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Boundary element methods in linear elasticity:

Can we avoid the symmetric formulation?

Olaf Steinbach

Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, 8010 Graz, Austria

o.steinbach@tugraz.at

Abstract

In this paper we discuss the use of single and double integral equations for the nu-
merical solution of linear elasticity problems with boundary conditions of mixed type,
and the one–equation coupling of finite and boundary element methods. In particular
we present a sufficient and necessary condition which ensures stability of the coupled
approach for any choice of finite and boundary elements. These results justify the
coupling of collocation and Galerkin one–equation boundary element methods with
finite elements as used in many engineering and industrial applications.

1 Introduction

The symmetric formulation of boundary integral equations [24] and related Galerkin bound-
ary element methods are well established both from a mathematical and a practical point
of view, In particular when consider boundary value problems with boundary conditions
of mixed type [25], domain decomposition methods [8], and the coupling of finite and
boundary element methods [3]. But the symmetric formulation requires the use of the
hypersingular boundary integral operator, in particular the integration of hypersingular
surface integrals. Although one may use integration by parts [6, 12] to rewrite Cauchy
singular and hypersingular surface integrals as weakly singular ones, such an approach al-
ways requires the use of a Galerkin discretization. Even there are efficient implementations
by means of fast boundary element methods available, e.g. fast multipole methods [14],
adaptive cross approximation [20], etc., there is still not a big acceptance of symmetric
Galerkin boundary element methods in engineering and industrial applications.
Instead, standard boundary integral equations, either based on a direct or indirect ap-
proach, but only using single and double layer integral operators are still very popular
in engineering and industrial applications. In the case of mixed boundary conditions a
common approach is to reorder the degrees of freedom after discretization. The resulting
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linear system combines the discrete single and double layer integral operators, i.e. bound-
ary integral equations of first and second kind, so it is not obvious to design iterative
solution procedures. An alternative approach is to consider a mixed formulation where the
Neumann boundary condition is formulated as a constraint in addition to the boundary
integral equation which is related to a Dirichlet boundary. Finally such an approach results
in a Steklov–Poincaré operator equation of the first kind, where the numerical analysis is
well established, but this approach requires a proper choice of boundary elements for the
discretization, see, for example, [26].
The coupling of finite and boundary element methods is of particular interest when model-
ing nonlinear materials in a bounded region with a linear material in an exterior unbounded
domain, see, e.g., [2, 4, 31]. The one–equation or Johnson–Nédélec coupling goes back to
the late seventies [1, 11] but theoretical results on the stability of the coupled formulation,
even for the simpler case of a Laplace equation, required the consideration of a smooth
interface. Moreover, since the double layer integral operator of linear elasticity is not com-
pact, the theory which was developed for the Laplace equation, could not be extended.
Although numerical examples indicate stability, there was no rigorous proof available to
establish stability of the one–equation coupling of finite and boundary element methods.
In a recent paper [23] it was shown that the Johnson–Nédéc coupling is stable for any choice
of boundary and finite elements. Alternative proofs, including a sufficient condition on the
ratio of the involved material parameters of the scalar Laplace operators in the interior
and exterior domains, were given in [29]. In [16] this result was improved, i.e. it was shown
that the condition on the material parameters is also necessary. The aim of this paper is
to extend this approach to the case of linear elasticity, see also [5] for a related result. In
fact, we prove stability if the ratio of the involved Lamé parameters in the interior and
exterior domain is bounded below by the contraction constant of the double layer integral
operator. While in this paper we consider the case of a free space transmission problem,
this approach can be extended to boundary value problems in bounded domains, see [17]
for the scalar case.
This paper is organised as follows: In Sect. 2 we recall the formulation of boundary integral
equations for the solution of boundary value problems with boundary conditions of mixed
type. Mapping properties of the single and double layer integral operators are summarized
in Sect. 3, where we derive the definition of appropriate norms which are induced by the
single layer integral operator. Moreover we focus on the contraction property of the double
layer integral operator, and we discuss possible approaches to compute approximate values
of the contraction constant by solving related eigenvalue problems. The main result of this
paper is given in Sect. 4, where we derive a sufficent and necessary condition to ensure
stability of the coupled approach for any choice of finite and boundary elements. We end
this paper by some final remarks and conclusions.
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2 Boundary integral equations

We consider the equilibrium equations of linear elastostatics, by using the Einstein sum
convention,

σij,j(u) + fi = 0 in Ω ⊂ R
3 (2.1)

with the stress tensor σij given by Hooke’s law, i.e.

σij(u) =
Eν

(1 + ν)(1 − 2ν)
ekk(u) +

E

1 + ν
eij(u),

with E > 0 and ν ∈ (0, 1
2
), and with the linearized strain tensor

eij =
1

2
(ui,j + uj,i).

Later we will use the Lamé constants

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

By

R =

{(
1
0
0

)
,

(
0
1
0

)
,

(
0
0
1

)
,

(
−x2

x1

0

)
,

(
0

−x3

x2

)
,

(
x3

0
−x1

)}

we denote the space of rigid body motions satisfying

eij(v
k) = 0 for all vk ∈ R.

In addition to the partial differential equations (2.1) we consider boundary conditions of
mixed type, i.e. prescribed displacements (Dirichlet) or boundary stresses (Neumann),

ui = gDi on ΓD
i ,

ti := σij(u)nj = gNi on ΓN
i ,

where n is the exterior normal vector which is defined almost everywhere on Γ = ∂Ω. Note
that we assume

Γ = Γ
D

i ∪ Γ
N

i , ΓD
i ∩ ΓN

i = ∅, i = 1, 2, 3,

in particular we allow to consider different boundary conditions in different components.
Moreover, we may consider boundary conditions in tangential and normal direction as well,
and Signorini boundary conditions to describe contact problems with or without friction.
Any solution of the linear elasticity system (2.1) is given by the representation formula
(Somigliana identity)

ui(x) =

∫

Γ

U∗
ij(x, y)tj(y)dsy −

∫

Γ

T ∗
ij(x, y)uj(y)dsy

+

∫

Ω

U∗
ij(x, y)fj(y)dy for x ∈ Ω (2.2)
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where the fundamental solution of linear elasticity is given by the Kelvin tensor

U∗
ij(x, y) =

1

8π

1

E

1 + ν

1− ν
·

·
[
(3− 4ν)

δij

|x− y| +
(xi − yi)(xj − yj)

|x− y|3
]
,

and T ∗
ij(x, y) is the related stress fundamental solution.

To apply the representation formula (2.2) we need to determine the complete Cauchy
data [u, t]|Γ by solving appropriate boundary integral equations. For this we consider the
limiting process x → Γ in (2.2) to obtain the standard boundary integral equation of the
direct approach,

∫

Γ

U∗
ij(x, y)tj(y)dsy = cijuj(x) +

∫

Γ

T ∗
ij(x, y)uj(y)dsy

−
∫

Ω

U∗
ij(x, y)fj(y)dy for x ∈ Γ, (2.3)

where the integral free coefficients cij reflect the jump conditions of the double layer po-
tential in corners and along edges. Without loss of generality we only consider the case
cij =

1
2
δij . Hence we can write the boundary integral equation (2.3) as

V t = (
1

2
I +K)u−Nf on Γ (2.4)

where we used the standard notations for the single layer integral operator V , for the
double layer integral operator K, and for the Newton potential N . Depending on the
given boundary conditions we will use the boundary integral equation (2.4) to find the yet
unknown Cauchy data. Instead of the general case of boundary conditions of mixed type,
we first consider the particular cases of pure Dirichlet or Neumann boundary conditions.
In the case of Dirichlet boundary conditions u = gD on Γ, (2.4) results in the first kind
boundary integral equation to find the Neumann datum t satisfying

V t =
1

2
gD +KgD −Nf on Γ. (2.5)

In the case of a Neumann boundary value problem we need to assume the equilibrium
conditions ∫

Ω

f · vk dx+
∫

Γ

gN · vk|Γ dsx = 0 for all vk ∈ R,

where R is the space of all rigid body motions. To find the yet unknown Dirichlet datum
u|Γ we may consider the second kind boundary integral equation

(
1

2
I +K)u|Γ = V gN +Nf on Γ. (2.6)

4



Instead of (2.6) we may also consider a mixed formulation to find (u|Γ, t) satisfying

V t− (
1

2
I +K)u|Γ = −Nf, t = gN on Γ. (2.7)

Since the first equation in (2.7) can be identified with the boundary integral equation
(2.5) of the Dirichlet boundary value problem, we can solve this equation to obtain for the
Neumann datum

t = V −1(
1

2
I +K)u|Γ − V −1Nf on Γ.

The operator

S int := V −1(
1

2
I +K) (2.8)

is called the Steklov–Poincaré operator which realizes the Dirichlet to Neumann map which
is associated to a function u satisfying the homogeneous partial differential equations (2.1),
i.e. f = 0. Hence we can rewrite (2.7) as a first kind boundary integral equation to find
u|Γ such that

S intu|Γ = gN + V −1Nf on Γ. (2.9)

In the case of mixed boundary conditions instead of (2.7) we consider the mixed formulation
to find (u|Γ, t) such that

V t− (1
2
I +K)u|Γ = −Nf on Γ,

ti = gNi on ΓN
i ,

ui = gDi on ΓD
i .

(2.10)

In fact, when eliminating the boundary stresses t we end up with a Steklov–Poincaré
operator equation to find u|Γ such that

ui = gDi on ΓD
i , (Su|Γ)i = gNi + (V −1Nf)i onΓ

N
i . (2.11)

Note that the Steklov–Poincaré boundary integral equation (2.11) can be generalized to
the case when describing boundary conditions in normal or tangential directions.

3 Boundary integral operators

The analysis of the boundary integral formulations (2.5)–(2.11) is based on the mapping
properties of the involved boundary integral operators, see, e.g. [10, 13, 22, 28]. However, in
what follows we will summarize some properties of boundary integral operators as required
later on.
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3.1 Single layer integral operator

For an arbitrary chosen density function w we define the single layer potential

ui(x) =

∫

Γ

U∗
ij(x, y)wj(y)dsy for x ∈ R

3\Γ

which is a solution of the homogeneous linear elasticity system (2.1) for both the interior
domain Ω, and for the exterior domain Ωc := R

3\Ω. Betti’s first formula for the interior
problem gives ∫

Ω

σij(u)eij(v)dx =

∫

Γ

tividsx. (3.1)

In particular for v = u and by using the jump relations of the single layer potential we
further obtain ∫

Ω

σij(u)eij(u)dx =

∫

Γ

[(
1

2
I −K ′)w]⊤V w dsx, (3.2)

where K ′ is the adjoint double layer integral operator, which results from the application
of the boundary stress operator to the single layer potential. Accordingly we find for the
exterior Dirichlet boundary value problem, and by using the decay behavior of the single
layer potential in R

3,

∫

Ωc

σij(u)eij(u)dx =

∫

Γ

[(
1

2
I +K ′)w]⊤V w dsx. (3.3)

By taking the sum of (3.2) and (3.3) this gives

∫

R3\Γ

σij(u)eij(u)dx = 〈V w,w〉Γ. (3.4)

Hence, by using Korn’s inequality, this shows that the single layer integral operator V is
elliptic, and therefore invertible, see also [4, 9, 28]. Recall that the ellipticity constant of
the single layer integral operator degenerates for almost incompressible materials [27]. For
simplicity we therefore assume ν < 1

2
. In particular, we conclude the unique solvability

of the boundary integral equation (2.5) which is related to the Dirichlet boundary value
problem. Moreover, the Steklov–Poincaré operator S int as given in (2.8) and which is
related to the interior Dirichlet problem is well defined.
By taking the Dirichlet trace of the single layer potential we obtain u|Γ = V w, and since the
single layer integral operator V is invertible, w = V −1u|Γ follows. From (3.4) we therefore
obtain ∫

R3\Γ

σij(u)eij(u)dx = 〈V −1u, u〉Γ,

i.e.
‖u‖2V −1 := 〈V −1u, u〉Γ (3.5)

defines an equivalent norm in the space of given Dirichlet data, i.e. in H1/2(Γ).
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3.2 Double layer integral operator

As for the single layer potential, for an arbitrary chosen density function v we now consider
the double layer potential

ui(x) = −
∫

Γ

T ∗
ij(x, y)vj(y)dsy for x ∈ R

3\Γ

which is again a solution of the homogeneous linear elasticity system (2.1). In the case of a
Dirichlet problem, this indirect ansatz results in a second kind boundary integral equation
to be solved, i.e.

(
1

2
I −K)v = gD on Γ. (3.6)

The solution of (3.6) is given by the Neumann series

v =

∞∑

ℓ=0

(
1

2
I +K)ℓgD on Γ,

which is convergent when 1
2
I +K is a contraction. Recall that we have

(
1

2
I +K)vk = 0 for all vk ∈ R.

When using the norm as defined in (3.5) it is possible to prove the contraction estimate
[30]

‖(1
2
I +K)v‖V −1 ≤ cK ‖v‖V −1 for v ∈ H1/2(Γ) (3.7)

with

cK =
1

2
+

√
1

4
− c0 < 1, (3.8)

and

c0 = min
06=v∈H

1/2
R

(Γ)

〈Dv, v〉Γ
〈V −1v, v〉Γ

> 0. (3.9)

Note that D is the so–called hypersingular boundary integral operator of linear elasticity.
In addition, H

1/2
R (Γ) is the space of functions which are orthogonal to the rigid body

motions, in particular for v ∈ H
1/2
R we have

〈v, V −1vk|Γ〉Γ = 0 for all vk ∈ R.

Note that the orthogonality is considered with respect to an inner product which is induced
by the inverse single layer integral operator V −1.
For several applications, e.g., for the one–equation coupling of finite and boundary element
methods, an explicit knowledge of the constant cK as given in (3.8) may be useful. But
only for rather few cases it may be possible to find cK analytically. Instead, a numerical
approximation of related eigenvalue problems is required in general.
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By using (3.9) we can find c0 = λ2min from the minimal eigenvalue of the generalized
eigenvalue problem

Dv = λ2V −1v in H
1/2
R (Γ).

For v ∈ H
1/2
R (Γ) we introduce the transformation

w = λV −1v ∈ H
−1/2
R (Γ),

in particular we have

〈w, vk〉Γ = λ〈v, V −1vk〉Γ = 0 for all vk ∈ R.

Hence we finally have to consider the operator eigenvalue problem
(
D 0
0 V

)(
v

w

)
= λ

(
0 I

I 0

)(
v

w

)
(3.10)

for (v, w) ∈ H
1/2
R (Γ) × H

−1/2
R (Γ). Although the eigenvalue problem (3.10) can be used to

determine the minimal eigenvalue c0 = λ2min, and therefore cK , it requires the use of the
hypersingular boundary integral operator D, and a Galerkin discretization in the appro-
priate factor spaces H

1/2
R (Γ)×H

−1/2
R (Γ) is mandatory. Moreover, numerical algorithms to

compute minimal eigenvalues may not be optimal with respect to efficiency and stability,
e.g., the inverse power iteration requires the use of inverse matrices.
Hence we are interested in an approach to determine cK which does not use the hyper-
singular boundary integral operator D, and where only the computation of a maximal
eigenvalue is required. The contraction constant cK of the contraction estimate (3.7) can
be characterized by using a Rayleigh quotient, i.e.

c2K = max
v∈H1/2(Γ)

‖(1
2
I +K)v‖2V −1

‖v‖2V −1

= max
v∈H1/2(Γ)

〈(1
2
I +K ′)V −1(1

2
I +K)v, v〉Γ

〈V −1v, v〉Γ
,

and therefore cK = λmax is the maximal eigenvalue of the generalized operator eigenvalue
problem

(
1

2
I +K ′)V −1(

1

2
I +K)v = λ2V −1v in H1/2(Γ). (3.11)

Since all eigenvalues are non–negative, we may introduce the transformations

w = λV −1v, z = V −1(
1

2
I +K)v

which result in the generalized eigenvalue problem



V −(1
2
I +K) 0

(1
2
I +K ′) 0 0

0 0 V







z

v

w


 = λ




0 0 0

0 0 I

0 I 0







z

v

w




8



which does not require neither the use of the hypersingular boundary integral operator D,
nor the use of any factor space. Hence we can use standard boundary element approxi-
mations, and a simple power method to find an approximation of the maximal eigenvalue
λmax, and therefore of cK .
From the contraction estimate (3.7) we finally conclude the ellipticiy estimate

〈S intv, v〉Γ > (1− cK)‖v‖2V −1 for all v ∈ H
1/2
R (Γ)

which ensures unique solvability of the boundary integral equation (2.9) in the appropriate

factor space H
1/2
R , i.e. the solution of the Neumann boundary value problem is only unique

up to the rigid body motions.
Moreover, there also holds the ellipticity estimate, see [16], for v ∈ H

1/2
R (Γ)

1

cK
‖(1
2
I +K)v‖2V −1 ≤ 〈S intv, v〉Γ. (3.12)

4 Boundary element methods

In this section we discuss the numerical solution of boundary integral equations which are
related to different boundary value problems as discussed before, by using Galerkin and
collocation schemes. For a more general discussion on the numerical analysis of boundary
element methods and on the design of fast methods, see, for example, [20, 22, 28].

4.1 Boundary element spaces

For N ∈ N we consider a sequence of admissible boundary element meshes Γh = ∪N
ℓ=1τℓ.

In the most simple case, we assume that Γ is polyhedral and that each boundary element
mesh Γh consists of N plane shape regular triangular boundary elements τℓ with mid points
x∗ℓ , with the area ∆ℓ =

∫
τℓ
dsx, and with the local mesh size hℓ =

√
∆ℓ. With respect to

Γh we introduce, just for simplicity, lowest order boundary element spaces

S0
h(Γ) = span{ψℓ}Nℓ=1, S1

h(Γ) = span{ϕi}Mi=1

of piecewise constant basis functions ψℓ, and piecewise linear continuous nodal basis func-
tions ϕi. M is the number of boundary element nodes, and we assume, that the boundary
element meshes resolve the change in the boundary conditions when considering a mixed
boundary value problem.

4.2 Dirichlet boundary value problem

In the case of a Dirichlet boundary value problem we consider the boundary integral
equation (2.5). Let gDh ∈ [S1

h(Γ)]
3 be some approximation of the given Dirichlet datum,

which is obtained either by a simple interpolation, or by using a L2 projection. The
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Galerkin variational formulation of the boundary integral equation (2.5) is to find th ∈
[S0

h(Γ)]
3 such that

〈V th, τh〉Γ = 〈(1
2
I +K)gDh , τh〉Γ for all τh ∈ [S0

h(Γ)]
3,

which is equivalent to a linear system of algebraic equations,

Vht = (
1

2
Mh +Kh)g − fN . (4.1)

Note that Vh and Kh are the Galerkin matrices of the single and double layer integral
operators V and K, respectively, and Mh is the mass matrix

Mh =




M
M

M


 , M[j, k] =

∫

Γ

ψk(x)ϕj(x)dsx,

and k = 1, . . . , N , j = 1, . . . ,M . For the evaluation of all Galerkin integrals, see, for
example, [14, 19, 20, 21]. Finally, fN is the contribution due to possible volume forces, for
an efficient evaluation, see, e.g., [18]. When we approximate one integral in the computation
of the Galerkin matrices by a simple mid point rule, i.e. for some boundary integral operator
A which is discretized by using piecewise constant test functions we compute

A[ℓ, k] =

∫

Γ

ψℓ(x)(Aψk)(x)dsx ≈ ∆ℓ(Aψk)(x
∗
ℓ),

which corresponds to a weighted collocation scheme. Although there is still no proof for
stability available, the resulting matrices are simple approximations of the related Galerkin
matrices, and numerical examples indicate the applicability of such an approach. From a
mathematical point of view, however, Galerkin methods are well established also from a
theoretical point. In what follows we will not distinguish between Galerkin and collocation
discretizations but we need to assume stability for the latter one.

4.3 Neumann boundary value problem

In the case of a Neumann boundary value problem we consider the mixed formulation
(2.7) where the discretization of the first equation corresponds to the linear system (4.1)
but now with unknown Dirichlet data, and where the weak formulation of the Neumann
boundary condition reads

∫

γ

tk,h(x)ϕj(x)dsx =

∫

Γ

gNi (x)ϕk(x)dsx, k = 1, . . . ,M.

Hence we end up with the linear system

(
Vh −1

2
Mh −Kh

M⊤
h

)(
t

u

)
=

(
−fN

gN

)
. (4.2)
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Since the discrete single layer integral operator Vh is invertible, instead of (4.2) we may
consider the Schur complement system

M⊤
h V

−1
h (

1

2
Mh +Kh)u = gN +M⊤

h V
−1
h fN (4.3)

which is nothing than a boundary element approximation of the Steklov–Poincaré operator
equation (2.9). Note that

SBEM
h :=M⊤

h V
−1
h (

1

2
Mh +Kh) (4.4)

is an in general non–symmetric discrete approximation of the self–adjoint operator S, and
this approximation is in general not stable. In particular when using piecewise constant
and piecewise linear continuous basis functions to approximate the boundary stresses and
displacements, respectively, oscillations may appear. In fact, a stable approximation of
the Steklov–Poincaré operator S as defined in (2.8) requires an appropriate choice of the
boundary element spaces to be used. The most common approach is to define boundary
element spaces S0

h(Γ) and S
1
H(Γ) with respect to boundary element meshes of different mesh

size, in particular we need to assume h < cMH where cM is in general unknown, see, e.g.,
[26, 31]. From a practical point of view, cM = 1

2
seems to be sufficient for most applications.

In fact, the boundary element mesh as used to approximate the boundary displacements
by using piecewise linear basis functions is refined once again to define piecewise constant
basis functions to approximate the boundary stresses. An alternative approach is to use
piecewise linear but discontinuous basis functions for the approximation of the boundary
stresses [26] on the same mesh as for the boundary displacements. In both cases, however,
the number of degrees of freedom increases compared to a naive approximation by using
piecewise constant and piecewise linear basis functions on the same mesh.
Since the Neumann boundary value problem is only unique up to the rigid body motions
one may introduce an additional stabilization of the discrete Steklov–Poincaré operator
SBEM
h , see, e.g., [15], in the case of a hypersingular boundary integral equation in the

Laplace case.

4.4 Mixed boundary value problem

In the case of a mixed boundary value problem we consider der Steklov–Poincaré operator
equation (2.11) and we follow the discretization approach as for a Neumann boundary
value problem. The structure of the linear systems (4.2) and (4.3) remains the same,
with different right hand sides, and a smaller dimension of the unknown vector u. Note
that for a mixed boundary value problem no stabilization of the discrete Steklov–Poincaré
operator is required as for the Neumann problem. However, to ensure stability of the
discrete Steklov–Poincaré operator SBEM

h again an appropriate choice of boundary element
spaces is mandatory, as discussed before.
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5 Non–symmetric BEM/FEM coupling

As a model problem we consider a free space transmission problem to find displacement
fields uint and uext satisfying the equilibrium equations

σint
ij,j(u

int) + fi = 0 in Ω ⊂ R
3 (5.1)

and
σext
ij,j(u

ext) = 0 in Ωc := R
3\Ω (5.2)

together with the transmission conditions on Γ

uint = uext, t := σij(u
int)nj = σij(u

ext)nj , (5.3)

where n is the exterior normal vector whith respect to Ω which is defined almost everywhere
on Γ = ∂Ω. In addition we assume the radiation condition

|u(x)| = O
( 1

|x|
)

as |x| → ∞. (5.4)

For both the interior and exterior linear elasticity system we will consider Hooke’s law
for the interior stress tensor σint

ij and for the exterior σext
ij , but with different material

parameters (Eint, ν int) in Ω, and (Eext, νext) in Ωc, respectively.
The variational formulation of the interior problem (5.1), when inserting the Neumann
transmission condition, is to find u ∈ [H1(Ω)]3 such that

∫

Ω

σint
ij (u

int)eij(v)dx−
∫

Γ

tividsx =

∫

Ω

fividx (5.5)

is satisfied for all v ∈ [H1(Ω)]3. On the other hand, the boundary integral equation
which is related to the exterior Dirichlet boundary value problem is, by using the Dirichlet
transmission condition,

V t = (−1

2
I +K)uint on Γ. (5.6)

Since the single layer integral operator V is invertible, we can solve the boundary integral
equation (5.6) to obtain

text = −V −1(
1

2
I −K)uint =: −Sextuint on Γ, (5.7)

where

Sext = V −1(
1

2
I −K)

is the Steklov–Poincaré operator which is related to the exterior Dirichlet boundary value
problem.
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When inserting the exterior Dirichlet to Neumann map (5.7) into the variational formula-
tion (5.5) we obtain, by setting u = uint,

∫

Ω

σint
ij (u)eij(v)dx+

∫

Γ

(Sextu|Γ)ividsx =

∫

Ω

fividx (5.8)

where the related bilinear form

a(u, v) =

∫

Ω

σint
ij (u)eij(v)dx+

∫

Γ

(Sextu|Γ)ividsx

is elliptic. This ensures unique solvability of the variational formulation (5.8), as well as
stability and quasi–optimality of associated Galerkin discretizations. However, the exterior
Steklov–Poincaré operator Sext involves the inversion of the single layer integral operator
V , and therefore a stable boundary element approximation has to be used. At a first
glance, and as for the interior Neumann boundary value problem, this approach restricts
the choice of finite and boundary element spaces to be used, see, e.g., [26, 31].
Instead of the reduced variational formulation (5.8) we now consider a coupled variational
formulation which combines the interior variational problem (5.5) and the exterior bound-
ary integral equation (5.6). For this we define the bilinear form

a(u, t; v, τ) =

∫

Ω

σint
ij (u)eij(v)dx− 〈t, v〉Γ

+〈V t, τ〉Γ + 〈(1
2
I −K)u, τ〉Γ

and we consider the variational problem to find (u, t) ∈ [H1(Ω)]3 × [H−1/2(Γ)]3 such that

a(u, t; v, τ) =

∫

Ω

fividx (5.9)

is satisfied for all (v, τ) ∈ [H1(Ω)]3 × [H−1/2(Γ)]3. Unique solvability of the variational
formulation (5.9) as well as stability and quasi–optimality of related Galerkin solutions
follow when ellipticity of the bilinear form a(·, ·) can be ensured.
Since the finite element part of the bilinear form a(·, ·) only defines a semi–norm, we first
introduce an alternative representation.
Chosing v = vk ∈ R and τ = 0 as test functions in the variational formulation(5.9) we first
obtain

−
∫

Γ

tiv
k
i dsx =

∫

Ω

fiv
k
i dx, k = 1, . . . , 6.

On the other hand, by chosing τ = tk = V −1vk and v = 0 gives

〈t, vk〉Γ = 〈t, V tk〉Γ = 〈V t, tk〉Γ
= 〈(−1

2
I +K)u, tk〉Γ

= 〈(1
2
I +K)u, tk〉Γ − 〈u, tk〉Γ = −〈u, tk〉Γ
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due to

〈(1
2
I +K)u, tk〉Γ = 〈(1

2
I +K)u, V −1vk〉Γ

= 〈u, V −1(
1

2
I +K)vk〉Γ = 0.

Note that we have used the symmetry KV = V K ′ and (1
2
I + K)vk = 0 for all vk ∈ R.

Hence we conclude
〈u, tk〉Γ = 〈f, vk〉Ω for all vk ∈ R.

For any u ∈ [H1(Ω)]3 we can therefore write

u = ũ+

6∑

k=1

αkv
k, 〈ũ, tk〉Γ = 0 for k = 1, . . . , 6

where the coefficients αk are determined by the solution of the linear system

6∑

k=1

αk〈vk, V −1vℓ〉Γ = 〈f, vℓ〉Ω for ℓ = 1, . . . , 6.

Hence, instead of (5.5) and (5.6) we consider a modified variational formulation to find
(ũ, t) ∈ [H1(Ω)]3 × [H−1/2(Γ)]3 such that

∫

Ω

σext
ij (ũ)eij(v)dx+

6∑

k=1

〈ũ, tk〉Γ〈v, tk〉Γ − 〈t, v〉γ = 〈f, v〉Γ

and

〈V t, τ〉Γ + 〈(1
2
I −K)ũ, τ〉Γ = −

6∑

k=1

αk〈vk, τ〉Γ

are satisfied for all (v, τ) ∈ [H1(Ω)]3 × [H−1/2(Γ)]3. The related bilinear form is given by

ã(u, t; v, τ) =

∫

Ω

σint
ij (u)eij(v)dx+

6∑

k=1

〈u, tk〉Γ〈v, tk〉Γ

−〈t, v〉Γ + 〈V t, τ〉Γ + 〈(1
2
I −K)u, τ〉Γ.

To ensure ellipticity of the bilinear form ã(·; ·) we consider for (v, τ) ∈ [H1(Ω)]3×[H−1/2(Γ)]3

ã(v, τ ; v, τ) =

∫

Ω

σint
ij (v)eij(v)dx+

6∑

k=1

[〈v, tk〉Γ]2

+〈V τ, τ〉Γ − 〈(1
2
I +K)v, τ〉Γ.
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We can write the finite element part of the bilinear form ã(·; ·) as
∫

Ω

σint
ij (v)eij(v)dx

= 2µint

∫

Ω

eij(v)eij(v)dx+ λint
∫

Ω

[div v]2dx

≥ η

[
2µext

∫

Ω

eij(v)eij(v)dx+ λext
∫

Ω

[div v]2dx

]

= η

∫

Ω

σext
ij (v)eij(v)dx

with

η := min

{
µint

µext
,
λint

λext

}
.

For v ∈ [H1(Ω)]3 let vΓ ∈ [H1(Ω)]3 the unique weak solution of the Dirichlet boundary
value problem

σext
ij,j(vΓ) = 0 in Ω, vΓ = v|Γ on Γ,

and we set v̂ := v − vΓ ∈ [H1
0 (Ω)]

3. Then there holds the orthogonality

∫

Ω

σext
ij (vΓ)eij(v̂)dx = 0.

Hence we conclude

ã(v, τ ; v, τ) ≥ η

∫

Ω

σext
ij (v̂)eij(v̂)dx+

6∑

k=1

[〈v, tk〉Γ]2

+η

∫

Ω

σext
ij (vΓ)eij(vΓ)dx+ 〈V τ, τ〉Γ − 〈(1

2
I +K)v, τ〉Γ

and it remains to consider the second line. Since vΓ is a solution of the homogeneous
equilibrium equations, by using Betti’s first formula we have

∫

Ω

σext
ij (vΓ)eij(vΓ)dx =

∫

Γ

S int/extvΓ · vΓdsx

where S int/ext is the Steklov–Poincaré operator which is related to an interior Dirichlet
boundary value problem, but with the material parameters as defined in the exterior do-
main. On the other hand, doe to (3.12)

〈(1
2
I +K)v, τ〉Γ ≤ ‖(1

2
I +K)v‖V −1‖τ‖V

≤
√
cK〈S int/extv, v〉Γ‖τ‖V .
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Hence we conclude, for all γ > 0,

η

∫

Ω

σext
ij (vΓ)eij(vΓ)dx+ 〈V τ, τ〉Γ − 〈(1

2
I +K)v, τ〉Γ

≥ η〈S int/extv, v〉Γ + ‖τ‖2V −
√
cK〈S int/extv, v〉Γ‖τ‖V

=

(
η − 1

2
cK

1

γ2

)
〈S int/extv, v〉Γ +

(
1− 1

2
γ2
)
‖τ‖2V

+
1

2

(
1

γ

√
cK〈S int/extv, v〉Γ − γ‖τ‖V

)2

≥
(
η − 1

2
γ2∗

)(
〈S int/extv, v〉Γ + ‖τ‖2V

)

if

η − 1

2
cK

1

γ2∗
= 1− 1

2
γ2∗ > 0

is satisfied. From this condition we first find

γ2∗ = 1− η +
√

[η − 1]2 + cK

and therefore we obtain that

1− 1

2
γ2∗ =

1

2

[
1 + η −

√
[η − 1]2 + cK

]
> 0

is satisfied for

η >
1

4
cK .

In particular we finally conclude the ellipticity estimate

ã(v, τ ; v, τ) ≥ η

∫

Ω

σext
ij (v̂)eij(v̂)dx+

6∑

k=1

[〈v, tk〉Γ]2

+

(
η − 1

2
γ2∗

)(
〈S int/extv, v〉Γ + ‖τ‖2V

)

≥ cA1

{∫

Ω

σext
ij (v)eij(v)dx+

6∑

k=1

[〈v, V −1v〉Γ]2 + ‖τ‖2V

}

with the ellipticity constant

cA1 =
1

2

[
1 + η −

√
[η − 1]2 + cK

]
> 0

if we assume

min

{
µint

µext
,
λint

λext

}
>

1

4
cK . (5.10)
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Condition (5.10) is sufficient to ensure ellipticity of the modified bilinear form ã(·; ·). As
a consequence we conclude stability for any conformal discretization, i.e. for any choice of
standard finite and boundary elements. It turns out, see [16] in the case of the Laplace
equation, that (5.10) is also necessary, i.e. for

µext = ηµint, λext = ηλint

with

η ≤ 1

4
cK

there exist (v, τ) ∈ H1(Ω)×H−1/2(Γ) such that

ã(v, τ ; v, τ) = 0.

In this case, the bilinear form ã(·; ·) fails to be elliptic, and hence we can not ensure stability
of the coupled finite and boundary elements by using the above arguments. However, in
this case we may use the Steklov–Poincaré operator formulation (5.8) which is elliptic
for any combination of material parameters. But a stable discretization then requires an
appropriate choice of finite and boundary elements.

6 Conclusions

While the use of the Steklov–Poincaré operator equation for the solution of mixed boundary
value problems requires an appropriate choice of boundary elements to approximate the
boundary displacements and boundary stresses, the one–equation coupling of finite and
boundary element methods turns out to be stable for any choice of finite and boundary
elements, when a certain condition on the ratio of the material parameters in interior
and exterior domain is satisfied. Although in this paper we have not presented an explicite
proof, this condition turns out to be also necessery, see [16], where also numerical examples
are given for illustration. While in this paper we have considered the model problem of
a free space transmission problem, this approach can be extended to analyse the coupling
of finite and boundary element methods to tackle boundary value problems in bounded
domains [17]. In this case we have to analyse eigenvalue problems which relate the energy
with respect to a bounded domain with the energy of an associated exterior domain.
As for the computation of the contraction constant, the corresponding eigenvalue can be
computed by using boundary element methods too. Other possible extensions include the
consideration of more complicated materials, e.g. poroelasticity, elastoplasticity, etc., and
the design and analysis of appropriate precondition iterative solution strategies for the
resulting linear systems.
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