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Abstract In this note we consider the self-adjoint Schrödinger operator AU in
!2 (R3), 3 ≥ 2, with a X-potential supported on a Lipschitz hypersurface Σ ⊆ R3
of strength U ∈ ! ? (Σ) + !∞ (Σ). We show the uniqueness of the ground state and,
under some additional conditions on the coefficient U and the hypersurface Σ, we
determine the essential spectrum of AU. In the special case that Σ is a hyperplane
we obtain a Birman-Schwinger principle with a relativistic Schrödinger operator as
Birman-Schwinger operator. As an application we prove an optimization result for
the bottom of the spectrum of AU.
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1 Introduction

In this paperwe are interested in spectral properties of a class of self-adjoint operators
AU with singular X-potentials in the Hilbert space !2 (R3), 3 ≥ 2, which correspond
to the formal differential expression
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−Δ − U X(G − Σ), (1.1)

where Σ ⊂ R3 is the graph of a Lipschitz function b : R3−1 → R and the function
U : Σ → R is the strength of the X-potential; cf. [8, 13], the monograph [22] and
the references therein. Note that the unbounded Lipschitz surface Σ splits R3 into
two unbounded disjoint parts and that the special choice b = 0 corresponds to the
situation where Σ is the hyperplane in R3 . Assuming U ∈ ! ? (Σ) + !∞ (Σ) for some
1 < ? < ∞ in 3 = 2 and for 3 −1 ≤ ? < ∞ in 3 ≥ 3 dimensions we define AU as the
semibounded self-adjoint operator in !2 (R3) associated with the densely defined,
symmetric, semibounded, and closed form

aU [D, {] B (∇D,∇{)!2 (R3 ;C3) −
∫
Σ

U gDD gD{ dG,

dom aU B �1 (R3),
(1.2)

where gD : �1 (R3) → �1/2 (Σ) is the Dirichlet trace operator. Let us denote the
bottom of the spectrum of AU by

_1 (U) B inf f(AU). (1.3)

The first issue we discuss in this paper is the essential spectrum of the self-adjoint
operator AU. In the present situation one always has the inclusion [0,∞) ⊂ fess (AU)
and in Theorem 2.3 we prove that if Σ is a local deformation of the hyperplane
R3−1 × {0} and U is close to a constant U0 ∈ R outside of sets of finite measure (that
is, the set { G ∈ Σ | |U(G) − U0 | > Y } is of finite measure for every Y > 0), then

fess (AU) =
{
[− U

2
0

4 ,∞), if U0 ≥ 0,
[0,∞), if U0 ≤ 0;

see also [39] for related results. Next we investigate the uniqueness of the ground
state of AU, which is a typical property for Schrödinger operators−Δ++ with regular
potentials. More precisely, if _1 (U) in (1.3) is a discrete eigenvalue then it will be
shown in Section 2.3 that _1 (U) is simple and the corresponding eigenfunction can
be chosen strictly positive onR3 \Σ; this observation is based on a standard argument
using Harnack’s inequality.

In Section 3 we focus on the special case that Σ is the hyperplane and we obtain a
Birman-Schwinger principle, where the Birman-Schwinger operator is a relativistic
Schrödinger operator in !2 (R3−1). The operators appearing in this context can
also be viewed as (extensions of) the W-field and Weyl function corresponding to a
certain quasi boundary triple; cf. [9, Section 8] for more details. Under the additional
assumption that U is close to a constant U0 outside of sets of finite measure, we then
provide a more detailed analysis of the spectrum of the Birman-Schwinger operator
and link these spectral properties to those of AU. As an interesting application
we prove an optimization result for the bottom of the spectrum of AU which is
formulated in terms of the so-called symmetric decreasing rearrangement: Consider
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again a real-valued U ∈ !∞ (R3−1) + ! ? (R3−1) for some 1 < ? < ∞ in 3 = 2
and for 3 − 1 ≤ ? < ∞ in 3 ≥ 3 dimensions, which is close to a constant U0
outside of sets of finite measure. Furthermore, let in the following U1 B U − U0 and
(U1)+ = max{U1, 0}, and let (U1)∗+ be the symmetric decreasing rearrangement of
(U1)+ defined in (3.23). Then we have the inequality

_1 (U0 + (U1)∗+) ≤ _1 (U0 + U1). (1.4)

Our proof of (1.4) relies on the fact that the symmetric decreasing rearrangement
decreases the kinetic energy term corresponding to the relativistic Schrödinger op-
erator. This property of the kinetic energy can be viewed as an analogue of the
Pólya-Szegő inequality. We note that a different argument for (1.4) based on Steiner
symmetrization was communicated to us; cf. Remark 3.11 for more details. We wish
to mention that eigenvalue optimization is a trademark topic in spectral theory; see
the monographs [30, 31] and the references therein. In particular, optimization of
eigenvalues induced by X-potentials supported on hypersurfaces is a topic of growing
interest [19, 20, 23, 36]. There are also closely related works on eigenvalue opti-
mization for X-potentials supported on sets of higher co-dimension [7, 21], for the
Robin Laplacian [3, 12, 14, 16, 25, 26, 28, 33, 34], for X′-interactions [37] and for
Dirac operators with surface interactions [2, 4].
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2 The Schrödinger operator with %-potential supported on a
Lipschitz graph

In this section let 3 ≥ 2 and

Σ B
{
(G, b (G))

�� G ∈ R3−1 }
⊂ R3 (2.1)

be the graph of a Lipschitz function b : R3−1 → R. Furthermore, let

U ∈ ! ? (Σ) + !∞ (Σ) (2.2)

be a real-valued function with 1 < ? < ∞ in 3 = 2 and 3 − 1 ≤ ? < ∞ in 3 ≥ 3
dimensions. In this setting we will define the self-adjoint operator AU associated to
the form (1.2) and study its essential spectrum. In particular, if the support Σ is a
local deformation of a hyperplane and if the coefficient U is close to a constant in
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the sense of (2.6), we explicitly compute fess (AU). Furthermore, we verify that the
ground state _1 (U) (if it is a discrete eigenvalue) is simple.

2.1 The form a" and the operator A"

In this subsection we will prove that the form (1.2), which models a X-potential of
strength U supported on Σ, is well defined and gives rise to a self-adjoint operator
AU in !2 (R3); cf. [13, 24] and [10, Proposition 3.8]. In the following the Dirichlet
trace operator gD in (1.2) is viewed for 1

2 < B <
3
2 as a bounded operator

gD : �B (R3) → �B−
1
2 (Σ); (2.3)

cf. [38, Proof of Theorem 3.38].

Proposition 2.1 The form aU in (1.2) is densely defined, symmetric, semibounded,
and closed in !2 (R3).

Proof It is clear, that dom aU = �
1 (R3) is dense in !2 (R3). Furthermore, we split

aU into

a0 [D, {] B (∇D,∇{)!2 (R3 ;C3) , with dom a0 B �1 (R3),

a1 [D, {] B −
∫
Σ

U gDD gD{ dG, with dom a1 B �1 (R3).

Observe that a0 is densely defined, nonnegative, and closed in !2 (R3). Furthermore,
since U is real-valued it is clear that a1 is symmetric. The estimate (A.3) shows that
for every Y > 0 there exists some 2Y ≥ 0, such that��a1 [D, D]

�� ≤ Y2‖gDD‖2
�

1
2 (Σ)
+ 22

Y ‖gDD‖2!2 (Σ) , D ∈ �1 (R3).

Using the boundedness (2.3) of the trace operator, the absolute value of a1 [D, D] can
further be estimated by��a1 [D, D]

�� ≤ Y232
1 ‖D‖

2
� 1 (R3) + 2

2
Y3

2
B ‖D‖2� B (R3) , D ∈ �1 (R3),

where 31 and 3B are the operator norms of (2.3) with B = 1 and some fixed B ∈ ( 12 , 1),
respectively. Since B < 1, we can use [29, Theorem 3.30] to find a constant 2̃Y ≥ 0
with ��a1 [D, D]

�� ≤ Y2 (32
1 + 1)‖D‖2

� 1 (R3) + 2̃
2
Y ‖D‖2!2 (R3) , D ∈ �1 (R3).

That is, the form a1 is a0-bounded with form bound 0. The semiboundedness and
closedness of aU = a0 + a1 now follow from [32, Chapter VI, Theorem 1.33]. �
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Proposition 2.1 combined with the First Representation Theorem [32, Chapter VI,
Theorem 2.1] implies that there is a unique self-adjoint operator AU in !2 (R3)
representing the form aU in the sense that dom AU ⊂ dom aU and

(AU 5 , 6)!2 (R3) = aU [ 5 , 6], 5 ∈ dom AU, 6 ∈ dom aU . (2.4)

2.2 Essential spectrum of A"

In this subsectionwe investigate the essential spectrum ofAU. The following prepara-
tory lemma shows that in the present situation the essential spectrum of AU always
covers the nonnegative real axis.

Lemma 2.2 For any U of the form (2.2) we have

[0,∞) ⊆ fess (AU). (2.5)

Proof In a similarway as in the proof of [17,Chapter 10, Theorem6.5] one constructs
for _ ∈ (0,∞) an orthonormal sequence (Ψ=)= ∈ C∞0 (R

3) with support in R3 \ Σ
and

‖(−Δ − _)Ψ=‖!2 (R3)
=→∞−→ 0.

From suppΨ= ⊆ R3 \ Σ we have gDΨ= = 0 and hence it follows from (1.2) that
AUΨ= = −ΔΨ=. This implies

‖(AU − _)Ψ=‖!2 (R3)
=→∞−→ 0,

so that (Ψ=)= is a singular sequence and we conclude _ ∈ fess (AU). This proves that
(0,∞) ⊆ fess (AU) and since the essential spectrum is closed we obtain (2.5). �

For a subclass of hypersurfaces Σ, which are local deformations of a hyperplane, and
interaction strengths that are close to a constant in the sense of (2.6), we are able to
determine the essential spectrum explicitly.

Theorem 2.3 If the function b : R3−1 → R in (2.1) is compactly supported and if
for some U0 ∈ R

{ G ∈ Σ | |U(G) − U0 | > Y } has finite measure for every Y > 0, (2.6)

then the essential spectrum of the corresponding Schrödinger operator AU is given
by

fess (AU) =
{
[− U

2
0

4 ,∞), if U0 ≥ 0,
[0,∞), if U0 ≤ 0.

(2.7)

Proof Step 1. First, we consider the hyperplane Σ = R3−1 × {0} � R3−1 and the
constant potential U(G) = U0. We introduce two auxiliary closed forms
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d[q, k] B (∇q,∇k)!2 (R3−1;C3−1) , with dom d B �1 (R3−1),
tU0 [ 5 , 6] B ( 5 ′, 6′)!2 (R) − U0 5 (0)6(0), with dom tU0 B �1 (R),

with the corresponding self-adjoint operators −Δ and TU0 in the Hilbert spaces
!2 (R3−1) and !2 (R), respectively. The spectra of these operators are explicitly
given by

f(−Δ) = [0,∞) and f(TU0 ) =
{
{− U

2
0

4 } ∪ [0,∞), if U0 ≥ 0,
[0,∞), if U0 ≤ 0,

where the proof of the latter one can be found in [1, Theorem 3.1.4]. The Schrödinger
operator ÃU0 with X-potential supported on a hyperplane of constant strength U0 can
be decomposed as

ÃU0 = (−Δ) ⊗ IR + IR3−1 ⊗ TU0

with respect to !2 (R3) = !2 (R3−1) ⊗ !2 (R); here IR and IR3−1 denote the identity
operators in !2 (R) and !2 (R3−1), respectively. Hence, it follows from [42, Eq.
(4.44)] that

f(ÃU0 ) =
{
[− U

2
0

4 ,∞), if U0 ≥ 0,
[0,∞), if U0 ≤ 0.

(2.8)

Step 2. Let AU0 be the Schrödinger operator with X-potential of constant strength
U0 supported on the hypersurface Σ. Since the Lipschitz mapping b is compactly
supported, the surface Σ is a local deformation of the hyperplane R3−1 × {0} in the
sense that Σ \ B = (R3−1 × {0}) \ B for a ball B ⊂ R3 of sufficiently large radius.
Hence it follows from (2.8) using [6, Theorem 4.7] that

fess (AU0 ) = fess (ÃU0 ) =
{
[− U

2
0

4 ,∞), if U0 ≥ 0,
[0,∞), if U0 ≤ 0.

(2.9)

Step 3.With U0 from (2.6) we define U1 B U − U0, such that { G ∈ Σ | |U1 (G) | > Y }
has finite measure for every Y > 0. The self-adjoint operators AU0 and AU are
both semibounded since they correspond to semibounded forms. Hence, we can fix
_ < inf (f(AU0 ) ∪ f(AU)) and consider the resolvent difference

W B (AU0 − _)−1 − (AU − _)−1. (2.10)

Our aim is to show thatW is a compact operator in !2 (R3). For this let 5 , 6 ∈ !2 (R3)
and set

D B (AU0 − _)−1 5 and { B (AU − _)−16. (2.11)

Using (2.11) and the definition of the operator W in (2.10) we obtain



Schrödinger operators with X-potentials 7

(W 5 , 6)!2 (R3) =
(
(AU0 − _)−1 5 , 6

)
!2 (R3) −

(
(AU − _)−1 5 , 6

)
!2 (R3)

= (D, 6)!2 (R3) − ( 5 , {)!2 (R3)

=
(
D, (AU − _){

)
!2 (R3) −

(
(AU0 − _)D, {

)
!2 (R3)

= (D,AU{)!2 (R3) − (AU0D, {)!2 (R3) .

(2.12)

We can express the above inner products via the corresponding forms (2.4) and
conclude that (W 5 , 6)!2 (R3) reduces to the surface integral

(W 5 , 6)!2 (R3) = −
∫
Σ

U1gDD gD{ dG = (T1 5 , T26)!2 (Σ) ,

where T1, T2 : !2 (R3) → !2 (Σ) are defined by

T1 B |U1 |
1
2 gD (AU0 − _)−1 and T2 B − sgn(U1) |U1 |

1
2 gD (AU − _)−1.

As (AU0 − _)−1 and (AU − _)−1 are bounded operators from !2 (R3) into �1 (R3), it
follows from (2.3) that gD (AU0 − _)−1 and gD (AU − _)−1 are bounded from !2 (R3)
into � 1

2 (Σ). Consequently, both T1 and T2 are compact as operators from !2 (R3)
into !2 (Σ) by Proposition A.3. Thus the operator W = T∗2T1 is compact as well and
the stability of the essential spectrum under compact perturbations in resolvent sense
combined with (2.9) yields the claim. �

2.3 Uniqueness of the ground state

In this subsection we assume that the bottom of the spectrum _1 (U) in (1.3) is a
discrete eigenvalue of AU. The aim is to prove in Theorem 2.7 that this eigenvalue
is simple and the corresponding eigenfunction can be chosen strictly positive on
R3 \ Σ.

Lemma 2.4 Let D ∈ �1 (R3) be a real-valued eigenfunction of AU corresponding to
_1 (U). Then also |D | is an eigenfunction of AU corresponding to _1 (U).

Proof From |∇|D | | = |∇D |, cf. [35, Theorem 6.17], and gD |D | = |gDD |, we obtain

aU [|D |]
‖ |D |‖2

!2 (R3)
=

aU [D]
‖D‖2

!2 (R3)
= _1 (U).

Since _1 (U) is the bottom of the spectrum it can be represented by the min-max
principle [40, Theorem XIII.2] as

_1 (U) = inf
0≠{∈� 1 (R3)

aU [{]
‖{‖2

!2 (R3)
.
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Since _1 (U) is assumed to be a discrete eigenvalue, it follows from [15, Chapter 10.2,
Theorem 1] that |D | is indeed an eigenfunction of AU corresponding to the eigenvalue
_1 (U). �

Lemma 2.5 LetΩ ⊆ R3 be open and connected. Assume that D ∈ �1 (Ω) and _ ∈ R
satisfy

(∇D,∇{)!2 (Ω;C3) = _(D, {)!2 (Ω) , { ∈ �1
0 (Ω).

Then D ∈ C∞ (Ω) and if D ≥ 0 and D(G0) = 0 for some G0 ∈ Ω, then D ≡ 0.

Proof The interior regularity D ∈ C∞ (Ω) is well known; cf. [18, §6.3. Theorem 3].
Assume now D ≥ 0 and D(G0) = 0 for some G0 ∈ Ω. Since Ω is connected, for
every G ∈ Ω there exists a path W connecting G and G0. Since Ω is also open, there
even exists some open and bounded * with W ⊆ * ⊆ * ⊆ Ω. Then it follows from
Harnack’s inequality [27, Corollary 8.21], that

sup
H∈*

D(H) ≤ � inf
H∈*

D(H),

for some constant � > 0. Since D(G0) = 0, the right and hence also the left hand
side of this inequality vanishes. Therefore, D |* = 0 and in particular D(G) = 0. Since
G ∈ Ω was arbitrary, we conclude D ≡ 0. �

Lemma 2.6 Let D ∈ �1 (R3) be a real-valued eigenfunction of AU corresponding to
_1 (U). Then D ∈ C∞ (R3 \Σ) is either strictly positive or strictly negative on R3 \Σ.

Proof From Lemma 2.5 we conclude D ∈ C∞ (R3 \ Σ). In order to show that D has
no zeros in R3 \Σ, we assume the converse, i.e. that D(G0) = 0 for some G0 ∈ R3 \Σ.
It is clear that Σ cuts the whole space R3 into the two domains

Ω+ B
{
(G, G3) ∈ R3−1 × R

�� G3 > b (G) } ,
Ω− B

{
(G, G3) ∈ R3−1 × R

�� G3 < b (G) } .
We will assume without loss of generality that G0 ∈ Ω+. Since, by Lemma 2.4, |D | is
also an eigenfunction corresponding to _1 (U), we have

(∇|D |,∇{)!2 (Ω+;C3) = _1 (U) ( |D |, {)!2 (Ω+) , { ∈ �1
0 (Ω+),

and Lemma 2.5 implies D |Ω+ ≡ 0. In particular, we have gDD = 0 and the eigenvalue
equation for D reduces to

(∇D,∇{)!2 (Ω−;C3) = _1 (U) (D, {)!2 (Ω−) , { ∈ �1 (R3).

Since _1 (U) is a discrete eigenvalue, it is negative by Lemma 2.2, and consequently
choosing { = D, we conclude D |Ω− ≡ 0. But this is a contradiction to the fact that D
is a (nonzero) eigenfunction; hence D has no zeros in R3 \ Σ.

Since we already know that D ∈ C∞ (R3 \ Σ) has no zeros in R3 \ Σ, it has to be
either strictly positive or strictly negative on each of the domains Ω±. However, a
priori the signs of D may not coincide. If, e.g.
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D |Ω+ > 0 and D |Ω− < 0,

then gDD = 0 and the eigenvalue equation for D reduces to

(∇D,∇{)!2 (R3 ;C3) = _1 (U) (D, {)!2 (R3) , { ∈ �1 (R3).

Choosing { = D we again conclude D ≡ 0 by the negativity of _1 (U); a contradiction
as D is a (nonzero) eigenfunction. �

Theorem 2.7 If the bottom (1.3) of the spectrum of AU is a discrete eigenvalue, then
it is simple and the corresponding eigenfunction can be chosen strictly positive on
R3 \ Σ.

Proof Note that there exists a real-valued basis of the eigenspace corresponding to
_1 (U) since for every eigenfunction the complex conjugate is also an eigenfunction.
Now consider two orthogonal real-valued eigenfunctions D1 and D2. According to
Lemma 2.6 each eigenfunction is either strictly positive or strictly negative onR3 \Σ.
But this is a contradiction to the orthogonality condition∫

R3
D1 D2 dG = 0.

Hence, the eigenspace is one-dimensional and thus _1 (U) is a simple eigenvalue. �

3 The Birman-Schwinger principle and an optimization result
for %-potentials on a hyperplane

In this section we assume that the support of the X-potential is a hyperplane and we
shall therefore identify Σ = R3−1 × {0} � R3−1. Moreover, as in (2.2), everywhere
in this section we consider a real-valued function

U ∈ ! ? (R3−1) + !∞ (R3−1)

with 1 < ? < ∞ if 3 = 2 and 3 − 1 ≤ ? < ∞ if 3 ≥ 3. Later we shall also assume
that there exists some U0 ∈ R such that{

G ∈ R3−1 �� |U(G) − U0 | > Y
}
has finite measure for every Y > 0. (3.1)

We first discuss the Birman-Schwinger principle for the operator AU in this special
situation, by means of which the spectral problem can be reduced to the spectral
analysis of a relativistic Schrödinger operator in !2 (R3−1). As an application and
illustration we prove an optimization result for the bottom of the spectrum of AU in
Theorem 3.7.
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3.1 The Birman-Schwinger principle for %-potentials supported on a
hyperplane

For every _ < 0 we consider the form

dU,_ [q, k] B 2
(
(−Δ − _) 1

4 q, (−Δ − _) 1
4k

)
!2 (R3−1) −

∫
R3−1

U q k dG,

dom dU,_ B �
1
2 (R3−1).

(3.2)

It follows from Lemma A.1 that for every Y > 0 there exists a 2Y > 0 such that|U | 12 q2
!2 (R3−1) ≤ Y

2‖q‖2
�

1
2 (R3−1)

+ 22
Y ‖q‖2!2 (R3−1) , q ∈ � 1

2 (R3−1). (3.3)

Using this inequality it follows (see the proof of Proposition 2.1) that dU,_ is a
densely defined, symmetric, semibounded and closed form in !2 (R3−1). We denote
the corresponding self-adjoint operator in !2 (R3−1) by DU,_. It turns out in Propo-
sition 3.2 below that the eigenvalue 0 of this relativistic Schrödinger operator is
directly linked to the eigenvalue _ of the Schrödinger operator AU.

We first formulate and prove a preparatory lemma; here and in the following
we shall denote the extension of the !2 (R3−1) scalar product onto the dual pair
�−

1
2 (R3−1) × � 1

2 (R3−1) by 〈 · , · 〉
�
− 1

2 (R3−1)×�
1
2 (R3−1)

.

Lemma 3.1 For every fixed _ < 0 there exists a unique bounded linear operator
W(_) : �− 1

2 (R3−1) → �1 (R3) such that the identity(
∇W(_)q,∇{

)
!2 (R3 ;C3) − _

(
W(_)q, {

)
!2 (R3) = 〈q, gD{〉�− 1

2 (R3−1)×�
1
2 (R3−1)

(3.4)

holds for all q ∈ �− 1
2 (R3−1), { ∈ �1 (R3). Moreover, the trace of W(_) is given by

gDW(_) =
1
2
(−Δ − _)− 1

2 , (3.5)

and acts as a bounded linear operator from �−
1
2 (R3−1) to � 1

2 (R3−1).

Proof Let F3 and F3−1 be the unitary Fourier transforms in !2 (R3) and !2 (R3−1),
respectively, and consider Schwartz functions q ∈ S(R3−1). We first define the
operator W(_) in Fourier space as

(F3W(_)q) ( :̃) B
(F3−1q) (:)√
2c( | :̃ |2 − _)

, :̃ = (:, :3) ∈ R3−1 × R. (3.6)

As _ < 0 and F3−1q ∈ S(R3−1), this is a well defined function in !2 (R3). The fact,
that W(_) is bounded from �−

1
2 (R3−1) to �1 (R3) follows from the estimate
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‖W(_)q‖2
� 1 (R3) =

1
2c

∫
R3
(1 + | :̃ |2) | (F3−1q) (:) |2

( | :̃ |2 − _)2
d:̃

=
1

2c

∫
R3−1

∫
R

1 + |: |2 + :2
3

( |: |2 + :2
3
− _)2

d:3 | (F3−1q) (:) |2d:

=
1
4

∫
R3−1

2|: |2 + 1 − _
( |: |2 − _) 3

2
| (F3−1q) (:) |2d:

≤ 2(_)
4
‖q‖2

�
− 1

2 (R3−1)
,

where 2(_) denotes the maximum of the function

: ↦→ (2|: |
2 + 1 − _) ( |: |2 + 1)1/2

( |: |2 − _)3/2
.

Since S(R3−1) is dense in �− 1
2 (R3−1) the operator W(_) can be extended by conti-

nuity onto �− 1
2 (R3−1).

In order to prove the identity (3.4) for Schwartz functions q ∈ S(R3−1) and
{ ∈ S(R3), we use the Fourier representation

(F3∇{) ( :̃) = 8 :̃ (F3{) ( :̃), :̃ ∈ R3 , (3.7)

of the gradient. For G ∈ R3−1 the trace can be written as

(gD{) (G) = (F −1
3 F3{) (G, 0)

=
1
(2c) 32

∫
R3
48 〈:̃ , (G,0) 〉 (F3{) ( :̃)d:̃

=
1
(2c) 32

∫
R3−1

48 〈:,G 〉
∫
R
(F3{) (:, :3)d:3d:

=
1
√

2c
F −1
3−1

[∫
R
(F3{) ( · , :3)d:3

]
(G)

(3.8)

and hence

(F3−1gD{) (:) =
1
√

2c

∫
R
(F3{) (:, :3)d:3 , : ∈ R3−1. (3.9)

The definition (3.6) of W(_), together with (3.7) and (3.9) leads to
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∇W(_)q,∇{

)
!2 (R3 ;C3) − _

(
W(_)q, {

)
!2 (R3)

=

∫
R3
( | :̃ |2 − _) (F3W(_)q) ( :̃) (F3{) ( :̃) d:̃

=
1
√

2c

∫
R3
(F3−1q) (:) (F3{) (:, :3) d:3d:

=

∫
R3−1
(F3−1q) (:) (F3−1gD{) (:) d:

= (q, gD{)!2 (R3−1)

= 〈q, gD{〉
�
− 1

2 (R3−1)×�
1
2 (R3−1)

,

and hence (3.4) holds for q ∈ S(R3−1) and { ∈ S(R3). By density and continuity
this identity extends to all q ∈ �− 1

2 (R3−1) and { ∈ �1 (R3). Also note, that the
identity (3.4) uniquely defines the operator W(_).

For the proof of (3.5) note first that the identity (3.9) and its derivation (3.8) remain
valid for { ∈ �1 (R3) ∩ C(R3) with F3{ ∈ !1 (R3). In particular, for q ∈ S(R3−1)
it is not difficult to see that F3W(_)q ∈ !1 (R3) by its definition (3.6) and hence
also that W(_)q = F −1

3
F3W(_)q is continuous as the inverse Fourier transform of an

!1-function. This means that from (3.9) we get

(F3−1gDW(_)q) (:) =
1
√

2c

∫
R
(F3W(_)q) (:, :3)d:3

=
(F3−1q) (:)

2c

∫
R

d:3
| :̃ |2 − _

=
(F3−1q) (:)
2( |: |2 − _) 1

2
,

which is exactly equation (3.5) in Fourier space. Again, by continuity this identity
also holds for every q ∈ �− 1

2 (R3−1). �

With this lemma we find a connection between the eigenvalue 0 of the relativistic
Schrödinger operator DU,_ and the eigenvalue _ of the Schrödinger operator AU.

Proposition 3.2 For every _ < 0 the restriction of the Dirichlet trace operator

gD : ker(AU − _) → ker DU,_ (3.10)

is bijective and, in particular, dim ker(AU − _) = dim ker DU,_.

Proof In order to see that the restriction of gD onto ker(AU − _) maps into ker DU,_
consider some D ∈ ker(AU − _). By (1.2) we have D ∈ �1 (R3) and

(∇D,∇{)!2 (R3 ;C3) − _(D, {)!2 (R3) =
(
sgn(U) |U | 12 gDD, |U |

1
2 gD{

)
!2 (R3−1) (3.11)
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for all { ∈ �1 (R3). Since gDD ∈ �
1
2 (R3−1), we get |U | 12 gDD ∈ !2 (R3−1) from (3.3)

and hence there exist k= ∈ �
1
2 (R3−1) such that

sgn(U) |U | 12 gDD = lim
=→∞

k= in !2 (R3−1). (3.12)

Again, by (3.3), we have |U | 12k= ∈ !2 (R3−1) and inserting these into (3.4) leads to(
∇W(_) |U | 12k=,∇{

)
!2 (R3 ;C3) − _

(
W(_) |U | 12k=, {

)
!2 (R3) =

(
k=, |U |

1
2 gD{

)
!2 (R3−1)

for all { ∈ �1 (R3). Combining this with (3.11) and (3.12) implies the convergence

W(_) |U | 12k= ⇀ D weakly in �1 (R3).

Applying the bounded operator (−Δ − _) 1
4 gD : �1 (R3) → !2 (R3−1) on this weak

convergence and using (3.5) gives

1
2
(−Δ − _)− 1

4 |U | 12k= = (−Δ − _)
1
4 gDW(_) |U |

1
2k= ⇀ (−Δ − _)

1
4 gDD

weakly in !2 (R3−1). Hence, for every k ∈ � 1
2 (R3−1) we get

dU,_ [gDD, k] = lim
=→∞

(
(−Δ − _)− 1

4 |U | 12k=, (−Δ − _)
1
4k

)
!2 (R3−1) −

∫
R3−1

U gDD k dG

= lim
=→∞

(
k=, |U |

1
2k

)
!2 (R3−1) −

∫
R3−1

U gDD k dG

= 0,

where (3.12) was used in the last step. Thus, we conclude gDD ∈ ker DU,_.

Next we show that (3.10) is injective. In fact, assume that gDD = 0 for some
D ∈ ker(AU − _). Then (1.2) leads to

(∇D,∇{)!2 (R3 ;C3) = _(D, {)!2 (R3−1) , { ∈ �1 (R3).

Since _ < 0 we can choose { = D and conclude D = 0.

For the surjectivity of (3.10) we choose q ∈ ker DU,_. By (3.2) we then have
q ∈ � 1

2 (R3−1) and

2
(
(−Δ − _) 1

4 q, (−Δ − _) 1
4k

)
!2 (R3−1) =

∫
R3−1

U q k dG, k ∈ � 1
2 (R3−1). (3.13)

Now define Dq B 2W(_) (−Δ − _) 1
2 q. Then gDDq = q by (3.5) and using (3.4) with

q replaced by 2(−Δ − _) 1
2 q, gives for any { ∈ �1 (R3)
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∇Dq ,∇{

)
!2 (R3 ;C3) − _ (Dq , {)!2 (R3) = 2〈(−Δ − _) 1

2 q, gD{〉
�
− 1

2 (R3−1)×�
1
2 (R3−1)

=

∫
R3−1

U q gD{ dG

=

∫
R3−1

U gDDq gD{ dG,

where in the second step we used (3.13) with k = gD{. Summing up, for q ∈ ker DU,_
we found Dq ∈ ker(AU −_) such that gDDq = q, which is the surjectivity of (3.10).�

Next we analyse how the bottom of the spectrum f(DU,_) behaves as a function
of _ < 0.

Lemma 3.3 For _ < 0 the mapping

_ ↦→ `U (_) B inf f(DU,_) = inf
0≠q∈� 1/2 (R3−1)

dU,_ [q]
‖q‖2

!2 (R3−1)
(3.14)

is nonincreasing, continuous and admits the limit

lim
_→−∞

`U (_) = ∞. (3.15)

Proof With the help of the Fourier transform in !2 (R3−1) we see that the form dU,_
admits the representation

dU,_ [q] = 2
∫
R3−1
( |: |2 − _) 1

2 | (F3−1q) (:) |2d: −
∫
R3−1

U |q |2 dG, (3.16)

for any q ∈ � 1
2 (R3−1), which shows that dU,_ [q] is nonincreasing in _. Hence the

same is true for `U in (3.14).

For the continuity of the function `U consider _1 ≤ _2 < 0. Then for every
q ∈ � 1

2 (R3−1) we can estimate the difference

dU,_1 [q] − dU,_2 [q] = 2
∫
R3−1

(
( |: |2 − _1)

1
2 − (|: |2 − _2)

1
2
)
| (F3−1q) (:) |2d:

≤ 2
(√
−_1 −

√
−_2

)
‖q‖2

!2 (R3−1) ,

and via (3.14) we also conclude

`U (_1) − `U (_2) ≤ 2
(√
−_1 −

√
−_2

)
,

which proves the continuity of _ ↦→ `U (_).

It remains to verify (3.15). For this we use the estimate��� ∫
R3−1

U |q|2dG
��� ≤ ‖q‖2

�
1
2 (R3−1)

+ 22
1‖q‖

2
!2 (R3−1) , q ∈ � 1

2 (R3−1),
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from (3.3). Plugging this in (3.16) gives

dU,_ [q] ≥
∫
R3−1

(
2( |: |2 − _) 1

2 − (1 + |: |2) 1
2
)
| (F3−1q) (:) |2d: − 22

1‖q‖
2
!2 (R3−1)

≥ (2(_) − 22
1)‖q‖

2
!2 (R3−1) ,

where 2(_) ∈ R is the minimum of : ↦→ 2( |: |2 − _) 1
2 − (1 + |: |2) 1

2 . From (3.14) we
then conclude

`U (_) ≥ 2(_)−22
1
_→−∞−→ ∞. �

Next, we compute the essential spectrum of DU,_ under the additional assumption
that U is close to a constant in the sense of (3.1).

Proposition 3.4 Assume that U satisfies (3.1) with some U0 ∈ R. Then for every
_ < 0 the essential spectrum of DU,_ is given by

fess (DU,_) =
[
2
√
−_ − U0,∞

)
. (3.17)

Furthermore, the mapping _ ↦→ `U (_) from (3.14) is strictly decreasing on (−∞, 0).

Proof It is clear that for constant U(G) = U0 ∈ R the relativistic Schrödinger operator
is given by DU0 ,_ = 2(−Δ − _) 1

2 − U0 with dom DU0 ,_ = �
1 (R3−1). Hence we have

f(DU0 ,_) = fess (DU0 ,_) =
[
2
√
−_ − U0,∞

)
. (3.18)

For a nonconstant function U we define the function U1 (G) B U(G) −U0. Then the
set {G ∈ R3−1 | |U1 (G) | > Y} has finite measure for every Y > 0 by the property (3.1).
To prove (3.17) we proceed in the same way as in Step 3 of the proof of Theorem 3.4
and check that for some ` < inf (f(DU0 ,_) ∪ f(DU,_)) the resolvent difference

W B (DU0 ,_ − `)−1 − (DU,_ − `)−1

is a compact operator in !2 (R3−1). For this let q, k ∈ !2 (R3−1) and set

q` B (DU0 ,_ − `)−1q and k` B (DU,_ − `)−1k.

In the same way as in (2.12) one verifies

(Wq, k)!2 (R3−1) =
(
q`,DU,_k`

)
!2 (R3−1) −

(
DU0 ,_q`, k`

)
!2 (R3−1)

= −
∫
R3−1

U1 q`k`dG

= (T1q, T2k)!2 (R3−1) ,

where

T1 B |U1 |
1
2 (DU0 ,_ − `)−1 and T2 B − sgn(U1) |U1 |

1
2 (DU,_ − `)−1.
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As (DU0 ,_ − `)−1 and (DU,_ − `)−1 are bounded operators from !2 (R3−1) into
�

1
2 (R3−1) it follows from Proposition A.3 that both T1 and T2 are compact operators

in !2 (R3−1). Thus the resolvent difference W = T∗2T1 is compact as well, which
implies fess (DU0 ,_) = fess (DU,_) and (3.17) follows from (3.18).

For the proof of the strict monotonicity of _ ↦→ `U (_), let _1 < _2 < 0. Then

`U (_ 9 ) ≤ 2
√
−_ 9 − U0, 9 = 1, 2, (3.19)

by (3.17). If `U (_1) = 2
√
−_1 − U0 we conclude from `U (_2) ≤ 2

√
−_2 − U0 that

`U (_2) < `U (_1). If `U (_1) < 2
√
−_1 − U0 we know from (3.17) that `U (_1)

is a discrete eigenvalue of DU,_1 and hence there is a corresponding eigenfunction
q ∈ dom DU,_1 ⊂ �

1
2 (R3−1). Since, in particular, q ≠ 0 we conclude from (3.16)

that _ ↦→ dU,_ [q] is strictly decreasing, and hence

`U (_1) =
dU,_1 [q]
‖q‖2

!2 (R3−1)
>

dU,_2 [q]
‖q‖2

!2 (R3−1)
≥ `U (_2). �

Lemma 3.5 Assume that U satisfies (3.1) with some U0 ∈ R. For the lowest spectral
point _1 (U) of AU in (1.3) and the lowest spectral point `U (_) of DU,_ in (3.14) the
following are equivalent:

(i) _1 (U) ∈ fd (AU)

(ii) `U admits a zero strictly below

{
− U

2
0

4 , if U0 ≥ 0
0, if U0 ≤ 0.

In this situation the zero of `U coincides with _1 (U).

Proof For an easier notation we write _1 B _1 (U). For the implication (i) ⇒ (ii)
let _1 ∈ fd (AU) and note that due to the explicit form of the essential spectrum (2.7)
we have

_1 <

{
− U

2
0

4 , if U0 ≥ 0,
0, if U0 ≤ 0.

(3.20)

It follows from Proposition 3.2 that zero is an eigenvalue of DU,_1 . Assume now
`U (_1) ≠ 0.

• The case `U (_1) = inf f(DU,_1 ) > 0 is a contradiction to the fact that zero is
an eigenvalue of DU,_1 .

• If `U (_1) < 0, then `U (_̃) = 0 for some _̃ < _1 by Lemma 3.3. Also note, that

inf fess (DU,_̃) = 2
√
−_̃ − U0 ≥ 2

√
−_1 − U0 > 0

by Proposition 3.4 and the estimate (3.20). But then the bottom of the spectrum

0 = `U (_̃) = inf f(DU,_̃)
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is a point in the discrete spectrumand hence an eigenvalue ofDU,_̃. Consequently,
Proposition 3.2 implies that _̃ < _1 is an eigenvalue of AU; a contradiction as
_1 is the smallest spectral point of AU.

Hence our assumption is wrong and we conclude `U (_1) = 0. Due to the strict
monotonicity in Proposition 3.4, this is also the only zero of `U.

For the implication (ii) ⇒ (i) assume that `U admits a zero

_̃ <

{
− U

2
0

4 , if U0 ≥ 0,
0, if U0 ≤ 0,

(3.21)

that is, 0 = `U (_̃) = inf f(DU,_̃). Since 2
√
−_̃ − U0 > 0 by (3.21) we conclude from

(3.17) that zero belongs to the discrete spectrum of DU,_̃, and hence Proposition 3.2
implies that _̃ is an eigenvalue of AU. Hence, also the bottom of the spectrum

_1 = inf f(AU) ≤ _̃ <
{
− U

2
0

4 , if U0 ≥ 0,
0, if U0 ≤ 0,

belongs to the discrete spectrum of AU by (2.7). �

3.2 Optimization of ,1(") and the symmetric decreasing
rearrangement

In this subsection we prove an optimization result for the bottom of the spectrum
of AU, which will be formulated in terms of the so-called symmetric decreasing
rearrangement of the positive part of the function U1 (G) B U(G) − U0, with U0 ∈ R
from (3.1). We first briefly recall the definition and some basic properties of the
symmetric decreasing rearrangement and formulate our main result in Theorem 3.7
below. Further details on symmetric decreasing rearrangements can be found in the
monographs [5, 35].

Let A ⊆ R3−1, 3 ≥ 2, be a measurable set of finite volume. Then its symmetric
rearrangement A∗ is defined as the open ball centered at the origin and having the
same volume. Let D : R3−1 → R be a nonnegative measurable function, that vanishes
at infinity in the sense that{

G ∈ R3−1 �� D(G) > C } has finite measure for every C > 0. (3.22)

We define the symmetric decreasing rearrangement D∗ of D by symmetrizing its level
sets as

D∗ (G) B
∫ ∞

0
j{D>C }∗ (G) dC. (3.23)
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Here jA : R3−1 → R denotes the characteristic function. The rearrangement D∗ has
a number of straightforward properties, which will be needed below in the proofs of
Theorem 3.7 and Lemma 3.9; cf. [35, Section 3.3 (iv) and Theorem 3.4].

Lemma 3.6 Let D, { : R3−1 → R be nonnegative measurable functions satisfying
(3.22). Then the following holds:

(i) D∗ is nonnegative;
(ii) D∗ is radially symmetric and nonincreasing;
(iii) D and D∗ are equi-measurable, i.e.,�� { G ∈ R3−1 �� D(G) > C } �� = �� { G ∈ R3−1 �� D∗ (G) > C } ��, C > 0;

(iv) (D∗)2 = (D2)∗.
(v) ‖D‖!? (R3−1) = ‖D∗‖!? (R3−1) , ? ≥ 1 (Conservation of ! ?-norm);

(vi)
∫
R3−1 D { dG ≤

∫
R3−1 D

∗{∗dG (Hardy-Littlewood inequality).

Next we formulate our optimization result for the bottom of the spectrum of AU.

Theorem 3.7 Assume that U satisfies (3.1)with some U0 ∈ R. For U1 (G) B U(G)−U0
we then have the inequality

_1 (U0 + (U1)∗+) ≤ _1 (U0 + U1),

where (U1)+ B max{U1, 0} is the positive part and (U1)∗+ its symmetric decreasing
rearrangement defined in (3.23).

Corollary 3.8 Let l ⊂ R3−1 be a set of finite measure and l∗ ⊂ R3−1 be a ball with
the same volume as l, and let jl and jl∗ be the characteristic functions of l and
l∗, respectively. Then for V ≥ 0 we have the inequality

_1 (Vjl∗ ) ≤ _1 (Vjl).

The proof of Theorem 3.7 relies on the Birman-Schwinger principle for the
operator AU, by means of which the problem is reduced to an eigenvalue inequality
for the relativistic Schrödinger operator in !2 (R3−1). The latter is proven with the
help of the fact that the symmetric decreasing rearrangement decreases the kinetic
energy term corresponding to the relativistic Schrödinger operator; cf. Lemma 3.9.
This property of the kinetic energy can be viewed as an analogue of the Pólya-Szegő
inequality.

Lemma 3.9 For every _ < 0 and nonnegative q ∈ � 1
2 (R3−1) the rearrangements

(U1)∗+, q∗ in (3.23) and the form (3.2) satisfy

dU0+(U1)∗+ ,_ [q
∗] ≤ dU0+U1 ,_ [q] . (3.24)
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Proof First, in view of Lemma 3.6 (iv), (v) and (vi) we have∫
R3−1
(U0 +U1)q2dG ≤

∫
R3−1
(U0 + (U1)+)q2dG ≤

∫
R3−1
(U0 + (U1)∗+) (q∗)2dG. (3.25)

Moreover, it is proven in [35, Section 7.11 (5), Section 7.17 (2) and the remark
afterwards] that (−Δ − _) 1

4 q∗
2
!2 (R3−1) ≤

(−Δ − _) 1
4 q


!2 (R3−1) . (3.26)

Combining (3.25) and (3.26) then proves the stated inequality (3.24). �

Proof of Theorem 3.7 Observe that by Theorem 2.3 and Lemma 3.6 (v) the essential
spectra of the Schrödinger operators AU0+U1 and AU0+(U1)∗+ are given by

fess (AU0+U1 ) = fess (AU0+(U1)∗+ ) =
{
[− U

2
0

4 ,∞), if U0 ≥ 0,
[0,∞), if U0 ≤ 0.

We assume that U1 is such that

_1 B _1 (U0 + U1) <
{
− U

2
0

4 , if U0 ≥ 0,
0, if U0 ≤ 0,

as otherwise the statement of the theorem is clear. Then _1 ∈ fd (AU0+U1 ) and by
Theorem 2.7 the eigenfunction D1 ∈ ker(AU0+U1 − _1) can be chosen nonnegative.
By Proposition 3.2, we have q1 B g�D1 ∈ ker DU0+U1 ,_1 for the trace of the eigen-
function, and also q1 ≥ 0 follows from D1 ≥ 0. Lemma 3.6 (v) and Lemma 3.9 give
the estimate

0 =
dU0+U1 ,_1 [q1]
‖q1‖2!2 (R3−1)

≥
dU0+(U1)∗+ ,_1 [q∗1]
‖q∗1‖

2
!2 (R3−1)

≥ `U0+(U1)∗+ (_1).

Since `U0+(U1)∗+ is nonincreasing by Lemma 3.3 it admits a zero

_̃1 ≤ _1 <

{
− U

2
0

4 , if U0 ≥ 0,
0, if U0 ≤ 0.

Hence _̃1 ∈ fd (AU0+(U1)∗+ ) and we have _1 (U0 + (U1)∗+) ≤ _̃1 ≤ _1, which proves the
theorem. �

Remark 3.10 The above results remain valid for Robin Laplacians on the upper
half-space R3+ . More precisely, if BU denotes the self-adjoint operator in !2 (R3+ )
associated with the densely defined, symmetric, semibounded, and closed form
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bU [D, {] := (∇D,∇{)!2 (R3+ ,C3) −
∫
R3−1

U gDD gD{ dG,

dom bU := �1 (R3+ ),

and if we replace _1 (U) = inf f(AU) by _1 (U) B inf f(BU), then Theorem 3.7 and
Corollary 3.8 hold.

Remark 3.11 Using Steiner symmetrization the Theorem 3.7 can also be proven in
a different way; the following elegant argument was communicated to us recently.
Consider a nonnegative function D : R3 → R such that R3−1 3 G ′ ↦→ D(G ′, G3) is
vanishing at infinity for all G3 ∈ R. Following the lines of [5, Chapter 6] we recall
that the (3 − 1, 3)-Steiner symmetrization D♯ of the function D is defined as

D♯ (G ′, G3) := (D∗ (·, G3)) (G ′, G3),

where the symmetric decreasing rearrangement in the right hand side is taken for
each G3 ∈ R with respect to first 3 − 1 variables. Let the nonnegative function
D1 ∈ �1 (R3) be the normalized ground state of the operator AU0+U1 . It is not difficult
to check that D1 is vanishing at infinity slice-wise in the above sense; cf. [5, §6.8].
According to [5, Theorem 6.8] we have

‖D♯1‖!2 (R3) = ‖D1‖!2 (R3) = 1. (3.27)

In view of [5, Theorem 6.19] we get D♯1 ∈ �
1 (R3) and

‖∇D♯1‖!2 (R3 ;C3) ≤ ‖∇D1‖!2 (R3 ;C3) . (3.28)

Lemma 3.6 (iv), (v) and (vi) yield∫
R3−1
(U0 + (U1)∗+) |gDD

♯

1 |
2dG ≥

∫
R3−1
(U0 + U1) |gDD1 |2dG. (3.29)

Finally, combining (3.27), (3.28), and (3.29) we obtain by the min-max principle

_1 (U0 + (U1)∗+) ≤ aU0+(U1)∗+ [D
♯

1]

= ‖∇D♯1‖
2
!2 (R3 ;C3) −

∫
R3−1
(U0 + (U1)∗+) |gDD

♯

1 |
2dG

≤ ‖∇D1‖2!2 (R3 ;C3) −
∫
R3−1
(U0 + U1) |gDD1 |2dG

= aU0+U1 [D1] = _1 (U0 + U1).
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Appendix A

In this appendix let again Σ be a Lipschitz hypersurface as in (2.1) and assume that
U ∈ ! ? (Σ) + !∞ (Σ) for some 1 < ? < ∞ in 3 = 2 and for 3 − 1 ≤ ? < ∞ in 3 ≥ 3
dimensions, as in (2.2). In this setting we consider the multiplication operator

"U : �
1
2 (Σ) → !2 (Σ) with "Uq B |U |

1
2 q, q ∈ � 1

2 (Σ), (A.1)

which plays a crucial role in the well definedness of the form aU in Proposition 2.1
and in the derivation of the essential spectrum in Theorem 2.3. If, in addition,
(2.6) (or (A.14)) holds, then it turns out that the operator "U is compact; for the
convenience of the reader we will provide a complete proof below. The preparatory
estimate in Lemma A.1 is also used to conclude the semiboundedness of the form
aU in Proposition 2.1.

We also want to mention that we consider Sobolev and Lebesgue spaces on the
surface Σ in the sense that for every B > 0 and @ ∈ [1,∞]

q ∈ �B (Σ) ⇔ q ◦ Ξ ∈ �B (R3−1) and ‖q‖� B (Σ) B ‖q ◦ Ξ‖� B (R3−1) ,

q ∈ !@ (Σ) ⇔ q ◦ Ξ ∈ !@ (R3−1) and ‖q‖!@ (Σ) B ‖q ◦ Ξ‖!@ (R3−1) ,
(A.2)

where Ξ(G) B (G, b (G)) is a bijective map from R3−1 onto Σ.
Lemma A.1 For every Y > 0 there exists some 2Y ≥ 0, depending on U, such that

‖"Uq‖2!2 (Σ) ≤ Y
2‖q‖2

�
1
2 (Σ)
+ 22

Y ‖q‖2!2 (Σ) , q ∈ � 1
2 (Σ). (A.3)

Proof We decompose U ∈ ! ? (Σ) + !∞ (Σ) into

U = V + W, V ∈ ! ? (Σ), W ∈ !∞ (Σ).

Fix Y > 0. Then the integrability condition V ∈ ! ? (Σ) ensures the existence of some
�Y ≥ 0 such that V = V1 + V2, where

V1 (G) B
{

0, |V(G) | ≤ �Y ,
V(G), |V(G) | > �Y ,

and V2 (G) B
{
V(G), |V(G) | ≤ �Y ,
0, |V(G) | > �Y ,

and
‖V1‖!? (Σ) ≤ Y2. (A.4)

We now split U = V1 + (V2 + W) into a bounded part V2 + W and an unbounded
remainder V1 and estimate both parts separately. For V1 we use Hölder’s inequality
and the estimate (A.4) to get|V1 |

1
2 q

2
!2 (Σ) ≤ ‖V1‖!? (Σ) ‖q‖2

!
2?
?−1 (Σ)

≤ Y2‖q‖2
!

2?
?−1 (Σ)

≤ Y222
� ‖q‖2

�
1
2 (Σ)

, (A.5)

where in the last inequality we additionally used the Sobolev embedding
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‖ · ‖
!

2?
?−1 (Σ)

≤ 2� ‖ · ‖
�

1
2 (Σ)

on the surface, which follows from the classical Sobolev embedding [11, Theo-
rem 8.12.6] on R3−1 and the definition of the Sobolev and Lebesgue norms in (A.2).

On the other hand, V2 + W can simply be estimated by|V2 + W |
1
2 q

2
!2 (Σ) ≤

(
�Y + ‖W‖!∞ (Σ)

)
‖q‖2

!2 (Σ) . (A.6)

Now the estimate (A.3) follows from (A.5) and (A.6). �

The next lemma treats the transition from weak � 1
2 -convergence on Σ to strong

!2-convergence on subsets of finite measure of Σ; this observation is preparatory for
the compactness result in Proposition A.3.

Lemma A.2 For every q0, (q=)= ∈ �
1
2 (Σ), the convergence

q= ⇀ q0 weakly in �
1
2 (Σ), (A.7)

implies for any Borel set � ⊆ Σ with finite measure, the convergence

q= → q0 strongly in !2 (�). (A.8)

Proof In Step 1 we consider the hyperplane case Σ = R3−1 × {0} � R3−1. For every
C > 0, we define the mollifier

iC (G) B
1

(4cC) 3−1
2
4−
|G |2
4C , G ∈ R3−1. (A.9)

Then by the weak convergence (A.7), we conclude the pointwise convergence of the
convolution

lim
=→∞
(iC ∗ q=) (G) = lim

=→∞

〈
iC (G − · ), q=

〉
�
− 1

2 (R3−1)×�
1
2 (R3−1)

=
〈
iC (G − · ), q0

〉
�
− 1

2 (R3−1)×�
1
2 (R3−1)

= (iC ∗ q0) (G).

(A.10)

As the weakly convergent sequence (q=)= is bounded, i.e. ‖q=‖
�

1
2 (R3−1)

≤ " for
some " ≥ 0, we also conclude the uniform boundedness of the convolution

| (iC ∗ q=) (G) | ≤ ‖iC ‖!2 (R3−1) ‖q=‖!2 (R3−1) ≤ " ‖iC ‖!2 (R3−1) (A.11)

for every G ∈ R3−1, = ∈ N. Since � is a set of finite measure, (A.10) & (A.11)
are sufficient to apply the dominated convergence theorem, which leads to the norm
convergence

lim
=→∞
‖iC ∗ (q= − q0)‖!2 (�) = 0. (A.12)

For the Fourier transform of the mollifier (A.9) we have
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(F iC ) (:) =
1

(2c) 3−1
2

∫
R3−1

4−8:GiC (G)dG =
1

(8c2C) 3−1
2

∫
R3−1

4−8:G4−
|G |2
4C dG

=
1

(8c2C) 3−1
2
4−C |: |

2
∫
R3−1

4−
(G+28C:)2

4C dG =
1

(2c) 3−1
2
4−C |: |

2

for : ∈ R3−1 and we use the estimate��1 − (2c) 3−1
2 (F iC ) (:)

�� = 1 − 4−C |: |2 ≤ 2(C |: |2) 1
4 ≤ 2C 1

4 (1 + |: |2) 1
4 , : ∈ R3−1,

where 2 B supH>0 (1 − 4−H)H−
1
4 . Since the Fourier transform of the convolution can

be written as the product F (iC ∗ q=) = (2c)
3−1

2 (F iC ) (F q=), we can estimate

‖q= − iC ∗ q=‖!2 (R3−1) =
(1 − (2c) 3−1

2 F iC
)
F q=


!2 (R3−1)

≤ 2C 1
4
(1 + | · |2) 1

4F q=

!2 (R3−1)

= 2C
1
4 ‖q=‖

�
1
2 (R3−1)

.

(A.13)

The inequality (A.13) of course also holds with q= replaced by q0, which leads to
the estimate

‖q= − q0‖!2 (�) ≤ 2C
1
4 " + ‖iC ∗ (q= − q0)‖!2 (�) + 2C

1
4 ‖q0‖

�
1
2 (R3−1)

,

for every = ∈ N and C > 0. The first and third term can be made arbitrary small by the
choice of C > 0 and the second term converges by (A.12). This proves the statement
of the lemma for Σ � R3−1 × {0}.

In Step 2 we consider the general case of a Lipschitz graph Σ. By the definition of
the boundary spaces (A.2), it follows immediately from the weak convergence (A.7),
that also

q= ◦ Ξ⇀ q0 ◦ Ξ weakly in �
1
2 (R3−1).

Since � has finite measure, the preimage Ξ−1 (�) = {G ∈ R3−1 | Ξ(G) ∈ �} has finite
measure as well, and we conclude from the first step

q= ◦ Ξ→ q0 ◦ Ξ strongly in !2 (Ξ−1 (�)).

By the definition of the boundary spaces (A.2) this implies (A.8). �

Next we prove the compactness of the multiplication operator "U for functions
U which are close to a constant in the sense of (A.14). Note that, although stated for
U, this property only affects the !∞-part of U. Any function in ! ? (R3−1) satisfies
(A.14) automatically.

Proposition A.3 Assume that the function U satisfies

{ G ∈ Σ | |U(G) | > Y } has finite measure for every Y > 0. (A.14)
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Then the multiplication operator "U in (A.1) is compact.

Proof From Lemma A.1 we conclude that "U in (A.1) is an everywhere defined
and bounded operator. In order to prove that "U is compact, we verify that for any
sequence q= ⇀ q0 weakly in � 1

2 (Σ), the sequence "Uq= → "Uq0 converges
strongly in !2 (Σ). As in the proof of Lemma A.1, let Y > 0 and decompose the
potential into

U = V1 + V2 + W.

Next, we define the set

�Y B
{
G ∈ Σ

�� |V2 (G) | > Y2 }
∪

{
G ∈ Σ

�� |W(G) | > Y2 }
. (A.15)

The integrability condition V2 ∈ ! ? (Σ) implies that the set {|V2 | > Y2} has finite
measure. Furthermore, since {|W | > Y2} ⊆ {|V | > Y2

2 } ∪ {|U | >
Y2

2 } it follows from
the integrability condition V ∈ ! ? (Σ) and from (A.14) that {|W | > Y2} also has finite
measure. Then Lemma A.2 shows

lim
=→∞
‖q= − q0‖!2 (�Y ) = 0.

This convergence in particular gives an index #Y ∈ N, such that

‖q= − q0‖2!2 (�Y ) ≤
Y2

�Y + ‖W‖!∞ (Σ)
, = ≥ #Y , (A.16)

with �Y the cut-off from (A.4). Then the equations (A.5) & (A.16), as well as the
fact that |V2+W | ≤ �Y + ‖W‖!∞ (Σ) on Σ and |V2+W | ≤ 2Y2 on Σ\�Y , we can estimate|U | 12 (q= − q0)

2
!2 (Σ) ≤

|V1 |
1
2 (q= − q0)

2
!2 (Σ) +

|V2 + W |
1
2 (q= − q0)

2
!2 (�Y )

+
|V2 + W |

1
2 (q= − q0)

2
!2 (Σ\�Y )

≤ Y222
� ‖q= − q0‖2

�
1
2 (Σ)
+ Y2 + 2Y2‖q= − q0‖2!2 (Σ\�Y )

≤ Y2
(
(22
� + 2)‖q= − q0‖2

�
1
2 (Σ)
+ 1

)
, = ≥ #Y .

Since ‖q= − q0‖� 1/2 (Σ) on the right hand side is bounded as a consequence of the
weak �1/2-convergence, this inequality implies the norm convergence

lim
=→∞

|U | 12 (q= − q0)
2
!2 (Σ) = 0,

and hence the compactness of the operator "U. �
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