(p) = θz(p)ϕ(p),

dom F(Θ − M(z))F−1 = {ϕ ∈ L2(R;C2) : θzϕ ∈ L2(R;C2)},

where

θz(p) = −
√

p2 + 1

⎛

⎝
1
η + z+m

2
√

p2+m2−z2

p

2
√

p2+m2−z2

p

2
√

p2+m2−z2

1
η + z−m

2
√

p2+m2−z2

⎞

⎠ ,

and hence it suffices to consider the self-adjoint multiplication operator with
the function θz in L2(R;C2). In the following we discuss for which η ∈ R\{0}
and z ∈ (−|m|, |m|) the multiplication operator θz has 0 as an eigenvalue or
as a point in the continuous spectrum. Note first that

det θz(p) = (p2 + 1)

[
1
η2

+
z

η
√

p2 + m2 − z2
− 1

4

]

.

We verify assertion (ii). In the case η = ±2 we have det θz(p) = 0 if and
only if z = 0, and in this situation det θz(p) = 0 for all p ∈ R. Therefore,
0 is an eigenvalue of infinite multiplicity of the multiplication operator θz.
Observe that for z ∈ (−|m|, |m|) \ {0} we have det θz(p) �= 0 and hence one
finds that 0 is in the resolvent set of θz.

Now we prove (i). If η �= ±2, then det θz(p) = 0 is equivalent to
√

p2 + m2 − z2 = 4
zη

η2 − 4
. (2.6)
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The left hand side of the last equation is positive and hence there exist
solutions only if also the right hand side is positive, i.e. only if (2.4) holds.
Assuming this, we see by squaring the last equation that it is equivalent to

p2 =
(η2 + 4)2

(η2 − 4)2
z2 − m2. (2.7)

When p ∈ R varies the left hand side can be any non-negative number, and
hence (2.6) has a solution, whenever the right hand side is non-negative, i.e.
if and only if z ≤ z− or z ≥ z+, where z± are the zeros of the polynomial on
the right hand side of the last equation given by

z± = ±
∣
∣
∣
∣m

η2 − 4
η2 + 4

∣
∣
∣
∣ .

It is also clear that for a fixed z ∈ (−|m|, |m|) with z ≤ z− or z ≥ z+ there
are only two values p ∈ R with (2.7) holds, and hence 0 is in the continuous
spectrum of the multiplication operator associated with θz. �

In order to prove Theorem 1.1, we also investigate the limiting behaviour
of (Θ−M(z))−1, when z ∈ C\R approaches σ(A0) = (−∞,−|m|]∪[|m|,+∞):

Lemma 2.4. Let η ∈ R \ {0}. Then, the following is true:
(i) For any x ∈ (−∞,−|m|] ∪ [|m|,+∞) and all ϕ ∈ L2(Σ;C2) one has

lim
y↘0

iy
(
Θ − M(x + iy)

)−1
ϕ = 0. (2.8)

(ii) For any x ∈ (−∞,−|m|) ∪ (|m|,+∞) there exists ϕ ∈ L2(Σ;C2) such
that

lim
y↘0

Im
((

Θ − M(x + iy)
)−1

ϕ,ϕ
) �= 0. (2.9)

Proof. In order to show the claims, we note first with the help of (2.5) that
the operator F(Θ − M(z))−1F−1, z ∈ C \ R, is the maximal multiplication
operator associated with the matrix-valued function

θ−1
z (p) = −

√
p2 + 1

det θz(p)

⎛

⎝
1
η + z−m

2
√

p2+m2−z2
− p

2
√

p2+m2−z2

− p

2
√

p2+m2−z2

1
η + z+m

2
√

p2+m2−z2

⎞

⎠

= − 2η

cz(p)
√

p2+1

(
2
√

p2+m2−z2+η(z−m) −ηp

−ηp 2
√

p2+m2−z2+η(z+m)

)

with

cz(p) = (4 − η2)
√

p2 + m2 − z2 + 4ηz.

By the continuity of the complex square root one sees for a fixed p ∈ R

that the limit cx+i0(p) := limy↘0 cx+iy(p) exists. One verifies for any number
x ∈ (−∞,−|m|]∪[|m|,+∞) in a similar way as in (2.6) and (2.7) that cx+i0(p)
has no zero, if η = ±2 or if xη

η2−4 < 0, and for xη
η2−4 > 0 the term cx+i0(p) has

two zeros at

p± = ±
(

(η2 + 4)2

(η2 − 4)2
x2 − m2

)1/2

. (2.10)



   33 Page 8 of 13 J. Behrndt et al. IEOT

Let us prove (i). Let x ∈ (−∞,−|m|] ∪ [|m|,+∞) be fixed. Since the
map z �→ M(z) is the Weyl function of a boundary triple it is a Nevanlinna
function and the values M(z) are bounded and everywhere defined operators
in L2(Σ;C2); cf. [9, Corollary 2.3.7]. It follows that z �→ (Θ − M(z))−1 is
also a Nevanlinna function and for z ∈ ρ(Aη) ∩ ρ(A0) the values are also
bounded and everywhere defined operators in L2(Σ;C2). From the operator
representation of Nevanlinna functions (see, e.g., [25, Theorem 4.2]) we then
conclude that there exists a constant C1 > 0 such that

∥
∥(Θ − M(x + iy))−1

∥
∥ ≤ C1

y

for y > 0 sufficiently small. Since (Θ − M(x + iy))−1 is unitarily equivalent
to the multiplication operator with the function θ−1

x+iy, we conclude that

∥
∥θ−1

x+iy

∥
∥

∞ ≤ C1

y
(2.11)

for all y > 0 sufficiently small. Next,we define for y > 0 the set

Ix(y) :=

{
{p ∈ R : |p − p±| ≥ √

y}, if cx+i0 has a zero,

R, if cx+i0 has no zero,
(2.12)

and prove for all sufficiently small y > 0 and p ∈ Ix(y) that

∣
∣θ−1

x+iy(p)
∣
∣ ≤ C2√

y
(2.13)

for some C2 > 0, where the absolute value is understood elementwise.
In order to show (2.13), we note first that for some C3 > 0 independent

of p ∈ R and y ∈ [0, 1] one has the estimate

∣
∣cx+iy(p)θ−1

x+iy(p)
∣
∣ ≤ C3. (2.14)

Consider first the case when cx+i0 has no zero. From the definition
of cx+iy we conclude that there exists P0 > 0 such that

∣
∣cx+iy(p)

∣
∣ > 1

holds for all |p| > P0 and all sufficiently small y > 0. Moreover, the map
[−P0, P0] × [0, 1] � (p, y) �→ cx+iy(p) is uniformly continuous and hence,
there exists a constant C4 > 0 such that for all sufficiently small y > 0 and
p ∈ [−P0, P0] the relation |cx+iy(p)| > C4 holds, as cx+i0 has no zero. Thus,
for y > 0 sufficiently small |cx+iy| is uniformly bounded from below by a
positive constant, which together with (2.14) leads to the estimate in (2.13).

Assume now that cx+i0 has the zeros p±, let y > 0 be sufficiently small,

and fix p ∈ R with |p − p±| ≥ √
y. From (2.10) we get

√
p2± + m2 − x2 > 0

and thus,
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∣
∣
∣
∣

√
p2 +m2 − (x+ iy)2 −

√
p2± +m2 − x2

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

p2 − (x+ iy)2 − p2± + x2

√
p2 +m2 − (x+ iy)2 +

√
p2± +m2 − x2

∣
∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣
∣

(p − p±)(p+ p±)
√
p2 +m2 − (x+ iy)2 +

√
p2± +m2 − x2

∣
∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣
∣

x2 − (x+ iy)2
√

p2± +m2 − x2

∣
∣
∣
∣
∣
∣

≥ C5
√
y

with a constant C5 > 0, where we used in the first inequality for the denomi-
nator that the real part of the complex square root is positive and in the last
estimate that the functions

R± � p �→
∣
∣
∣
∣
∣
∣

p ± |p±|
√

p2 + m2 − (x + iy)2 +
√

p2± + m2 − x2

∣
∣
∣
∣
∣
∣

are uniformly bounded from below independently of y > 0 sufficiently small.
Hence, we conclude for those y > 0 that

∣
∣cx+iy(p)

∣
∣ =

∣
∣cx+iy(p) − cx+i0(p±)

∣
∣ ≥ C6

√
y.

Together with (2.14) this yields (2.13).
Now, we have everything in hands to prove item (i). Let χ be the char-

acteristic function for the set Ix(y) defined in (2.12). Then (2.11) and (2.13)
imply for an arbitrary ϕ ∈ L2(Σ;C2)

lim
y↘0

∥
∥yθ−1

x+iyϕ
∥
∥

L2(R;C2)
≤ lim

y↘0

∥
∥y(1 − χ)θ−1

x+iyϕ
∥
∥

L2(R;C2)
+ lim

y↘0

∥
∥yχθ−1

x+iyϕ
∥
∥

L2(R;C2)

≤ lim
y↘0

C1

∥∥(1 − χ)ϕ
∥∥

L2(R;C2)
+ lim

y↘0
C2

√
y
∥∥ϕ

∥∥
L2(R;C2)

= 0.

Thus, assertion (i) is true.
To show item (ii), let x ∈ (−∞,−|m|) ∪ (|m|,+∞) and let I be a non-

empty compact interval which is contained in (−√
x2 − m2,

√
x2 − m2). Note

that the numbers p± in (2.10) are not contained in I and that

lim
y↘0

Im
√

p2 + m2 − (x + iy)2 �= 0

for p ∈ I. Let χ̃ be the characteristic function for I. Taking the form of θ−1
x+iy

into account, we get that Im (χ̃θ−1
x+iy) converges uniformly to a nontrivial

limit and hence, one can choose ϕ ∈ L2(Σ;C2) supported in I such that

lim
y↘0

Im
((

Θ − M(x + iy)
)−1

ϕ,ϕ
) �= 0,

i.e. also item (ii) is true. �

Proof. (Proof of Theorem 1.1) First, we note that the case η = 0 reduces to
the free Dirac operator and hence, all claims are known here. So we assume
from now on that η �= 0. The self-adjointness of Aη is shown in Lemma 2.2.
The claims about σ(Aη) ∩ (−|m|, |m|) follow from Lemma 2.3 and [9, Theo-
rem 2.6.2].

It remains to show for η ∈ R\{0} that (−∞,−|m|]∪ [|m|,+∞) is purely
continuous spectrum of Aη. For this purpose let S be the operator from (2.1)
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and define the operator T := S∗ � (dom Aη + dom A0). Let Γ0,Γ1 be the
mappings from (2.2) and define ΓΘ

0 ,ΓΘ
1 : dom T → L2(Σ;C2) by

ΓΘ
0 f := Γ1f − ΘΓ0f, ΓΘ

1 f := −Γ0f, f ∈ dom T.

Similarly as in [11, Proposition 2.4] one verifies that {L2(Σ;C2),ΓΘ
0 ,ΓΘ

1 } is
a quasi boundary triple for S∗ in the sense of [14] with T � ker ΓΘ

0 = Aη and
Weyl function

ρ(Aη) � z �→ −(
Θ − M(z)

)−1
.

Note that the operator S in (2.1) is simple; this can be shown as in [11, Propo-
sition 3.2] using [16, Step 2 in the proof of Theorem 3.4]. Hence, Lemma 2.4 (i)
and [15, Theorem 3.2] imply that (−∞,−|m|] ∪ [|m|,+∞) ∩ σp(Aη) = ∅.
Furthermore, Lemma 2.4 (ii) and [15, Theorem 3.5] yield that the inclusion
(−∞,−|m|)∪(|m|,+∞) ⊂ σc(Aη) holds. By combining these facts one shows
that (−∞,−|m|] ∪ [|m|,+∞) is contained in the purely continuous spectrum
of Aη. �
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