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Abstract In this paper a convergence analysis of a Galerkin boundary element
method for resonance problems arising from the time harmonic Maxwell’s equa-
tions is presented. The cavity resonance problem with perfect conducting boundary
conditions and the scattering resonance problem for impenetrable and penetrable
scatterers are treated. The considered boundary integral formulations of the reso-
nance problems are eigenvalue problems for holomorphic Fredholm operator-valued
functions, where the occurring operators satisfy a so-called generalized Garding’s
inequality. The convergence of a conforming Galerkin approximation of this kind of
eigenvalue problems is in general only guaranteed if the approximation spaces ful-
fill special requirements. We use recent abstract results for the convergence of the
Galerkin approximation of this kind of eigenvalue problems in order to show that
two classical boundary element spaces for Maxwell’s equations, the Raviart—Thomas
and the Brezzi—-Douglas—Marini boundary element spaces, satisfy these requirements.
Numerical examples are presented, which confirm the theoretical results.
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1 Introduction

The numerical solution of electromagnetic resonance problems is an important task
in different fields of engineering and technology. In this paper we consider for a given
bounded, simply connected Lipschitz domain £2' C R® the cavity resonance problem
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and the scattering resonance problem for an impenetrable and a penetrable scatterer
arising from the time harmonic Maxwell’s equations with a time variation of the form
e~ Tt is assumed that the exterior domain £2° := R3\ 2! is connected.

The cavity resonance problem, usually referred to as interior resonance problem,
is given as follows: Find x € C and E' € H(curl; £2'), E' # 0, such that

curlcurlE' — k’E' =0 in .Qi,
div(eE) =0 in £, (1)
E' xn=0 onF::(‘?Qi,

where x = w,/Ep is the wavenumber, w is the angular frequency, ¢ is the electric per-
mittivity, u is the magnetic permeability, and n is the unit normal vector field on the
boundary I" pointing into the exterior domain §2°. For the cavity resonance problem
and the resonance problem for the impenetrable scatterer we assume throughout
this paper that € > 0 and p > 0 are constant. This assumption implies that the res-
onances of the interior resonance problem (1) are real [27, Thm. 4.18] and non-zero.

The scattering resonance problem for the impenetrable scatterer, which is usually
referred to as exterior resonance problem, is formulated in 2° and is given as follows:
Find k € C and E® € Hjoc(curl; 2°), E® # 0, such that:

curlcurlE® — k’E°® =0 in 02°, (2a)
div(eE®) =0 in £2°, (2b)
E°xn=0 onl (2¢)

E° is “outgoing”. (2d)

As radiation condition in (2d) we impose that each Cartesian component of E® has
outside of any ball By, := {z : ||x]| < 7o} which contains 2" an expansion in terms

of the spherical Hankel functions of the first kind h%l) of the form

(E°(x))[j] = Z Z a(J) h(l) )Y, <”§”> (3)

n=0m=—n

for r = ||x|| > 7o and j € {1, 2, 3}, where Y,;" are the spherical harmonics. If k is such
that 0 < arg k < 7, then the radiation condition (3) for a solution E € Hjsc(curl; £2°)
of Maxwell’s equations in {2° is equivalent to that the Cartesian components of E
satisfy the Sommerfeld radiation condition [11, Thm. 2.15]. The latter condition
is again for 0 < argx < 7 equivalent to that E satisfies the Silver-Miiller radiation
condition [11, Thm. 6.8]. The Silver-Miiller radiation condition is usually imposed for
scattering problems for wavenumbers x with 0 < arg k < 7. But it is well known that
for wavenumbers with negative imaginary part the Silver-Miiller radiation condition
does not not correctly characterize outgoing waves, see e. g., [28, Sect. 1]. Since
the resonances of the exterior resonance problem (2) have negative imaginary part,
instead of the Silver-Miiller radiation condition the radiation condition (3) is used.
The definition of the scattering resonance problem for the penetrable scatterer
will be given in Section 5. For this kind of resonance problem we will allow com-
plex and frequency-dependent permittivities and permeabilities. Such configurations
occur for example in the field of plasmonics or in the context of metamaterials.



Boundary integral formulations and boundary element methods have been con-
sidered for different kinds of electromagnetic resonance problems. Examples are the
interior resonance problem [13,37], the interior transmission eigenvalue problem [12,
22] or the resonance problem for the penetrable scatterer [24,26,35], to mention just
a few. A rigorous convergence analysis of the boundary element approximations of
such kind of resonance problems has not been provided so far.

The presented numerical analysis in this paper is based on the classical the-
ory of the regular approximation of eigenvalue problems for holomorphic Fredholm
operator-valued functions [17,18]. This theory has already been applied to boundary
integral formulations of acoustic resonance problems [33] and to coupled FEM-BEM
formulations of vibro-acoustic resonance problems [20]. For these cases sufficient con-
ditions for the convergence of conforming Galerkin approximations follow from the
fact that the occurring operators satisfy a standard Garding’s inequality. For electro-
magnetic resonance problems the occurring boundary integral operators satisfy only
a generalized Garding’s inequality. In such a case additional properties of the approx-
imation spaces are required in order to guarantee convergence. In [15,16] sufficient
conditions for the convergence of a conforming Galerkin approximation for such kind
of eigenvalue problems are derived in an abstract setting. In this paper we show that
these conditions are satisfied for the Galerkin approximation of the proposed bound-
ary integral formulations of the considered electromagnetic resonance problems when
classical boundary elements of Raviart—Thomas or Brezzi-Douglas—Marini type are
used.

The rest of the paper is organized as follows: in the next section we introduce
the boundary integral formulation for the interior and exterior resonance problem
and collect the basic properties of the occurring boundary integral operators. In
Section 3 we provide abstract convergence results for the Galerkin approximation
of eigenvalue problems for holomorphic Fredholm operator-valued functions, where
we assume that the occurring operators satisfy a generalized Garding’s inequality.
We specify for this case sufficient conditions such that the classical convergence
results are valid. The abstract results of Section 3 are then applied in Section 4 to
a Galerkin approximation of the boundary integral formulation of the interior and
exterior resonance problem. In Section 5 a boundary integral formulation for the
scattering resonance problem for a penetrable scatterer is analyzed and sufficient
conditions on the material parameter are given such that convergence of boundary
element methods are guaranteed. Numerical examples are presented in Section 6,
which confirm the theoretical results.

2 Boundary integral formulation of the interior and exterior resonance
problem

In this section we introduce and analyze the boundary integral formulation for the
interior and exterior resonance problem (1) and (2). The main references for the
definitions and properties of the occurring boundary integral operators are [8,9]. Note
that the notations in the present paper only partially coincides with the notations
in [8,9].



2.1 Trace spaces

In this subsection we summarize the properties of the trace spaces which we need for

the analysis of the boundary integral formulations of the resonance problems. For a

detailed presentation of the trace spaces related to Maxwell’s equations for Lipschitz
domains we refer to [7].

Let 2 be a Lipschitz domain. We denote by H*(£2), s € R, and by H*(912),

€ [—1,1], the standard Sobolev spaces of scalar functions on the domain 2 and

its boundary 812, cf. [25]. The vector-valued counterparts H*(£2) := (H*(£2))® and

H'(00) = (Ht((?!?))g are written in bold letters. Throughout the paper we use
bold letters for vector-valued functions. Further, we define
H,(2) :={F: 2 - C’ | Vp € C5°(R%) : ¢F € H*(2)}, 5 >0,
H(curl, 2) := {F € (L*(22))® | curlF € (L*(12))*}
Hioc(curl, 2) := {F € L, () | curl F € L. (2)},
where LIOC(Q) - Hloc(‘Q)

In the following let us consider the domains £2' and £2° = R3 \ 21 as introduced
in Section 1. For smooth functions E/® € {E‘Q = E € (C3°(R?))?} we define the

interior /exterior tangential trace operators ’yT/ ¢ and 7r1/ ° by

F/eRle = E}ée X n and m/eE/¢ .= n x ( l‘éﬂe X n) .

The operators 'yiT/ ® and 7/° can be extended for s € (0,1) to continuous operators

FrHTVHQY) 5 V= g ETR(2Y), 40 B2 - VY

loc

LETTYV2(0N 5 v =A@ TTY2(0Y), ws BN (02%) - Vi

. loc

where V7, and V7 are endowed with the norms

lallvs : {1 Bllgzr/2() = 77 (B) = u},

inf
EGHS+1/2(Q‘

Isllvs = EeHslflf/zmi){HE”HS“/Q(@) iy (B) = s}
The dual space of V5 and V7, s € (0, 1), are denoted by V3 * and V°, respectively.
For s = 0 we set V) = V2 := L2(I') := {u € L*(I") : u- n = 0}, where L2(I") acts
as pivot space for V5 ° and V3 as well as for V:* and V7. Finally, we define the
space

_1
H™Y2(divy, ') := {u e V5 2 :divru € H 3(I')}
. 2 L 2 : 2

endowed with the graph norm [|ul|gz-1/2giy,., ry = ||u||v;% + || divp u||H7%(F). The
space H/? (divp, I') is a Hilbert space and the tangential trace operators 'yiT and
~% can be extended such that

AL H(curl; 29 — H™Y2(dive, I), 2 : Hige(curl; 2°) — H™Y/2(divy, IN),



are continuous, surjective and possess a continuous right inverse [7, Thm. 4.1]. In
the sequel we will use the shorthand notation

V :=H Y*(divp, I).

The antisymmetric pairing
(u,s), := / (uxn)-sds, u,seLi(I)
r

can be extended to V such that V becomes its own dual [9, Thm. 3.3], i.e., there
exists a linear and isometric isomorphism Jx : V — V' such that

(u,s)r = (Jxu)(s) for all u,s € V.
The operator Jx : V — V' is the extension of the mapping Jx : LZ(I") — L2(I")

defined by Jx(u) := u x n, see [9, Thm. 3.3]. Since V is a Hilbert space we can
identify the pairing (-,*), with the inner product (-,-)v by

<u7§>7 = (JVJXU,S)V, u,s €V, (4)
where Jy : (H™Y2(divp, I')) — H™Y/2(divp, I') is a linear, isometric isomorphism.
As additional traces we introduce the traces 711\1/ ¢ = 'le/ ¢ o curl. The mappings

& : H(curl?; 2Y) 5 V and 7§ : Hjoc(curl?; 2°) = V are linear and continuous [8],
where

H(curl?; ') := {F € H(curl, ') | curlcurl F € (L?(2))*},
Hio(curl®; 2°) := {F € Hyo(curl, 2°) | curlcurl F € L{, (£2°)}.

2.2 Derivation and analysis of the boundary integral formulation

The boundary integral formulation of the resonance problems (1) and (2) is based
on the Stratton-Chu representation formula for the solution of Maxwell’s equations.
For exterior problems this formula is in the literature only considered for wavenum-
bers with non-negative imaginary part and together with the Silver-Miiller radiation
condition; see, e.g., [8, Sect. 4], [21, Thm. 5.49], [29, Sect. 5.5]. For wavenumbers
with negative imaginary part the Stratton-Chu representation formula is also valid
if instead of the Silver-Miiller radiation condition the radiation condition (3) is im-
posed. This can be shown in the same way as it is done for positive wavenumbers
in [8, Sect. 4, p. 95-97] by considering the Cartesian components of the solution
of Maxwell’s equations, which have to satisfy the scalar Helmholtz equation. The
representation formula for outgoing solutions of the scalar Helmholtz equation is
also valid for wavenumbers with negative imaginary part [34, Appendix, Cor. 6.5]
and therefore the Stratton-Chu representation formula is also valid for wavenumbers
with negative imaginary part for exterior problems. We consider the Stratton-Chu
representation formula in following compact form as in [8, Sect. 4]: any solution E



of Maxwell’s equations in £2' U £2° with wavenumber x € C \ {0} which satisfies the
radiation condition (3) is given by

E(x) = (Up(5)(7: E—1% B)) (%) + (Usi(x) hk E-1& B))(x), x € 2'U0°, (5)
where
(s (1) (x) = (Wa(R)u) () + 5V (Ty () divew) (x), x € 2 U,
is the Maxwell single layer potential and where
(WpL(k)u) (x) == curl (Ta()u) (x) x € 2'U 2",

is the Maxwell double layer potential. Here, Wa(x) and Wy (k) are the vectorial
and scalar single layer potentials related to the Helmholtz equation, which have the
integral representations

(WA () (x) = /F u(y)En(x — y)dsy, (T (r)d) (x) = /F $(¥) Ex(x — y)dsy

with B (x) = exp(isljx|[)/4xx]. |
Let (', E') be an eigenpair of (1) and let us extend E' in £2° by zero, then the
Stratton-Chu representation formula (5) gives

E(x), x¢€ 7',

6
0, x € 2°. ©)

((‘IJSL(“i))(’Yli\I Ei))(x) = {

If (x°, E°) is an eigenpair of (2) and if we extend E® by zero in 2!, then we have

0, x € 2,

E°(x), xe€ N°. @

—((TsL (5D (R E)) (x) = {

We consider a boundary integral formulation of the eigenvalue problems (1) and (2)
in terms of the single layer boundary integral operator S(x) which is defined by

S(k)u:= 3 (fy; Usr (k) + 5 \I/SL(K)> u, ueVv.

The operator S(x) : V. — V is linear and continuous [8, Cor. 2] and it holds S(x) =
v Usr, (k) = 75 Ysr(x) [8, Thm. 7]. Further, we have the following representation
8, Eq. (31)]

(S(k)u,r)r = —(r,A(k)u), + %(divr r,V(k)divp u)jF%, A(k) == Wa(k). (8)

Here V (k) is the single layer operator of the Helmholtz equation and the pairing
(-, ->¥% denotes the duality pairing of H_%(F) and H? (I"). By applying the tan-
gential trace to (6) and (7) we see that (', E') and (x°, E°) satisfy the following
boundary integral equation

S(K/*) (W E/) = 0. 9)



As boundary integral formulation of the eigenvalue problems (1) and (2) we consider
the following eigenvalue problem: Find « € C\ {0} and u € V \ {0} such that:

S(k)u=0. (10)

Note that this eigenvalue problem is nonlinear with respect to the eigenvalue pa-
rameter k. The eigenvalue problem (10) is referred to as eigenvalue problem for the
operator-valued function S : C\ {0} — B(V,V). Here B(V,V) denotes the space
of linear and bounded operators mapping from V into V. The equivalence of the
eigenvalue problem (10) with the interior and exterior resonance problem (1) and (2)
is specified next.

Proposition 2.1 The following assertions hold true:

(i) Suppose that (k,E) is an resonance pair either of the interior resonance prob-
lem (1) or of the exterior resonance problem (2). Then (n,’yli\r/eE) is an eigen-
pair of the eigenvalue problem (10).

(ii) Let (k,u) be an eigenpair of the eigenvalue problem (10). If k is real, then it
is a resonance of the interior resonance problem (1) and (¥sL(k)u) g is a
corresponding resonance function. Otherwise, k is a resonance of the exterior
resonance problem (2) and (¥sL(k)u), . is a corresponding resonance function.

Proof. The assertion (i) has been already shown, see (9). Suppose now that (x,u)
is an eigenpair of (10). We define E = Wsp,(k)u in 21U 2°. Then 7. E = 42 E =
S(k)u = 0. It remains to show that E|oi # 0 if k € R, and Ejg. #0if x € C\ R.

First we consider the case that x € R. Then Ejpe = 0 because of the unique
solvability of the related exterior boundary value problem [21, Cor. 5.63]. From this
we get 7§ E = 0 and the jump relation 7§ Wsp, (k)u — vk ¥sp(k)u = —u [8, Thm. 7
implies E| i # 0.

Suppose now that & is non-real. Then E| i = 0 because otherwise (r, E| i) would
be an interior resonance pair which is not possible since all interior resonances are
real [27, Thm. 4.18]. From the jump relation of the single layer potential we get
N E = u. Hence we have E|ge # 0. O

For the analysis of the eigenvalue problem (10) and its Galerkin approximation
it is essential that the single layer boundary integral operator S(x) satisfies a gener-
alized Garding’s inequality in V for all wavenumbers k € C\ {0}. This property is
based on the direct sum decomposition

V=XN, (11)

1

where X and N are closed subspaces of V with X C Vi 2 and ' = (kerdivp) N V
[9, Thm. 3.4]. We denote by R and Z the associated continuous projectors onto X
and N, respectively. An equivalent norm in V is given by

UZA2 -y +lldive RSy )", (12)

see [9, Thm. 3.4]. Further, we define the operator
©:=R-Z: V=V, (13)

which is by construction an isomorphism.



Lemma 2.1 Let k € C\ {0}. There exist a compact operator C(k) : V. — V, an
isomorphism T(k) : V. — V and an a(k) > 0 such that the following generalized
Garding’s inequality is satisfied

Re((S(k) + C(k))u, B(K)T(k)u)> > a(fi)||u||%/ for allu eV, (14)

where
© for Re(k) # 0,

T(k) :=rk"'T(k), T(k):= {I for Re() = 0

B(k) :=sgn(Re(k)) for Re(k) # 0, and B(k) :== —sgn(Im(k))i for Re(x) = 0.

Proof. The assertion has been proven for positive wavenumbers e. g. in [6, Thm. 5],
[8, Lem. 10], [9, Thm. 5.4]. Using the same arguments as in [6,8,9] an extension to
k € C\ {0} is straightforward. We want to mention that the assertion follows also
from Prop. 5.1 below when setting u = (0, u) in (49). O

Next, we show that the mapping S : (C\{O} — B(V,V), k — S(k), is holomorphic,
, the derivative dH S(ko) = limx—r, =5 (S(K) — S(ko)) exists as operator in
B(V V) for each ko € C\ {0}.

Lemma 2.2 The mapping S : C\ {0} — B(V,V), k +— S(k), is holomorphic.
Proof. 1t is sufficient to show that the mapping
k= (S(k)u,r),

is holomorphic as mapping from C\{0} into C for all u, r of a dense subspace of V, see
Theorem I11.3.12 in [19] and the remark following it. Let us choose ~ ((C§°(R?))?)
as dense subspace of V. Then we can use the following integral representation of the
pairing (-,-)- and of the boundary integral operator S(x) [8, Eq. 32]:

eirllx=yll
(S(k)u,r), //47r||x y||u(x)~r(y)d5ydsx

etrllx—=yll
' ' < (1
,42 / / 47T||X — y” lel" u(X) leF r(y)dSde ( 5)

Hence, it is sufficient to show that both terms on the right hand side in (15) are
holomorphic in k¥ on C\ {0}. We give a proof for the first term only, since the second
term can be treated analogously. We divide the proof in two steps.

Step 1: Consider for a fixed k € C the series expansion of the kernel

eirllx=yl
u(x) - r(y)dsydsx
S ey sy

_ — (ir)" .
‘/p/p; dent X = ¥[7 T u(x) - r(y)dsydsx. (16)




We show that the order of integration and summation can be interchanged by using
Lebegue’s dominated convergence theorem. Let

Fulr,x,y) = (dmnd) 71 (ir)"[Ix — y[" M u(x) - x(y).

Obviously ZTZLO fn(k,x,y) converges pointwise almost everywhere on I" X I" to the
kernel on the left hand side in (16) as N — co. Further, for R := maxx yecr |[|[x — y]|
we have

N
Z fn(’%v X, Y)
n=0

1 e|sz|
< [ co = y Ay
<y * oo | el = gx,3)

Since g(k,x,y) is integrable on I" x I" the order of integration and summation in (16)
may be interchanged.
Step 2: Define for k € Bk (0), K > 0,

hn(kK) ::/F/an(rﬁ,x,y)dsydsx.

N . )
< oo oo
_<4w|x_y” Z R )un ol

We have
|h (F{/)| < 0= ‘F|QV(O)||B(H_1/2(F),H1/2(F))||u||00||rHOO for n= 07
T\ My, o= EEERE | el oo for n > 0,

where V(0) is the single layer boundary integral operator of the Laplace equation,
see [32, Sect. 6.2]. Obviously, > >° /M, is convergent. Hence, by the Weierstrass
M-test it follows that the series > 7  hn(k) converges absolutely and uniformly on
Brc(0) to a limit function h(x). Since Y-N_ hn (k) is a polynomial in & and therefore
holomorphic in « the uniform convergence of Zf:;o hn(k) implies that the limit
function h(x) is holomorphic on Bx (0). From the first part of the proof we get

//4;ﬁxx—y;|| u(x) - r(y)dsydsx,

which shows that the first term on the right hand side in (15) defines a holomorphic
function on C. Analogously, the holomorphy of the second term can be shown. [

3 Galerkin approximation of eigenvalue problems for holomorphic
Fredholm operator-valued functions

In this section we provide abstract convergence results for the Galerkin approxi-
mation of eigenvalue problems for holomorphic Fredholm operator-valued functions
where we assume that the occurring operators satisfy a generalized Garding’s in-
equality. We specify for this case sufficient conditions such that the classical conver-
gence results for the approximation of eigenvalue problems for holomorphic Fredholm



operator-valued functions as given in [17,18] can be applied. Our analysis is based
on results on the approximation of non-coercive operators [4] and on recent results
on the regular approximation of operators which satisfy a generalized Garding’s in-
equality [15,16].

The results of this section build the abstract framework which we will utilize
in order to show the convergence of the boundary element method for the approx-
imation of the interior and exterior resonance problem as well as of the resonance
problem for the penetrable scatterer.

3.1 Assumptions on the eigenvalue problem

Let V be a Hilbert space and suppose that V is equipped with a conjugation, i. e.,
with a continuous, unary operation v — v satisfying

utv=u+v, ocu=au, and V=,
for all u,v € V and a € C. We denote by (-, )y the inner product in V' and consider
in addition a bilinear form (-, -}y : V' x V — C with the property
(u, D)y = (Ju,v)y for all u,v € V, (17)

where J € B(V,V) is a given isomorphism. Further, we assume that there exists a
direct sum decomposition V = X @& N which is stable, i. e., there exists a constant
¢ > 0 such that for all v* € X and vV € N the inequality

X N X N
(o™ v + lo ™ llv) < e(llv™ + o7 iv) (18)
is satisfied. We define the operator © : V. — V by
O:v=0v"+0" " =V, v* e X, vV eN. (19)

Note that © is an isomorphism and that © € B(V,V) since the decomposition
V =X ® N is stable.

Let A C C be an open and connected subset of C and S : A — B(V,V) be a
holomorphic operator-valued function. We assume that S(\) satisfies a generalized
Garding’s inequality for all A € A of the following kind: there exist a compact
operator C'(A) € B(V,V) and an «(\) > 0 such that

Re((S(\) + CO\)w, TNy > a(N)|jol[> for all v e V, (20)

where T'(A) = B(A)I or T'(A) = B(A)O with B(A) # 0. Since T'(\) is an isomorphism
and @ € B(V,V) this implies that T'(A\)*JS(A) as well as that S(A) is a Fredholm
operator of index zero [25, Thm. 2.33]. We want to mention that we do not require
that the operator-valued functions C(-) and T'(-) are holomorphic in A.

We consider the eigenvalue problem for the operator-valued function S(-) of the
form: find eigenvalues A € A and corresponding eigenelements u € V' \ {0} such that

S(\)u = 0. (21)

If (A, u) satisfy (21), then we say that (A, u) is an eigenpair of the operator-valued
function S(-).

10



3.2 Notations and properties of eigenvalue problems for holomorphic Fredholm
operator-valued functions

We briefly summarize basic results of the theory of eigenvalue problems for holomor-
phic Fredholm operator-valued functions [14,23]. The set

p(S() =1{reA:3(S(N) " € BV, V)}

is called the resolvent set of S(-). In the following we will assume that the resolvent
set of S(-) is not empty. The complement of the resolvent set p(S(-)) in A is called
the spectrum o(S(+)). The spectrum o (S(-)) has no accumulation points inside of A
[14, Cor. XI 8.4]. The dimension of the null space ker S(X) of an eigenvalue A is called
the geometric multiplicity of A\. An ordered collection of elements wo, u1, ..., Um—1
in X is called a Jordan chain of (A, uo), if (A, uo) is an eigenpair and if

n

1
E —S(J) MNup—; =0 foralln=0,1,...,m—1
!

is satisfied, where S) denotes the jth derivative. The length of any Jordan chain
of an eigenvalue is finite [23, Lem. A.8.3]. Elements of any Jordan chain of an eigen-
value A\ are called generalized eigenelements of A\. The closed linear hull of all gen-
eralized eigenelements of an eigenvalue A is called generalized eigenspace of A\ and
is denoted by G(S(-),\). The dimension of the generalized eigenspace G(S(-),A) is
finite [23, Prop. A.8.4] and it is referred to as algebraic multiplicity of A.

3.3 Galerkin approximation

For the approximation of the eigenvalue problem (21) we consider a conforming
Galerkin approximation. Let (V4), be a sequence of finite-dimensional subspaces of
V and let P, : V — V},, be the orthogonal projection of V onto Vj. As usual we
assume that

|Prv —v||lv = 0ash—0 forallv e V. (22)

The Galerkin approximation of the eigenvalue problem (21) reads as: find eigen-
pairs (Ap,up) € A x Vi, \ {0} such that

(S(/\h)uh,ﬁh/ =0 for all v, € V},. (23)

For the convergence analysis it is convenient to consider instead of the variational
formulation (23) the equivalent operator formulation

PhJS()\h)Phuh =0. (24)

Further, we will also consider the eigenvalue problem for the operator-valued func-
tion JS(-), which is equivalent to the eigenvalue problem for S(-), i. e., (A, u) is an
eigenpair of the eigenvalue problem for JS(-) if and only if it is an eigenpair of the
eigenvalue problem for S(-).

11



3.3.1 Regular convergence

In order to apply the convergence theory of [17,18] to the Galerkin eigenvalue prob-
lem (24) it is necessary to show that the sequence (P, JS(A)Py,)p converges regularly
to JS(A) as h — 0 for all A € A. For the definition of the regular convergence we
need the definition of a compact sequence first.

Definition 3.1 A sequence (vp)n, vn € V, is compact in V, if every subsequence
(vn)n of (vn)n has a convergent subsequence (v )pr in V.

Definition 3.2 Let B € B(V,V) and suppose that (Vi) satisfies (22). The sequence
(PnBPy)n converges regularly to B, if for any bounded sequence (vp)n, vn € Vi, the
compactness of (PnBPrvp)n implies already the compactness of (vp)p.

If the operator B is a compact perturbation of a coercive operator, then the
sequence (PpBPy); converges regularly to B [36, Sect. 2: Prop. 5]. For the case
that B satisfies only a generalized Garding’s inequality the regular convergence of
(PnBPy)n to B is in general not guaranteed. Sufficient conditions for that case are
specified in the next lemma.

Lemma 3.1 [15, Lem. 3.15], [16, Thm. 1.8] Let B € B(V, V') and assume that there
exit a compact operator C € B(V,V), an isomorphism T € B(V,V), and an o > 0
such that

Re (((B+ C)v, Tv)y) > aljv||y,  for allv € V. (25)

Further, suppose that (Vy,), satisfies (22). If there exists a sequence (Th)n, Th €
B(Vh, Vi) such that

T-T
wp LT =Ty

—0 ash—0, (26)
on€VA\{0} llvnllv

then (PnBPy)n converges regqularly to B.

Sufficient conditions for the existence of a sequence of discrete operators (1)
such that (26) is satisfied will be provided next for the case of a stable splitting
V=X®N and T = O, where O is defined by (19). First we need to define the gap
Oy (U, W) of two subspaces U and W of V:

ov (U, W) = inf - .
vU W)= sup inf flu—wllv
lully=1

We say that the sequence (V4,)y, satisfies a gap property with respect to the splitting
V = X @ N if the following condition is satisfied:

(GAP) There exist sequences (Xp,)n and (N )y satisfying the following properties:
i) Xp and Nj, are subspaces of V3, such that Vj, = X}, @ Ny, for all h,
ii) 6h = max{éV(Xh,X),év(Nh,N)} —0 ash—0.

This condition is a usual condition for Galerkin boundary element methods for
Maxwell’s equation, see e g. [10,5,9,8,4]. We will discuss this in detail in Section 4
below.
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Lemma 3.2 Let V = X® N be a stable splitting and suppose that (Vi,)n satisfy (22)
and the property (GAP). Then we have:

a) For any continuous projector @ : V. — X which is onto in X, there exists a
constant ¢ > 0 such that for sufficiently small h we have

lvn — Qunllv < &dpl|lvnllv for all vy € Vi,

b) The splitting Vi, = Xp, @ N}, is uniformly stable for all h < hi for some hi > 0,
.e., there exists a constant ¢ > 0 such that for all h < hy it holds

(o™ v + llop™ Iv) < ellox™ +op™ v for atl vy"

€ Xy, ’Uh € Np,.
Proof. For assertion a) we refer to [4, Lem. 3.1] and for assertion b) to [4, Thm. 3.2].
O

Proposition 3.1 Let V = X @& N be a stable splitting and © be defined by (19).
Suppose that (Vi) satisfy (22) and the property (GAP). Then there exists a sequence
(On)n, On € B(Vh, Vi), such that

sup II(© = On)vnllv —+0 ash—0. (27)

on€VA\{0} llvnllv

Proof. Since V.= X & N is a stable splitting there exists a continuous projection
R:V — V with range X and kernel N. By definition of @ we have Ov = v* — o™V
for v € V, where v € X, v™ € N such that v = v + 0. This implies that we can
write © = R — Z, where Z :=1 — R.

From the decomposition V;, = X} @ Nj, and the fact that V}, is finite-dimensional
it follows that there exists a continuous projection Ry, : Vj, — V}, with range X}, and
kernel Nj. We will show that

O, := Ry — Zp, Zy i =1— Ry, (28)

satisfies (27). The proof for that will be done in two steps.
i) First we show that there exists a constant ¢ > 0 such that for sufficiently
small h
(R = Rn)vnlv < conllvnllv (29)

holds for all vy, € V3, where 6h is defined as in (GAP)ii). Let v, € V4, and consider the
decomposition vy, = v}, Xnoy v ", where v}, = X5 and vN“ € Np,. Using Lem. 3.2a)
we get

(R = Ru)vnllv < (R — Ru)vp*llv + | Bvp™|lv
X, N, N
= [[(R - Dvp"[lv + I = Z)vp" lv < edn(lopi ™ v + lvp " llv).-

By Lem. 3.2b) the decomposition V}, = X}, @ N}, is uniformly stable for sufficiently
small h and therefore inequality (29) follows.
ii) Since Z = (I — R) and Z;, = (I — Ry) we get from (29) also

1(Z = Zn)vnllv < conllvnllv. (30)
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Hence, we have
(@ = On)vnllv < [[(R = Rp)vnllv +[[(Z = Zn)vwllv < 2¢0n]|vnl|x,
from which (27) follows. O

Corollary 3.1 Let V = X & N be a stable splitting and X € A. Assume that
S(A) € B(V, V) fulfills a generalized Garding’s inequality of the form as in (20). Fur-
ther, suppose that (Vi,)n satisfy (22) and the property (GAP). Then (PnJS(\)Pn)n
converges regularly to JS(\).

Proof. Since S(\) € B(V,V) fulfills a generalized Garding’s inequality of the form as
in (20), there exist a compact operator C'(\) € B(V, V) and an a(\) > 0 such that

Re(((S(\) + CO))v, TOWV0)y > a(\)|v]|?  for all v € V.

where T'(A) = B(A)I or T(A\) = B(A)O with B(A) # 0. From (-,")v = (J-,)v it
follows that JS(A) satisfies a generalized inequality of the form as in (25), i. e. ,

Re(JS(\) + JC\)w, T(\w)y > a(N)|[v][>  for all v € V.

By Lemma 3.1 it is sufficient to show that there exists a sequence (Th(X)),,, Th(X) €
B(Vh, V3,), such that

sup I(T(A) = Th(N\)vnllv
v €V \{0} lonllv

For T(X) = B(MN)I, obviously (31) holds for Th(X) = SNI. If T(A) = B(N)6,
then (31) follows form Prop. 3.1 for Ty (A) = B(X)Oh. O

—0 ash—0. (31)

3.8.2 Asymptotic convergence results

In the next theorem we summarize main convergence results for the Galerkin ap-
proximation of the eigenvalue problem S(A)u = 0 as given in (21). For additional
convergence results we refer to [15-18].

Theorem 3.1 LetV = X®N be a stable splitting and let S : A — B(V, V) be a holo-
morphic operator-valued function. Assume that S(\) fulfills a generalized Garding’s
inequality of the form as in (20) for all X € A. Further, suppose that (Vi) sat-
isfy (22) and the property (GAP). Then the following holds true:

(i) (Completeness of the spectrum of the Galerkin eigenvalue problem) For each
eigenvalue A € A of the operator-valued function S(-) there exists a sequence
(An)n of eigenvalues of the Galerkin eigenvalue problem (23) such that

An— A as h — 0.

(ii) (Non-pollution of the spectrum of the Galerkin eigenvalue problem) Let K C A
be a compact and connected set such that OK is a simple rectifiable curve.
Suppose that there is no eigenvalue of S(-) in K. Then there exists an ho > 0
such that for all h < hg the Galerkin eigenvalue problem (23) has no eigenvalues
mn K.

14



(iii) Let D C A be a compact and connected set such that 0D is a simple rectifiable
curve. Suppose that A € D is the only eigenvalue of S(-) in D. Then there exist
an ho > 0 and a constant ¢ > 0 such that for all h < ho we have:

a) For all eigenvalues Ap, of the Galerkin eigenvalue problem (23) in D

A = Al < ev (G(S(), A), Vi) “8v (G(S™ (), X), Vi) /" (32)

holds, where S*(-) := (S(7))* and £ is the maximal length of a Jordan chain
corresponding to .

b) Let

- 1

M= G GEON A dim G(Py JS(-) Pr, An)

Ap€o(PpJS(-)P,)ND

be the weighted mean of all eigenvalues of the Galerkin eigenvalue prob-
lem (23) in D. Then it holds

A= An| < by (G(S(),A), Va) 6v (G(S™(-), A), Vi) - (33)
¢) If (An,up) is an eigenpair of (23) with A\p, € D and ||lup||lv =1, then

weiah oy 1t = unllv < e(|An = Al dv (ker(S(A), Vo)) -
Proof. By Corollary 3.1 the sequence (PyJS(\)Py)p provides a regular approxima-
tion of the operator JS(A) for all A € A. Further, the Galerkin scheme is a discrete
approximation scheme in the sense of [17], see, e.g. [15, Lem. 3.6], [16, Lem. 2.6].
The assertions (i) to (iii)b) follow then from the abstract results in [17,18]. For
assertion (i) and (ii) we refer to [17, Thm. 2], and for (iii)a) and (iii)b) to [18,
Thm. 2,Thm. 3].

The error estimate in (iii)c) follows from [15, Lem. 3.17], [16, Lem. 2.6]. O

4 Galerkin approximation of the interior and exterior resonance problem

In this section we apply the abstract convergence results of Theorem 3.1 to the
Galerkin approximation of the eigenvalue problem

S(k)u = 0.

Lemma 2.1 shows that S(x) satisfies for all x € C\ {0} a generalized Garding’s
inequality of the form

Re((S(k) + C(k))u, B(k)T(k)u)r > a(k)|ul3 for allu e V,

where T(k) = B(k)© or T(k) = B(k)l with B(k) # 0. The operator © is defined
by © = R—Z, see (13), where R and Z are projections associated to the splitting
V = X®N as given in (11). Further, (4) shows that {-,*); = (J-,-)v holds, where J :=
Jv Jx is an isometric isomorphism. Since S(+) is in C\ {0} in addition holomorphic,
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S(-) satisfies the assumption of Theorem 3.1. It remains to provide adequate ansatz
spaces for the Galerkin approximation of the eigenvalue problem for S(-).

In what follows, we make the additional assumption that £2' is a polyhedron, pos-
sibly curvilinear. Let (7)) be a sequence of regular triangulations of the boundary I
with mesh size h. We denote by RT (7T} ) the space generated by Raviart—-Thomas el-
ements of order k on 75, and by BMDy (75 ) the space generated by Brezzi-Douglas—
Marini elements of order k on 7j, where we refer to [5,8] for their definition. We
adopt the convention of [5,8] that k¥ = 0 means lowest order Raviart—-Thomas or
Brezzi-Douglas—Marini finite elements.

In the sequel V¥ denotes either RT:(75) or BMDy(7;,). We consider the fol-
lowing Galerkin eigenvalue problem: Find (kp,u) € C\ {0} x VF \ {0} such that:

(S(kp)up,sn)r =0  forall's, € VJ. (34)

In the next theorem we summarize the approximation properties of V,’i which we
need for the convergence analysis of the Galerkin eigenvalue problem (34).

Theorem 4.1 The following assertions hold true:

(i) For any u € V it holds

inf |lup —ully =0 as h — 0.
uy EV,’”;
(i) (V) satisfies the property (GAP) with respect to the splitting V.= X & N.
(iii) For —3 < s <k-+1 it holds

1

inf flu—ullv < Ch* "2l ive,ry  Yu€ H(dive, 1), (35)
h

u, €

where we refer to [8, Sect. 2.2] for the definition of H*(divr,I") for s > —%.

Proof. For assertion (i) and (iii) we refer to [8, Sect. 8]. Assertion (ii) is shown in [9,
Thm. 4.2)]. O

From the last theorem and the properties of S(+) it follows that we can apply the
convergence results of Theorem 3.1 to the Galerkin eigenvalue problem (34).

For the specification of the error estimates we consider the adjoint eigenvalue
problem for S(-) with respect to the pairing (-,*)-. Let us first define the so-called
adjoint function S*(k) := (S(K))*. The adjoint eigenvalue problem for S(-) is then
given by

S*(k)t = 0. (36)

Note that the Fredholm alternative implies that « is an eigenvalue of S(-) if and only
if K is an eigenvalue of S*(+).

Lemma 4.1 The following holds true:
(i) (S(k))* = =S(=F), i. e., S*(k) = —S(—kK).

(ii) k is an eigenvalue of S(-) if and only if —K is an eigenvalue of S(-).
(iii) (k,u) is an eigenpair of S(-) if and only if (R, Q) is an eigenpair of S™(-).
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(vi) The ordered collection up,ui ..., Um is a Jordan chain corresponding to k for
S(+) if and only if o, —U1,U2 ..., (—1)"Um is a Jordan chain corresponding
to & for S*(-), i. e., the following relation between the generalized eigenspaces

holds G(S(), k) = G(S*(-), )

Proof. In the proof of the assertions we employ the identity:

et — gtRe(r) = Im(r) _ S=iRe(r) g— Im(r) — g—i(Re(r)—iIm(r)) — g—ir, (37)
(i) It is sufficient to show that
(S(k)u, )7 = (u, =S(—F)r)- (38)

holds for all u,r € 71 (C§ (R?)). Let u,r € 71 (C§(R?)), then we can use the integral
representation for the pairings in (38) and get with (37):

(S(k)u,T)- // ey ———————u(x) - r(y)dsydsx

Ar|lx -y

girlxyl - -
T / / drllx —y]| divp u(x) divp r(y)dsydsx = (S(=F)r,u)-.

From the anti-symmetry of the pairing, the assertion follows.

(ii) The Fredholm alternative implies that k is an eigenvalue of S(-) if and only
if (S(k))*t = 0 for some t € V \ {0}. The latter is by the result in (i) equivalent to
S(—®)t = 0.

(iii) Because of (37) we have S(k)r = S(—R)T. If (k,u) is an eigenpair of S(-),
then we get by 1)

0=S(k)u=S(—7)t = —(S(k))"T = — S* (AT

(iv) Again, integral representations of the pairing (-, -)» and of the functions S(-)
and S* show that $*) (k) = (=1)7+1(SV)(—k)) and (SY)(—k))r = SY)(—&)F. From
this, the assertion follows directly from the definition of the generalized eigenele-
ments. O

In the next theorem we specify the convergence order of the eigenvalues and
eigenfunctions of the Galerkin eigenvalue problem (34).

Theorem 4.2 Let D C C\ {0} be a compact and connected set with a simple recti-
fiable boundary 0D. Suppose that k € D is the only eigenvalue of S(+) in D and that
the generalized eigenspace G(S(-), k) C H*(divp,I') for some s € [—%,k + 1]. Then
there exist an ho > 0 and a constant ¢ > 0 such that for all h < ho we have:

(i) For all eigenvalues ky, of the Galerkin eigenvalue problem (34) in D
|k — kp| < chZsHD/m (39)

holds, where m is the mazimal length of a Jordan chain corresponding to k.
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(ii) If (kn,up) is an eigenpair of (34) with kn, € D and ||unllv =1, then

inf  flu—upllv <e <|,_€ —knl + h<s+1/2>/m) .
ucker(S(k))

Proof. As pointed out above the Galerkin eigenvalue problem satisfies the assump-
tions of Theorem 3.1. The error estimates follow then from the approximation prop-
erty (35) of V¥ and the fact, that G(S(-), x) = G(S*(), &), see Lemma 4.1(iv). [

5 Scattering resonance problem for a penetrable scatterer

In this section we consider the scattering resonance problem for a penetrable scat-
terer. We now allow that the permittivity and the permeability are complex and
frequency dependent. We assume that the frequency dependence is holomorphic in
an open set A C C. Such configurations occur for example in the field of plasmonics
or in the context of metamaterials.

The scattering resonance problem for the penetrable scatterer reads as follows:
Find w € A and (0,0) # (E1, E2) € H(curl; ') x Hjo.(curl; 2°) such that

curlcurl E; — w’?e; (w)p1(w)E1 =0 and  div(e;(w)E1) =0 in ',

curlcurl E; — w’ea(w)p2(w)E2 =0 and  div(ea(w)E2) =0  in £2°,

Eixn=Esxn onl, (40)

p1(w) P eurl By x n = pa(w) ‘curlEs xn  on I,
E, is outgoing.

In the following we will often suppress the dependence of w on &;(w) and on pe(w),
(=12

The interior and exterior Calderén identities are used for deriving a boundary

integral formulation of the scattering resonance problem (40). A function U; €

H(curl; 2') is a solution of the Maxwell’s equations in £2' with wavenumber w./z1 i1
if and only if it satisfies the interior Calderén identity [8, Thm. §]

21+ M(wy/Erpn)  pn S(wy/Erfin) WiUl _ ’YirUl (41)
w’e1 S(wy/Erair) 31+ M(wy/Ermr) ) \pi 'y UL pytynUL)’

where 1
M(r) := 5 (37 +77) ¥pr(%). (42)
We define for £ = 1, 2 the block operator

_ [ M(wyEere)  peS(wy/Eepe)
Be(w) := (wzsgS(w\/m) M(w\/m) )

A function Uz € Hjo(curl; £2°) is an outgoing solution of Maxwell’s equations in
02° with wavenumber w, /212 if and only if it satisfies the exterior Calderén identity

8, Thm. 8]
1 75 Uz 77 Uz )
-7 — Ba(w O = T q .
(2 2( )) (ug 1'YNU2) (uz % U2
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We obtain the following boundary integral formulation of the scattering resonance
problem (40) by using the interior and exterior Calderén identity and by setting
(w,u) := (v5 BE1, p7 'yvE1) = (75 B2, g 'R Ba):

B+ ) (3) = (0)- (13)

u

Note that the eigenvalue problems (40) and (43) are not equivalent. If in the eigen-
value problem (40) €1 is interchanged with €2 and p1 with ps, then one also obtains
(43) as corresponding boundary integral formulation. However, the equivalence of
(40) and (43) is guaranteed if for (43) a constraint is imposed, as shown next.

Theorem 5.1 The following assertions hold true:

(i) Suppose that (w,E1,E2) is a solution of the scattering resonance problem (40).
Then (w,v: Eq, ,uflfy}VEl is a solution of the eigenvalue problem (43) and sat-
isfies (3T — B1(w))(vs B1, py 'yvE1) T =0.

(ii) Conversely, suppose that (w,w,u) is a solution of the eigenvalue problem (43)
satisfying (37 — B1(w))(w, u)" = 0. Define

E: := Vg (k1)piu+ ¥Ypr(k1)w and Eg := — Vg, (k2)p2u — ¥pr,(k2)w,

where Ky := wy/Eepg, £ =1,2. Then (w,Eq,E2) is a solution of the resonance
problem (40) and (w,u) = (vL E1, uy 'YV Eq).

Proof. (i) We have already shown that if (w, E1, E2) is a solution of the resonance
problem (40) that then (w,~v.E1,u;'v\yE1) is a solution of (43). The interior
Calder6n identity (41) implies that (%I — Bi(w)) (YL B, p Y VED T =0.

(ii) Assume now that (w,w,u), w,u € V \ {0}, satisfies the eigenvalue prob-
lem (43) and that the equation (3Z — Bi(w))(w, u) " = 0 holds. We first show that

E; := Ugp(k1)piu+ ¥pr(k1)w  and Eg:= — Vg (k2)puzu — ¥pr(k2)w

satisfy the resonance problem (40), where ks := ws/Eepie, £ = 1,2. By construction
E; is a solution of the Maxwell’s equations in £2' and Es is an outgoing solution of
the Maxwell’s equations in 2°. Applying the trace operators to E1 and E2 yields

py ' YNEL 1y Y

Subtracting the second equation from the first equation in (44) and using that (w, u)
satisfies the eigenvalue problem (43) gives

LB — S E; w 0
—1j = = (B B = .
(:ul 1,)/}\]],31 — 13 1'7]e\rE1> ( 1(&)) + Q(UJ)) (u> <0>

Hence, E; and E; satisfy the transmission conditions of the eigenvalue problem (43).
From the assumption (37 — Bi (w))(w7u)—r = 0 and the first equation in (44), we

finally get )
w) _ (1 w\_ ([ hE
(2)= Gzraw) () = (:58e.)
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For the analysis of the eigenvalue problem (43) we consider the following anti-
symmetric pairing on the product space V2 x V2 — C:

() (3),.. = s e

In the next lemma we collect results on boundary integral operators which we need
in order to prove that B1(w) + B2(w) satisfies a generalized Garding’s inequality.

Lemma 5.1 Letk € C, and A(k) be as defined in (8) and M(k) defined by (42). Fur-
ther, let V(0) be the single layer boundary integral operator of the Laplace equation.
Then we have:

a) The bilinear forms
(M(K),}r : XXX =C and (M(k),)r: N XN = C, (45)
(A(K)-)r : X X VY2 5C and (A(k),)r: V2 x X = C, (46)

are compact.
b) There exists a constant ¢ > 0 such that

(@, A(O)u)~
(@, V(0)v)

cHu||3,;1/2 for allu e N, (47)

>
> CHU||?_I—1/2(I‘) for allv e H-Y2(I). (48)

11
272
Proof. For assertion a) we refer to [8, Lem. 9] and for assertion b) to [8, Lem. 8]. [

Proposition 5.1 Let w € C\ {0} and k¢ = wy/pe(w)ee(w) # 0 for £ =1,2. Then
there exist a compact operator Co(w) : V2 — V2, an isomorphism To(w) : V2 — V2,
and an oy(w) > 0 such that for all u € V? it holds

Re ({(Be(w) + Ce(w)) u, Be@)Te(@)t)rxr ) = ae(w) ullye (49)
where

© for Re(ke) #0,

Te(w) := diag (mT[le(w),Mmfle(w)) ; Up(w) := {| for Re(ke) =0

Be(w) := sgn(Re(ky)) if Re(ke) £ 0, and Be(w) := —sgn(Im(ky))i if Re(ke) = 0.

Proof. A proof for positive wavenumbers & is given in [9, Thm. 3.12] and [8, Thm. 9].
We adapt this proof for complex wavenumbers. In what follows, we will suppress the
index ¢, and for the occurring block operators the dependence on the frequency w.
Consider the scaling
B=D 'AD, (50)

D (1,00) it aim (M0 500

where

0 pk kS(k) M(k)
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Since for any K : V2 — V? and for any u € V? it holds

((A+ K)Du, BRDu) s xr = (D™ (A + K)Du, BDRDU) r »»

- (51)
=((B+C)u, BTu)rxr,

where R := diag(U, U), D := diag(usx—11,1), C := D~'KD and T := DRD, we will
first determine an adequate compact perturbation K of A.
Let us define the operator S(k) : V. — V by

(S(rk)u,r)r := (A0)u,r)s + £ *(divp r, V(0) divp u) 1,

where we refer to (8) for the definition of A(k) and V (k). Since M(x) — M(0) and
kS(k) — S(k) are compact operators in V [9, p. 472] the operator

Ao = <'\S/|((0)) I?A( 0)> V2 V2

is a compact perturbation of A in V2 Let u € V2 and Du =: v =: (b1,02) .
Decompose v1 = oy + njl\/ and vy = Uf + né\/ according to the splitting V= X § N
as given in (11), where v, 03 € X and o o) e N.
First we consider the case that Re(k) # 0. Then, R = diag(©, ©) and
<Aob,m>7—x7—

= (M(0)o7", 05)7 — (M(0)v7¥, 03 + (M(0)01, o)~ — (M(0)07", 02)

+(S(k)03 0 )7 — 5(A0)03, 05} + K(A(0)0D, 05" ) — K(A0)0, 0] )~

+ (8ot o ) — (A0, 0 )7 + m(AO)0Y o) — s(A©O)0T, 0f)

+ (M(0)93°, 0F) - — (M(0)03, o) + (M(0)03", o) - — (M(0)03", o).,

where we have used that (S(k)u,r), = x(A(0)u,r), if u € A or if r € . From the

compactness properties of A(0) and M(0), see (46) and (45), it follows that there
exists a compact operator K : V2 = V2 such that

(Ao + K)0, R0)rsr = —(M(0)07,03") - + (M(0)07, 0)
+ kM {divp 0, V(0) divr v3 >¢% K{A( O)U¥7@>T
+ k~Hdivp 0, V(0) divp vy ) 71— k(A0)Y o),

— (M(0)v3", )~ + (M(0)vd’, vF) . (52)

The symmetry of M(0) implies

(M(0)u, T)r — (M(O)r,a)> = (M(0)u,r)r — (M(0)T,r)~
= (M(0)u,T)r — (M(0)u,r)_ = 2:Im((M(0)u,r)-). (53)
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Combining (52) and (53) gives using the ellipticity properties of V' (0) and A(0) from
Lemma 5.1b)

Re({(Ao + K)o, R0)7x+)
= Re(rx ") ((divp o, V(0)divr v3) 1 + (divr o, V(0) divr uf“>%)

+ Re(r) (03, A0)03) + (o1, A©)01)- ) .
Hence, we get with v = Du = (uf +uj1\/,uﬁ_1(u§( —|—u/2\/))T, uf € X, ué\[ e N,
i=12,
Re (Ao + K)Du, RDu)r «- )
= Re(x™")(lux ™" *(dive ug, V(0) dive ug') 1+ (diveud, V(0) dive ui') s 1)
+ Re(r) (i, A )7 + @A), ) (54)

Since Ap is a compact perturbation of A, the identities (51) and (54) imply that
there exists a compact operator C : V2 — V2 and a constant &@ > 0 such that for
B = sgn(Re(k)) it holds

Re({(B + C)u, BTu)) > a({divr ug, V(0) divr uj ) r
+ (dive uF, V(0) divr ui ) r + ', A0 )+ + W, At ), ).

The ellipticity properties of V(0) and A(0) from Lemma 5.1b) together with the
norm equivalence (12) yields the inequality (49) for Re(x) # 0.

It remains to consider the case Re(k) = 0. Again, the compactness properties
of A(0) and M(0), see (46) and (45), imply that there exists a compact operator
K : V2 = V2 such that

(Ao + Ky, 6>W = (M(0)o7", v9)~ + (M(0)07", 0F )
~Hdive v, V(0) diveoy) 1 1+ £(A(0)02, v3),
+ rk~Hdivp 0%, V(0) divp vy ) 1

From
(M), ), + (M(O)r, ) = (M(0)u, F)~ + (M(0), x)-
= (M(0)u,7), + (M(0)u,7) = 2Re((M(0)u,T)-)

we get

(Ao + K)o, ) = £ {divr o, V(0) dive 03y

— k({03 A(O)v3

~
)
+
—~
(=2
R
>
—~
(==}
~
(=3
Cz
~
3
~—

k" (dive o, V(0) divr 07 )51

+2Re ((M(0)o7, 08")~ + (M(0)07, o), ).
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For f = —sgn(Im(k))i, we have k' = |x~'| and kB = —|k| because Re(k) = 0.
Using the ellipticity properties of V(0) and A(0) from Lemma 5.1b) this implies

Re(((Ao + K)Du, BDu)rx) = |s|(|ur™ " |* diveug, V(0) dive ug) £
+ (dive uf¥, V(0) dive w1 + k] (w2, AQ)Y) + [pe™ P (1", A(0)ud)).

Inequality (49) follows now with the same arguments as for Re(k) # 0. O
Theorem 5.2 Let w € C\ {0} and k¢ = wy/pe(w)ee(w) # 0 for £ = 1,2. Suppose
that

p1y/f2g2 # tp2y/piel (55)
if Re(k1) # 0 and Re(kz2) # 0 and if Re(k1) = Re(k2) =0, and that

Pi/HiE5 # T/ IkERT (56)

if Re(kj) # 0 and Re(kx) = 0 for j # k. Then there exist a compact operator
C(w) : V2 = V2, an isomorphism T (w) : VZ — V2, and an a(w) > 0 such that for
allu € V? it holds

Re (((Bu(w) + Ba(w) + (@) 4, Tt rxr ) = alw@) [ullye (57)

Proof. Proposition 5.1 shows that for £ = 1,2 there exist compact operators Cp(w) :
V2 — V2, isomorphisms £ (w)7Te(w) : V2 — V? and ay(w) > 0 such that

Re (((Be(w) + Ce(w)) w, Be@) Te@)) ) 2 are(w) [l

Choosing C(w) = C1(w)+Ca2(w) and T (w) = B1(w)T1(w)+ P2(w)T2(w) yields inequal-
ity (57). It remains to show that

T (w) = diag (Z Be(w)pery 'Ue(w), Zﬂe(w)uw_lw(w)) (58)
=1

=1

is an isomorphism from V2 to V2, which holds if the diagonal blocks are isomor-
phisms from V to V. This will be shown for the upper block of 7T (w) and the case
that both Re(k1) # 0 and Re(k2) # 0. The other cases can be treated similarly.

Assume that Re(k1) # 0 and Re(k2) # 0. Then, B¢(w) = sgn(Re(x¢)) and
U¢(w) = ©, and the upper block of 7 (w) in (58) reads as

D Be(wnereWUe(w) = w1 ) sgn(Re(re))pe(v/Zene) ~1O.

=1 £=1

From p1./p2e2 75 :i:,UJQ,/,ulEl it follows that Hl(\/ﬂlgl)71 75 :|:,u2(,/u2€2)71 and
2
> " sgn(Re(kie))pe(y/Eee)* # 0.

=1
This shows that the upper block of 7 (w) is an isomorphism, since © is an isomor-
phism. O

The assumptions on the material parameters e, and p, in (55) and (56) of The-
orem 5.2 are satisfied for example if the scatterer and background medium are di-
electrics but also for typical configurations of scattering problems in plasmonics.
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5.1 Galerkin approximation

For the Galerkin approximation of the eigenvalue problem (43) we use V§ x VF as
ansatz space, where again V¥ denotes either RT%(7) or BMDy(75,), see Section 4.

We assume that A C C\ {0} is an open set such that /ue(w)ej(w), £ € {1,2},
are holomorphic on A and that the assumptions in (55) and (56) of Theorem 5.2
are satisfied. The Galerkin eigenvalue problem reads as follows: Find w, € A and
up € VE x VF u;, #0, such that

((B1(wn) + Ba(wn))up, o) rxr =0 for all v, € Vi x V}. (59)

We use the abstract results of Section 3 in order to show the convergence of the
eigenvalues and eigenfunctions of the Galerkin eigenvalue problem (59). Define

2 2
Th(w) = diag (Z Be(w)pery 'UE (w), ZB@(W)MMZIU?(W)>
=1 =1
where U} (w) := ©, for Re(ke) # 0 and U} (w) := | for Re(k¢) = 0. Here, Oy, is

defined by (28). Then Ty, (w) € B(VF x VE, VF x VF) and
vy @) = T@onlv:

—0 ash—0.
vh EVEXVE\ {0} lonllv2

Further, let P, : V. — V¥ be the orthogonal projection of V onto V},, and define

Py, := diag(Pp, P,) and J := <3) é) .
Then, from Cor. 3.1 it follows that the sequence (PnJ (Bi(w) + B2(w))Pr), con-
verges regularly to J(B1(w) + B2(w)) for all w € A. As a consequence, we can apply
the convergence results of Theorem 3.1 to the eigenvalues and eigenfunctions of the
Galerkin eigenvalue problem (59).

6 Numerical Examples

In this section we report on results from some numerical experiments for the ap-
proximation of the eigenvalues of the boundary integral formulations of the interior
and exterior resonance problem problem (1) and (2), and of the scattering resonance
problem for the penetrable scatterer (40). In all experiments Raviart—-Thomas ele-
ments of lowest order & = 0 are used. For the computations of the boundary element
matrices the open-source library BEM++ [31] is employed.

The Galerkin approximations of the eigenvalue problems for S(-) and for By (-) +
B2 () result in holomorphic matrix eigenvalue problems in C\ {0} and in A, respec-
tively. The related matrix-valued functions are denoted by Sy, () and By »(-)+Bz,x(+).
For the numerical solution of the matrix eigenvalue problems we use the contour in-
tegral method as given in [2]. For other variants of the contour integral method we
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refer to [1,38]. The contour integral method is a reliable method for the approxima-
tion of all eigenvalues which lie inside of a given contour in the complex plane, and
for the approximation of the corresponding eigenvectors. The method is based on
the contour integration of the resolvent, (S, (-))~! and (By,n(-) + B2,n(-))"* in our
case, and utilizes that the eigenvalues of eigenvalue problems for holomorphic matrix-
valued functions are poles of the resolvent. By contour integration of the resolvent
applied to some randomly chosen set of test vectors a reduction of the holomorphic
eigenvalue problem to an equivalent linear eigenvalue problem is possible such that
the eigenvalues of the linear eigenvalue problem coincide with the eigenvalues of the
nonlinear eigenvalue problem inside the contour.

The main computational cost of the numerical implementation of the contour
integral method consists in the approximation of the contour integral of the resol-
vent. In our numerical experiments we use for that the composite trapezoidal rule
as suggested in [2]. In general, with such an approximation of the contour integral
an exponential convergence order for the approximation of the eigenvalues with re-
spect to number of quadrature nodes is achieved [2]. The composite trapezoidal rule
requires in each quadrature node &;, j = 1,..., N, the application of (Sx(&;)) ™" and
(B1.1n(&) + Ba,n(€5)) ", respectively, to some randomly chosen set of test vectors,
for which in our numerical experiments an LU decomposition is utilized.

Remark 6.1 For the analysis of the contour integral method it is usually assumed
that the underlying matriz-valued function of the eigenvalue problem is holomorphic
inside the contour. However, the contour integral method is also suitable for eigen-
value problems where the underlying function has isolated singularities in the case of
that the resolvent has a holomorphic continuation in the neighborhood of the singular-
ities. The reason for that is that the contour integral method operates on the resolvent
of the eigenvalue problem and approzimates the poles of the resolvent. Our numerical
experiments indicates that there is a holomorphic continuation of (Sp(-))™" as well
as of (Bin(-) + Ba,n(-)) ™! in the neighborhood of 0, see Fig. 1-2 and Fig. 3, respec-
tively. The conjecture is that this property holds in general if the material parameters
are holomorphic in the neighborhood of 0.

6.1 Interior and exterior resonance problem

In the first numerical examples we consider the Galerkin approximation (34) of the
boundary integral formulation (10) of the interior and exterior resonance problem (1)
and (2). The unit cube and the unit ball are chosen for 2%, In all examples in this
subsection we take ¢ = u = 1.0.

6.1.1 Interior resonance problem for the unit cube

For the unit cube only the interior resonances are known analytically. Therefore we
restrict ourselves to the approximation of the resonances of the interior problem.
The interior resonances have the form x = wk, where k = /k% + k2 + k3 with
ki,k2,ks € No and kika + koks + kski > 0 [3, Sect. 6]. For the contour integral
method we choose as contour the ellipse ¢(t) = ¢ + acos(t) + ibsin(t), t € [0, 27],
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Fig. 1 Unit cube: Computed interior resonances by the contour integral method for h = 0.177.

with ¢ = 5.0, a = 5.1 and b = 0.5. There are seven distinct eigenvalues within this
ellipse which have a total algebraic multiplicity of 32. The number of quadrature
nodes for the approximation of the contour integral is 25. In Tab. 1 the errors of
the approximations of the two smallest resonances and of the largest resonance for

discretizations with mesh sizes h = /2277, j = 2,...,5, are given. We observe
h dofs err(Ry,,) eoc err(Ryp) eoc err(Ryp) eoc
2- L5 288 1.11e-2 - 2.20e-2 - 6.02¢-2 -

2-2:5 1152 1.03e-3 3.4 2.11e-3 3.4 5.11e-3 3.6
2—35 4608 1.09e-4 3.2 2.3le-4 3.2 5.50e-4 3.3
2—45 18432 1.22¢-5 3.1 2.68e-5 3.1 6.44e-5 3.1

Table 1 Unit cube: Approximation error (for the weighted mean %; ) and experimental order
of convergence (eoc) of the two smallest resonances and the largest resonance inside the ellipse
for different mesh sizes h and degrees of freedom (dofs).

that the experimental orders of convergence (eoc) match the theoretical predicted
cubic asymptotic convergence order, see (39). Further, for the specified mesh sizes
all exact resonances are approximated with the right multiplicities and no spurious
resonances occur within the ellipse. A plot of the computed resonances for the mesh
with mesh size h = v/227% is given in Fig. 1. The experiments also confirm the
mentioned conjecture that the resolvent Sy, () ™! can be holomorphically extended to
k = 0. We want to mention that for coarser discretizations with 18 and 72 degrees
of freedom, which corresponds to the mesh sizes h = v/2 and h = v/227 1, only the
two smallest resonances are approximated well and that for these discretizations the
cubic convergence order is no longer observable.

6.1.2 Interior and exterior resonance problem for the unit ball

The interior and exterior resonances of the unit ball can be represented as zeros
using the spherical Bessel and Hankel functions [29]. We denote by j, the spherical

Bessel functions of the first kind and as before by hszl) the spherical Hankel functions
of the first kind. The set of the interior resonances is given by

{r € R\ {0} : jin(k) = 0 or jn(k) + Kjn (k) = 0,n € N},
and that of the exterior resonances by

{keC:hP (k) =0or M (k) +rh (k) =0,n € N}.
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Fig. 2 Unit ball: Computed interior (plus sign) and exterior (cross) resonances by the contour
integral method for h = 0.177.

As contour for the contour integral method the ellipse ¢(t) = ¢+ a cos(t) + ibsin(t),
t € [0,27x], is chosen with ¢ = 5.0, a = 5.3 and b = 1.0. There are 23 distinct
eigenvalues within this ellipse having a total algebraic multiplicity of 157. For the
approximation of the contour integral 100 quadrature nodes are taken. In Tab. 2
the errors of the smallest and the largest interior and exterior resonance in modulus
inside the ellipse are given. The experimental convergence order is in contrast to the

h dofs err(Ry,) eoc err(Eilyh) eoc err(Ry7) eoc e(Eilg,h) eoc

0.32 720 7.80e-3 - 2.15e-2 - 3.26e-2 - 7.11e-2 -
0.16 2880 1.95e-3 2.0 5.37e-3  2.01 7.80e-3 2.1 1.87e-2 1.9
0.08 11520 4.88¢-4 2.0 1.34e-3  2.00 1.91e-3 2.0 4.78e-3 2.0
0.04 46080 1.14e-4 2.1 3.35e-4  2.00 4.73e-4 2.0 1.21e-3 2.0

/

Table 2 Unit ball: Approximation error (for the weighted mean Eij Z) and experimental order

of convergence (eoc) of the smallest and the largest interior and exterior resonance in modulus
inside the ellipse for different mesh sizes h and degrees of freedom (dofs).

cube of one order reduced since the sphere is approximated by flat triangles. Again,
all exact resonances are approximated with the right multiplicities and no spurious
resonances occur. In Fig. 2 the computed resonances by the contour integral method
for the mesh with mesh size h = 0.082 are plotted.

6.2 Scattering resonance problem for a penetrable scatterer

In this subsection we consider the Galerkin approximation of the boundary inte-
gral formulation (43) of the scattering resonance problem for the penetrable scat-
terer (40). The domains ' for the numerical examples are again the unit cube and
the unit ball. As approximation space we choose V9 x V = RTo(Ts) x RTo(Tr).

6.2.1 Unit cube

For this example the material parameters are set to €1 = 4.0 and €2 = p1 = p2 = 1.0.
The exact resonances of the resonance problem for a penetrable cube are not known.
As reference resonances the computed resonances of a very fine mesh with mesh size
h = 0.03125 are taken. As contour for the contour integral method we chose the
ellipse ¢(t) = ¢+ acos(t) + ibsin(t), ¢t € [0, 2], with ¢ = 2.5, a = 2.7 and b = 0.5.
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For the approximation of the contour integral 20 quadrature nodes are used. The
numerical experiments suggest a cubic asymptotic convergence order, see Tab. 3,
which is in accordance with the theoretical results. The computed approximations

h  dofs err(@iy)) eoc err(wep) eoc err(wsp) eoc err(iyp) eoc

0.35 576 6.14e-3 - 1.21e-2 - 2.30e-2 - 3.94e-2 -
0.17 2304 6.05e-4 3.3 1.16e-3 3.4 2.21e-3 3.5 3.25e-3 3.6
0.08 9216 6.21e-5 3.2 1.17e-4 3.4 2.18e-4 3.3 3.15e-4 3.4

Table 3 Scattering resonance problem for the penetrable scatterer (unit cube): Error (for the
weighted mean @j; ) and experimental order of convergence (eoc) of the four resonances with
smallest real part inside the ellipse for different mesh sizes h and degrees of freedom (dofs).

of the resonances by the contour integral method inside the ellipse for h = 0.177 are
plotted in Fig. 3. The numerical experiments indicate that the resolvent (B15(-) +
B2 4 ()" can be holomorphically extended to w = 0.

0.5 T ; : T

1 T e e
05— : + + :
Fig. 3 Scattering resonance problem for the penetrable scatterer (unit cube): Computed reso-
nances by the contour integral method for h = 0.177.

6.2.2 Unit ball

In the last example we consider a plasmonic resonance problem for a golden nano-
sphere with diameter d = 100nm embedded in a host medium with refractive index
of 1.5 [35]. A Drude model for the permittivity of gold is taken of the form [30]

Wp
El(W) = &0 <1 — m) ) (60)
with o being the vacuum permittivity, w, = 1.26 - 10*¢ s~ and v = 1.41 - 10**s™ .
The other material parameter are chosen as €2 = 1.5¢0, g1 = p2 = po, where po is
the vacuum permeability.

The exact resonances of the scattering resonance problem for a penetrable scat-
terer for a ball with radius R can be determined by the Mie series method [35,
Supplemental material, Sect. 3]. A number w € C is a resonance if it satisfies either

[in(K1R) + k1R (k1 R)] py ' kA (ko R)
— 4T K2 jn (k1L R) [hﬁ}’(mR) n kth%l)’(ngR)} -0
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or
jn(raR)uz " [P (k2R) + kaRR (k2 )|
— i) (k2 R)pr ! [jn(k1R) + k1Rjn(k1R)] =0, (61)

for some n € N, where ky = wy/eg(w)pe(w), £ =1, 2.

In plasmonics those scattering resonances are of interest which are close to the
frequency range of light which corresponds to [1.7,3.1]A~ !, where % is the reduced
Planck constant in eV:s given by A = 6.58211957e-16. For the contour integral
method as contour an ellipse is chosen with ¢(t) = A~ [c+ acos(t) + ibsin(t)],
t € [0,27], with ¢ = 2.5, a = 1.4 and b = 0.75. The number of quadrature
nodes for the approximation of the contour integral is 20. Three distinct resonances
with total algebraic multiplicity of 15 lie inside the ellipse, which are solutions of
equation (61) for n = 1,2,3. The principal square root, with the branch cut along

h [nm] dofs  r-err(w@p,n)  eoc  r-err(ws ) eoc  r-err(ws p) eoc
35.35 288 2.88e-2 - 1.56e-2 - 9.44e-3 -
16.25 1812 4.65e-3  2.34 2.50e-3  2.64 1.37e-3  2.79

7.67 7710 1.06e-3  1.97 5.67e-4 2.14 3.24e-3  2.08
3.58 33240 2.40e-4  1.95 1.35e-4  2.07 7.44e-4  2.12

Table 4 Golden ball with diameter d = 100 nm: Relative approximation error (for the weighted
mean @j ) and experimental order of convergence (eoc) of the scattering resonances inside the
ellipse for different mesh sizes h and degrees of freedom (dofs).

the non-positive real axis, applied to the permittivity €1 (w) defined in (60) is non-
continuous along the contour. Instead we take the square root with the branch cut
{z = r(cos(¢o) + isin(¢o)) : » > 0}, ¢o = 1.97, which guarantees that /e1(w)u1
is continuous along the contour and inside of it. In Tab. 4 the relative error and
the experimental order of convergence for the approximation of the resonances in-
side the contour are given. The convergence order is compared to the cube of one
order reduced as expected since the sphere is approximated by flat triangles. Again,

0.5

0

-0.5

1 2 3 4

Fig. 4 Golden ball with diameter d = 100 nm: Computed scattering resonances by the contour
integral method for h = 7.67nm. (The axes are scaled by a factor of h).

all eigenvalues inside the ellipse are approximated with the right multiplicity and
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no spurious eigenvalues occur. In Fig. 4 the computed resonances by the contour
integral method for the mesh with mesh size h = 7.67 are plotted.

7 Conclusions

In this paper we have analyzed the Galerkin approximation of boundary integral
formulations for three different types of electromagnetic resonance problems. We
have considered the single layer boundary integral formulation for the interior and
exterior resonance problem with perfect conducting boundary conditions and a first
kind boundary integral formulation of the resonance problem for the penetrable
scatterer. These boundary integral formulations are eigenvalue problems for holomor-
phic Fredholm operator-valued functions. For the numerical approximation of these
eigenvalue problems a Galerkin approximation with Raviart—-Thomas and Brezzi—
Douglas—Marini type elements are considered. The extension of recent results [15,
16] on the regular approximations of operators satisfying a generalized Garding’s
inequality enables us to apply the classical convergence theory on the approxima-
tion of eigenvalue problems for holomorphic Fredholm operator-valued functions to
the proposed boundary element approximations. Numerical examples confirm the
theoretical convergence results and show that the asymptotic convergence behavior
appears on rather coarse meshes.
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