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Convergence analysis of a Galerkin boundary element

method for electromagnetic eigenvalue problems

Gerhard Unger

Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, 8010 Graz, Austria

Abstract

In this paper a convergence analysis of a Galerkin boundary element method
for eigenvalue problems arising from the time harmonic Maxwell’s equations is pre-
sented. The interior and the exterior eigenvalue problem with perfect conducting
boundary conditions and the transmission eigenvalue problem at a dielectric inter-
face are considered. The underlying operators of the boundary integral formulations
of these eigenvalue problems satisfy a so-called T -G̊arding’s inequality from which
the convergence of a conforming Galerkin approximation is in general only guaran-
teed if the approximation spaces fulfill special requirements. We use recent abstract
results for the convergence of the Galerkin approximation of eigenvalue problems for
holomorphic T -G̊arding operator-valued functions in order to show that two classi-
cal boundary element spaces for Maxwell’s equations, the Raviart–Thomas and the
Brezzi–Douglas–Marini boundary element spaces, satisfy these requirements. Nu-
merical examples are presented, which confirm the theoretical results.

1 Introduction

The numerical solution of electromagnetic eigenvalue problems is an important task in
different fields of engineering and technology. In this paper we consider for a given bounded
Lipschitz domain Ωi ⊂ R3 an interior, an exterior and a transmission eigenvalue problem
arising from the time harmonic Maxwell’s equations with a time variation of the form e−iωt.
The aim is to provide a convergence analysis of a Galerkin boundary element method for
these eigenvalue problems.

As interior eigenvalue problem we consider the cavity resonance problem with perfect
conducting boundary conditions of the following form: Find κ ∈ C and Ei ∈ H(curl; Ωi),
Ei 6= 0, such that

curl curlEi − κ2Ei = 0 in Ωi,

div(εEi) = 0 in Ωi,

Ei × n = 0 on Γ := ∂Ωi,

(1)
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where κ = ω
√
εµ is the wavenumber, ω is the angular frequency, ε is the electric permittiv-

ity, µ is the magnetic permeability, and n is the unit normal vector field on the boundary
Γ pointing into the exterior domain Ωe := R

3 \Ωi. We assume throughout this paper that
ε > 0 and µ > 0 are constant and that Ωi is simply connected. These assumptions imply
that the eigenvalues of the eigenvalue problem (1) are real [24, Thm. 4.18] and non-zero.

The exterior eigenvalue problem, usually referred to as scattering-resonance problem
at a perfect conductor, is formulated in Ωe and is given as follows: Find κ ∈ C and
Ee ∈ Hloc(curl; Ω

e), Ee 6= 0, such that:

curl curlEe − κ2Ee = 0 in Ωe, (2a)

div(εEe) = 0 in Ωe, (2b)

Ee × n = 0 on Γ, (2c)

Ee is “outgoing”. (2d)

As radiation condition in (2d) we impose that each Cartesian component of Ee has outside
of any ball Br0 := {x : ‖x‖ < r0} which contains Ωi an expansion in terms of the spherical

Hankel functions of the first kind h
(1)
n of the form

(Ee(x))[j] =
∞∑

n=0

n∑

m=−n

a(j)n,mh
(1)
n (κr)Y m

n

(
x

|x|

)
for r = |x| > r0, j ∈ {1, 2, 3}, (3)

where Y m
n are the spherical harmonics. In the case of wavenumbers κ with 0 ≤ arg κ < π

the radiation condition (3) for a solution E ∈ Hloc(curl; Ω
e) of Maxwell’s equations in

Ωe is equivalent to that the Cartesian components of E satisfy the Sommerfeld radiation
condition [11, Thm. 2.15], [30, Appendix]. The latter condition is for 0 ≤ arg κ < π again
equivalent to that E satisfies the Silver-Müller radiation condition [11, Thm. 6.8]. The
Silver-Müller radiation condition is usually imposed for scattering problems for wavenum-
bers κ with 0 ≤ arg κ < π. But it is well known that for wavenumbers with nonnegative
imaginary part the Silver-Müller radiation condition does not not correctly characterize
outgoing waves, see e. g., [25, Sect. 1]. Since the eigenvalues of the exterior eigenvalue
problem (2) have negative imaginary part, instead of the Silver-Müller radiation condition
the radiation condition (3) has to be used.

Boundary integral formulations and boundary element methods have been considered
for different kinds of electromagnetic eigenvalue problems. Examples are the interior eigen-
value problem [13, 32], the interior transmission eigenvalue problem [12, 21] or the transmis-
sion eigenvalue problem at a dielectric interface [23], to mention just a few. A rigorous nu-
merical analysis of the boundary element approximations of these eigenvalue problems has
not been established so far. In this paper we provide a convergence analysis of a Galerkin
boundary element approximation of a boundary integral formulation of the interior and
exterior eigenvalue problem. In addition we extend the derived results to the transmis-
sion eigenvalue problem for the scattering at a dielectric interface. The presented analysis
is based on the classical framework of regular approximations of eigenvalue problems for
holomorphic Fredholm operator-valued functions [16, 17], which was already applied to
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boundary integral formulations of acoustic eigenvalue problems [29] and to coupled FEM-
BEM formulations of vibro-acoustic eigenvalue problems [19]. For these cases sufficient
conditions for the convergence of conforming Galerkin approximations follow from the fact
that the underlying boundary integral operators of the eigenvalue problems satisfy a stan-
dard G̊arding’s inequality. For Maxwell’s eigenvalue problems the underlying boundary
integral operators satisfy only a so-called T -G̊arding’s inequality. In such a case additional
properties of the approximation spaces are required in order to guarantee convergence.
In [15] sufficient conditions for the convergence of a conforming Galerkin approximation
for eigenvalue problems for holomorphic T -G̊arding operator-valued functions are derived
in an abstract setting. In this paper we show that these conditions are satisfied when
classical boundary element spaces for Maxwell’s equations, namely the Raviart-Thomas
and the Brezzi–Douglas–Marini elements, are used for the Galerkin approximation of the
proposed boundary integral formulations of the considered eigenvalue problems.

The rest of the paper is organized as follows: in the next section we introduce a bound-
ary integral formulation for the interior and exterior eigenvalue problem and elaborate
crucial properties for the spectral analysis. In Sect. 3 we consider a conforming Galerkin
approximation for this boundary integral formulation and specify abstract different suffi-
cient conditions for the spectral convergence. In addition we show that these conditions
are satisfied when Raviart-Thomas or Brezzi–Douglas–Marini elements are used for the
approximation. The results of Sect. 2 and 3 are extended in Sect. 4 to a boundary integral
formulation of the transmission eigenvalue problem and its Galerkin approximation. In
Sect. 5 numerical examples are presented which confirm the theoretical results.

2 Boundary integral formulation of the interior and

exterior eigenvalue problem

In this section we introduce and analyze a boundary integral formulation for the interior and
exterior eigenvalue problem (1) and (2). The analysis of the boundary integral formulation
of the eigenvalue problem is done in the framework of eigenvalue problem for holomorphic
Fredholm operator-valued functions [22, Appendix]. The main reference for the definitions
and properties of the required boundary integral operators is the survey paper [9]. Note
that the notations in the present paper only partially coincides with the notations in [9].

2.1 Trace spaces

In this subsection we summarize the properties of the trace spaces which we need for the
analysis of the boundary integral formulations of the eigenvalue problems. For a detailed
presentation of the traces related to Maxwell’s equation for Lipschitz domains we refer to
the article [8].

For smooth functions Ei/e ∈ {E
|Ωi/e : E ∈ C∞

0 (R3)} we define the interior/exter-ior

3



tangential trace operators γ
i/e
τ and π

i/e
τ by

γi/eτ Ei/e := E
i/e
|Γ × n and πi/e

τ Ei/e := n× E
i/e
|Γ × n.

The operators γ
i/e
τ and π

i/e
τ can be extended for s ∈ (0, 1) to continuous operators

γi/eτ : Hs+1/2(Ωi)/H
s+1/2
loc (Ωe) → V s

γ := γiτ (H
s+1/2(Ωi)),

πi/e
τ : Hs+1/2(Ωi)/H

s+1/2
loc (Ωe) → V s

π := πi
τ (H

s+1/2(Ωi)),

where V s
γ and V s

π are endowed with the norms

‖ψψψ‖V s
γ
:= inf

E∈Hs+1/2(Ωi)
{‖E‖Hs+1/2(Ωi) : γ

i
τ (E) = ψψψ},

‖χχχ‖V s
π
:= inf

E∈Hs+1/2(Ωi)
{‖E‖Hs+1/2(Ωi) : π

i
τ (E) = χχχ}.

The dual space of V s
γ /V

s
π , s ∈ (0, 1), is denoted by V −s

γ /V −s
π . For s = 0 we set V 0

γ = V 0
π :=

L2
τ (Γ) := {ψψψ ∈ L2(Γ) : ψψψ · n = 0}. Finally, we define the space

H−1/2(divΓ,Γ) := {ψψψ ∈ V
− 1

2
π : divΓψψψ ∈ H− 1

2 (Γ)}

endowed with the graph norm ‖ψψψ‖2
H−1/2(divΓ,Γ)

:= ‖ψψψ‖2
V

− 1
2

π

+ ‖ divΓψψψ‖2
H− 1

2 (Γ)
. The operator

divΓ is the surface divergence operator and for ψψψ ∈ V
− 1

2
π it is defined via duality by

〈divΓψψψ, ϕ|Γ〉H− 3
2 (Γ)×H

3
2 (Γ)

= 〈ψψψ, πτ∇ϕ〉
V

− 1
2

π ×V
1
2

π

, ϕ ∈ H2(Ωi).

The space H−1/2(divΓ,Γ) is a Hilbert space and the tangential trace operators γiτ and γeτ
can be extended such that

γiτ : H(curl; Ωi) → H−1/2(divΓ,Γ), γeτ : Hloc(curl; Ω
e) → H−1/2(divΓ,Γ),

are continuous, surjective and possess a continuous right inverse [8, Thm. 4.1]. The anti-
symmetric pairing

〈ψψψ,χχχ〉τ,Γ :=

∫

Γ

(ψψψ × n) ·χχχ ds, ψψψ,χχχ ∈ L2
t (Γ),

can be extended to H−1/2(divΓ,Γ) such that H−1/2(divΓ,Γ) becomes its own dual [10,
Thm. 3.3], i.e., there exists a linear and isometric isomorphism J× : H−1/2(divΓ,Γ) →
(H−1/2(divΓ,Γ))

′ such that

〈ψψψ,χχχ〉τ,Γ = (J×ψψψ)(χχχ) for all ψψψ,χχχ ∈ H−1/2(divΓ,Γ).

The operator J× : H−1/2(divΓ,Γ) → (H−1/2(divΓ,Γ))
′ is the extension of the mapping

J̃× : L2
τ (Γ) → L2

τ (Γ) defined by J̃×(ψψψ) := ψψψ×n, see [10, Thm. 3.3]. Since H−1/2(divΓ,Γ) is
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a Hilbert space we can identify the pairing 〈·, ·〉τ,Γ with the inner product (·, ·)H−1/2(divΓ,Γ)

by
〈ψψψ,χχχ〉τ,Γ = (JJ×ψψψ,χχχ)H−1/2(divΓ,Γ), ψψψ,χχχ ∈ H−1/2(divΓ,Γ), (4)

where J : (H−1/2(divΓ,Γ))
′ → H−1/2(divΓ,Γ) is a linear, isometric isomorphism. In the

following we will use the shorthand notation

V := H−1/2(divΓ,Γ).

As additional trace we introduce the trace γ
i/e
N := γ

i/e
τ ◦curl, which is a linear and continuous

mapping from H(curl2; Ωi)/Hloc(curl
2; Ωe) to V, and for which the integration by parts

formula

±
∫

Ωi/e

curlEi/e · curlΦ− curl curlEi/e ·Φ dx = 〈γi/eN Ei/e, γi/eτ Φ〉τ,Γ (5)

holds for all Ei/e ∈ H(curl2; Ωi)/Hloc(curl
2; Ωe) and all Φ ∈ C∞

0 (R3) [9, p. 96, Eq. (23)].

2.2 Derivation and analysis of the boundary integral formulation

The boundary integral formulation of the eigenvalue problems (1) and (2) is based on
the Stratton-Chu representation formula for the solution of Maxwell’s equations. For ex-
terior problems this formula is in the literature only considered for wavenumbers with
non-negative imaginary part and together with the Silver-Müller radiation condition; see,
e.g., [9, Sect. 4], [20, Thm. 5.49], [26, Sect. 5.5]. For wavenumbers with negative imaginary
part the Stratton-Chu representation formula is also valid if instead of the Silver-Müller
radiation condition the radiation condition (3) is imposed. This can be shown in the same
way as it is done for positive wavenumbers in [9, Sect. 4, p. 95–97] by considering the
Cartesian components of the solution of Maxwell’s equations. Since these have to satisfy
the Helmholtz equation, the representation formula for outgoing solutions of the Helmholtz
equation, which is also valid for wavenumbers with negative imaginary part [30, Appendix,
Cor. 6.5], yields together with the integration by parts formula (5) the Stratton-Chu repre-
sentation formula in the following form: any solution E of Maxwell’s equations in Ωi ∪ Ωe

with wavenumber κ ∈ C \ {0} which satisfies the radiation condition (3) is given by

E(x) = −
(
ΨΨΨDL(κ)

(
γeτ E− γiτ E

))
(x)−

(
ΨΨΨSL(κ)

(
γeNE− γiN E

))
(x), x ∈ Ωi ∪ Ωe, (6)

where

(ΨΨΨSL(κ)ψψψ) (x) := (ΨΨΨA(κ)ψψψ) (x) +
1

κ2
∇ (ΨV (κ) divΓψψψ) (x), x ∈ Ωi ∪ Ωe,

is the Maxwell single layer potential and where

(ΨΨΨDL(κ)ψψψ) (x) := curl (ΨΨΨA(κ)ψψψ) (x) x ∈ Ωi ∪ Ωe,
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is the Maxwell double layer potential. Here, ΨΨΨA(κ) and ΨV (κ) are the vectorial and
scalar single layer potentials related to the Helmholtz equation, which have the integral
representations

(ΨΨΨA(κ)ψψψ))(x) :=

∫

Γ

ψψψ(y)Eκ(x− y)dsy, (ΨV (κ)φ))(x) :=

∫

Γ

φ(y)Eκ(x− y)dsy

with Eκ(x) = exp(iκ‖x‖)/4π‖x‖.
Let (κi,Ei) be an eigenpair of (1) and let us extend Ei in Ωe by zero, then the Stratton-

Chu representation formula (6) gives

(
(ΨΨΨSL(κ

i))(γiNEi)
)
(x) =

{
Ei(x), x ∈ Ωi,

0, x ∈ Ωe.
(7)

If (κe,Ee) is an eigenpair of (2) and if we extend Ee by zero in Ωi, then we have

−
(
(ΨΨΨSL(κ

e))(γeNEe)
)
(x) =

{
0, x ∈ Ωi,

Ee(x), x ∈ Ωe.
(8)

We consider a boundary integral formulation of the eigenvalue problems (1) and (2) in
terms of the single layer boundary integral operator S(κ) which is defined by

S(κ)ψψψ := 1
2

(
γiτ ΨΨΨSL(κ) + γeτ ΨΨΨSL(κ)

)
ψψψ, ψψψ ∈ V.

The operator S(κ) : V → V is linear and continuous [9, Cor. 2] and it holds S(κ) =
γiτ ΨΨΨSL(κ) = γeτ ΨΨΨSL(κ) [9, Thm. 7]. Further, we have the following representation [9,
Eq. (31)]

〈S(κ)ψψψ,ξξξ〉τ,Γ = −〈ξξξ,A(κ)ψψψ〉τ,Γ +
1

κ2
〈divΓ ξξξ, V (κ) divΓψψψ〉− 1

2
, 1
2

,

where A(κ) := γiτ ΨΨΨA(κ) and where V (κ) is the single layer boundary integral operator of

the Helmholtz equation. The pairing 〈·, ·〉− 1

2
, 1
2

denotes the duality pairing of H− 1

2 (Γ) and

H
1

2 (Γ) By applying the tangential trace to (7) and (8) we see that (κi,Ei) and (κe,Ee)
satisfy the following boundary integral equation

S(κi/e)(γ
i/e
N Ei/e) = 0. (9)

As boundary integral formulation of the eigenvalue problems (1) and (2) we consider the
following eigenvalue problem: Find κ ∈ C \ {0} and ψψψ ∈ V \ {0} such that:

S(κ)ψψψ = 0. (10)

Note that this eigenvalue problem is nonlinear with respect to the eigenvalue parameter
κ. The eigenvalue problem (10) is referred to as eigenvalue problem for the operator-
valued function S : C \ {0} → L(V). Here L(V) denotes the space of linear and bounded
operators mapping from V into itself. The equivalence of the eigenvalue problem for S

with the interior and exterior eigenvalue problem (1) and (2) is specified next.
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Proposition 2.1. The following assertions hold true:

(i) Suppose that (κ,E) is an eigenpair of either the interior eigenvalue problem (1) or
the exterior eigenvalue problem (2). Then (κ,E) is an eigenpair of the eigenvalue
problem for S.

(ii) Let (κ,ψψψ) be an eigenpair of the eigenvalue problem for S. If κ is real, then it is
an eigenvalue of the interior eigenvalue problem (1) and (ΨΨΨSL(κ)ψψψ)|Ωi is a corre-
sponding eigenfunction. Otherwise, κ is an eigenvalue of (2) and (ΨΨΨSL(κ)ψψψ)|Ωe is a
corresponding eigenfunction.

(iii) The geometric multiplicity of an eigenvalue of (1) or of (2) coincides with the geo-
metric multiplicity as eigenvalue of (10).

Proof. The assertion (i) has been already shown, see (9). Suppose now that (κ,ψψψ) is an
eigenpair of (10). We define E = ΨΨΨSL(κ)ψψψ in Ωi ∪ Ωe. Then γiτ E = γeτ E = S(κ)ψψψ = 0. It
remains to show that E|Ωi 6= 0 for κ ∈ R and E|Ωe 6= 0 for κ ∈ C \ R.

Suppose that κ ∈ R. Then E|Ωe = 0 because of the unique solvability of the related
exterior boundary value problem [20, Cor. 5.63]. From this we get γeNE = 0 and the jump
relation γeNΨΨΨSL(κ)ψψψ − γiNΨΨΨSL(κ)ψψψ = −ψψψ [9, Thm. 7] implies E|Ωi 6= 0.

Suppose now that κ is non-real. Then E|Ωi = 0 because otherwise (κ,E|Ωi) would be
an interior eigenpair which is not possible since the square of all interior eigenvalues is

positive [24, Thm. 4.18]. From the jump relation of the single layer potential we get
γeNE = ψψψ. Hence we have E|Ωe 6= 0.

Assume that ψψψ1,ψψψ2 ∈ V are two linearly independent eigenfunctions corresponding to
an eigenvalue κ of the eigenvalue problem for S. Define Ei = (ΨΨΨSL(κ))ψψψi, i = 1, 2. Then for
any (α1, α2) ∈ C×C with (α1, α2) 6= (0, 0) we have α1E1+α2E2 = (ΨΨΨSL(κ))(α1ψψψ1+α2ψψψ2) 6=
0 in Ωi ∪ Ωe because otherwise the assertion (ii) would imply that α1ψψψ1 + α2ψψψ2 = 0. The
proof for the other direction can be done analogously.

For the analysis of the eigenvalue problem for S and its Galerkin approximation it is
crucial that the single layer boundary integral operator S(κ) satisfies a generalized G̊ard-
ing’s inequality for all wavenumbers κ ∈ C\{0}. This result is well known for wavenumbers
with nonnegative imaginary part, see, e. g., [9, Lem. 10]. We will show that this result also
holds true for wavenumbers with negative imaginary part. Basically we will use the same
arguments as in the case of wavenumbers with nonnegative imaginary part. Substantial
for the proof is the direct sum decomposition

V = X ⊕N , (11)

where X and N are closed subspaces of V with X ⊂ V
− 1

2
π and N = (ker divΓ) ∩ V

[9, Lem. 2]. We denote by R and Z the associated continuous projectors onto X and N ,
respectively. An equivalent norm in V is given by

(‖Z ·‖2
V

−1
2

π

+ ‖ divΓ R ·‖2
H− 1

2 (Γ)
)1/2, (12)
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see [10, Thm. 3.4]. Further, we define the operator

T := R−Z : V → V, (13)

which is by construction an isomorphism.

Lemma 2.2. Let κ ∈ C \ {0}.

a) If Re(κ) 6= 0, then there exists a compact operator C(κ) : V → V and a constant
c(κ) > 0 such that the following generalized G̊arding’s inequality is satisfied

|〈S(κ)ψψψ,Tψψψ〉τ,Γ + 〈C(κ)ψψψ,ψψψ〉τ,Γ| ≥ c(κ)‖ψψψ‖2V for all ψψψ ∈ V. (14)

b) If κ = iα, α ∈ R \ {0}, then there exists a compact operator C1(κ) : V → V and a
constant c1(κ) > 0 such that the following G̊arding’s inequality holds

|〈S(κ)ψψψ,ψψψ〉τ,Γ + 〈C1(κ)ψψψ,ψψψ〉τ,Γ| ≥ c1(κ)‖ψψψ‖2V for all ψψψ ∈ V. (15)

Proof. a) The proof follows [9, Lem. 10], but there only positive wavenumbers have been
considered. Let us define the operator Ŝ(κ) by

〈Ŝ(κ)ψψψ,ξξξ〉τ,Γ := −〈ξξξ,A(0)ψψψ〉τ,Γ +
1

κ2
〈divΓ ξξξ, V (0) divΓψψψ〉− 1

2
, 1
2

.

Then S(κ) − Ŝ(κ) is compact [9, Cor. 4]. Using the decomposition of V in (11) and that
divΓ Zχχχ = 0 for all χχχ ∈ V, we get

〈Ŝ(κ)ψψψ,Tξξξ〉τ,Γ = K(ψψψ,ξξξ) + 〈Zξξξ,A(0)Zψψψ〉τ,Γ +
1

κ2
〈divΓ Rξξξ, V (0) divΓ Rψψψ〉− 1

2
, 1
2

,

where K(ψψψ,ξξξ) is defined by

K(ψψψ,ξξξ) := −〈Rξξξ,A(0)Rψψψ〉τ,Γ + 〈Zξξξ,A(0)Rψψψ〉τ,Γ − 〈Rξξξ,A(0)Zψψψ〉τ,Γ.

In [9, Lem. 9] it is shown that K : V → V is compact. Therefore the operator C(κ) :=
T

∗(Ŝ(κ)− S(κ))−K is also compact. Here T
∗ denotes the adjoint with respect to 〈·, ·〉τ,Γ.

From the ellipticity results forA(0) and V (0) [9, Lem. 8] and with the norm equivalence (12)
we obtain

|〈S(κ)ψψψ,Tψψψ〉τ,Γ + 〈C(κ)ψψψ,ψψψ〉τ,Γ|

=
∣∣〈Zψψψ,A(0)Zψψψ〉τ,Γ +

1

κ2
〈divΓ Rψψψ, V (0) divΓ Rψψψ〉− 1

2
, 1
2

∣∣

≥
∣∣∣∣
1

κ

∣∣∣∣min{|Re(κ)|, |Re
(

κ

|κ|2
)
|}
(
cA(0)‖Zψψψ‖2

V
− 1

2
π

+ cV (0)‖ divΓ Rψψψ‖2
H−1

2 (Γ)

)

= c(κ)‖ψψψ‖2V,
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where cA(0), cV (0) > 0. Here we used that
∣∣∣∣α +

β

κ2

∣∣∣∣ =
∣∣∣∣
1

κ

∣∣∣∣

∣∣∣∣κα +
κβ

κκ

∣∣∣∣ ≥
∣∣∣∣
1

κ

∣∣∣∣min{|Re(κ)|, |Re
(

κ

|κ|2
)
|} |α + β|

holds for all α, β ≥ 0.
b) Let κ = iα, α ∈ R \ {0}. With the same arguments as in part a) one can show that

the operator C1(κ) := Ŝ(κ)− S(κ)−K1 is compact, where

K1(ψψψ,ξξξ) := 〈Ŝ(κ)ψψψ,ξξξ〉τ,Γ + 〈Zξξξ,A(0)Zψψψ〉τ,Γ −
1

κ2
〈divΓ Rξξξ, V (0) divΓ Rψψψ〉− 1

2
, 1
2

.

With the ellipticity results for A(0) and V (0) [9, Lem. 8] we get

|〈S(κ)ψψψ,ψψψ〉τ,Γ + 〈C1(κ)ψψψ,ψψψ〉τ,Γ|

= | − 〈Zψψψ,A(0)Zψψψ〉τ,Γ −
1

α2
〈divΓψψψ, V (0) divΓψψψ〉− 1

2
, 1
2

|

≥ min{1, α−2}
(
cA(0)‖Zψψψ‖2

V
− 1

2
π

+ cV (0)‖ divΓ Rψψψ‖2
H− 1

2 (Γ)

)
.

The inequality (15) follows from the norm equivalence (12).

From Lem. 2.2 it follows that the operator (T (κ))∗ S(κ) is a Fredholm operator of index
zero for all κ ∈ C\{0}, where T (κ) = I for Reκ = 0 and otherwise T (κ) = T. This implies
that also the operator S(κ) is a Fredholm operator of index zero for all κ ∈ C \ {0}. Next
we consider the properties of the mapping κ 7→ S(κ).

Lemma 2.3. The function S : C \ {0} → L(V), κ 7→ S(κ), is holomorphic.

Proof. It is sufficient to show that the mapping

κ 7→ 〈S(κ)ψψψ,ξξξ〉τ,Γ
is holomorphic as mapping from C \ {0} into C for all ψψψ,ξξξ of a dense subspace of V, see
Theorem III.3.12 in Kato [18] and the remark following it. Let us choose γiτ(C

∞
0 (R3)) as

dense subspace of V. Then we can use the following integral representation of the pairing
〈·, ·〉τ,Γ and of the boundary integral operator S(κ) [9, Eq. 32]:

〈S(κ)ψψψ,ξξξ〉τ,Γ = −
∫

Γ

∫

Γ

E(κ)(x− y)ψψψ(x) · ξξξ(y)dsydsx

+
1

κ2

∫

Γ

∫

Γ

E(κ)(x− y) divΓψψψ(x) divΓ ξξξ(y)dsydsx. (16)

The holomorphy of the mapping κ 7→ 〈S(κ)ψψψ,ξξξ〉τ,Γ follows now from the holomorphy of

E(κ)(·) = eiκ‖·‖

4π‖·‖
= 1

4π

∑∞
n=0

(iκ)n

n!
‖ · ‖n−1 by interchanging the order of integration and

summation in (16).

Lem. 2.2 and Lem. 2.3 enable us to analyze the eigenvalue problem for S in the frame-
work of eigenvalue problems for holomorphic Fredholm operator-valued functions.
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2.3 Notations and properties of eigenvalue problems for holo-
morphic Fredholm operator-valued functions

In this subsection we introduce notations of eigenvalue problems for holomorphic Fredholm
operator-valued functions and summarize important properties of such kind of eigenvalue
problems. Our main reference is [22, Appendix]. Let X be a Hilbert space and let Λ ⊂ C

be open and connected. We assume that A : Λ → L(X) is a holomorphic operator-valued
function and that A(λ) : X → X is a Fredholm operator with index zero for all λ ∈ Λ.
The set

ρ(A) := {λ ∈ Λ : ∃A(λ)−1 ∈ L(X)}
is called the resolvent set of A. In the following we will assume that the resolvent set of A
is not empty. The complement of the resolvent set ρ(A) in Λ is called the spectrum σ(A).
A number λ ∈ σ(A) is an eigenvalue of A if there exists a non-trivial x ∈ X \{0} such that

A(λ)x = 0.

The element x is called an eigenelement of A corresponding to the eigenvalue λ. The
spectrum σ(A) has no cluster points in Λ [14, Corollary IV.8.4] and each λ ∈ σ(A) is
an eigenvalue of A which follows from the Fredholm alternative. The dimension of the
null space kerA(λ) of an eigenvalue λ is called the geometric multiplicity of λ. An or-
dered collection of elements x0, x1, . . . , xm−1 in X is called a Jordan chain of λ if x0 is an
eigenelement corresponding to λ and if

n∑

j=0

1

j!
A(j)(λ)xn−j = 0 for all n = 0, 1, . . . , m− 1 (17)

is satisfied, where A(j) denotes the jth derivative. The length of any Jordan chain of an
eigenvalue is finite [22, Lem. A.8.3]. Elements of any Jordan chain of an eigenvalue λ are
called generalized eigenelements of λ. The closed linear hull of all generalized eigenelements
of an eigenvalue λ is called generalized eigenspace of λ and is denoted by G(A, λ). The
dimension of the generalized eigenspace G(A, λ) is finite [22, Prop. A.8.4] and it is referred
to as algebraic multiplicity of λ.

2.4 Adjoint eigenvalue problem for S

We consider the adjoint eigenvalue problem for S in order to show that the eigenvalues of S
are symmetric about the imaginary axis. Further, we will show that if ψψψ is an eigenelement
of S that then ψψψ is an eigenelement of the adjoint problem. This result will be employed
for the error estimates of the Galerkin approximation of the eigenvalue problem for S.

We formulate the adjoint eigenvalue problem for S with respect to the pairing 〈·, ·〉τ,Γ.
Let us define the so-called adjoint function S

∗(κ) := (S(κ))∗ for κ ∈ C \ {0}. The adjoint
eigenvalue problem for S is then given by

S
∗(κ)ννν = 0.

10



The Fredholm alternative implies that κ ∈ σ(S) if and only if κ ∈ σ(S∗).

Lemma 2.4. The following holds true:

(i) (S(κ))∗ = − S(−κ), i. e., S∗(κ) = − S(−κ).

(ii) κ ∈ σ(S) if and only if −κ ∈ σ(S).

(iii) (κ,ψψψ) is an eigenpair of S if and only if (κ,ψψψ) is an eigenpair of S∗.

(iv) The ordered collection ψψψ0,ψψψ1 . . . ,ψψψm is a Jordan chain corresponding to κ for S if
and only if ψψψ0,−ψψψ1,ψψψ2 . . . , (−1)mψψψm is a Jordan chain corresponding to κ for S

∗

Proof. In the proof of the assertions we employ the identity:

eiκ = eiRe(κ)e− Im(κ) = e−iRe(κ) e− Im(κ) = e−i(Re(κ)−i Im(κ)) = e−iκ. (18)

(i) It is sufficient to show that

〈S(κ)ψψψ,ξξξ〉τ,Γ = 〈ψψψ,−S(−κ)ξξξ〉τ,Γ (19)

holds for all ψψψ,ξξξ ∈ γiτ (C
∞
0 (R3)). Let ψψψ,ξξξ ∈ γiτ (C

∞
0 (R3)), then we can use the integral

representation for the the pairings in (19) and get with (18):

〈S(κ)ψψψ,ξξξ〉τ,Γ = −
∫

Γ

∫

Γ

eiκ‖x−y‖

4π‖x− y‖ψψψ(x) · ξξξ(y)dsydsx

+
1

κ2

∫

Γ

∫

Γ

eiκ‖x−y‖

4π‖x− y‖ divΓψψψ(x) divΓ ξξξ(y)dsydsx = 〈S(−κ)ξξξ,ψψψ〉τ,Γ.

From the anti-symmetry of the pairing, the assertion follows.
(ii) The Fredholm alternative implies that κ ∈ σ(S) if and only if (S(κ))∗ννν = 0 for some

ννν ∈ V \ {0}. The latter is by the result in (i) equivalent to S(−κ)ννν = 0.
(iii) Because of (18) we have S(κ)ξξξ = S(−κ)ξξξ. If (κ,ψψψ) is an eigenpair of S, then we

get by i)
0 = S(κ)ψψψ = S(−κ)ψψψ = −(S(κ))∗ψψψ = − S

∗(κ)ψψψ.

(iv) Again, integral representations of the pairing 〈·, ·〉τ,Γ and of the functions S and

S
∗ show that S

∗(j)(κ) = (−1)j+1(S(j)(−κ)) and (S(j)(−κ))ξξξ = S
(j)(−κ)ξξξ. From this, the

assertion follows directly from the definition of the generalized eigenelements.

3 Galerkin approximation of the interior and exterior

eigenvalue problem

For the approximation of the eigenvalue problem for S we consider a conforming Galerkin
method. Let {Vh}h∈H be the sequence of finite dimensional subspaces of V employed in
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the Galerkin method. The Galerkin approximation of the eigenvalue problem (10) then
reads as follows: Find κh ∈ C and ψψψh ∈ Vh \ {0} such that

〈S(κh)ψψψh,χχχh〉τ,Γ = 0 for all χχχh ∈ Vh. (20)

For the convergence analysis it is convenient to represent the Galerkin eigenvalue prob-
lem (20) in terms of the inner product in V in the form

(J S(κh)ψψψh,χχχh)V = 0 for all χχχh ∈ Vh, (21)

where J := JJ× : V → V is the isometric isomorphism in (4) which relates the pairing
〈·, ·〉τ,Γ to the inner product (·, ·)V by 〈·, ·〉τ,Γ = (J ·, ·)V. Let Ph : V → Vh be the orthogonal
projection, then (κh,ψψψh) is an eigenpair of the Galerkin eigenvalue problem (20) if and only
if it is an eigenpair of

Ph J S(κh)ψψψh = 0. (22)

Since the eigenvalues and eigenvectors of the eigenvalue problems for S and J S are identical,
the convergence analysis will be carried out for the approximation of the eigenvalues and
eigenvectors of the eigenvalue problem J S(κ)ψψψ = 0 by the eigenvalues and eigenvectors of
the eigenvalue problem (22).

For the sequence {Vh}h∈H we assume that the following two conditions are satisfied:

(A1) ‖Phχχχ−χχχ‖V → 0 as h→ 0 for all χχχ ∈ V.

(A2) For T as given in (13) there exists a sequence {Th}h∈H, Th : Vh → Vh linear and
continuous, such that

sup
ψψψh∈Vh\{0}

‖(T− Th)ψψψh‖V
‖ψψψh‖V

→ 0 as h→ 0. (23)

The assumption (A1) is the standard approximation assumption for the sequence of the
approximation spaces of a Galerkin method. For eigenvalue problems for holomorphic Fred-
holm operator-valued functions where the underlying operators satisfy a standard G̊arding’s
inequality, the assumption (A1) ensures already the convergence of the Galerkin approx-
imations [29, Sect. 4]. The additional assumption (A2) is needed since the operator S(κ)
satisfies only a generalized G̊arding’s inequality. The assumption (A1) together with the
assumption (A2) guarantees a regular approximation of the operator J S(κ) by the sequence
{Ph J S(κ)Ph}h∈H which follows from an abstract result in [15, Lem. 2.6]. For convenience
of the reader we show this result for S(κ) in Thm. 3.1. The property of the regular approx-
imation is required in order to apply the abstract spectral convergence results from [16, 17]
to the Galerkin eigenvalue problem (20).

Theorem 3.1. Suppose that (Vh)h∈H is sequence of subspaces of V for which the conditions
(A1) and (A2) are satisfied. Let κ ∈ C \ {0} and define Sh(κ) := Ph J S(κ)Ph. Then the
sequence (Sh(κ))h∈H is a regular approximation of J S(κ) in the sense of [16], i. e., the
following two assertions are satisfied:
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a) For any sequence (ψψψh)h∈H, ψψψh ∈ Vh, which converges to some ψψψ ∈ V as h → 0, it
follows that Sh(κ)ψψψh → J S(κ)ψψψ as h→ 0.

b) If the sequence (Sh(κ)ψψψh)h∈H, where ψψψh ∈ Vh with ‖ψψψh‖V ≤ 1 for all h ∈ H, has a
convergent subsequence, then the sequence (ψψψh)h∈H has already a convergent subsequence.

In order to proof Thm. 3.1, we need the following auxiliary result.

Lemma 3.2. Suppose that (Vh)h∈H is a sequence of subspaces of V for which the conditions
(A1) and (A2) are satisfied. Let κ ∈ C with Re(κ) 6= 0 and let C(κ) be the compact operator

as in Lem. 2.2. Define C̃(κ) := (T∗)−1C(κ). Then there exist an h1 ∈ H and a c1(κ) > 0

such that Ph J(S(κ) + C̃(κ))Ph : Vh → Vh is invertible and

‖(Ph J(S(κ) + C̃(κ))Ph)
−1‖L(Vh) ≤ c1(κ)

for all h ≤ h1.

Proof. We proceed as in [15, proof of Lem. 2.6]. For sufficiently small h ∈ H the operator
Th : Vh → Vh is uniformly bounded from below by a constant c0 > 0 since from

‖Thψψψh‖V = ‖Tψψψh − (Tψψψh − Thψψψh)‖V ≥ ‖Tψψψh‖V − ‖(T− Th)ψψψh‖V
it follows from assumption (A2) and the bijectivity of T that there exists a constant h0 > 0
such that for all h ≤ h0

inf
ψψψh∈Vh
‖ψψψh‖V=1

‖Thψψψh‖V ≥ inf
ψψψ∈V

‖ψψψ‖V=1

‖Tψψψ‖V − sup
ψψψh∈Vh
‖ψψψh‖V=1

‖(T− Th)ψψψh‖V > c0.

This implies that Th is bijective for h ≤ h0. Moreover, Th is uniformly bounded from above
since ‖Th‖L(Vh) ≤ ‖T‖L(V) + ‖T− Th‖L(Vh) ≤ c̃ for all h ∈ H.

Let ψψψh ∈ Vh \ {0}, then we obtain for h ≤ h0:

sup
χχχh∈Vh\{0}

|〈(S(κ) + C̃(κ))ψψψh,χχχh〉τ,Γ|
‖ψψψh‖V‖χχχh‖V

≥ sup
χχχh∈Vh\{0}

|〈(S(κ) + C̃(κ))ψψψh,Thχχχh〉τ,Γ|
‖Th‖L(Vh)‖ψψψh‖V‖χχχh‖V

≥ sup
χχχh∈Vh\{0}

|〈(S(κ) + C̃(κ)))ψψψh,Tχχχh〉τ,Γ|
‖Th‖L(Vh)‖ψψψh‖V‖χχχh‖V

− |S(κ) + C̃(κ)‖L(V)‖T− Th‖L(Vh)

‖Th‖L(Vh)

≥

∣∣∣〈(T∗
S(κ) + C(κ))ψψψh,ψψψh〉τ,Γ

∣∣∣
c̃‖ψψψh‖V‖ψψψh‖V

− ‖S(κ) + C̃(κ)‖L(V)‖T− Th‖L(Vh)

c0
. (24)

By Lem. 2.2 the minuend in (24) is uniformly bounded from below by a positive constant.
The subtrahend converges by assumption (A2) to zero as h→ 0. Hence, we get from (24)
that there exist constants h1, c̃1(κ) > 0 such that

inf
ψψψh∈Vh\{0}

sup
χχχh∈Vh\{0}

|〈(S(κ) + C̃(κ))ψψψh,χχχh〉τ,Γ|
‖ψψψh‖V‖χχχh‖V

>
1

c̃1(κ)
for all h ≤ h1.
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It is well known that the inf-sup condition implies that for each given fffh ∈ Vh the varia-
tional problem

〈(S(κ) + C̃(κ))ψψψh,χχχh〉τ,Γ = 〈fffh,χχχh〉τ,Γ for all χχχh ∈ Vh (25)

has a unique solution ψψψh with ‖ψψψh‖V ≤ c1(κ)‖fffh‖V for all h ≤ h1, see, e. g., [33]. Since

the variational problem (25) is equivalent to the problem Ph J(S(κ) + C̃(κ))Phψψψh = Jfffh,
the assertion follows.

Proof of Thm. 3.1. We have to show that that the sequence (Sh(κ))h∈H, where Sh(κ) =
Ph J S(κ)Ph, is a regular approximation of J S(κ).

a) Let (ψψψh)h∈H be a sequence with ψψψh ∈ Vh and such that it converges to some ψψψ ∈ V
as h→ 0. From Phψψψh = ψψψh and ‖(I − Ph)χχχ‖V → 0 as h→ 0 for all χχχ ∈ V, it follows

‖ Sh(κ)ψψψh − J S(κ)ψψψ‖V ≤ ‖Ph J S(κ)(ψψψh −ψψψ)‖V + ‖(Ph − I) J S(κ)ψψψ‖V → 0 as h→ 0.

b) If Re(κ) = 0, then S(κ) satisfies by Lem. 2.2 b) a standard G̊arding’s inequality.
This implies that the Galerkin approximation is regular, see [31, Sect. 2, Prop. 5].

Let now Re(κ) 6= 0. Suppose that (Sh(κ)ψψψh)h∈H, ψψψh ∈ Vh and ‖ψψψh‖V ≤ 1 for all h ∈ H,
has a convergent subsequence (Sh′(κ)ψψψh′)h′∈H′ . Let ϕϕϕ ∈ V with ‖ S(κ)ψψψh′ − ϕϕϕ‖V → 0 as

h′ → 0. Further, let C̃(κ) = (T∗)−1C(κ) be as defined in Lem. 3.2. Further, we define the
operators

S̃(κ) := S(κ) + C̃(κ) and S̃h(κ) := Ph J S̃(κ)Ph.

Since C̃(κ) is compact, there exist a subsequence (C̃(κ)ψψψh′′)h′′∈H′′ of (C̃(κ)ψψψh′)h′∈H′ and a

χχχ ∈ V such that ‖C̃(κ)ψψψh′′ −χχχ‖V → 0 as h′′ → 0. This gives

‖S̃h′′(κ)ψψψh′′ − (ϕϕϕ+ Jχχχ)‖V ≤ ‖ Sh′′(κ)ψψψh′′ −ϕϕϕ‖V + ‖Ph′′ J C̃(κ)ψψψh′′ − Jχχχ‖V → 0

as h′′ → 0. Note that S̃(κ) = (T ∗)−1(T ∗ S(κ) + C(κ)). Hence, the inverse of the operator

S̃(κ) : V → V exists. By Lem. 3.2 also the inverse of S̃h(κ) : Vh → Vh exists. Define

ψψψ := (J S̃(κ))−1(ϕϕϕ+ Jχχχ) and consider

ψψψh′′ − Ph′′ψψψ = (S̃h′′(κ))
−1
(
S̃h′′(κ)ψψψh′′ − Ph′′(ϕϕϕ+ Jχχχ) + Ph′′ J S̃(κ)ψψψ − S̃h′′(κ)Ph′′ψψψ

)
.

We have ‖ψψψh′′ − Ph′′ψψψ‖ → 0 as h′′ → 0 since by Lem. 3.2 (S̃h′′(κ))
−1 is uniformly bounded

and since

‖S̃h′′(κ)ψψψh′′ − Ph′′(ϕϕϕ+ Jχχχ)‖V
≤ ‖S̃h′′(κ)ψψψh′′ − (ϕϕϕ+ Jχχχ)‖V + ‖(I − Ph′′)(ϕϕϕ+ Jχχχ)‖V → 0,

and
‖Ph′′ J S̃(κ)ψψψ − S̃h′′(κ)Ph′′ψψψ‖V = ‖Ph′′ J S̃(κ)(ψψψ − Ph′′ψψψ)‖V → 0

as h′′ → 0. From this it follows that ‖ψψψh′′ −ψψψ‖ → 0 as h′′ → 0.
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In the following theorem we summarize the convergence results for the Galerkin ap-
proximation (20) of the eigenvalue problem for S.

Theorem 3.3. Suppose that (Vh)h∈H is sequence of subspaces of V for which the conditions
(A1) and (A2) are satisfied. Then the following holds true:

(i) (Completeness of the discrete spectrum) Let κ be an eigenvalue of the eigenvalue
problem (10). Then there exists a sequence (κh)h∈H of eigenvalues of the Galerkin
eigenvalue problem (20) such that

κh → κ as h→ 0.

(ii) (Non-pollution of the discrete spectrum) Let K ⊂ C \ {0} be compact and connected
set with a simple rectifiable boundary. Suppose that there is no eigenvalue of the
eigenvalue problem (10) in K. Then there exists an h0 > 0 such that for all 0 < h <
h0 the Galerkin eigenvalue problem (20) has no eigenvalues in K.

(iii) Let D ⊂ C \ {0} be compact and connected set with a simple rectifiable boundary.
Suppose that κ ∈ D̊ is the only eigenvalue of S in D. Then there exist an h0 > 0 and
a c > 0 such that for all 0 < h ≤ h0 we have:

a) (Stability of the algebraic multiplicities)

dimG(S, κ) =
∑

κh∈σ(Ph J SPh)∩D

dimG(Ph J SPh, κh).

b) For all eigenvalues κh of the Galerkin eigenvalue problem (20) in D it holds:

|κ− κh| ≤ cδ(G(S, κ),Vh)
2/ℓ.

The term δ(G(S, κ),Vh) denotes the gap between the generalized eigenspace G(S, κ)
corresponding to κ and the space Vh:

δ(G(S, κ),Vh) := sup
ψψψ∈G(S,κ)
‖ψψψ‖V=1

inf
χχχh∈Vh

‖ψψψ −χχχh‖V.

The number ℓ is the maximal length of a Jordan chain corresponding to κ.

c) Let

κh :=
1

dimG(S, κ)

∑

κh∈σ(Ph J SPh)∩D

κh dimG(Ph J SPh, κh)

be the weighted mean of all eigenvalues of the Galerkin eigenvalue problem (20) in
D. Then it holds

|κ− κh| ≤ cδ(G(S, κ),Vh)
2. (26)
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d) If (κh,ψψψh) is an eigenpair of (20) with κh ∈ D and ‖ψψψh‖V = 1, then

inf
ψψψ∈G(S,κ)

‖ψψψ −ψψψh‖V ≤ c (|κh − κ|+ δ(G(S, κ),Vh)) .

Proof. Since the sequence {Ph J S(κ)Ph}h∈H provides a regular approximation of the oper-
ator J S(κ) for all κ ∈ C\{0}, the assertions (i) to (iii)c) follow from the abstract results in
[16, 17], where regular approximations of eigenvalue problems for holomorphic Fredholm
operator-valued functions are considered for an abstract approximation scheme. We also
want to refer to [15], where the special case of the conforming Galerkin approximation of
eigenvalue problems for holomorphic T -G̊arding operator-valued functions is analyzed.

In the following we specify the abstract results of [16, 17] as well as of [15] from
which the assertions follow. The assertions (i) and (ii) are a consequence of [16, Thm. 2]
and [15, Thm. 3.1 i) and iii)]. For assertion (iii)(a) we refer to [16, Thm. 3] and [15,
Thm. 3.1 iv)]. The error estimate for the eigenvalues in (iii)b) follows from [17, Thm. 3]
and [15, Thm. 3.1 v)] where we use that G(S, κ) = G(S∗, κ), which we have shown in
Lem. 2.4. For the assertion (iii)c) we refer to [17, Thm. 3] and [15, Thm. 3.1 vi)].

The error estimate for the eigenfunction in (iii)d) is a consequence of [15, Thm. 3.1 v)].

In the following lemma we specify sufficient conditions such that a sequence (Vh)h∈H
which satisfies the assumption (A1) also satisfies the assumption (A2).

Lemma 3.4. Let (Vh)h∈H be a sequence satisfying the assumption (A1). Suppose that
there exist subspaces Xh and Nh of Vh such that

Vh = Xh ⊕Nh for all h ∈ H. (27)

Further, assume that the following gap-property

δh := max{δ(Xh,X ), δ(Nh,N )} → 0 as h→ 0 (28)

is satisfied. Then, the condition (A2) is fulfilled for (Vh)h∈H with Th = PhT.

Proof. Let ψψψh ∈ Vh and Th = PhT. Because of the decompositions of V = X ⊕N and of
Vh = Xh ⊕Nh, there exist χχχ ∈ X , ννν ∈ N ,χχχh ∈ Xh and νννh ∈ Nh such that

ψψψh = χχχ + ννν = χχχh + νννh.

Since Tψψψh = χχχ− ννν, we get

‖(T− Th)ψψψh‖V = ‖(I − Ph)Tψψψh‖V = ‖(I − Ph)(Tψψψh − (χχχh − νννh))‖V
≤ ‖χχχ− ννν − (χχχh − νννh))‖V ≤ ‖χχχ−χχχh‖V + ‖ννν − νννh‖V.

(29)

We will show that
‖χχχ−χχχh‖V + ‖ννν − νννh‖V . δh‖ψψψh‖V (30)
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holds for sufficiently small h ∈ H. Then from (29) it follows that (A2) is satisfied.
The gap-property implies that there exists a continuous operator Ah : Xh → X such

that ‖χχχh−Ahχχχh‖V ≤ 2δh‖χχχh‖V. Further, for the projector R : V → X which is associated
with the splitting V = X ⊕N , we have

‖χχχh−Rχχχh‖V = ‖χχχh−Ahχχχh+Ahχχχh−Rχχχh‖V = ‖(I −R)(χχχh−Ahχχχh‖V . δh‖χχχh‖V. (31)

Analogously, one can show that for the projector Z : V → N the inequality

‖νννh − Zνννh‖ . δh‖νννh‖V (32)

holds. Using χχχ = Rψψψh = Rχχχh + Rνννh and Rνννh = (I − Z)νννh, we get from (31) and (32) the
estimate

‖χχχ−χχχh‖V ≤ ‖Rχχχh −χχχh‖V + ‖Rνννh‖V . δh (‖χχχh‖V + ‖νννh‖V) . (33)

It is well known that the gap-property (28) implies that the splitting in (27) of Vh is
uniformly stable for sufficiently small h ∈ H, i. e., there exists a constant c > 0 such that
for sufficiently small h ∈ H we have

‖χχχh‖V + ‖νννh‖V ≤ c‖χχχh + νννh‖V = c‖ψψψh‖V,

see, e.g. [6, Thm. 3.2]. From this we get from (33) that

‖χχχ−χχχh‖V . δh‖ψψψh‖V.

The inequality (30) follows now from ννν − νννh = −(χχχ− χχχh).

3.1 Application of the convergence results to boundary element
spaces

In this subsection we apply the abstract results of the last section to some standard bound-
ary element spaces for Maxwell’s equations.

We first consider the case that the boundary Γ is piecewise flat. Let (Th)h∈H be a
sequence of regular triangulations of Γ with mesh size h. Let us denote by RTk(Th)
the space generated by Raviart–Thomas elements of order k on Th and by BMDk(Th)
the space generated by Brezzi–Douglas–Marini elements of order k on Th. We adopt the
convention of [7, 9] that k = 0 means lowest order Raviart–Thomas or Brezzi–Douglas–
Marini finite elements. Both spaces satisfy the condition (A1), see, e. g., [7, 9]. In [7,
Sect. 4.2, Prop. 4.4], it is shown that (RTk(Th))h∈H and (BMDk(Th))h∈H satisfy in addition
the gap property (28) of Lem. 3.4, which implies that they also satisfy assumption (A2).
Hence, the convergence results of Thm. 3.3 can be applied to RTk(Th) and BMDk(Th).
The error estimates for the approximation of an eigenvalue κ of S and the corresponding
eigenspace G(S, κ) depend on the approximation property of the approximation spaces.
For Vh,k ∈ {RTk(Th),BMDk(Th)}, it holds for −1

2
≤ s ≤ k + 1 [9, Thm. 14]:

inf
ψψψh∈Vh,k

‖ψψψ −ψψψh‖V ≤ Chs+
1

2‖ψψψ‖Hs(divΓ,Γ) ∀ψψψ ∈ Hs(divΓ,Γ).
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From Thm. 3.3(iii)b), we conclude if κ ∈ σ(S) is the only eigenvalue in a given compact
and connected set D ⊂ C \ {0} with rectifiable boundary and if G(S, κ) ⊂ Hs(divΓ,Γ) for
some s ∈ [−1

2
, k + 1], then there exists a ϕϕϕ ∈ G(S, κ) with ‖ϕϕϕ‖V = 1 such that for all

eigenvalues κh ∈ D of the Galerkin eigenvalue problem in Vh,k the estimate

|κ− κh| ≤ ch(2s+1)/ℓ‖ϕϕϕ‖Hs(divΓ,Γ)

holds for sufficiently small h ∈ H. The number ℓ is the maximal length of a Jordan chain
corresponding to κ. For the weighted mean κh of all eigenvalues in D of the Galerkin
eigenvalue problem in Vh,k we get by Thm. 3.3(iii)c):

|κ− κh| ≤ ch2s+1‖ϕϕϕ‖Hs(divΓ,Γ). (34)

If ψψψh is a corresponding eigenelement of κh, then by Thm. 3.3(iii)d) there exists a ψψψ ∈
G(S, κ) with ‖ψψψ‖V = 1 such that

‖ψψψ −ψψψh‖ ≤ Ch(s+
1

2
)/ℓ‖ψψψ‖Hs(divΓ,Γ)

for all sufficiently small h ∈ H.
Next, we want to briefly address the case of a p-parametric surface approximation Γph

of a curvilinear polyhedral surface Γ. It is possible to utilize the abstract convergence
analysis of [16, 17] also in this case when using Raviart–Thomas and Brezzi–Douglas–
Marini elements. Let (Vp

h,k)h∈H be a sequence of such ansatz spaces with respect to the
p-parametric surface approximations Γph and let us denote by θph : Γ → Γph the surface

liftings and by V̂p
h,k = {v ◦ θp : v ∈ Vp

h,k} the lifted ansatz spaces [27, Chapt. 8]. The
approximation of the eigenvalue problem for S can be considered as approximation in
V̂p
h,k ⊂ V. The proof of the required gap-property of V̂p

h,k is straightforward with the
results in [2], see the comment in [7, Sect 4.2]. The proof of the regular approximation of
S(κ) in V̂p

h,k is more involved but can be done similarly as in Thm. 3.1. From the abstract
results in [16, 17], the convergence of the eigenvalue and eigenspace approximations in
(V̂p

h,k)h∈H follows with similar error estimates as in Thm. 3.3 where δ(G(S, κ),Vh) has to

be replaced by δ(G(S, κ), V̂p
h,k).

4 Transmission eigenvalue problem for the scattering

at a dielectric interface

In this section we consider the transmission eigenvalue problem between two different di-
electric media. The proposed boundary integral formulation for the transmission eigenvalue
problem is based on the Calderón identities. In [10], this kind of boundary integral formu-
lation has been analyzed for the related source problem. We will show that the boundary
integral formulation of the transmission eigenvalue problem exhibit the same basic prop-
erties as the boundary integral formulation of the interior and exterior eigenvalue problem
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(1) and (2). As a consequence, the same kind of convergence results for the Galerkin ap-
proximation of the boundary integral formulation of the transmission eigenvalue problem
can be concluded as for the Galerkin approximation of the boundary integral formulation
of the interior and exterior eigenvalue problem. The transmission eigenvalue problem reads
as follows: Find ω ∈ C and (0, 0) 6= (E1,E2) ∈ H(curl; Ωi)×Hloc(curl; Ω

e) such that

curl curlE1 − ω2ε1µ1E1 = 0 and div(ε1E1) = 0 in Ωi,

curl curlE2 − ω2ε2µ2E2 = 0 and div(ε2E2) = 0 in Ωe,

E1 × n = E2 × n on Γ,

µ−1
1 curlE1 × n = µ−1

2 curlE2 × n on Γ,

E2 is outgoing.

(35)

We assume that the material parameters ε1, µ1 for the interior domain Ωi and ε2, µ2 for
the exterior domain Ωe are constant and positive. As shown in [10, Sect. 6], then the
eigenvalues of (35) are all non-real.

The interior and exterior Calderón identities are used for deriving a boundary integral
formulation of the transmission eigenvalue problem (35). A function u1 ∈ H(curl; Ωi) is a
solution of the Maxwell’s equations in Ωi with wavenumber ω

√
ε1µ1 if and only if it satisfies

the interior Calderón identity [9, Thm. 8]
(

1
2
I +M(ω

√
ε1µ1) µ1 S(ω

√
ε1µ1)

ω2ε1 S(ω
√
ε1µ1)

1
2
I +M(ω

√
ε1µ1)

)(
γiτ u1

µ−1
1 γiNu1

)
=

(
γiτ u1

µ−1
1 γiNu1

)
, (36)

where M(κ) := 1
2
(γiN + γeN)ΨΨΨSL. We define for ℓ = 1, 2 the block operator

Aℓ(ω) :=

(
M(ω

√
εℓµℓ) µℓ S(ω

√
εℓµℓ)

ω2εℓ S(ω
√
εℓµℓ) M(ω

√
εℓµℓ)

)
.

A function u2 ∈ Hloc(curl; Ω
e) is an outgoing solution of Maxwell’s equations in Ωe with

wavenumber ω
√
ε2µ2 if and only if it satisfies the exterior Calderón identity [9, Thm. 8]

(
1

2
I − A2(ω)

)(
γeτ u2

µ−1
2 γeNu2

)
=

(
γeτ u2

µ−1
2 γeNu2

)
.

We obtain the following boundary integral formulation of the transmission eigenvalue
problem (35) by setting (ϕϕϕ,ψψψ) := (γiτ E1, µ

−1
1 γiNE1) = (γeτ E2, µ

−1
2 γeNE2) and by using the

interior and exterior Calderón identity:

(A1(ω) + A2(ω))

(
ϕϕϕ
ψψψ

)
=

(
0
0

)
. (37)

Note that the eigenvalue problems (35) and (37) are not equivalent. If in the eigenvalue
problem (35) ε1 is interchanged with ε2 and µ1 with µ2, then one also obtains (37) as
corresponding boundary integral formulation. However, the equivalence of (35) and (37)
is guaranteed if for (37) a constraint is imposed, as shown next.
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Theorem 4.1. The following assertions hold true:

(i) Suppose that (ω,E1,E2) is a solution of the transmission eigenvalue problem (35).
Then (ω, γiτ E1, µ

−1
1 γiNE1 is a solution of the eigenvalue problem (37) and satisfies

(1
2
I − A1(ω))(γ

i
τ E1, µ

−1
1 γiNE1)

⊤ = 0.

(ii) Conversely, suppose that (ω,ϕϕϕ,ψψψ) is a solution of the eigenvalue problem (37) satis-
fying (1

2
I −A1(ω))(ϕϕϕ,ψψψ)

⊤ = 0. Define

E1 := ΨΨΨSL(κ1)µ1ψψψ +ΨΨΨDL(κ1)ϕϕϕ and E2 := −ΨΨΨSL(κ2)µ2ψψψ −ΨΨΨDL(κ2)ϕϕϕ,

where κℓ := ω
√
εℓµℓ, ℓ = 1, 2. Then (ω,E1,E2) is a solution of the eigenvalue

problem (35) and (ϕϕϕ,ψψψ) = (γiτ E1, µ
−1
1 γiNE1).

Proof. (i) We have already shown that if (ω,E1,E2) is a solution of the eigenvalue problem
(35) that then (ω, γiτ E1, µ

−1
1 γiNE1 is a solution of (37). The interior Calderón identity (36)

implies that
(
1
2
I − A1(ω)

)
(γiτ E1, µ

−1
1 γiNE1)

⊤ = 0 holds.
(ii) Assume now that (ω,ϕϕϕ,ψψψ), ϕϕϕ,ψψψ ∈ V \ {0}, satisfies the eigenvalue problem (37)

and that the equation
(
1
2
I −A1(ω))

(
ϕϕϕ,ψψψ)⊤ = 0 holds. We first show that

E1 := ΨΨΨSL(κ1)µ1ψψψ +ΨΨΨDL(κ1)ϕϕϕ and E2 := −ΨΨΨSL(κ2)µ2ψψψ −ΨΨΨDL(κ2)ϕϕϕ,

satisfy the eigenvalue problem (35), where κℓ := ωℓ
√
εℓµℓ, ℓ = 1, 2. By construction E1 is a

solution of the Maxwell’s equations in Ωi and E2 is an outgoing solution of the Maxwell’s
equations in Ωe. Applying the trace operators to E1 and E2 yields

(
γiτ E1

µ−1
1 γiNE1

)
=

(
1

2
I + A1(ω)

)(
ϕϕϕ
ψψψ

)
and

(
γeτ E1

µ−1
2 γeNE1

)
=

(
1

2
I −A2(ω)

)(
ϕϕϕ
ψψψ

)
. (38)

Subtracting the second equation from the first equation in (38) and using that (ϕϕϕ,ψψψ)
satisfies the eigenvalue problem (37) gives

(
γiτ E1 − γeτ E1

µ−1
1 γiNE1 − µ−1

2 γeNE1

)
= (A1(ω) + A2(ω))

(
ϕϕϕ
ψψψ

)
=

(
0
0

)
.

Hence, E1 and E2 satisfy the transmission conditions of the eigenvalue problem (37). From
the assumption

(
1
2
I −A1(ω))

(
ϕϕϕ,ψψψ)⊤ = 0 and the first equation in (38), we finally get

(
ϕϕϕ
ψψψ

)
=

(
1

2
I + A1(ω)

)(
ϕϕϕ
ψψψ

)
=

(
γiτ E1

µ−1
1 γiNE1

)
.

For the analysis of the eigenvalue problem (37) we consider the antisymmetric pairing
B : V2 ×V2 → C defined by

B

((
ϕϕϕ
ψψψ

)
,

(
ϕ̃ϕϕ

ψ̃ψψ

))
= 〈ϕϕϕ, ψ̃ψψ〉τ,Γ − 〈ϕ̃ϕϕ,ψψψ〉τ,Γ.
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Theorem 4.2. Let ω ∈ C \ {0}. Then there exists a compact operator C(ω) : V2 → V2

and a constant c(ω) > 0 such that for all ϕϕϕ,ψψψ ∈ V it holds

∣∣∣∣B
(
(A1(ω) + A2(ω) + C(ω))

(
ϕϕϕ
ψψψ

)
, T (ω)

(
ϕϕϕ

ψψψ

))∣∣∣∣ ≥ c(ω)

∥∥∥∥
(
ϕϕϕ
ψψψ

)∥∥∥∥
2

V2

,

where T (ω) =

(
T 0
0 T

)
if Re(ω) 6= 0 and otherwise T (ω) =

(
I 0
0 I

)
.

Proof. A proof for positive ω is given in [10, Thm. 6.3]. This proof can be extended to
ω ∈ C \ {0} by using the results of Lem. 2.2.

Thm. 4.2 shows that the operator A1(ω) + A2(Ω) satisfies a T -G̊arding’s inequality if
Re(ω) 6= 0 and a standard G̊arding’s inequality if ω = iα, α ∈ R \ {0}. A regular ap-
proximation of the operator is provided by a Galerkin approximation with ansatz spaces
{Vh ×Vh}h∈H if {Vh}h∈H satisfies the assumption (A1) and (A2) of Sect. 3. This follows
immediately from the abstract result in [15, Lem. 2.7] or it can be shown analogously as
for the Galerkin approximation of the operator S(ω). As a consequence, the abstract con-
vergence theory [15, 16, 17] can be applied to the Galerkin approximation of the boundary
integral formulation of the transmission eigenvalue problem (37) and the same kinds of
results as in Thm. 3.3 can be concluded.

5 Numerical Examples

In this section we report on results from some numerical experiments for the approxima-
tion of the eigenvalues of the boundary integral formulations of the interior and exterior
eigenvalue problem problem (1) and (2), and of the transmission eigenvalue problem (35).
In all experiments Raviart–Thomas elements of lowest order k = 0 are used. For the
computations of the boundary element matrices the open-source library BEM++ [28] is
employed.

The Galerkin approximations of the eigenvalue problems for S and for A1+A2 result in
holomorphic matrix eigenvalue problems in C \ {0}. The related underlying matrix-valued
functions are denoted by Sh and A1,h+A2,h, respectively. For the numerical solution of the
matrix eigenvalue problems we use the contour integral method as given in [3]. For other
variants of the contour integral method we refer to [1, 34]. The contour integral method is a
reliable method for the approximation of all eigenvalues which lie inside of a given contour
in the complex plane, and for the approximation of the corresponding eigenvectors. The
method is based on the contour integration of the resolvent and utilizes that the eigenvalues
of eigenvalue problems for holomorphic matrix-valued functions are poles of the resolvent.
By contour integration of the resolvent a reduction of the holomorphic eigenvalue problem
to an equivalent linear eigenvalue problem is possible such that the eigenvalues of the
linear eigenvalue problem coincide with the eigenvalue of the nonlinear eigenvalue problem
inside the contour. For the practical application of this method an efficient approximation
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h |κ1 − κ1,h| eoc |κ2 − κ2,h| eoc |κ3 − κ3,h| eoc |κ4 − κ4,h| eoc

0.707 1.114e-02 - 2.201e-02 - 3.648e-02 - 6.027e-02 -
0.354 1.029e-03 3.43 2.110e-03 3.38 2.960e-03 3.62 5.111e-03 3.56
0.177 1.086e-04 3.24 2.308e-04 3.19 3.089e-04 3.26 5.509e-04 3.33
0.088 1.221e-05 3.15 2.682e-05 3.11 3.534e-05 3.13 6.439e-05 3.10

Table 1: Unit cube: Approximation error and experimental order of convergence (eoc) of
the four smallest interior eigenvalues inside the ellipse.

of the contour integral is necessary. This can be achieved for example by the composite
trapezoidal rule [3].

For the analysis of the contour integral method it is usually assumed that the under-
lying matrix-valued function of the eigenvalue problem is holomorphic inside the contour.
However, the contour integral method is also suitable for eigenvalue problems where the
underlying function has isolated singularities in the case of that the resolvent has a holo-
morphic continuation in the neighborhood of the singularities. The reason for that is that
the contour integral method operates on the resolvent of the eigenvalue problem and ap-
proximates the poles of the resolvent. Our numerical experiments indicates that there is a
holomorphic continuation of (Sh(κ))

−1 as well as of (A1,h(ω) +A2,h(ω))
−1 in the neighbor-

hood of 0, see Fig. 1–2 and Fig. 3–4, respectively. This property is for practical application
of importance where often the eigenvalues of smallest modulus are of interest.

In the following numerical examples the eigenvalues inside of a contour are numbered
in ascending order with respect to their real part.

5.1 Interior and exterior eigenvalue problem

In the first numerical examples we consider the Galerkin approximation (20) of the bound-
ary integral formulation (10) of the interior and exterior eigenvalue problem (1) and (2).
The unit cube and the unit ball are chosen for Ωi. In all examples in this subsection we
take ε = µ = 1.0.

5.1.1 Interior eigenvalue problem for the unit cube

For the unit cube only the interior eigenvalues are known analytically. Therefore we restrict
ourselves to the approximation of the eigenvalues of the interior problem. The interior
eigenvalues have the form κ = πk, where k =

√
k21 + k22 + k23 with k1, k2, k3 ∈ N0 and

k1k2 + k2k3 + k3k1 > 0 [5, Sect. 6]. For the contour integral method we choose as contour
the ellipse ϕ(t) = c+ a cos(t) + ib sin(t), t ∈ [0, 2π], with c = 5.0, a = 5.3 and b = 0.5. Our
numerical experiments indicate that there are only interior eigenvalues inside this ellipse.
In Tab. 1 the errors of the approximations of the four smallest eigenvalues are given for
different mesh sizes. The experimental orders of convergence suggest a cubic asymptotic
convergence order, which confirm the theoretical convergence order (26), and (34) with
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Figure 1: Unit cube: Computed interior eigenvalues by the contour integral method for
h = 0.177.

h |κe

1
− κ

e

1,h| eoc |κe

2
− κ

e

2,h| eoc |κi

1
− κ

i

1,h| eoc |κi

2
− κ

i

2,h| eoc

0.707 4.293e-02 - 8.767e-02 - 1.202e-01 - 1.584e-01 -
0.354 6.773e-03 2.66 1.337e-02 2.71 1.878e-02 2.68 2.598e-02 2.61
0.177 1.535e-03 2.14 3.000e-03 2.16 4.230e-03 2.15 5.918e-03 2.13
0.088 3.552e-04 2.11 6.913e-04 2.12 9.765e-04 2.12 1.372e-03 2.11

Table 2: Unit ball: Approximation error and experimental order of convergence (eoc) of
the two smallest interior and exterior eigenvalues in magnitude inside the ellipse.

s = 1. Further, we observe that all exact eigenvalues are approximated with the right
multiplicities and that no spurious eigenvalues occur. The experiments also confirm the
mentioned conjecture that the resolvent Sh(κ)

−1 can be holomorphically extended to κ = 0.
A plot of the computed eigenvalues for the mesh with mesh size h = 0.177 is given in Fig. 1.

5.1.2 Interior and exterior eigenvalue problem for the unit ball

The interior and exterior eigenvalues of the unit ball can be represented as zeros using the
spherical Bessel and Hankel functions [26]. We denote by jn the spherical Bessel functions

of the first kind and as before by h
(1)
n the spherical Hankel functions of the first kind. The

set of the interior eigenvalues is given by

{κ ∈ R : jn(κ) = 0 or jn(κ) + κj′n(κ) = 0, n ∈ N},

and that of the exterior eigenvalues by

{κ ∈ C : h(1)n (κ) = 0 or h(1)n (κ) + κh(1)′n (κ) = 0, n ∈ N}.

As contour for the contour integral method the ellipse ϕ(t) = c + a cos(t) + ib sin(t),
t ∈ [0, 2π], is chosen with c = 5.0, a = 5.3 and b = 1.0. In Tab. 2 the errors of the two
smallest eigenvalues in modulus of the interior and exterior eigenvalue problem are given.
The experimental convergence order is in contrast to the cube of one order reduced since
the sphere is approximated by flat triangles. Again, all exact eigenvalues are approximated
with the right multiplicities and no spurious eigenvalues occur. In Fig. 2 the computed
eigenvalues by the contour integral method for the mesh with mesh size h = 0.177 are
plotted.
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Figure 2: Unit ball: Computed interior and exterior eigenvalues by the contour integral
method for h = 0.177.

h |ω1 − ω1,h| eoc |ω2 − ω2,h| eoc |ω3 − ω3,h| eoc |ω4 − ω4,h| eoc

0.707 7.94e-2 - 1.24e-1 - 2.05e-1 - 1.58e-1 -
0.354 6.14e-3 3.69 1.21e-2 3.37 2.30e-2 3.16 3.94e-2 2.00
0.177 6.05e-4 3.34 1.16e-3 3.41 2.21e-3 3.46 3.25e-3 3.60
0.088 6.21e-5 3.28 1.17e-4 3.42 2.18e-4 3.25 3.15e-4 3.36

Table 3: Transmission eigenvalue problem for the unit cube: Error and experimental order
of convergence (eoc) of the four eigenvalues with smallest real part inside the ellipse.

5.2 Transmission eigenvalue problem

In this subsection we consider the Galerkin approximation of the boundary integral for-
mulation (37) of the transmission eigenvalue problem (35). The domains Ωi for the nu-
merical examples are again the unit cube and the unit ball. As approximation space we
choose Vh ×Vh = RT0(Th) × RT0(Th). The material parameters are set to ε1 = 4.0 and
ε2 = µ1 = µ2 = 1.0.

5.2.1 Transmission eigenvalue problem for the unit cube

For the cube the exact eigenvalues of the transmission eigenvalue problem are not known.
As reference eigenvalues the computed eigenvalues of a very fine mesh with mesh size
h = 0.03125 are taken. For the experiments we chose the ellipse ϕ(t) = c+a cos(t)+ib sin(t),
t ∈ [0, 2π], with c = 2.5, a = 2.7 and b = 0.5. The numerical experiments suggest a cubic
asymptotic convergence order, see Tab. 3, which is in accordance with the theoretical
results. The computed approximations of the eigenvalues by the contour integral method
inside the ellipse for h = 0.177 are plotted in Fig. 3. The numerical experiments indicate
that the resolvent (A1,h(ω) + A2,h(ω))

−1 can be holomorphically extended to ω = 0.

5.2.2 Transmission eigenvalue problem for the unit ball

The exact eigenvalues of the transmission eigenvalue problem for the unit ball can be
determined by the Mie series method [4, Chapt. 4]. A number ω ∈ C is an eigenvalue if it
satisfies either

h
(1)
n (δ2ω) + δ2ωh

(1)′
n (δ2ω)

h
(1)
n (δ2ω)

=
ε2
ε1

jn(δ1ω) + δ1ωj
′
n(δ1ω)

jn(δ1ω)
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Figure 3: Transmission eigenvalue problem for the unit cube: Computed eigenvalues of the
transmission eigenvalue problem by the contour integral method for h = 0.177.

h |ω1 − ω1,h| eoc |ω2 − ω2,h| eoc |ω3 − ω3,h| eoc |ω4 − ω4,h| eoc

0.707 6.38e-2 - 8.67e-2 - 9.92e-2 - 8.56e-2 -
0.354 9.96e-3 2.68 1.40e-2 2.63 1.78e-2 2.50 2.10e-2 2.03
0.177 2.24e-3 2.15 3.18e-3 2.14 4.09e-3 2.12 4.95e-3 2.08
0.088 5.15e-4 2.11 7.37e-4 2.11 9.53e-4 2.10 1.16e-3 2.09

Table 4: Transmission eigenvalue problem for the unit ball: Error and experimental order
of convergence (eoc) of the four eigenvalues with smallest real part inside the ellipse.

or
h
(1)
n (δ2ω) + δ2ωh

(1)′
n (δ2ω)

h
(1)
n (δ2ω)

=
µ2

µ1

jn(δ1ω) + δ1ωj
′
n(δ1ω)

jn(δ1ω)
(39)

for some n ∈ N, where δi =
√
εiµi, i = 1, 2. In Tab. 4 the error and the experimental

convergence order for the approximation of the four eigenvalues ω1, . . . , ω4 are given which
have the smallest real part inside the ellipse ϕ(t) = c + a cos(t) + ib sin(t), t ∈ [0, 2π],
with c = 2.5, a = 2.7 and b = 0.5. The eigenvalues ωi, i = 1, . . . , 4, are solutions of the
equation (39) for n = i. The convergence order is compared to the cube of one order reduced
as expected since the sphere is approximated by flat triangles. Again, all eigenvalues inside
the ellipse are approximated with the right multiplicity and no spurious eigenvalues occur.

0 1 2 3 4 5
-0.5

0

0.5

Figure 4: Transmission eigenvalue problem for the unit ball: Computed eigenvalues by the
contour integral method for h = 0.177.
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[13] M. Durán, J.-C. Nédélec, and S Ossandón. An efficient Galerkin BEM to compute
high acoustic eigenfrequencies. J. Vib. Acoust., 131(3):(31001)1–9, 2009.

26



[14] I. Gohberg, S. Goldberg, and M. A. Kaashoek. Classes of Linear Operators. Vol. I.
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