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Abstract

We consider the shape optimisation of high-voltage devices subject to electrostatic
field equations by combining fast boundary elements with multiresolution subdivision
surfaces. The geometry of the domain is described with subdivision surfaces and dif-
ferent resolutions of the same geometry are used for optimisation and analysis. The
primal and adjoint problems are discretised with the boundary element method us-
ing a sufficiently fine control mesh. For shape optimisation the geometry is updated
starting from the coarsest control mesh with increasingly finer control meshes. The
multiresolution approach effectively prevents the appearance of non-physical geometry
oscillations in the optimised shapes. Moreover, there is no need for mesh regenera-
tion or smoothing during the optimisation due to the absence of a volume mesh. We
present several numerical experiments and one industrial application to demonstrate
the robustness and versatility of the developed approach.

1 Introduction

The shape optimisation of high-voltage electrical devices, such as switchgear or transformers,
serves as the driving application for our work. The prevention of electrical breakdown is one
of the key considerations in the design of high-voltage devices [1, 2]. In a first approximation,
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limiting the electric field strength on critical components can reduce a device’s susceptibility
to electric breakdown. The electric field strength is determined with the electrostatic field
equations, which in absence of space charges reduce to the Laplace equation with Dirichlet
boundary conditions [3]. By optimising the shape of critical components the maximum
electric field strength on the surface, i.e., the normal flux, can often be considerably reduced.
This may make it possible to shrink the size of a device and in turn lead to cost savings. In the
approach introduced in this paper we systematically optimise the geometry of a device such
that a cost functional consisting of the L2 norm of the electric field strength is minimised.
The boundary element method (BEM) has clear advantages when applied to shape opti-
misation of high-voltage devices, see [4, 5, 6, 7, 8] for an introduction to BEM. First of
all, BEM relies only on a surface discretisation so that there is no need to maintain an
analysis-suitable volume discretisation during the shape optimisation process. Moreover,
BEM is ideal for solving problems in unbounded domains that occur in electrostatic field
analysis. In gradient-based shape optimisation the shape derivative of the cost functional
with respect to geometry perturbations is needed [9, 10, 11]. To this purpose, we use the
adjoint approach and solve the primary and the adjoint boundary value problems with BEM.
The associated linear systems of equations are dense and an acceleration technique, such as
the fast multipole method [12, 13], is necessary for their efficient solution. For some recent
applications of fast BEM in shape optimisation and Bernoulli-type free-boundary problems
we refer to [14, 15, 16].
The geometry parameterisation and its interplay with the BEM surface discretisation plays
a crucial role in shape optimisation. When the BEM surface mesh is used for geometry
parameterisation it leads to non-physical oscillations in the optimised geometry, as already
known in the finite element literature [17, 18]. In addition, the BEM mesh may become
severely distorted after a few optimisation steps so that auxiliary mesh smoothing proce-
dures become necessary. To remedy both difficulties, geometries in shape optimisation are
commonly parameterised with b-splines or related techniques, such as NURBS and subdi-
vision surfaces [17, 18, 19, 20, 21]. In this paper we represent geometries with subdivision
surfaces, which are the generalisation of splines to arbitrary connectivity meshes. Specifically,
we use the Loop scheme based on triangular meshes and quartic box-splines [22].
In subdivision schemes a limit surface is obtained through the repeated refinement of a
coarse control mesh [23]. In practice, there are closed form expressions for computing the
limit surface for a given control mesh [24, 25]. The hierarchy of control meshes underlying
a subdivision surface lends itself naturally to multiresolution editing [26, 27]. The coarse
control mesh vertex positions are modified to perform large-scale editing and the fine control
mesh vertex positions are modified to add localised changes. In the introduced multireso-
lution shape optimisation approach we use a fine control mesh for BEM discretisation and
coarser control meshes for geometry modification. More precisely, we start optimising with
the coarsest control mesh and progress to optimise increasingly finer control meshes. As our
numerical examples demonstrate, the multiresolution optimisation approach does not lead
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to non-physical oscillations in geometry. Moreover, the occurrence of mesh pathologies, like
inverted elements, is greatly reduced because the support size of the geometry modifications
and the element sizes are well coordinated.
This paper is organised as follows. In Section 2 we introduce the electrostatic shape optimisa-
tion problem and the required shape derivates. We then discuss in Section 3 the discretisation
of the state and adjoint boundary value problems with the BEM. Subsequently, in Section 4
the multiresolution subdivision surfaces for geometry parameterisation are explained. The
multiresolution optimisation algorithm is introduced in Section 5. Finally, in Section 6 we
present several numerical examples with increasing complexity to demonstrate the efficiency
and robustness of the proposed approach.

2 Electrostatic shape optimisation problem

The electrostatic field equations in absence of space charges lead to a Dirichlet boundary
value problem for the Laplace equation

−∆u = 0 in Ω,

u = 0 on Γ0,

u = 1 on Γf ,

(2.1)

where u is the electric potential or voltage, Ω ⊂ R3 denotes a multiply connected, bounded
Lipschitz domain with the boundary Γ := ∂Ω consisting of a free part Γf and a fixed part
Γ0. In this paper, we assume that the potentials on Γf and Γ0 are constant. The geometry
of the free boundary Γf is to be determined with shape optimisation. We assume that the
topology of Ω is as shown in Figure 1, i.e., that Γ0 and Γf are disconnected parts of the
boundary and that Γf is interior to Γ0. It is straightforward to generalise our approach to
other situations. Moreover, it is well known that the Dirichlet problem (2.1) admits a unique
solution u ∈ H1(Ω). For the purposes of the shape calculus introduced below, however, we
assume a higher regularity of the solution u in the vicinity of the free part of the boundary
Γf .
In electrostatic shape optimisation one may seek to minimise the pointwise maximum of the
normal flux on the free part of the boundary Γf . The corresponding cost functional reads

Jmax(Ω, u) := sup
x∈Γf

∣∣∣∣ ∂u∂n(x)

∣∣∣∣ (2.2)

with the normal flux ∂u/∂n = 〈∇u,n〉 and the exterior unit boundary normal n. Recall that
the physical interpretation of the normal flux is the electric field in normal direction. Due
to the non-smooth nature of the max function in (2.2) we decided to consider an alternative
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Figure 1: Topology of the domain Ω and its transformation to the domain Ωt.

differentiable functional in order to be able to exploit methods of the first order calculus;
namely

J(Ω, u) :=
1

2

∥∥∥∥ ∂u∂n −Q
∥∥∥∥2
L2(Γf)

=
1

2

∫
Γf

(
∂u

∂n
(x)−Q

)2

dsx (2.3)

where Q ≥ 0 is a prescribed constant expected value. Similar cost functionals are also
considered in the context of Bernoulli-type free-boundary problems [16, 28].
During the iterative shape optimisation (see Section 5) the derivatives of the cost func-
tional (2.3) with respect to domain perturbations are needed. To this end, we make use of
shape calculus methods as introduced, e.g., in [9, 11]. First, in order to describe geometry
changes of the domain Ω, we define a family of mappings Tt : Ω → R3 as the perturbation of
identity, i.e., Tt := I + tV with the pseudo-time parameter t ∈ [0, τ) and some velocity field
V . The new configuration of the domain Ω at pseudo-time t is as illustrated in Figure 1
given by

Ωt := Tt(Ω) := {Tt(x) : x ∈ Ω}.
Under reasonable regularity assumptions on the velocity field V , say V ∈W 1,∞(Ω), and for
τ small enough, Tt can be shown to be a one-to-one mapping of Ω onto Ωt preserving the
Lipschitz regularity, see, e.g., [10, 11]. The shape optimisation problem is thus transformed
to a search for a suitable velocity field V that reduces the cost functional. Following the
structure theorem by Hadamard and Zolésio, see, e.g., [9, Chapter 9], one only has to define
the mapping on the boundary. Moreover, since Γ0 is fixed, we can define V |Γ0 := 0, i.e.,
Γ0,t := Tt(Γ0) = Γ0. The shape optimisation problem is solved by an iterative procedure and
a suitable velocity field V has to be determined in every iteration step.
Together with the original boundary value problem (2.1) we consider the problem

−∆ut = 0 in Ωt,

ut = 0 on Γ0,

ut = 1 on Γf,t

(2.4)
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in the transformed domain. The value of the cost functional (2.3) in this configuration
changes to

J(Ωt, ut) =
1

2

∫
Γf,t

(
∂ut
∂nt

(xt)−Q
)2

dsxt .

To be able to use first order minimisation techniques, the shape derivative of the cost func-
tional in the direction of the velocity field V given by

J ′(Ω, u)(V ) :=
d

dt
J(Ωt, ut)

∣∣∣∣
t=0

= lim
t→0+

J(Ωt, ut)− J(Ω, u)

t

is needed. Under reasonable regularity assumptions (see [9, 11]), the shape derivative can
be represented in the so called Hadamard–Zolésio form

J ′(Ω, u)(V ) =

∫
Γf

g(x)〈V (x),n(x)〉 dsx

where 〈V (x),n(x)〉 denotes the scalar product of the two involved vectors and g is some
kernel function which is independent of the velocity field V . Note that setting

V |Γf
:= −gn implies J ′(Ω, u)(V ) = −

∫
Γf

g2(x) dsx ≤ 0 (2.5)

and thus such a velocity field V defines a steepest descent direction. This structure will be
exploited in Section 5 for iterative shape optimisation.
Finally, in the case of the considered cost functional (2.3) the kernel function g takes the
form

g(x) := − ∂p
∂n

(x)
∂u

∂n
(x)− H(x)

2

((
∂u

∂n
(x)

)2

−Q2

)
(2.6)

according to [9, 16, 28]. Here H is the additive curvature, u is the primal solution given by
(2.1), and p is the solution of the adjoint boundary value problem

−∆p = 0 in Ω,

p = 0 on Γ0,

p =
∂u

∂n
−Q on Γf .

(2.7)

Notice that the only difference between the primal and adjoint boundary value problems
concerns the Dirichlet datum on Γf . The normal flux of the primal solution serves as the
Dirichlet datum for the adjoint problem.
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3 Boundary element discretisation

During the iterative shape optimisation the primal and the adjoint boundary value prob-
lems (2.1) and (2.7), respectively, have to be solved to compute the cost functional (2.3)
and the steepest descent direction (2.5). The actual domain boundaries are described with
multiresolution subdivision surfaces as will be introduced in Section 4. For all the computa-
tions we apply the boundary element method to avoid remeshing or smoothing of the volume
mesh in each step of the optimisation process.
We apply a direct boundary integral formulation, as we need the normal fluxes ∂p

∂n
and ∂u

∂n
for

the evaluation of the kernel function g in (2.6). For details on boundary integral equations,
the properties of the involved boundary integral operators and boundary element methods,
see, e.g., [4, 5, 6, 7, 8].
The solution of the original boundary value problem (2.1) is given by the representation
formula

u(x̃) =

∫
Γ

U∗(x̃,y)t(y) dsy −
∫
Γ

∂

∂ny

U∗(x̃,y)u(y) dsy for x̃ ∈ Ω (3.1)

where Γ = ∂Ω = Γf ∪ Γ0 is the boundary of the domain Ω and t := ∂u
∂n

denotes the normal
flux. The fundamental solution U∗(x,y) of the Laplacian in three dimensions reads

U∗(x,y) :=
1

4π

1

|x− y|
.

The limiting case Ω 3 x̃→ x ∈ Γ provides the boundary integral equation

u(x) = (V t)(x) +
1

2
u(x)− (Ku)(x) for almost all x ∈ Γ, (3.2)

where V : H−1/2(Γ )→ H1/2(Γ ) denotes the single layer boundary integral operator

(V t)(x) :=

∫
Γ

U∗(x,y)t(y) dsy for x ∈ Γ,

and K : H1/2(Γ )→ H1/2(Γ ) denotes the double layer boundary integral operator

(Ku)(x) :=

∫
Γ

∂

∂ny

U∗(x,y)u(y) dsy for x ∈ Γ.

To determine the unknown normal fluxes t := ∂u
∂n

and q := ∂p
∂n

for the boundary value
problems (2.1) and (2.7), respectively, we use the boundary integral equation (3.2) to obtain

(V t)(x) =
1

2
u(x) + (Ku)(x), (3.3a)

(V q)(x) =
1

2
p(x) + (Kp)(x) (3.3b)
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for almost all x ∈ Γ . For the original boundary value problem (2.1), the boundary integral
equation (3.3a) can be simplified to

(V t)(x) =

{
0 for x ∈ Γ0,

1 for x ∈ Γf

due to the kernel properties of the double layer boundary integral operator. As the bound-
ary integral operators are bounded and the single layer boundary integral operator V is
H−1/2(Γ )-elliptic, all boundary integral equations are uniquely solvable.
For the boundary element discretisation we use the Galerkin variational formulation based
on piecewise constant approximations

th :=
N∑
i=1

tiψi and qh :=
N∑
i=1

qiψi. (3.4)

The related constant basis functions

ψi(x) :=

{
1 for x ∈ τi,
0 elsewhere

are defined with respect to a decomposition of the surface Γ into N planar triangular shape
regular boundary elements τi. Thus, we have to solve the following two systems of linear
equations

Vht = Mhf , (3.5a)

Vhq = (
1

2
Mh + Kh)h (3.5b)

to determine the normal flux vectors t ∈ RN and q ∈ RN with the coefficients ti and qi. The
Galerkin matrices are given by

Vh[j, i] :=

∫
τj

∫
τi

U∗(x,y) dsy dsx, Kh[j, i] :=

∫
τj

∫
τi

∂

∂ny

U∗(x,y) dsy dsx,

Mh[j, i] :=

∫
τj

ψi(x) dsx

for i, j = 1, . . . , N . The coefficients of the two vectors f and h on the right hand side of (3.5)
are given by

fi :=

{
0 for τi ∈ Γ0,

1 for τi ∈ Γf ,
hi :=

{
0 for τi ∈ Γ0,

ti −Q for τi ∈ Γf .
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During shape optimisation we need the shape gradient at the mesh nodes xj, cf. Sections 4,
5. To this end, we approximate the kernel function g of the shape gradient (2.6) with

g̃j := −q̃j t̃j −
H(xj)

2

((
t̃j
)2 −Q2

)
(3.6)

in the nodes xj. We estimate the required additive curvature H with discrete differential
operators given in [29]. Instead with the discontinuous normal fluxes in (3.4) we compute
the shape gradients g̃j with the nodally weighted averages

t̃j :=

∑
i∈I(j) tiAi∑
i∈I(j)Ai

and q̃j :=

∑
i∈I(j) qiAi∑
i∈I(j)Ai

,

where the index set I(j) contains all the element indices connected to node j and Ai denotes
the surface area of the element τi. This can be interpreted as a quasi-interpolation, see, e.g.,
[30].
As the fundamental solution U∗(x,y) is non-local, the entries of the matrices Vh and Kh are
non-zero in general. As a result, both are fully populated. Therefore, acceleration techniques,
such as the fast multipole method [13], are crucial for the fast and efficient computation of
matrix operations. A description of our implementation of the boundary element method
using the fast multipole method and a detailed error analysis is given in [12].

4 Multiresolution subdivision surfaces

Next, we introduce the multiresolution subdivision surfaces for describing the geometry
of the computational domain. Subdivision is a powerful geometric modelling technique
for generating smooth surfaces on arbitrary connectivity meshes. The smooth surface is
recursively generated through repeated refinement of an initial coarse control mesh. In this
paper, we limit ourselves to the review of the elementary properties of subdivision surfaces. In
particular, we only consider subdivision schemes that lead to cubic b-splines in the univariate
setting and quartic box-splines in the bivariate setting with triangular elements. For more
details we refer to [23, 25, 20, 31].

4.1 Subdivision refinement

To begin with, we consider the univariate subdivision refinement of polygons, as illustrated
in Figure 2. The initial polygon is referred to as the control polygon and determines the
shape of the limit curve resulting from repeated subdivision. It is instructive to think that
each subdivision step consists of a refinement and an averaging step. In the refinement step
each segment of the polygon is subdivided into two segments, see Figure 3a. Subsequently,
the vertex coordinates of the refined polygon are determined by averaging the coarse vertex
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Figure 2: Subdivision refinement of a given control polygon (shown left). The three polygons
to the right are generated by repeated subdivision. Notice the increasing smoothness of the
subdivided polygons.

(a) Refinement by bisecting and vertex num-
bering.

(b) Stencils for even (top) and
odd (bottom) vertices.

Figure 3: Univariate subdivision refinement.

coordinates with the two stencils shown in Figure 3b. The even vertex stencil applies to
vertices that are already present in the coarse polygon and the odd vertex stencil applies to
vertices that are only present in the refined polygon. The naming odd and even is motivated
by the consecutive numbering of vertices in a polygon where newly inserted vertices receive
odd numbers. According to Figure 3b, for a given coarse polygon of level ` with vertex
coordinates x`i a refined polygon of level `+1 with vertex coordinates x`+1

i is computed with

x`+1
2i =

1

8
x`i−1 +

3

4
x`i +

1

8
x`i+1, (4.1a)

x`+1
2i+1 =

1

2
x`i +

1

2
x`i+1. (4.1b)

By definition we assign the coarse control mesh the level ` = 0. Without going into the
details, we note that the weights in (4.1) have been chosen such that the limit curve for
` → ∞ is a uniform cubic b-spline. The weights can be modified in order to change the
interpolation and/or smoothness properties of the curve. Being a cubic b-spline the limit
curve is C2-continuous which can also be reduced to C0-continuous by modifying the stencil
weights. For the sake of completeness we note that other choices of stencil weights may also
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lead to smooth curves [23].
It is convenient to express the subdivision equations (4.1) as a matrix vector multiplication

x`+1 = Sx`, (4.2)

where x`+1 and x` are the vectors of all vertex coordinates of the coarse and refined polygons,
respectively, and S is the subdivision matrix. The subdivision matrix S is a banded sparse
matrix and its entries are the stencil weights given in Figure 3b. The dimensions of S, for
instance, for the 2D example in Figure 2 are (4N × 2N), where N is the number of vertices
on level ` with each having two coordinates. Although the dimensions of S increase with
increasing ` we denote all subdivision matrices with S since the same subdivision stencils
are used in each step.
In the bivariate surface setting, we use the subdivision scheme introduced by Loop [22]. The
notion of control polygon is now replaced with control mesh to reflect the higher dimension.
The Loop scheme is based on triangular meshes and yields quartic box-splines for meshes
with regular vertices. In this context a vertex is regular when it is inside the domain and
incident to six edges, or is on the boundary of the domain and incident to four edges. The
number of incident edges to a vertex is usually referred to as the valence of that vertex. It
is known that the Loop scheme yields a C1-continuous surface on non-regular vertices and a
C2-continuous surface everywhere else.
In the refinement step of the Loop scheme, each triangle of the control mesh is subdivided
into four triangles by introducing new vertices at the edge midpoints, as seen in Figure 4a.
Subsequently, the vertex coordinates of the refined mesh are computed with the stencils
shown in Figure 4b. Similar to univariate subdivision there are two different types of stencils.
The even vertex stencil applies to vertices that already existed on the coarse mesh and the
odd vertex stencil applies to newly introduced vertices on the edges. Notice that the weights
in the stencil for even vertices depend on the valence v of the vertex.
In the present work, we use the extended Loop subdivision scheme introduced by Biermann
et al. [32]. In contrast to the original Loop scheme, the extended scheme allows the modelling
of non-smooth and non-manifold features, such as creases or T-sections, which are crucial
for many engineering applications. It is clear that the limit surface along creases is only
C0-continuous. Figure 5 shows a mechanical connector geometry containing sharp features
described with the extended subdivision surfaces. For implementation details we refer to [31].

4.2 Multiresolution subdivision surfaces

Subdivision surfaces represent a limit surface with a nested hierarchy of control meshes of
increasing resolution. As known in computer graphics, this property lends itself to efficient
multiresolution editing of surfaces [26, 27]. The basic idea in multiresolution editing is to
modify coarse mesh vertex coordinates to perform large-scale changes (to the limit surface)
and to modify fine mesh coordinates to add localised changes. By way of example, this is
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(a) Refinementby
quadrisection.

(b) Stencils for even and odd vertices.

Figure 4: Bivariate Loop subdivision refinement.

Figure 5: Subdivision refinement of a connector. On the coarse control mesh on the left the
edges shown in red are tagged as crease edges. The control mesh in the centre is generated
with extended Loop subdivision. The geometry on the right is a rendering of the limit
surface.

illustrated in Figure 6 for the connector geometry previously introduced in Figure 5. First
the control mesh coordinates x0 are modified with x0 + d0, where d0 can be thought as a
user given perturbation vector. In the considered example, d0 applies displacements only to
the vertices placed on one of the hole edges. Subsequent computation of the limit surface
(by repeated subdivision) leads to a geometry with rather large scale changes. Alternatively,
the edge of the hole can be displaced on level ` = 1, i.e., x1 +d1 = Sx0 +d1. This results in
more localised changes. It can be shown that the area of influence for each vertex extends
over two rings of adjacent triangles.
The multiresolution editing algorithms available in computer graphics allow us to alternately
edit coarse and fine resolutions, see, e.g., [26]. This is achieved by a wavelet-like decompo-
sition of the geometry into a low resolution part and a collection of wavelet coefficients
expressing perturbations from the low resolution part [26, 27]. To compute such a decom-
position it is necessary to define, in addition to the subdivision refinement, a coarsening
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Figure 6: Multiresolution editing of the connector geometry introduced in Figure 5. The
geometry is modified by moving the edge of one of the holes in the vertical direction. On the
first row the modification is performed on level ` = 0 and on the second row it is performed
on level ` = 1. Notice the effect of the modification level on the limit surface (last column).

operation
x` = Rx`+1. (4.3)

The coarsening matrix R enables the computation of the coarse representation x` corre-
sponding to a given edited fine representation x`+1. In contrast, recall that the subdivision
matrix S enables to compute for a given coarse representation the corresponding fine repre-
sentation, cf. (4.2). Different choices for the matrix R are possible. For instance, it can be
determined by the least squares fitting

x` = argmin
y`

‖x`+1 − Sy`‖2, (4.4)

which leads to
STSx` = STx`+1. (4.5)

By comparison with (4.3) we observe that the coarsening matrix has to be R = (STS)−1ST.
In Figure 7 the functioning of the coarsening matrix R is illustrated. We reconsider the
one-dimensional subdivision refinement example previously introduced in Figure 2 and in-
vestigate the coarsening of two limit curves. On the top row of Figure 7, the limit curve
previously obtained via subdivision refinement in Figure 2 is successively coarsened until
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Figure 7: Coarsening of the limit curve previously obtained with subdivision refinement,
see Figure 2. Top row shows the coarsening of the unperturbed limit surface. For a vertex
with index i the perturbation is of the form x̃i

∞ = xi
∞ + n(xi)a sin(f〈xi, e0〉), where n is

the normal to the curve, e0 is the basis vector (1, 0, 0)T, a is the amplitude, and f is the
frequency.

the original control polygon is recovered. On the bottom row the coarsening of a perturbed
limit polygon is shown. As can be seen, the coarsening operation successively removes the
high-frequency oscillations from the geometry. The resulting control polygon represents a
limit curve which is a visually faithful smooth representation of the perturbed original curve.
In multiresolution analysis of surfaces the refinement and coarsening matrices S and R, re-
spectively, are used to construct a wavelet-like decomposition of the geometry. The resulting
algorithms allow the concurrent editing of coarse and fine levels. As will be discussed in
Section 5, in multiresolution shape optimisation it is sufficient to start from a coarse con-
trol mesh and successively add details to a surface by editing increasingly finer subdivided
meshes. This can be achieved without a wavelet-like decomposition of the surface.

5 Multiresolution shape optimisation

We are now in a position to discuss the multiresolution optimisation of the electrostatic
problem introduced in Section 2 by combining subdivision surfaces with the shape gradients
computed with BEM. The basic idea in our approach is to use a fine mesh for computing
the shape gradients and to use a coarser mesh for geometry modification [20, 33]. The un-
derlying subdivision representation ensures that the same limit surface is always considered,
independently of the actual refinement level. Moreover, it is straightforward to transfer
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Figure 8: Multiresolution optimisation algorithm.

any geometry or field data between the different levels using the introduced subdivision
refinement and coarsening operations, see (4.2) and (4.3), respectively.
In the following we briefly summarise our multiresolution optimisation algorithm. This
description should be read in conjunction with Figure 8. For simplicity, we assume that
the discretised optimisation problem is solved using the steepest descent algorithm and no
constraints are present.

1. Initialise the optimisation level with `o = 0, the computational level with `c = n and
the discretised cost functional with J(Ω`c , u`c) = ∞. Here, n is user given and has
to be large enough such that the accuracy of the numerical solution is sufficient for
practical purposes.

2. Repeatedly subdivide the optimisation mesh at level `o until the computation level `c
is reached.

3. Solve the primal boundary element system (3.5a) and the adjoint boundary element
system (3.5b) using the computational mesh with `c = n.

4. Evaluate the cost functional J(Ω`c , u`c), i.e., the discrete counterpart to (2.3), and the
shape derivative kernel g̃`ci at each vertex xi according to (3.6).

5. If the cost functional J(Ω`c , u`c) is increasing in relation to the previous value, incre-
ment the optimisation level `o ← (`o + 1).

6. If the optimisation level has reached the computational level, i.e., `o = `c, terminate
the optimisation procedure.
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7. Repeatedly coarsen the computational mesh and the associated vertex shape derivative
kernel g̃ until the optimisation level `o together with g̃`o is reached.

8. Perturb the vertex coordinates of the optimisation mesh according to (2.5) with

x`oi ← (x`oi − αg̃
`o
i n(x`oi ))

where the index i denotes vertex id, the kernel values g̃`oi are computed with (3.6), and
α ≥ 0 is a suitably chosen step length parameter.

9. Go to step 2.

In our actual implementation we use the method of moving asymptotes (MMA) proposed
by Svanberg [34, 35] as implemented in the NLopt library [36]. This changes in particular
the Step 8 in the above algorithm. Using a more sophisticated optimisation algorithm than
steepest descent significantly reduces the number of optimisation iterations. For further
details, such as the consideration of constraints, we refer to [33].

6 Examples

We present three examples to demonstrate the functioning of the proposed BEM based
multiresolution shape optimisation approach. In all examples, the Dirichlet boundary value
problem for the Laplace equation (2.1) is considered. Recall that the domain boundary Γ is
split into the two disjoint parts Γ0 and Γf , with the prescribed potentials u = 0 on Γ0 and
u = 1 on Γf . During the optimisation only the shape of the boundary Γf is updated with
multiresolution shape optimisation described in Section 5. The boundary Γ0 and its mesh
resolution remains unchanged. As mentioned, the discretised optimisation problem is solved
with the MMA algorithm as implemented in the NLopt library [36]. The input to the NLopt
library consists of the cost functional J(Ω`c , u`c) and for each vertex on the optimisation
level `o its position x`oi and gradient g̃`oi n(x`oi ).

6.1 Box in a sphere

As an introductory example we optimise the shape of a box placed inside a sphere, see
Figure 9, with the expected normal flux density Q in (2.3) set to 20. It can be shown that
the optimal shape for the inner box is a sphere with half the diameter of the outer sphere [37].
The box, representing the to be optimised boundary Γf , is of size 0.16× 0.2× 0.24 and the
outer sphere, representing the fixed boundary Γ0, has radius 0.2. The coarse mesh for the
box contains 48 elements which increases to 768 elements in the twice subdivided fine mesh
at level `c = 2. During the subdivision refinement, the creases in the coarse mesh are
maintained as creases using the extended subdivision stencils mentioned in Section 4.1, see
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(a) Initial geometry at `o = 0 (b) Optimised geometry at `o = 0

(c) Optimised geometry at `o = 1 (d) Final optimised geometry at `o = 2

Figure 9: Box in a sphere. Initial and optimised geometries with isocontours of the normal
flux. The meshes indicate the optimisation level `o. The isocontours belong to the fine com-
putational mesh at level `c = 2. The geometries shown in (b) and (c) represent intermediate
results and (d) represents the final result.

also [32]. Note that on the limit surface the creases are only C0-continuous and not at least
C1-continuous. The resolution of the outer sphere remains fixed with 3840 elements. Hence,
the meshes for the boundary element analysis of the cube and sphere consist of 768 and 3840
elements, respectively.
Figure 9a shows the initial coarse geometry yielding a cost functional value of J(Ω`c , u`c) =
15.38. First we select this coarse geometry as optimisation level, i.e., `o = 0, and obtain the
optimised geometry shown in Figure 9b. After consecutively selecting `o = 1 and `o = 2
and optimising we obtain the final optimised geometry shown in Figure 9d. This final
shape of the initial box is nearly a sphere of diameter 0.215 and the cost functional value
is J(Ω`c , u`c) = 8.46 · 10−3, which represents a reduction of 99.95%. The maximum normal
flux in the initial geometry is Jmax(Ω

`c , u`c) = 81.49 and reduces to Jmax(Ω
`c , u`c) = 21.43

in the final geometry. As to be expected, the optimisation leads to a geometry with nearly
uniform distribution of normal flux as seen in Figure 9d. In Figure 10 a rendering of the
limit surface of the final optimised geometry is shown. Notice the high smoothness of the
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Figure 10: Box in a sphere. Rendering of the limit surface of the final optimised shape.

(a) `o ≡ `c ≡ 0 (b) `o ≡ `c ≡ 1 (c) `o ≡ `c ≡ 2

Figure 11: Box in a sphere. Optimisation without multiresolution using the same level for
shape control and computation, i.e., `o ≡ `c. The meshes indicate the level `o ≡ `c and the
isocontours indicate the normal flux.

optimised geometry.
In order to demonstrate the robustness and benefits of the proposed multiresolution op-
timisation approach we computed this example using the same level for optimisation and
computation, i.e., `o ≡ `c. Figure 11 shows the geometries obtained with `o ≡ `c ≡ 0,
`o ≡ `c ≡ 1 and `o ≡ `c ≡ 2. Notice in Figure 11 the stark differences in the three obtained
geometries and the non-physical geometry oscillations for the finer meshes. Moreover, the
result obtained with `o ≡ `c ≡ 0 is highly questionable because of the coarseness of the
computational mesh. The non-physical oscillations obtained in Figure 11b are reminiscent
of problems reported in the finite element context [17, 18].
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6.2 L-shaped domain

As a second example we consider the optimisation of an L-shaped domain placed inside
a larger L-shaped domain, see Figure 12. The geometry contains convex and non-convex
corners which usually represent challenges for geometry updating during optimisation. The
inner L-shaped boundary is the boundary Γf to be optimised and the outer L-shaped bound-
ary is the fixed boundary Γ0. The number of elements on Γf increases from initially 28
to 448 in the twice subdivided mesh at level `c = 2. The resolution of the boundary Γ0

remains fixed with 7168 elements. During the subdivision refinement of the inner L-shaped
boundary Γf the creases are not retained as visible in Figure 13a. As previously mentioned,
in order to maintain the creases it is necessary to use special subdivision stencils [32, 31].

Figure 12: L-shaped domain. Plan view of the initial geometry with the outer polygon
representing the boundary Γ0 and the inner polygon representing the boundary Γf to be
optimised. The out-of-plane length of each part is 0.1 and 0.2, respectively.

Figure 13a shows the initial geometry with the maximum normal flux Jmax(Ω
`c , u`c) = 62.04

and the cost functional J(Ω`c , u`c) = 1.32 (with the expected value Q set to 30). Notice the
relatively low value for Jmax(Ω

`c , u`c) resulting from the smoothness of the computational
geometry at level `c = 2. The ellipsoidal geometry resulting from the multiresolution shape
optimisation is shown in Figure 13d. As can be deduced from the isocontour plots on
the optimised boundary, the normal flux is nearly uniformly distributed. Moreover, during
optimisation Jmax(Ω

`c , u`c) reduces by 48.69% to the value of 31.83. The cost functional
J(Ω`c , u`c) reduces to 8.65 · 10−3 (99.35% reduction).
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(a) Initial geometry at `o = 0 (b) Optimised geometry at `o = 0

(c) Optimised geometry `o = 1 (d) Final optimised geometry at `o = 2

Figure 13: L-shaped domain. Initial and optimised geometries with isocontours of the nor-
mal flux. The meshes indicate the optimisation level `o and the isocontours belong to the
fine computational mesh at level `c = 2. The geometries shown in (b) and (c) represent
intermediate results and (c) represents the final result.

6.3 Gas insulated switchgear

In this example we apply the proposed shape optimisation approach to the design of an
electrode in a gas insulated switchgear component, see Figure 14. Such devices are widely
used as disconnectors in high-voltage power transmission. The objective of shape optimisa-
tion is to reduce the propensity of the component for electric breakdown with the ultimate
aim to enable more compact component geometries. This can be achieved by modifying the
electrode geometries such that the maximum normal flux Jmax(Ω

`c , u`c) is minimised. We
attempt to achieve this by minimising the cost functional J(Ω`c , u`c).
In Figure 14 the gas insulated switchgear component is shown with the electrode in the form
of a primitive cylinder. The cylinder represents the electrode geometry Γf to be optimised.
The initial coarse mesh of the cylinder contains 264 elements. The creases on the cylinder
are not tagged. Therefore, the geometry becomes smoother while it is refined by subdivision.
As a design constraint, the inner surface of the cylinder is required to have a constant radius
for a bolt passing through it. Geometric bounds on the positions of vertices lying on the
inner surface are applied to prevent any radial movement that would violate this design
requirement, see Figure 14b.
The once subdivision refined mesh with 1056 elements is chosen as the computational level,
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(a) The cylindrical electrode boundary Γf to be
optimised is shown in dark blue and the other
surfaces representing Γ0 are shown in light grey.

(b) Close-up of the cylindrical electrode. Ver-
tices on the inner surface of the cylinder shown
in dark blue are only allowed to move along the
axis of the cylinder.

Figure 14: Gas insulated switchgear. Initial geometry and geometric optimisation con-
straints.

(a) Overall component. (b) Close-up of the electrode.

Figure 15: Gas insulated switchgear. Isocontours of the normal flux for the initial cylindrical
electrode design.

i.e., `c = 1. As can be seen in Figure 15, the ends of the cylinder become smoother because
the usual (vs. extended) subdivision stencils are applied throughout the mesh. In this
example, we consider the geometry at level `o = 0 for optimisation. In the initial design,
Figure 15, the maximum normal flux is Jmax(Ω

`c , u`c) = 81.63 before optimisation and
reduces to Jmax(Ω

`c , u`c) = 66.99 in the optimised shape shown in Figure 16, corresponding
to a reduction of 17.94%. However, the reduction in the cost function J(Ω`c , u`c) is much
higher with 38.24%. In Figure 17 we also show the component with the electrode geometry as
currently manufactured by ABB. This electrode geometry has been obtained over the years
by combining engineering intuition with simple calculations and testing. The similarities
between the methodically shape optimised and the electrode geometry in production are
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(a) Overall component. (b) Close-up of the electrode.

Figure 16: Gas insulated switchgear. Isocontours of the normal flux for the optimised
electrode design.

(a) Manually optimised electrode. (b) Limit surface of the multiresolution opti-
mised electrode.

Figure 17: Gas insulated switchgear. Comparison of multiresolution shape optimised design
with manually optimised electrode created by ABB engineers.

striking. Notice in particular the saddle shape at the two ends of the original cylinder. It
helps to lower the large normal flux at the sharp crease at the boundary of the inner hole.
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7 Summary and conclusions

We have introduced a novel multiresolution shape optimisation approach for electrostatic
problems by combining fast boundary element methods with subdivision surfaces. For the
considered electrostatic problems only a surface mesh is required for the boundary element
discretisation. This is particularly appealing for three-dimensional problems because of the
difficulties in generating and updating volume meshes. It was critical for the successful
computation of the presented optimisation examples that there were no domain meshes.
For the description of the domain boundaries we used the subdivision surfaces. The inherent
hierarchy of the subdivision surfaces allows to consider the same surface at different resolu-
tions and to take advantage of multiresolution editing techniques. Starting from the coarsest
control mesh increasingly finer meshes are used for geometry updating and a fine control
mesh is used for the boundary element discretisation. As demonstrated with the computed
examples, this effectively inhibits the non-physical geometry oscillations that may occur in
shape optimisation. Moreover, any pathological element distortions on the computational
mesh are practically avoided. As a result, there is no need to regenerate or smooth the
surface mesh during the optimisation.
In the presented approach subdivision surfaces were used only for geometry parameterisation.
It is, however, possible to use subdivision surfaces, or the underlying b-spline basis functions,
for both analysis and geometry description. This has already been successfully demonstrated
in isogeometric analysis of solids and shells with the finite element method, see, e.g., [38, 25].
Recently, the isogeometric analysis of solids with the boundary element method has also
been explored [39]. In closing, we note that the introduced shape optimisation technique
is easily extendible to other boundary value problems with known fundamental solutions,
like elasticity, Stokes and Helmholtz. Moreover, due to the similarities between shape opti-
misation and inverse problems, see e.g. [40, 41], the present technique is also promising for
inverse boundary problems.
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