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Abstract

In this paper boundary integral formulations for a time-harmonic acoustic scat-
tering-resonance problem are analyzed. The eigenvalues of eigenvalue problems re-
sulting from boundary integral formulations for scattering-resonance problems split
in general into two parts. One part consists of scattering-resonances and the other
one corresponds to eigenvalues of some Laplacian eigenvalue problem for the interior
of the scatterer. The proposed combined boundary integral formulations enable a
better separation of the unwanted spectrum from the scattering-resonances which al-
lows in practical computations a reliable and simple identification of the scattering-
resonances in particular for non-convex domains. The convergence of conforming
Galerkin boundary element approximations for the combined boundary integral for-
mulations of the resonance problem is shown in canonical trace spaces. Numerical
experiments confirm the theoretical results.

1 Introduction

We consider a time-harmonic acoustic scattering-resonance problem with Neumann bound-
ary conditions in the exterior Ω+ := R3 \Ω− of a bounded Lipschitz domain Ω− ⊂ R3. For
the exterior domain Ω+ we assume that it is simply connected. The resonance problem is
formulated in terms of the Helmholtz equation in the following way: Find resonances k ∈ C

and corresponding resonance functions u ∈ H1
loc(Ω

+) \ {0} such that

−∆u − k2u = 0 in Ω+, (1a)

∂

∂n
u = 0 on Γ := ∂Ω−, (1b)

u satisfies a radiation condition. (1c)
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As radiation condition in (1c) we impose that u has outside of any ball Br0 := {x : |x| < r0}
which contains Ω− an expansion in terms of the spherical Hankel functions of the first
kind h

(1)
n of the form

u(x) =

∞∑

n=0

n∑

m=−n

an,mh
(1)
n (kr)Y m

n

(
x

|x|

)
for r = |x| > r0, (2)

where Y m
n are the spherical harmonics, see [18]. This radiation condition describes out-

going time-harmonic functions of the form P (x, t) = Re
(
e−ikctu(x)

)
, where c is the speed

of sound in Ω+. For real and positive k the radiation condition (2) coincides with the
classical Sommerfeld radiation condition [12, Remark 2.1]. Equivalent characterizations of
the radiation condition via surface potentials [20, Chapt. VIII] and via a representation
formula for the solution of (1a) [16, 21] will be given in the appendix of this paper. It is
well known that the resonances of (1) have a negative imaginary part [17, Chapt. 9] which
describes the damping of the resonance function P (x, t) in time.

In this paper we analyze different boundary integral formulations for the resonance
problem (1) where our focus is on appropriate formulations for Galerkin boundary element
approximations and on some practical aspects of the computation of resonances. Bound-
ary integral formulations of the resonance problem (1) yield nonlinear eigenvalue problems
with respect to the eigenvalue k due to the nonlinear dependence of k in the fundamental
solution of the Helmholtz equation. The considered boundary integral formulations in this
paper are eigenvalue problem formulations for holomorphic Fredholm operator-valued func-
tions where the standard convergence results for a Galerkin approximation can be applied
[10, 11, 25, 28]. The eigenvalues of the eigenvalue problems resulting from boundary inte-
gral formulations for resonance problems split in general into two parts. One part coincides
with the resonances and the other part corresponds to the eigenvalues of some eigenvalue
problem for −∆ for the interior domain of the scatterer. We use so-called combined bound-
ary integral equations as suggested in [4, 5, 8, 24, 31] for boundary value problems also for
resonance problems since they separate the unwanted spectrum from the resonances such
that in practical computations both spectra can be easily identified. This is, in particular,
an advantage for domains with open cavities where resonances are very close to the real
axis. Moreover, a clear separation of the unwanted spectrum from the resonances is useful
when the contour integral method [2, 3] is applied to the discretized eigenvalue problem,
since then the unwanted spectrum is even not computed. The contour integral method is a
reliable method for finding all eigenvalues and corresponding eigenvectors which lie inside
of a given contour in the complex plane by reducing the nonlinear eigenvalue problem to an
equivalent linear one which has the same eigenvalues as the nonlinear eigenvalue problem
inside the contour.

Combined boundary integral equations for scattering-resonance problems are also an-
alyzed in [27, Sect. 9.7]. However, the analysis there is restricted to domains with C2-
boundaries. Moreover, the approximation of resonance pairs and their practical compu-
tations were not considered there. A numerical analysis of standard boundary integral
formulations for scattering-resonance problems has been presented in [19, 25]. Boundary
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element methods are also used for several other kinds of eigenvalue problems for partial
differential operators. For some recent works we refer to [1, 13, 30, 33].

Alternative numerical approaches for scattering-resonance problems are the perfectly
matched layer (PML) method [12] and the Hardy space infinite element method [9]. Both
approaches are based on the finite element method. They differ in the truncation of the
infinite domain and the incorporation of the radiation condition for the resonance function.
In both approaches spurious resonances occur and a main computational challenge is to fit
the parameter of the discretization such that the spurious resonances can be distinguished
by the actual ones.

The rest of the paper is organized as follows: In Section 2 a survey on standard bound-
ary integral formulations for the resonance problem (1) is given. In addition, a brief intro-
duction into the concept of eigenvalue problems for holomorphic Fredholm operator-value
functions is provided which is the basis of the spectral analysis of the eigenvalue prob-
lems resulting from boundary integral formulations of the resonance problem. In Section 3
combined boundary integral formulations for the resonance problem are analyzed. The
convergence of a conforming Galerkin approximation of the proposed boundary integral
formulations is addressed in Section 4. Numerical experiments are presented in Section 5
which show that the combined boundary integral equations separates the resonances and
the unwanted spectrum in such a way that resonances can be easily identified. In the
appendix different equivalent formulations of the radiation condition (2) for solutions of
the Helmholtz equation are analyzed.

2 Boundary integral characterizations of resonance

pairs

In this section we first introduce the notations and basic properties of boundary integral
operators for the Helmholtz equation. Our main references are the textbooks [17, 23]. For
s ≥ 0 we define

Hs
loc(Ω

+) := {u ∈ D∗(Ω+) : u|Ω+
ρ
∈ Hs(Ω+

ρ ) for each finite ρ > 0 such that Ω− ⊆ Bρ},

where D∗(Ω+) is the space of distributions, Bρ is the ball with radius ρ and center 0, and
Ω+

ρ := Bρ ∩Ω+. By γ−0 and γ+0 we denote the standard one-sided Dirichlet trace operators

γ−0 : H1(Ω−) → H1/2(Γ), γ+0 : H1
loc(Ω

+) → H1/2(Γ),

which are the extensions of the pointwise traces of smooth functions. The one-sided Neu-
mann trace operators γ−1 and γ+1 are defined for smooth functions u± ∈ C∞(Ω±) by

γ±1 u
±(x) = ∇u±(x) · n(x), x ∈ Γ,

where n is the unit normal vector pointing from Ω− into Ω+. γ−1 and γ+1 have unique
extensions to

γ−1 : H1(∆,Ω) → H−1/2(Γ), γ+1 : H1
loc(∆,Ω) → H−1/2(Γ),
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where H1(∆,Ω) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)} and H1
loc(∆,Ω) := {u ∈ H1

loc(Ω) : ∆u ∈
L2
loc(Ω)}, see [17, Lemma 4.3]. We consider H−1/2(Γ) as realization of the dual space to

H1/2(Γ) with L2(Γ) as pivot space. The corresponding duality pairing is denoted by 〈·, ·〉Γ.
For a given wavenumber k ∈ C the single layer and double layer potential corresponding

to the Helmholtz equation are defined by

(SL(k)ψ)(x) :=

∫

Γ

Φk(x, y)ψ(y)dsy, x ∈ R
3 \ Γ,

(DL(k)ϕ)(x) :=

∫

Γ

∂n,yΦk(x, y)ϕ(y)dsy, x ∈ R
3 \ Γ,

where

Φk(x, y) =
eik|x−y|

4π|x− y|

is the fundamental solution. The potentials give rise to continuous mappings [17, Thm.
6.12]:

SL(k) : H−1/2(Γ) → H1(∆,Ω−)×H1
loc(∆,Ω

+),

DL(k) : H1/2(Γ) → H1(∆,Ω−)×H1
loc(∆,Ω

+).

Moreover, SL(k)ψ for ψ ∈ H−1/2(Γ) and DL(k)ϕ for ϕ ∈ H1/2(Γ) provide solutions of the
Helmholtz equation with wavenumber k ∈ C in Ω− as well as in Ω+ and fulfill for k 6= 0
the radiation condition (2), see Appendix, Thm. 6.4. The potentials satisfy the following
jump relations [17, Thm. 6.11]:

γ+0 SL(k)ψ − γ−0 SL(k)ψ = 0, γ+1 SL(k)ψ − γ−1 SL(k)ψ = −ψ, (3)

γ+0 DL(k)ϕ− γ−0 DL(k)ϕ = ϕ, γ+1 DL(k)ϕ− γ−1 DL(k)ϕ = 0. (4)

We will consider the four standard boundary integral operators defined by

1
2
[γ+0 SL(k) + γ−0 SL(k)] =:V (k) : H−1/2(Γ) → H1/2(Γ),

1
2
[γ+1 SL(k) + γ−1 SL(k)] =:K ′(k) : H−1/2(Γ) → H−1/2(Γ),

1
2
[γ+0 DL(k) + γ−0 DL(k)] =:K(k) : H1/2(Γ) → H1/2(Γ),

1
2
[γ+1 DL(k) + γ−1 DL(k)] =: −D(k) : H1/2(Γ) → H−1/2(Γ),

where V (k) is the single layer operator, K(k) the double layer operator, K ′(k) the adjoint
double layer operator, and D(k) the hypersingular operator. These operators are contin-
uous mappings of the above indicated function spaces [17, Thm. 6.11]. The following
expressions for the Dirichlet and Neumann trace of the single layer and the double layer
potential follow from the definitions of the boundary integral operators and from the jump
relations (3) and (4):

γ±0 SL(k)ψ = V (k)ψ, γ±1 SL(k)ψ =
[
∓1

2
I +K ′(k)

]
ψ, (5)

γ±0 DL(k)ϕ =
[
±1

2
I +K(k)

]
ϕ, γ±1 DL(k)ϕ = −D(k)ϕ. (6)
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It is well known [17, Thm. 6.10] that any solution u ∈ H1(Ω−) of the Helmholtz
equation in Ω− with wavenumber k ∈ C can be represented by

u = SL(k)γ−0 u− DL(k)γ−1 u in Ω−.

By application of the interior Dirichlet and Neumann trace we get the following Calderón
identity: (

γ−0 u
γ−1 u

)
=

(
1
2
I −K(k) V (k)
D(k) 1

2
I +K ′(k)

)(
γ−0 u
γ−1 u

)
. (7)

If u ∈ H1
loc(Ω

+) is a solution of the Helmholtz equation in the exterior domain Ω+ with
wavenumber k and if it fulfills the radiation condition (2), then we have

u = −SL(k)γ+1 u+DL(k)γ+0 u in Ω+, (8)

see Appendix, Cor. 6.5. From this we get the system of boundary integral equations
(
γ+0 u
γ+1 u

)
=

(
1
2
I +K(k) −V (k)
−D(k) 1

2
I −K ′(k)

)(
γ+0 u
γ+1 u

)
. (9)

2.1 Boundary integral characterizations of resonance pairs based

on the representation formula

A resonance function u ∈ H1
loc(Ω

+) corresponding to a resonance k ∈ C of the resonance
problem (1) can be represented by the representation formula (8) in the following way:

u = DL(k)γ+0 u in Ω+.

The application of the exterior Dirichlet and Neumann trace, respectively, gives by (6) the
boundary integral equations

[
1
2
I +K(k)

]
ϕ = ϕ, (10)

D(k)ϕ = 0, (11)

where ϕ = γ+0 u. The following theorem shows that equations (10) and (11) provide for
wavenumbers k with Im(k) < 0 equivalent characterizations of the resonances of the reso-
nance problem (1).

Theorem 2.1. Let k ∈ C with Im(k) < 0 and let ϕ ∈ H1/2(Γ) \ {0}. Then the following
assertions are equivalent:

i) k is a resonance and u = (DL(k)ϕ)|Ω+ is a corresponding resonance function of the
resonance problem (1) with ϕ = γ+0 u.

ii)
[
1
2
I −K(k)

]
ϕ = 0.

iii) D(k)ϕ = 0.
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If one of the above assertions is satisfied, then we have

DL(k)ϕ = 0 in Ω− and γ+0 DL(k)ϕ = ϕ. (12)

Proof. If (k, (DL(k)ϕ)|Ω+) is a Neumann resonance pair, then the assertions ii) and iii)
follow immediately from (10) and (11), respectively.

Suppose now that
[
1
2
I −K(k)

]
ϕ = 0. Let us define v := DL(k)ϕ on Ω− ∪ Ω+. Then

we get γ+0 v =
[
1
2
I +K(k)

]
ϕ = ϕ by (6). The jump relation (4), γ+0 v − γ−0 v = ϕ, yields

γ−0 v = 0. This implies that v = 0 in Ω− because otherwise k2 would be a non-real eigenvalue
of −∆ with Dirichlet boundary conditions for the domain Ω−. From this we obtain from
the jump relation (4) of the double layer potential that 0 = γ−1 v = γ+1 v. Further, v 6= 0 in
Ω+, since otherwise we would have 0 = γ+0 v = ϕ. Hence, (k, (DL(k)ϕ)|Ω+) is a Neumann
resonance pair.

Let now D(k)ϕ = 0. We show that assertion i) holds. First, obviously γ+1 DL(k)ϕ = 0.
It remains to show that DL(k)ϕ 6= 0 in Ω+. Let us define w := DL(k)ϕ in Ω− ∪Ω+. From
the jump relation (4) of the double layer potential we get γ+1 w = γ−1 w = 0 which implies
as above that w = 0 in Ω−. With (4) we obtain γ+0 w = ϕ 6= 0. Hence, w 6= 0 in Ω+.

Suppose now that (k, (DL(k)ϕ)|Ω+) is a Neumann resonance pair. We show by contra-
diction that the first assertion in (12) holds. Let us therefore assume that DL(k)ϕ 6= 0
in Ω−. Then (k2,DL(k)ϕ)|Ω−) is an eigenpair of the eigenvalue problem for −∆ with
Neumann boundary conditions for the domain Ω− because γ−1 DL(k)ϕ = γ+1 DL(k)ϕ = 0.
Hence k ∈ R, which gives the contradiction. The second assertion in (12) follows now from
γ−0 DL(k)ϕ = 0 and the jump relation (4) of the double layer potential.

In the case that k is real, the boundary integral equations (10) and (11) have also
nontrivial solutions ϕ ∈ H1/2(Γ) which are traces of some eigenfunctions of −∆ for the
domain Ω−:

Proposition 2.2. Let k ∈ C with Im(k) ≥ 0 and let ϕ ∈ H1/2(Γ) \ {0}. Then we have:

a) If
[
1
2
I −K(k)

]
ϕ = 0, then k ∈ R and k2 is an eigenvalue of −∆ with Dirichlet boundary

conditions for the domain Ω− and (DL(k)ϕ)|Ω− is a corresponding eigenfunction.

b) If D(k)ϕ = 0, then k ∈ R and k2 is an eigenvalue of −∆ with Neumann boundary con-
ditions for the domain Ω− and (DL(k)ϕ)|Ω− is a corresponding eigenfunction. Further
we have DL(k)ϕ = 0 in Ω+.

Proof. a) Let us define v = DL(k)ϕ in Ω− ∪Ω+. Then from γ−0 v =
[
1
2
I −K(k)

]
ϕ = 0 and

by the jump relation (4) of the double layer potential we get γ+0 v = ϕ.
Suppose for a contradiction that Im(k) > 0. From γ−0 v = 0 it follows that v = 0 in

Ω− since the eigenvalue problem for −∆ with Dirichlet boundary conditions in bounded
domains has only positive eigenvalues. From 0 = γ−1 v = γ+1 v we get v = 0 in Ω+ because the
boundary value problem of the Helmholtz equation in Ω+ has a unique outgoing solution
for wavenumbers with non-negative imaginary part [17, Thm. 9.10]. Hence, 0 = γ+0 v = ϕ,
which is a contradiction.
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If k is real, then we conclude from γ+0 v 6= 0 that v 6= 0 in Ω+. Because of the unique
solvability of the Helmholtz equation in Ω+, we obtain γ+1 v 6= 0. By the jump property (4)
of the double layer potential we have γ−1 v = γ+1 v and therefore v 6= 0 in Ω−. Hence
(k2, v|Ω−) is an eigenpair of −∆ with Dirichlet boundary conditions for the domain Ω−.

b) Let us define u = DL(k)ϕ in Ω− ∪ Ω+. Then we have γ+1 u = γ−1 u = D(k)ϕ = 0 by
(4). From γ+1 u = 0 it follows that u = 0 in Ω+ since the Neumann boundary value problem
for the Helmholtz equation has a unique outgoing solution in Ω+ for wavenumbers with
non-negative imaginary part. By the jump relation (4) of the double layer potential we
have −γ+0 u = ϕ and hence u 6= 0 in Ω−. This implies that (k2, u) is an eigenpair of −∆
with Neumann boundary conditions for the domain Ω−.

2.2 Boundary integral characterizations of resonance pairs based

on the single layer potential ansatz

In this subsection we consider the representation of a resonance function of the resonance
problem (1) in terms of the single layer potential

u = SL(k)ψ in Ω+, (13)

where ψ ∈ H−1/2(Γ)\{0} is a density function. Note that the representation of a resonance
function in terms of the double layer potential coincides with the representation formula
which we have discussed in the last section. Applying the exterior Neumann trace to
the single layer potential representation of u in (13) yields by (5) the following boundary
integral equations for the density function ψ:

[
1
2
I −K ′(k)

]
ψ = 0.

In the following proposition we characterize the values k ∈ C for which the operator
1
2
I −K ′(k) : H−1/2(Γ) → H−1/2(Γ) is not injective.

Proposition 2.3. Let k ∈ C and ψ ∈ H1/2(Γ) \ {0}. Suppose that

[
1
2
I −K ′(k)

]
ψ = 0.

a) If k ∈ R, then k2 is an eigenvalue of −∆ with Dirichlet boundary conditions for the
domain Ω− and (SL(k)ψ)|Ω− is a corresponding eigenfunction.

b) If k /∈ R, then k is a resonance of the resonance problem (1) and (SL(k)ψ)|Ω+ defines a
corresponding resonance function in Ω+.

Proof. Suppose that
[
1
2
I −K ′(k)

]
ψ = 0. Define v = SL(k)ψ in Ω− ∪ Ω+. Then γ+1 v = 0

and by the jump relation (3) of the single layer potential we have γ−1 v = ψ.
a) If k is real, then it follows that v = 0 in Ω+ and we conclude by the jump relation (3)

of the single layer potential that γ−0 v = 0. Because of γ−1 v = ψ 6= 0, we have v 6= 0 in Ω−.
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Hence, (k2, v) is an eigenpair of −∆ with Dirichlet boundary conditions for the domain
Ω−.

b) Suppose that k is non-real. Then we have v 6= 0 in Ω+ because otherwise it would
follow as in a) that k2 is a non-positive eigenvalue of −∆ in the domain Ω−. Thus,
(k, (SL(k)ψ)|Ω+) is a resonance pair of (1).

2.3 Notation and properties of eigenvalue problems for holomor-

phic Fredholm operator-valued functions

In this subsection we introduce notions and properties of eigenvalue problems for holo-
morphic Fredholm operator-valued functions where we follow [14, Appendix]. Let X, Y be
Hilbert spaces and let Λ ⊂ C be open and connected. We assume that A : Λ → L(X, Y )
is a holomorphic operator-valued function and that A(λ) : X → Y is Fredholm with index
zero for all λ ∈ Λ. The set

ρ(A) := {λ ∈ Λ : ∃A(λ)−1 ∈ L(Y,X)}

is called the resolvent set of A. In the following we will assume that the resolvent set of A
is not empty. The complement of the resolvent set ρ(A) in Λ is called spectrum σ(A). A
number λ0 ∈ Λ is an eigenvalue of A if there exists a non-trivial x0 ∈ X \ {0} such that

A(λ0)x0 = 0.

x0 is called an eigenelement of A corresponding to the eigenvalue λ0. The spectrum σ(A)
has no cluster points in Λ [7, Corollary IV.8.4] and each λ ∈ σ(A) is an eigenvalue of A
which follows from the Fredholm alternative. The dimension of the nullspace kerA(λ0)
of an eigenvalue λ0 is called the geometric multiplicity. An ordered collection of elements
x0, x1, . . . , xm−1 in X is called a Jordan chain of λ0 if x0 is an eigenelement corresponding
to λ0 and if

n∑

j=0

1

j!
A(j)(λ0)xn−j = 0 for all n = 0, 1, . . . , m− 1 (14)

is satisfied, where A(j) denotes the jth derivative. The length of any Jordan chain of
an eigenvalue is finite [14, Lemma A.8.3]. The maximal length of a Jordan chain of the
eigenvalue λ0 is denoted by κ(A, λ0). Elements of any Jordan chain of an eigenvalue
λ0 are called generalized eigenelements of λ0. The closed linear hull of all generalized
eigenelements of an eigenvalue λ0 is called generalized eigenspace of λ0 and is denoted by
G(A, λ0). The dimension of the generalized eigenspace G(A, λ0) is finite [14, Prop. A.8.4]
and it is referred to as algebraic multiplicity of λ0.

Finally we cite a perturbation result [10, Thm. 5] which we need for the analysis of the
combined boundary integral formulations of the resonance problem (1).

Theorem 2.4. Let Λ ⊂ C be open and connected with a simple rectifiable boundary. Let
A : Λ → L(X, Y ) be holomorphic on Λ and continuous on Λ, and let ∂Λ ⊂ ρ(A). Then
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there exists a δ > 0 such that for each function B : Λ → L(X, Y ) which is holomorphic on
Λ and continuous on Λ, and which satisfies

max
λ∈∂Λ

‖B(λ)− A(λ)‖L(X,Y ) < δ,

it follows that the sum of the algebraic multiplicities of the eigenvalues of A and B in Λ
coincides.

3 Combined boundary integral formulations of the

resonance problem

In the previous section we have seen that the resonances of the resonance problem (1)
coincide with the non-real wavenumbers k for which the boundary integral operators D(k),
1
2
I − K(k) and 1

2
I − K ′(k) are not injective. Hence, the resonances of (1) are the non-

real eigenvalues of the operator-valued functions D, 1
2
I − K(·) and 1

2
I −K ′(·). The real

eigenvalues of these operator-valued functions correspond to eigenvalues of some eigenvalue
problems of −∆ for the domain Ω−. For non-convex domains, in particular for domains
with cavities, the resonances can lie very close to the real axis. When using a boundary
element method for an approximation of these eigenvalue problems a distinction between
the resonances and the real eigenvalues is hard since the approximated real eigenvalues
have a small imaginary part.

In this section we analyze combined boundary integral formulations of the resonance
problem (1). The spectra of the resulting eigenvalue problems exhibit besides the reso-
nances also an additional spectrum but this lies, as we will see, in the upper complex half
plane.

3.1 Combined direct boundary integral formulations

As a combined direct boundary integral formulation for the resonance problem (1) we use a
formulation which was introduced in [31] for the solution of the exterior Neumann boundary
value problem of the Helmholtz equation for positive wavenumbers k. The formulation
there is based on the Calderon’s formula (9) of the traces of a solution u of the Helmholtz
equation (

D(k) −1
2
I +K ′(k)

1
2
I −K(k) V (k)

)(
γ+0 u
γ+1 u

)
=

(
−γ+1 u
0

)
. (15)

For real wavenumbers k the block operator in (15) is injective up to eigenvalues of V [31,
Lemma 5.28]. Therefore in [31] on both sides of the second equation in (15) the term
iµV (0)γ+1 u, µ ∈ R \ {0}, is added which yields

Aµ(k)

(
γ+0 u
γ+1 u

)
:=

(
D(k) −1

2
I +K ′(k)

1
2
I −K(k) V (k) + iµV (0)

)(
γ+0 u
γ+1 u

)
=

(
−γ+1 u

iµV (0)γ+1 u

)
. (16)
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The operator Aµ(k) : H1/2(Γ) × H−1/2(Γ) → H−1/2(Γ) × H1/2(Γ) is injective for real
wavenumbers k and satisfies a G̊arding’s inequality [31]. Obviously, if k is a resonance
of the resonance problem (1) and if u ∈ H1

loc(Ω
+) is a corresponding resonance function,

then Aµ(k)

(
γ+0 u
γ+1 u

)
=

(
0
0

)
. The following theorem addresses the question of injectivity of

Aµ(k) for wavenumbers in the right complex half-plane.

Theorem 3.1. Let µ < 0, k ∈ C with Re(k) ≥ 0, and let (ϕ, t) ∈ H1/2(Γ)×H−1/2(Γ) with
(ϕ, t) 6= (0, 0). Suppose that (k, (ϕ, t)) satisfies

Aµ(k)

(
ϕ
t

)
=

(
0
0

)
.

Define
u := DL(k)ϕ− SL(k)t in Ω− ∪ Ω+. (17)

Then we have:

a) γ+1 u = 0, γ−1 u = −t and γ−0 u+ iµV (0)γ−1 u = 0.

b) If Im(k) ≤ 0, then t = 0 and (k, u|Ω+) is an eigenpair of the resonance problem (1) with
ϕ = γ+0 u. Moreover we have u|Ω− = 0.

c) If Im(k) > 0, then u|Ω+ = 0 and u|Ω− is a non-trivial solution of the boundary value
problem

−∆u − k2u = 0 in Ω−, γ−0 u+ iµV (0)γ−1 u = 0 on Γ, (18)

where (γ−0 u, γ
−
1 u) = (−ϕ,−t).

Proof. a) From the first equation of

Aµ(k)

(
ϕ
t

)
=

(
D(k) −1

2
I +K ′(k)

1
2
I −K(k) V (k) + iµV (0)

)(
ϕ
t

)
=

(
0
0

)
(19)

it follows that γ+1 u = 0 by (5) and (6). The application of the interior Neumann trace to
u gives using again the first equation of (19):

γ−1 u = −D(k)ϕ−
[
1
2
I +K ′(k)

]
t = −D(k)ϕ+

[
1
2
I −K ′(k)

]
t− t = −t. (20)

The jump relations (3) and (4) imply γ+0 u − γ−0 u = ϕ. Using γ+0 u =
[
1
2
I +K(k)

]
ϕ −

V (k)t and the second equation of (19), we get γ−0 u = iµV (0)t. Finally, we obtain γ−0 u =
−iµV (0)γ−1 u by (20).

b) Let Im(k) ≤ 0. Green’s first formula gives with the assertions in a)

∫

Ω

(|∇u|2 − k2|u|2)dx = 〈γ−1 u, γ
−
0 u〉Γ = 〈−t, iµV (0)t〉Γ = iµ〈t, V (0)t〉Γ.
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Taking the imaginary part yields

−2Re(k) Im(k)‖u‖2L2(Ω−) = µ〈t, V (0)t〉Γ.

The left hand side is not negative and the right hand side is not positive since µ < 0
and V (0) is H−1/2(Γ)-elliptic. Therefore we get t = 0 on Γ. From assertion a) it follows
that u = 0 in Ω−. This implies u = DL(k)ϕ and D(k)ϕ = 0. If Im(k) < 0, then, by
Theorem 2.1, k is a resonance of the resonance problem (1) and ϕ = γ+0 u.

By contradiction we show now that k is not real. If k is real, then as already shown,
we have t = 0 and γ−0 u = iµV (0)t = 0. From D(k)ϕ = 0 it follows by Proposition 2.2 b)
that ϕ = γ−0 u, thus ϕ = 0. But by assumption we have (ϕ, t) 6= (0, 0).

c) Let Im(k) > 0, then k is not a resonance and therefore we get from γ+1 u = 0 that
u|Ω+ = 0 and γ+0 u = 0. In the proof of assertion a) we have shown that ϕ = γ+0 u − γ−0 u,
hence ϕ = −γ−0 u. From t = −γ−1 u it follows with (ϕ, t) 6= (0, 0) that u|Ω− 6= 0.

Lemma 3.2. Let µ ∈ R. Then Aµ(k) is coercive for all k ∈ C, i. e., there exist a compact
operator C(k) : H1/2(Γ)×H−1/2(Γ) → H−1/2(Γ)×H1/2(Γ) and a constant α > 0 such that

Re

〈
(Aµ(k)− C(k))

(
ϕ
t

)
,

(
ϕ
t

)〉
≥ α

(
‖ϕ‖2H1/2(Γ) + ‖t‖2H−1/2(Γ)

)

for all (ϕ, t) ∈ H1/2(Γ)×H−1/2(Γ).

Proof. We split

Aµ(k) =

(
D̃(0) −1

2
I +K ′(0)

1
2
I −K(0) V (0) + iµV (0)

)
+ C(k),

where

C(k) =

(
D(k)− D̃(0) K ′(k)−K ′(0)
−K(k) +K(0) V (k)− V (0),

)
,

and where D̃(0) is the modified hypersingular operator of the Laplace equation [23, p. 176].
The operator C(k) is compact since each component is compact, see [8, Lemma 3.2]. Since

D̃(0) is H1/2(Γ)-elliptic [23, p. 176] and V (0) is H−1/2(Γ)-elliptic [17, Cor. 8.13] there
exists a constant α > 0 such that

Re

〈
(Aµ(k)− C(k))

(
ϕ
t

)
,

(
ϕ
t

)〉

= 〈D̃(0)ϕ, ϕ〉Γ − Re〈[1
2
I −K ′(0)]t, ϕ〉Γ + Re〈[1

2
I −K(0)]ϕ, t〉Γ + 〈V (0)t, t〉Γ

≥ α
(
‖ϕ‖2H1/2(Γ) + ‖t‖2H−1/2(Γ)

)
,

where we have used that 〈K ′(0)t, ϕ〉Γ = 〈ϕ,K ′(0)t〉Γ = 〈K(0)ϕ, t〉Γ.
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From the coercivity of Aµ(k) it follows that Aµ(k) is a Fredholm operator of index 0
[17, Thm. 2.34]. Since the dependence of k is holomorphic in Aµ(k), see e. g. [13, Thm.
2.3] , we can apply the results of theory of eigenvalue problems for holomorphic Fredholm
operator-valued functions of Section 2.3 to Aµ for its spectral analysis.

Theorem 3.1 and the discussion at the beginning of this subsection show that for µ < 0
the eigenvalues of Aµ in the lower complex half plane coincide with the resonances of the
resonance problem (1). The existence of eigenvalues of Aµ in the upper right complex
half plane was not addressed so far. Theorem 3.1 only states that if eigenvalues in the
upper right complex half plane exit, then they are eigenvalues of the eigenvalue problem
for −∆ in Ω− with the Robin-type boundary conditions (18). A possible approach to the
question of the existence of such eigenvalues is to utilize the perturbation result of Thm. 2.4
and interpret the eigenvalues of Aµ as perturbed eigenvalues of A0. The following lemma
shows that the eigenvalues of A0 are either resonances of (1) or corresponds to Dirichlet
eigenvalues of −∆ in Ω−.

Lemma 3.3. Let k ∈ σ(A0). Then Im(k) ≤ 0 and we have:

a) If Im(k) < 0, then k is a resonance of the resonance problem (1).

b) If k ∈ R, then k2 is an eigenvalue of −∆ with Dirichlet boundary condition for the
domain Ω−.

Proof. Let (k, (ϕ, t)⊤) be an eigenpair of A0 and define u as in Thm. 3.1 by

u := DL(k)ϕ− SL(k)t in Ω− ∪ Ω+.

Then we may conclude as in the proof of part a) of Thm. 3.1 that

γ+1 u = 0, γ−1 u = −t, γ−0 u = 0.

First we show that u 6= 0 in Ω+ if Im(k) 6= 0. From this it follows that Im(k) ≤ 0 and
assertion a). Suppose for a contradiction that u = 0 in Ω+. From

γ+0 u = (1
2
I +K(k))ϕ− V (k)t and (1

2
I −K(k))ϕ+ V (k)t = 0

we get ϕ = γ+0 u = 0. Because u = 0 in Ω+, it follows ϕ = 0. Since k is assumed not to
be real, γ−0 u = 0 implies that u = 0 in Ω− because otherwise k2 would be a non-positive
Dirichlet eigenvalue of −∆ for the domain Ω−. From γ−1 u = −t we get t = 0, which is a
contradiction to (ϕ, t) 6= (0, 0).

Let now k ∈ R. Since γ−0 u = 0 it only remains to show that u 6= 0 in Ω−. Because k is
real and u is an outgoing solution of the Helmholtz equation with γ+1 u = 0 we know that
u = 0 in Ω+ [17, Chapt. 9]. This implies γ+0 u = 0. With ϕ = γ+0 u−γ

−
0 u we get ϕ = −γ−0 u.

From t = −γ−1 u it follows with (ϕ, t) 6= (0, 0) that u 6= 0 in Ω−.

The above lemma and the perturbation result of Thm. 2.4 show that the eigenvalues
of Aµ in the upper left quadrant of the complex plane are the perturbed real eigenvalues
of A0 which correspond to the Dirichlet eigenvalues of −∆ in Ω−.
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3.2 Combined indirect formulations

In this subsection we consider the classical indirect combined field integral equation ap-
proach [4] as basis for a boundary integral formulation of the resonance problem (1). The
following ansatz for the representation of a resonance function u is used,

u = DL(k)ψ + iηSL(k)ψ in Ω+, η > 0, (21)

where ψ ∈ H1/2(Γ) is the density function which has to be determined. For an analysis of
this approach for scattering problems we refer to [8]. The boundary integral equation for
the resonance problem (1) derived from (21) is given by

γ+1 u = [−D(k) + iη(K ′(k)− 1
2
I)]ψ = 0.

In [8, Lem. 4.2] it is shown that the underlying operator

Bη(k) := −D(k) + iη(K ′(k)− 1
2
I) : H1/2(Γ) → H−1/2(Γ) (22)

is coercive for η ∈ R. Hence, Bη(k) is a Fredholm operator of index 0. In addition, the
dependence of k is holomorphic in Bη(k).

Theorem 3.4. Let k ∈ C with Re(k) ≥ 0, ψ ∈ H1/2(Γ) \ {0}, and η > 0. Suppose that

Bη(k)ψ = 0. (23)

Define
u := [DL(k) + iηSL(k)]ψ. (24)

Then we have:

a) k 6∈ R.

b) If Im(k) > 0, then u is a solution of

−∆u− k2u = 0 in Ω, γ−1 u+ iηγ−0 u = 0 on Γ. (25)

c) If Im(k) < 0, then k is a resonance of the resonance problem (1) and u|Ω+ is a corre-
sponding resonance function.

Proof. Let (k, ψ), ψ ∈ H1/2(Γ) \ {0}, be a solution of (23). Then u as given in (24) is a
solution of the Helmholtz equation in Ω− and Ω+ with γ+1 u = 0.

We first consider the case that k is not a resonance of the resonance problem (1). Then
u = 0 in Ω+ and hence γ+0 u = 0. From the jump relations (4) and (3) we obtain

γ−0 u = γ−0 u− γ+0 u = γ−0 DL(k)ψ − γ+0 DL(k)ψ = −ψ,

γ−1 u = γ−1 u− γ+1 u = iη
(
γ−1 SL(k)ψ − γ+1 SL(k)ψ

)
= iηψ,
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thus γ−1 u+ iηγ−0 u = 0. This shows that b) holds. Still assuming that k is not a Neumann
resonance, we consider now the case that Im(k) ≤ 0. By Green’s first formula we have

∫

Ω

(|∇u|2 − k2|u|2)dx = 〈γ−1 u, γ
−
0 u〉 = 〈iηψ,−ψ〉 = −iη‖ψ‖2L2(Γ).

Taking the imaginary part yields

2Re(k) Im(k)‖u‖2L2(Ω) = η‖ψ‖2L2(Γ).

The left hand side is not positive and the right hand side is positive. This implies that if
Im(k) ≤ 0, then k is a resonance of the resonance problem (1). This shows in particular
that k cannot be real.

Corollary 3.5. Let η > 0, and let k ∈ C with Re(k) ≥ 0 and Im(k) ≤ 0. Then k is a
resonance of the resonance problem (1) if and only if there exists a ψ ∈ H1/2(Γ) such that
[D(k)− iη(K ′(k)− 1

2
I)]ψ = 0.

Proof. It only remains to show that if k is a resonance of the resonance problem (1) that
then there exists a ψ ∈ H1/2(Γ) \ {0} such that Bη(k)ψ = 0. If this would not to be
the case, then from the Fredholm alternative it would follow that the Neumann boundary
value problem of the Helmholtz equation in Ω+ would be solvable for any given Neumann
data.

The eigenvalues of Bη in the upper right quadrant of the complex plane can be inter-
preted by the perturbation result of Thm. 2.4 as the perturbed real eigenvalues of B0 = −D
which coincide with the square roots of the Neumann eigenvalues of −∆ for the domain Ω−.

4 Galerkin approximation

The operator-valued functions Aµ and Bη of the combined boundary integral formulations
for the resonance problem (1) are holomorphic coercive operator-valued functions. For
such kind of eigenvalue problems convergence of the Galerkin approximation in conform-
ing ansatz spaces is guaranteed, see [10, 29, 28, 25] for general results and [25] for the
convergence for a conforming boundary element method for the Dirichlet resonance prob-
lem. The error of the approximations of an eigenvalue and of an eigenfunction depends on
the regularity of the eigenfunction, on the approximation quality of the ansatz space and on
the maximal length of the Jordan chain of the eigenvalue. For comprehensive convergence
results for eigenvalue problems for holomorphic coercive operator-valued functions we refer
to [10, 11, 25].

5 Numerical examples

In the following numerical examples we use conforming Galerkin approximations of the
eigenvalue problems for Aµ and Bη to compute approximations of resonances of the reso-
nance problem (1). In particular, we study the separation of the resonances from the rest
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of the spectrum for different parameters µ and η. For the computations the open-source
boundary element library BEM++ [22] is used.

The Galerkin approximations of the eigenvalue problems for the operator-valued func-
tions Aµ and Bη result in holomorphic matrix eigenvalue problems. For the numerical
solution of these eigenvalue problems we use the contour integral method as given in [3].
For other variants of the contour integral method we refer to [2, 32]. We also want to
mention [15] where a first variant of the contour integral method has been introduced and
which is not known in the literature on eigenvalue problems.

In the following we describe the basic ideas and the main steps of the used algorithm for
the numerical solution of the discretized eigenvalue problems. Let T : C → Cn×n denote
the matrix-valued function resulting from a Galerkin approximation of the operator-valued
functions Aµ or Bη. The contour integral method is suitable for the approximation of all
eigenvalues of the matrix-valued function T (and all related eigenvectors) which lie inside of
a given contour C in the complex plane. In order to keep the presentation simple we assume
that the eigenvalues of T inside of C are simple and that the corresponding eigenvectors
are linearly independent. The general case can be treated similarly with almost the same
computational cost, see [3, Sect. 3.2] for the case of multiple eigenvalues and [3, Sect. 5]
for linearly dependent eigenvectors. Let λ1, . . . , λk be the pairwise distinct eigenvalues of
T inside of C and let v1, . . . , vk be the corresponding eigenvectors. The basic principle of
the contour integral method is that

V :=
(
v1 · · · vk

)
and Λ := diag(λ1, . . . , λk)

can be represented by the following integrals of the resolvent of T over the contour C,

1

2πi

∫

C

T (z)−1dz = VWH and
1

2πi

∫

C

zT (z)−1dz = V ΛWH , (26)

where W = (w1, . . . , wk) ∈ Cn×k and w1, . . . , wk are some eigenvectors of the adjoint
eigenvalue problem for T [3, Thm. 2.9]. Let V̂ ∈ Cn×ℓ be a randomly chosen matrix such
that rank(WH V̂ ) = k. This condition on the rank can be expected to hold in a generic
sense if ℓ ≥ k. Define

A0 :=
1

2πi

∫

C

T (z)−1V̂ dz and A1 :=
1

2πi

∫

C

zT (z)−1V̂ dz, (27)

then A0 = VWH V̂ and A1 = V ΛWH V̂ because of (26). Some simple calculations show [3,
Thm. 3.1] that the eigenvalues of the matrix

B := V H
0 A1W0Σ

−1
0 ∈ C

k×k

coincide with λ1, . . . , λk, where V0,Σ0,W0 are the factors of a reduced singular value de-
composition of A0 = V0Σ0W

H
0 with Σ0 = diag(σ1, . . . , σk). Note that by assumption on

the rank of WH V̂ we have σk+1 = . . . = σℓ = 0. The eigenvectors of T can be obtained
from the eigenvectors s1, . . . , sk of B by vj = V0sj , j = 1, . . . , k.
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For the numerical realization of the described procedure the integrals A0 and A1 in (27)
are approximated by the composite trapezoidal rule. For a contour C with a 2π-periodic
parametrization φ and N equidistant nodes, the approximations A0,N and A1,N of A0 and
A1, respectively, have the form

Ar,N =
1

iN

N−1∑

j=0

Φ(tj)
rT (Φ(tj))

−1V̂ , r ∈ {0, 1}, (28)

where the nodes are given by tj =
2jπ
N
, j = 0, . . . , N − 1. The error ‖Ar,N −Ar‖ converges

exponentially to zero as N → ∞ [3, Thm. 4.7]. For sufficiently large N this allows to
detect the correct rank of A0 and further to compute approximations of the eigenvalues
λ1, . . . , λk. A pseudo-code of the algorithm is given below [3, Integral algorithm 1]. For
details of the implementation we refer to [3, Sect. 3-5].

Contour integral algorithm for the approximation of the eigenvalues of T inside

the contour C and of corresponding eigenvectors

Input: Tolerance tolrank for the determination of the rank of A0 by the singular values of
A0,N

1: Choose an index ℓ ≤ n and a matrix V̂ ∈ Cn×ℓ at random.
2: Compute A0,N and A1,N as given in (28).
3: Compute a SVD A0,N = VNΣNW

H
N , where VN ∈ Cn×ℓ, WN ∈ Cℓ×ℓ such that V H

N VN =
WH

N WN = Iℓ and ΣN = diag(σ1, . . . , σℓ).
4: Perform a rank test for ΣN , i. e., find 0 < k ≤ ℓ such that σ1 ≥ . . . ≥ σk > tolrank >
σk+1. If k = ℓ, then increase ℓ and go to step 1. Else let V0,N = VN (1 : n, 1 : k),
W0,N =W (1 : ℓ, 1 : k) and Σ0,N = diag(σ1, . . . , σk).

5: Compute BN = V H
0,NA1,NW0,NΣ

−1
0,N .

6: Compute the eigenvalues λ1,N , . . . , λk,N and corresponding eigenvectors s1,N , . . . , sk,N
of BN .

7: Compute vj,N = V0,Nsj,N .

Output: Approximations of eigenpairs of T : (λj,N , vj,N), j = 1, . . . , k.

The main computational cost of the presented contour integral algorithm consists in
the computation of A0,N and A1,N in step 2 for which T (Φ(tj))

−1V̂ for V̂ ∈ Cn×ℓ and
j = 0, . . . , N − 1 has to be computed. This requires the solution of N linear systems each
with ℓ different right hand sides.

5.1 Cavity resonances

As first example we consider the cavity-domain

Ω− = (−1.2, 1.2)3 \ ([−0.8, 0.8]3 ∪ (0.8, 1.2)× (−0.2, 0.2)2),

see Figure 3. The eigenvalues of Aµ for different µ are plotted in Figure 1. The spectrum
of Aµ consists of the resonances and of the square-roots of the eigenvalues of −∆ for the
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domain Ω− with the boundary condition γ+0 u+ iµV (0)γ−1 u = 0, see (18). The parameter
µ is the factor of the perturbation of the Dirichlet boundary condition. The square root
of the smallest Dirichlet eigenvalue of −∆ for the domain Ω− is about 7.4. For the chosen
parameters of µ < 0 a significant shift of the real spectrum to the upper complex half-plane
is visible. Numerical experiments show that the same holds for smaller chosen µ.

Figure 2 shows the eigenvalues of Bη for different η. The eigenvalues of Bη consists
of the resonances and of the square-roots of the eigenvalues of −∆ for the domain Ω−

with the boundary condition γ−1 u + iηγ−0 u = 0, see (25). The parameter η describes the
perturbation of the Neumann boundary condition. In Figure 2 a clear separation of the
computed resonances from the rest of the spectrum is observable for η ≥ 0.5. In Figure 3
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µ=-0.5
µ=-1
µ=-2

Figure 1: Computed eigenvalues of Aµ for different µ for the cavity-domain.
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Figure 2: Computed eigenvalues of Bη for different η for the cavity-domain.

the resonance functions for the resonances which have the two smallest positive real parts
are plotted.

5.2 Resonances of a pipe

In this example we have chosen as domain for Ω− a cylindrical pipe with length 5, outside
diameter 1 and wall-thickness 0.25. In Figure 4 and Figure 5 the eigenvalues of Aµ and
Bη for different µ and η are shown. The same observations concerning the separation of
the resonances form the rest of the spectrum as for the cavity-domain can be made for the
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Figure 3: Left: Geometry of the cavity-domain and plane for the evaluation of the resonance
functions. Middle and right: Resonance functions of the cavity domain corresponding to
the resonances with the two smallest real parts.
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Figure 4: Computed eigenvalues of Aµ for different µ for the pipe.
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Figure 5: Computed eigenvalues of Bη for different η for the pipe.

pipe. In Figure 6 the resonance functions for the resonances which have the two smallest
positive real parts are plotted.

6 Conclusions

In this paper we have analyzed different boundary integral formulations for the time-
harmonic acoustic scattering-resonance problem with Neumann boundary conditions. The
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Figure 6: Left: Geometry of the pipe and plane for the evaluation of the resonance func-
tions. Middle and right: Resonance functions of the pipe corresponding to the resonances
with the two smallest real parts.

eigenvalues of the eigenvalue problems resulting from boundary integral formulations split
in the one hand into resonances and in the other hand into eigenvalues which correspond
to eigenvalues of some Laplacian eigenvalue problem for the interior domain. We have
proposed a direct and an indirect combined boundary integral formulation for the reso-
nance problem and we have shown that a better separation of the resonances from the
other eigenvalues is achieved than for standard boundary integral formulations. Numerical
experiments confirm that combined boundary integral formulations allow a reliable and
simple identification of the resonances also for domains with open cavities. For conforming
Galerkin boundary element approximations of the considered combined boundary integral
formulations standard convergence results in the canonical trace spaces can be applied.

A similar approach and analysis can be carried over to the acoustic scattering-resonance
problem with Dirichlet boundary conditions. Combined boundary integral formulations
which are used for the Dirichlet boundary value problem as in [5, 26] are suitable as
formulations for the resonance problem.

Appendix

In this appendix we present different equivalent characterizations of the radiation condi-
tion (2) for the solution of the Helmholtz equation (1a). Crucial for this is the representa-
tion of the fundamental solution of the Helmholtz equation

Φk(x, y) =
eik|x−y|

4π|x− y|

in terms of the spherical harmonics Y m
n [18, Sect. 14.30] and the spherical Bessel functions

h
(1)
n = jn + iyn [18, Sect. 10.47].

Theorem 6.1. Let x, y ∈ R3 with |x| > |y| > 0 and k ∈ C \ {0}. Then we have

eik|x−y|

4π|x− y|
= ik

∞∑

n=0

n∑

m=−n

h(1)n (k|x|)Y m
n

(
x

|x|

)
jn(k|y|)Y m

n

(
y

|y|

)
. (29)
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The series and its term by term first derivatives with respect to |x| and |y| are absolutely and
uniform convergent on compact subsets of [|y|, |x|], i. e., there exist constants C1, C2, C3 > 0
such that for all z1, z2 ∈ R

3 with |z1|, |z2| ∈ [|y|, |x|] it holds

n∑

m=−n

∣∣∣∣∣h
(1)
n (k|z1|)Y

m
n

(
z1
|z1|

)
jn(k|z2|)Y m

n

(
z2
|z2|

)∣∣∣∣∣ ≤ C1
|z2|

n

|z1|n
, (30a)

n∑

m=−n

∣∣∣∣∣h
(1)′
n (k|z1|)Y

m
n

(
z1
|z1|

)
jn(k|z2|)Y m

n

(
z2
|z2|

)∣∣∣∣∣ ≤ C2
|z2|

n

|z1|n
, (30b)

n∑

m=−n

∣∣∣∣∣h
(1)
n (k|z1|)Y

m
n

(
z1
|z1|

)
j′n(k|z2|)Y

m
n

(
z2
|z2|

)∣∣∣∣∣ ≤ C3
|z2|

n

|z1|n
(30c)

for all n ∈ N0.

Proof. The series representation (29) follows immediately from [18, Equations 10.60.1,
10.60.2],

cos(k|x− y|)

|x− y|
= ik

∞∑

n=0

(2n+ 1)jn(k|y|)iyn(k|x|)Pn(cosα),

i
sin(k|x− y|)

|x− y|
= ik

∞∑

n=0

(2n+ 1)jn(k|y|)jn(k|x|)Pn(cosα),

the relation [6, Thm. 2.9],

n∑

m=−n

Y m
n

(
x

|x|

)
Y m
n

(
y

|y|

)
=

2n+ 1

4π
Pn(cosα), (31)

and from h
(1)
n = jn + iyn. Here Pn is the Legendre polynomial of order n and α the angle

between x and y.
To prove the estimate (30a) we use (31) to get

n∑

m=−n

∣∣∣∣h
(1)
n (k|x|)Y m

n

(
x

|x|

)
jn(k|y|)Y

m
n

(
y

|y|n

)∣∣∣∣
n

≤
2n+ 1

4π

∣∣h(1)n (k|x|)jn(k|y|)
∣∣ .

The series representations of hn and jn [18, Sect. 10.53] imply

jn(kt) =
(kt)n

1 · 3 · · · (2n+ 1)

(
1 +O

(
1

n

))
, h(1)n (kt) =

1 · 3 · · · (2n− 1)

i(kt)n+1

(
1 +O

(
1

n

))

uniformly for t on compact subsets of (0,∞) as n → ∞. From this the estimate (30a)
follows. The estimates (30b) and (30c) can be proven analogously using the differentiation
formula for the spherical Hankel functions [18, Equations 10.51.1]
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Proposition 6.2. Let u ∈ H1
loc(Ω

c) be a solution of the Helmholtz equation with wavenum-
ber k ∈ C \ {0}. Assume that Ω− ⊂ Br(0) and x ∈ R3 with r < |x| < R. Then we
have

u(x) =

∞∑

n=0

n∑

m=−n

An,mh
(1)
n (k|x|)Y m

n

(
x

|x|

)
+

∞∑

n=0

n∑

m=−n

Bn,mjn(k|x|)Y
m
n

(
x

|x|

)
,

with

Aℓ,m = ik

∫

∂Br(0)

[−jℓ(k|y|)∂nu(y) + ∂njℓ(k|y|)u(y)]Y m
ℓ

(
y

|y|

)
dsy,

Bℓ,m = ik

∫

∂BR(0)

[
h
(1)
ℓ (k|y|)∂nu(y)− ∂nh

(1)
ℓ (k|y|)u(y)

]
Y m
ℓ

(
y

|y|

)
dsy.

Proof. The representation formula for the annulus BR(0) ∩Br(0) reads

u(x) =

∫

∂Br(0)

[
−Φk(x, y)∂nu(y) + ∂nyΦk(x, y)u(y)

]
dsy

+

∫

∂BR(0)

[
Φk(x, y)∂nu(y)− ∂nyΦk(x, y)u(y)

]
dsy.

Inserting the series representation (29) of the fundamental solution and interchanging the
order of integration and summation, which is possible because of the inequalities in (30),
we get the representation of u.

Theorem 6.3. Let u ∈ H1
loc(Ω

c) be a solution of the Helmholtz equation for k ∈ C \ {0}.
Then the following statements are equivalent:

a) u satisfies the radiation condition (2).

b) For any R > 0 such that Ω− ⊂ BR(0) it holds
∫

∂BR(0)

[
Φk(x, y)∂nu(y)− ∂nyΦk(x, y)u(y)

]
dsy = 0 (32)

for all x ∈ Ω+ ∩ BR.

Proof. Let us first assume that u satisfies the radiation condition (2), i. e., for any r0 > 0
such that Ω− ⊂ Br0 we have

u(x) =

∞∑

n=0

n∑

m=−n

an,mh
1
n(kr)Y

m
n

(
x

|x|

)
for r = |x| > r0.

On the other hand, by Proposition 6.2 u(x) has an expansion of the form

u(x) =

∞∑

n=0

n∑

m=−n

An,mh
(1)
n (k|x|)Y m

n

(
x

|x|

)
+

∞∑

n=0

n∑

m=−n

Bn,mjn(k|x|)Y
m
n

(
x

|x|

)
.
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From these both representations of u it follows for any r̃ ∈ (r, R) that

0 =

∫

S2

∞∑

n=0

n∑

m=−n

[
(an,m − An,m)h

(1)
n (kr̃) +Bn,mjn(kr̃)

]
Y m
n (ω)dω.

Since the spherical harmonics are linearly independent in L2(S2) it follows that

0 = (an,m − An,m)h
(1)
n (kr̃) +Bn,mjn(kr̃) for all r̃ ∈ (r, R).

The linear independence of h
(1)
n and jn implies that Bn,m = 0. Hence, we have

0 =

∞∑

n=0

n∑

m=−n

Bn,mjn(k|x|)Y
m
n

(
x

|x|

)
=

∫

∂BR

[
Φk(x, y)∂nu(y)− ∂nyΦk(x, y)u(y)

]
dsy.

Let us now assume that u satisfies b). Let r > 0 such that Ω− ⊂ Br. For x ∈ R3 with
|x| > r choose R > 0 such that r < |x| < R. Then, by the representation formula for u(x)
in the annulus BR(0) ∩ Br(0) we get with (32) that

u(x) =

∫

∂Br(0)

[
−Φk(x, y)∂nu(y) + ∂nyΦk(x, y)u(y)

]
dsy.

Inserting the series representation (29) of the fundamental solution and integrating term
by term yields the series representation of u in the form of (2).

Theorem 6.4. Let k ∈ C \ {0}, ϕ ∈ H−1/2(Γ) and ψ ∈ H1/2(Γ), then

u(x) =
1

4π

∫

Γ

eik|x−y|

|x− y|
ϕ(y)dsy and v(x) =

1

4π

∫

Γ

∂ny

(
eik|x−y|

|x− y|

)
ψ(y)dsy

satisfy the radiation condition (2).

Proof. The assertions follow by using the representation (29) of the fundamental solution
and by interchanging the order of integration and summation, which is possible because of
the inequalities in (30).

Corollary 6.5. Let k ∈ C \ {0} and let u ∈ H1
loc(Ω

+) be a solution of the Helmholtz
equation in Ω+ with wavenumber k. Then, u fulfills the radiation condition (2) if and only
if u has in Ω+ a representation of the form

u(x) =

∫

Γ

[
−Φk(x, y)∂nu(y) + ∂nyΦk(x, y)u(y)

]
dsy. (33)

Proof. If u has a representation as in (33), then u is obviously a solution of the Helmholtz
equation in Ω+ and by Theorem 6.4 it fulfills the radiation condition (2). On the other hand,
if u is solution of the Helmholtz equation in Ω+ and satisfies (2), then the representation
formula for u in Ω+ ∩BR for sufficiently large R implies with (32) the representation of u
as in (33).
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