The non-real spectrum of a singular indefinite Sturm-Liouville operator with regular left endpoint

Jussi Behrndt ${ }^{1}$, Philipp Schmitz ${ }^{2, *}$, and Carsten Trunk ${ }^{2}$
${ }^{1}$ Institut für Angewandte Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria
${ }^{2}$ Institut für Mathematik, Technische Universität Ilmenau, PF 100565, 98694 Ilmenau, Germany

We provide bounds on the non-real spectra of indefinite Sturm-Liouville differential operators of the form $(A f)(x)=$ $\operatorname{sgn}(x)\left(-f^{\prime \prime}(x)+q(x) f(x)\right)$ on the interval $[a, \infty),-\infty<a<0$, with real potential $q \in L^{1}(a, \infty)$. The bounds depend only on the L^{1}-norm of the negative part of q and the boundary condition at the regular endpoint a.

1 Introduction and main result

We consider the Sturm-Liouville differential operator

$$
\left(A_{\alpha} f\right)(x)=\operatorname{sgn}(x)\left(-f^{\prime \prime}(x)+q(x) f(x)\right), \quad D\left(A_{\alpha}\right)=\left\{\begin{array}{l|l}
f \in L^{2}(a, \infty) & \begin{array}{l}
f, f^{\prime} \in A C[a, \infty) \\
-f^{\prime \prime}+q f \in L^{2}(a, \infty) \\
\cos (\alpha) f(a)=\sin (\alpha) f^{\prime}(a)
\end{array} \tag{1}
\end{array}\right\}
$$

in $L^{2}(a, \infty)$ for $\alpha \in[0, \pi)$, where $q \in L^{1}(a, \infty)$ is a real function and $-\infty<a<0$. Here, $A C[a, \infty)$ denotes the space of functions which are absolutely continuous on every compact subset of $[a, \infty)$. As the weight sgn changes the sign the operator A_{α} is neither symmetric nor self-adjoint in $L^{2}(a, \infty)$ with respect to the usual scalar product (\cdot, \cdot). Hence, A_{α} may have non-real spectrum. But, equipped with the inner product $[\cdot, \cdot]$,

$$
[f, g]=\int_{a}^{\infty} f(x) \overline{g(x)} \operatorname{sgn}(x) \mathrm{d} x, \quad f, g \in L^{2}(a, \infty)
$$

$L^{2}(a, \infty)$ is a Krein space with the fundamental symmetry $J: L^{2}(a, \infty) \rightarrow L^{2}(a, \infty),(J f)(x)=\operatorname{sgn}(x) f(x)$, where A_{α} is self-adjoint with respect to $[\cdot, \cdot]$; for the basic notions in Krein spaces we refer to [1] and [7]. Indeed, while the finite endpoint a is regular the integrability of q implies the limit point case at the singular endpoint ∞, cf. [13, Lemma 9.37]. Hence, the definite Sturm-Liouville operator $J A_{\alpha}$ on $D\left(J A_{\alpha}\right)=D\left(A_{\alpha}\right)$ is self-adjoint in the Hilbert space $L^{2}(a, \infty)$ and due to $(\cdot, \cdot)=[J \cdot, \cdot]$ the self-adjointness of A_{α} with respect to $[\cdot, \cdot]$ follows. By [2, Corollary 3.9] the operator A_{α} has nonempty resolvent set and its essential spectrum coincides with the essential spectrum of $J A_{\alpha}$, where $\sigma_{\text {ess }}\left(J A_{\alpha}\right)=[0, \infty)$, see Theorem 9.38 and the note below in [13].

Recently, bounds for the non-real spectra of indefinite Sturm-Liouville operators were developed in [3,8-12] for operators with two regular endpoints and in [4-6] for operators with two singular endpoints. The result in Theorem 1.1 addresses singular operators with one regular and one singular endpoint. The proof is based on techniques developed in [5, 6]. In the following let $q=q_{+}-q_{-}$, where $q_{+}(x)=\max \{q(x), 0\}$ and $q_{-}(x)=\max \{-q(x), 0\}$.

Theorem 1.1 The operator $A_{\alpha}, \alpha \in[0, \pi)$, in (1) is self-adjoint with respect to the inner product $[\cdot, \cdot]$. Let $c_{\alpha}=0$ if $\alpha=0$ and $c_{\alpha}=\cot (\alpha)$ if $\alpha \in(0, \pi)$. The essential spectrum of A_{α} equals $[0, \infty)$ and the non-real spectrum of A_{α} is purely discrete. Every non-real eigenvalue λ of A_{α} satisfies

$$
\begin{equation*}
|\operatorname{Im} \lambda| \leq 24 \sqrt{3}\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)^{2} \quad \text { and } \quad|\lambda| \leq(24 \sqrt{3}+18)\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)^{2}+6\left|c_{\alpha}\right|\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right) \tag{2}
\end{equation*}
$$

Proof. Consider an eigenvalue $\lambda \in \mathbb{C} \backslash \mathbb{R}$ of A_{α} and a corresponding eigenfunction f with $\|f\|_{2}=1$. Let

$$
\begin{equation*}
U(x)=\int_{x}^{\infty}|f|^{2} \operatorname{sgn}, \quad V(x)=\int_{x}^{\infty}\left(\left|f^{\prime}\right|^{2}+q|f|^{2}\right), \tag{3}
\end{equation*}
$$

for $x \in[a, \infty)$. One can show that f satisfies $\lim _{x \rightarrow \infty} f^{\prime}(x) \overline{f(x)}=0, f^{\prime} \in L^{2}(a, \infty)$ and $q\left|f^{2}\right| \in L^{1}(a, \infty)$, cf. [6, Appendix A]. Hence, the functions V and U given by (3) are well-defined on $[a, \infty)$ with values in \mathbb{R}. Moreover, $\lim _{x \rightarrow \infty} U(x)=0$ and $\lim _{x \rightarrow \infty} V(x)=0$. Integration by parts together with the eigenvalue equation $\lambda f=A_{\alpha} f$ yields

$$
\begin{equation*}
\lambda U(x)=\int_{x}^{\infty}\left(A_{\alpha} f\right) \bar{f} \operatorname{sgn}=V(x)+f^{\prime}(x) \overline{f(x)} \tag{4}
\end{equation*}
$$

[^0]As $f \in D\left(A_{\alpha}\right)$ we have $f^{\prime}(a) \overline{f(a)}=c_{\alpha}|f(a)|^{2} \in \mathbb{R}$. Evaluating (4) at $x=a$ and comparing the imaginary parts we obtain $U(a)=0$ and $V(a)=-c_{\alpha}|f(a)|^{2}$. Hence,

$$
\begin{equation*}
0 \leq\left\|f^{\prime}\right\|_{2}^{2}=-\int_{a}^{\infty}\left(q_{+}-q_{-}\right)|f|^{2}-c_{\alpha}|f(a)|^{2} \leq\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)\|f\|_{\infty}^{2} \tag{5}
\end{equation*}
$$

Furthermore, this implies

$$
\begin{equation*}
\int_{a}^{\infty} q_{+}|f|^{2} \leq\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)\|f\|_{\infty}^{2}, \quad\left\|q f^{2}\right\|_{1} \leq 2\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)\|f\|_{\infty}^{2} \tag{6}
\end{equation*}
$$

Here, the norm $\|f\|_{\infty}$ can be estimated as follows. Since $f \in L^{2}(\mathbb{R})$ is continuous there exists a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ in (a, ∞) with $y_{n} \rightarrow \infty$ and $f\left(y_{n}\right) \rightarrow 0$ as $n \rightarrow 0$. Thus,

$$
|f(x)|^{2}=\left|f\left(y_{n}\right)\right|^{2}+2 \operatorname{Re} \int_{y_{n}}^{x} f^{\prime} \bar{f}, \quad\|f\|_{\infty}^{2} \leq 2\left\|f^{\prime}\right\|_{2},
$$

where we used the Cauchy-Schwarz inequality and $\|f\|_{2}=1$ in the last estimate. This together with (5) leads to

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{2}^{2} \leq 4\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)^{2} \quad \text { and } \quad\|f\|_{\infty}^{2} \leq 4\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right) \tag{7}
\end{equation*}
$$

Observe, that it is no restriction to consider $\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|>0$ since otherwise f is constantly zero. We define an absolutely continuous function g by

$$
g(x)=\left\{\begin{array}{ll}
\frac{x}{\delta} & \text { if } x \in(-\delta, \delta), \\
\operatorname{sgn}(x) & \text { if } x \in[a,-\delta] \cup[\delta, \infty),
\end{array} \quad \text { where } \delta=\frac{1}{24\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)}\right.
$$

Here, the interval $[a,-\delta]$ is considered to be empty if $-\delta<a$. We have $\|g\|_{\infty}=1$ and $\left\|g^{\prime}\right\|_{2}=\sqrt{2 / \delta}$. Then

$$
\begin{align*}
\int_{a}^{\infty} g^{\prime} U=\int_{a}^{\infty} g|f|^{2} \operatorname{sgn} & \geq \int_{(a, \infty) \backslash(-\delta, \delta)}|f|^{2}=1-\int_{-\delta}^{\delta}|f|^{2} \tag{8}\\
& \geq 1-2 \delta\|f\|_{\infty}^{2} \geq 1-8 \delta\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right) \geq \frac{2}{3}
\end{align*}
$$

Further, we obtain with (6) and (7)

$$
\begin{align*}
\left|\int_{a}^{\infty} g^{\prime} V\right| & =\left|\int_{a}^{\infty} g\left(\left|f^{\prime}\right|^{2}+q|f|^{2}\right)-g(a) V(a)\right| \leq\left\|f^{\prime}\right\|_{2}^{2}+\left\|q f^{2}\right\|_{1}+\left|c_{\alpha}\right|\|f\|_{\infty}^{2} \tag{9}\\
& \leq 12\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)^{2}+4\left|c_{\alpha}\right|\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)
\end{align*}
$$

and with (7)

$$
\begin{equation*}
\left|\int_{a}^{\infty} g^{\prime} \bar{f} f^{\prime}\right| \leq\|f\|_{\infty}\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2} \leq 4 \sqrt{2 / \delta}\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)^{\frac{3}{2}} \leq 16 \sqrt{3}\left(\left\|q_{-}\right\|_{1}+\left|c_{\alpha}\right|\right)^{2} \tag{10}
\end{equation*}
$$

By (4) we have

$$
\begin{equation*}
\lambda \int_{a}^{\infty} g^{\prime} U=\int_{a}^{\infty} g^{\prime}\left(V+f^{\prime} \bar{f}\right) \tag{11}
\end{equation*}
$$

A comparison of the imaginary parts and the absolute values in (11) together with the estimates (8)-(10) shows (2).

References

[1] T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Space with an Indefinite Metric (John Wiley \& Sons Ltd., Chichester, 1989).
[2] J. Behrndt and F. Philipp, J. Differ. Equations 248, 2015-2037 (2010).
[3] J. Behrndt, S. Chen, F. Philipp, and J. Qi, Proc. R. Soc. Edinb., Sect. A, Math. 144, 1113-1126 (2014).
[4] J. Behrndt, F. Philipp, and C. Trunk, Math. Ann. 357, 185-213 (2013).
[5] J. Behrndt, S. Schmitz, and C. Trunk, Proc. Amer. Math. Soc. 146, 3935-3942 (2018).
[6] J. Behrndt, S. Schmitz, and C. Trunk, J. Differ. Equations 267, 468-493 (2019).
[7] J. Bognar, Indefinite Inner Product Spaces (Springer, Berlin, 1974).
[8] S. Chen and J. Qi, J. Spectr. Theory 4, 53-63 (2014).
[9] S. Chen, J. Qi, and B. Xie, Proc. Amer. Math. Soc. 144, 547-559 (2016).
[10] X. Guo, H. Sun, and B. Xie, Electron. J. Qual. Theory Differ. Equ. 2017, 1-14 (2017).
[11] M. Kikonko and A. B. Mingarelli, J. Differ. Equations 261, 6221-6232 (2016).
[12] J. Qi and B. Xie, J. Differ. Equations 255, 2291-2301 (2013).
[13] G. Teschl, Mathematical Methods in Quantum Mechanics (Amer. Math. Soc., Providence, RI, 2009).

[^0]: * Corresponding author: e-mail philipp.schmitz@tu-ilmenau.de, phone +493677693634 , fax +493677693270

