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Robust discretization and solvers for elliptic optimal

control problems with energy regularization

Ulrich Langer∗, Olaf Steinbach†, Huidong Yang‡

Abstract

We consider the finite element discretization and the iterative solution of
singularly perturbed elliptic reaction-diffusion equations in three-dimensional
computational domains. These equations arise from the optimality condi-
tions for elliptic distributed optimal control problems with energy regulariza-
tion that were recently studied by M. Neumüller and O. Steinbach (2020).
We provide quasi-optimal a priori finite element error estimates which de-
pend both on the mesh size h and on the regularization parameter %. The
choice % = h2 ensures optimal convergence which only depends on the reg-
ularity of the target function. For the iterative solution, we employ an al-
gebraic multigrid preconditioner and a balancing domain decomposition by
constraints (BDDC) preconditioner. We numerically study robustness and
efficiency of the proposed algebraic preconditioners with respect to the mesh
size h, the regularization parameter %, and the number of subdomains (cores)
p. Furthermore, we investigate the parallel performance of the BDDC precon-
ditioned conjugate gradient solver.

Keywords: Elliptic optimal control problems, energy regularization,
finite element discretization, a priori error estimates, fast solvers

2010 MSC: 49K20, 49M41, 35J25, 65N12, 65N30, 65N55

1 Introduction

In the recent work [22], M. Neumüller and O. Steinbach have investigated regu-
larization error estimates for the solution of distributed optimal control problems
in energy spaces on the basis of the following model problem: Minimize the cost
functional

J (u%, z%) =
1

2

∫
Ω

[u%(x)− u(x)]2 dx+
%

2
‖z%‖2H−1(Ω) (1)

with respect to the state u% ∈ H1
0 (Ω) and the control z% ∈ H−1(Ω) subject to the

constraints
−∆u% = z% in Ω, u% = 0 on Γ, (2)

where u ∈ L2(Ω) represents the given desired state (target), and % ∈ R+ denotes
the regularization parameter. Here, the computational domain Ω ⊂ R3 is assumed
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to be a bounded Lipschitz domain with boundary Γ = ∂Ω. Note that

‖z%‖H−1(Ω) = ‖∇u%‖L2(Ω).

The associated adjoint state equation reads: Find the adjoint state p% ∈ H1
0 (Ω)

such that
−∆p% = u% − u in Ω, p% = 0 on Γ. (3)

Further, the associated gradient equation is given by the relation

p% + % u% = 0 in Ω. (4)

Using the gradient equation (4) for eliminating the adjoint state p% from (3), we
finally obtain the singularly perturbed reaction-diffusion equation

− %∆u% + u% = u in Ω, u% = 0 on Γ, (5)

for defining the state u%. Once the state u% is computed from (5), the adjoint state
p% is given by (4), and the control z% = −∆u% = %−1(u− u%) by (2) and (5).

The variational formulation of the Dirichlet boundary value problem (5) is to
find u% ∈ H1

0 (Ω) such that

%

∫
Ω

∇u%(x) · ∇v(x) dx+

∫
Ω

u%(x) v(x) dx =

∫
Ω

u(x) v(x) dx (6)

is satisfied for all v ∈ H1
0 (Ω). When assuming some regularity of the given target

u ∈ Hs
0(Ω) := [L2(Ω), H1

0 (Ω)]s for s ∈ [0, 1] or u ∈ H1
0 (Ω) ∩ Hs(Ω) for s ∈ (1, 2],

the following error estimate with respect to the regularization parameter % has been
shown in [22]:

‖u% − u‖L2(Ω) ≤ c %s/2 ‖u‖Hs(Ω). (7)

Moreover, in the case u ∈ H1
0 (Ω) ∩Hs(Ω) for s ∈ (1, 2], there also holds

‖∇(u% − u)‖L2(Ω) ≤ c %(s−1)/2 ‖u‖Hs(Ω). (8)

For %→ 0, the boundary value problem (5) belongs to a class of singularly perturbed
problems, see, e.g., [7]. For robust numerical methods to treat such problems, we
refer to the monograph [8].

In this paper, we investigate the errors ‖u%h − u‖L2(Ω) and ‖∇(u%h − ū)‖L2(Ω)

of the finite element approximation u%h to the target u in terms of both the reg-
ularization parameter % and the discretization parameter h. The error estimate is
based on the estimates (7) and (8), and well-known finite element discretization
error estimates. It turns out that the choice % = h2 gives the optimal convergence
rate O(h2) for continuous, piecewise linear finite elements. Moreover, we consider
iterative methods for the solution of the linear system of algebraic equations that
arise from the Galerkin finite element discretization of the variational problem (6),
which are robust with respect to the mesh size h and the regularization parame-
ter %. Such solvers have been addressed in many works. For example, geometric
multigrid methods, which are robust with respect to the mesh size h and the pa-
rameter % in the case of standard Galerkin discretization methods, were analyzed in
[25], based on the convergence rate min{1, h2/%} in the L2 norm as provided in [28].
The parameter independent contraction number of the multigrid method is achieved
by a combination of such a deteriorate approximation property with an improved
smoothing property. Robust and optimal algebraic multilevel (AMLI) methods for
reaction-diffusion type problems were studied in [14]. Therein, a uniformly con-
vergent AMLI method with optimal complexity was shown using the constant in
the strengthened Cauchy-Bunyakowski-Schwarz inequality computed for both mass

2



and stiffness matrices. Robust block-structured preconditioning on both piecewise
uniform meshes and graded meshes with boundary layers has been considered in
[19, 23] in comparison with standard robust multigrid preconditioners. The new
block diagonal preconditioner was based on the partitioning of degrees of freedom
into those on the corners, edges, and interior points, respectively. The perturbation
parameter independent condition number of the preconditioned linear system using
diagonal and incomplete Cholesky preconditioning methods for singularly perturbed
problems on layer-adapted meshes has been recently shown in [24]. Considering the
adaptive finite element discretization on simplicial meshes with local refinements,
we employ an algebraic multigrid (AMG) preconditioner [4, 5, 27] and the balancing
domain decomposition by constraints (BDDC) preconditioner [6, 20, 21] for solving
the discrete system. We make performance studies of the preconditioned conjugate
gradient (PCG) method that uses these AMG and BDDC preconditioners. In par-
ticular, the BDDC preconditioned conjugate gradient solver shows excellent strong
scalability.

The reminder of the paper is organized as follows: Section 2 deals with the finite
element discretization of the equation (5). In Section 3, we describe both the AMG
and BDDC preconditioners that are used in solving the system of finite element
equations. Numerical results are presented and discussed in Section 4. Finally,
some conclusions are drawn in Section 5.

2 Discretization

To perform the finite element discretization of the variational form (6), we introduce
conforming finite element spaces Vh ⊂ H1

0 (Ω). Particularly, we use the standard
finite element space Vh = S1

h(Ωh) ∩ H1
0 (Ω) spanned by continuous and piecewise

linear basis functions. These functions are defined with respect to some admissible
decomposition Th(Ω) of the domain Ω into shape regular simplicial finite elements
τ`, and are zero on Γ. Here, Ωh =

⋃
` τ `, and h denotes a suitable mesh-size

parameter, see, e.g., [3, 29]. Then the finite element approximation of (6) is to find
u%h ∈ Vh such that

%

∫
Ω

∇u%h(x) · ∇vh(x) dx+

∫
Ω

u%h(x) vh(x) dx =

∫
Ω

u(x) vh(x) dx (9)

for all test functions vh ∈ Vh.
In [22], the convergence of u% towards the target u, and the error estimates

(7) and (8) were proved. In the numerical experiments, presented in [22], u% was
computed on a very fine grid to minimize the influence of the discretization. Now
we are going to investigate the effects of the finite element discretization, and the
final aim is to provide estimates of the errors ‖u%h−u‖L2(Ω) and ‖∇(u%h−u)‖L2(Ω)

in terms of both % and h for sufficiently smooth target functions u.

Theorem 1. Let us assume that Ω ⊂ R3 is convex, and that the target function
satisfies u ∈ H1

0 (Ω) ∩H2(Ω). Then there are positive constants C0, C1, C2 and C3

such that the error estimates

‖u%h − u‖2L2(Ω) ≤
(
C0h

4 + C1%h
2 + C2%

2
)
‖u‖2H2(Ω) (10)

and
‖∇(u%h − u)‖2L2(Ω) ≤

(
C0h

4%−1 + C1h
2 + C3%

)
‖u‖2H2(Ω) (11)

hold. For the choice % = h2, we therefore have

‖u%h − u‖L2(Ω) ≤ c h2 ‖u‖H2(Ω) and ‖∇(u%h − u)‖L2(Ω) ≤ c̃ h ‖u‖H2(Ω).
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Proof. When subtracting the Galerkin variational formulation (9) from (6) for test
functions vh ∈ Vh this gives the Galerkin orthogonality

%

∫
Ω

∇(u% − u%h) · ∇vh dx+

∫
Ω

(u% − u%h) vh dx = 0 ∀vh ∈ Vh.

Therefore,

% ‖∇(u% − u%h)‖2L2(Ω) + ‖u% − u%h‖2L2(Ω)

= %

∫
Ω

∇(u% − u%h) · ∇(u% − u%h) dx+

∫
Ω

(u% − u%h) (u% − u%h) dx

= %

∫
Ω

∇(u% − u%h) · ∇(u% − vh) dx+

∫
Ω

(u% − u%h) (u% − vh) dx

≤ % ‖∇(u% − u%h)‖L2(Ω)‖∇(u% − vh)‖L2(Ω) + ‖u% − u%h‖L2(Ω)‖u% − vh‖L2(Ω)

≤
√
% ‖∇(u% − u%h)‖2L2(Ω) + ‖u% − u%,h‖2L2(Ω)

·
√
% ‖∇(u% − vh)‖2L2(Ω) + ‖u% − vh‖2L2(Ω)

follows, i.e., we have Cea’s estimate

% ‖∇(u% − u%h)‖2L2(Ω) + ‖u% − u%h‖2L2(Ω) ≤ % ‖∇(u% − vh)‖2L2(Ω) + ‖u% − vh‖2L2(Ω)

for all vh ∈ Vh. Inserting the Lagrangian interpolation vh = Ihu% of u%, and using
standard interpolation error estimates, we arrive at the error estimate

% ‖∇(u% − u%h)‖2L2(Ω) + ‖u% − u%h‖2L2(Ω) ≤ c1 % h
2 |u%|2H2(Ω) + c2 h

4 |u%|2H2(Ω)

=
[
c1 %+ c2 h

2
]
h2 |u%|2H2(Ω), (12)

where the positive constants c1 and c2 are nothing but the constants in the H1 and
L2 interpolation error estimates; see, e.g., [3, 29]. Note that, under the assumptions
made, we have u% ∈ H1

0 (Ω) ∩H2(Ω). Due to

−%∆u% = u− u%,

we now conclude

|u%|2H2(Ω) ≤ c3
1

%2
‖u− u%‖2L2(Ω) (13)

with the positive H2 coercivity constant c3. Since we assume u ∈ H1
0 (Ω) ∩H2(Ω),

we can use (7) for s = 2, i.e.,

‖u− u%‖L2(Ω) ≤ c4 % ‖u‖H2(Ω). (14)

For less regular u, we have a reduced order in %; see Theorem 3.2 in [22] as well as
(7). Combining (13) and (14), we get

|u%|2H2(Ω) ≤ c3c
2
4 ‖u‖2H2(Ω). (15)

Inserting (15) into (12) this gives

% ‖∇(u% − u%h)‖2L2(Ω) + ‖u% − u%h‖2L2(Ω) ≤ c3c
2
4

[
c1 %+ c2 h

2
]
h2 ‖u‖2H2(Ω).

Using the triangle inequality, and again (14), we arrive at

‖u%h − u‖2L2(Ω) ≤
[
‖u%h − u%‖L2(Ω) + ‖u% − u‖L2(Ω)

]2
≤ 2

[
‖u%h − u%‖2L2(Ω) + ‖u% − u‖2L2(Ω)

]
≤ 2 c3c

2
4

[
c1 %+ c2 h

2
]
h2 ‖u‖2H2(Ω) + 2c24 %

2 ‖u‖2H2(Ω),
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that is nothing but (12) with C0 = 2c2c3c
2
4, C1 = 2c1c3c

2
4, and C2 = 2c24.

Moreover, we also have

‖∇(u% − u%h)‖2L2(Ω) ≤ c3c
2
4

[
c1 %+ c2 h

2
]
h2 %−1 ‖u‖2H2(Ω).

Now, using (8) for s = 2, we finally obtain

‖∇(u%h − u)‖2L2(Ω) ≤
[
‖∇(u%h − u%)‖L2(Ω) + ‖∇(u% − u)‖L2(Ω)

]2
≤ 2

[
‖∇(u%h − u%)‖2L2(Ω) + ‖∇(u% − u)‖2L2(Ω)

]
≤ 2 c3c

2
4

[
c1 %+ c2 h

2
]
h2 %−1 ‖u‖2H2(Ω) + 2c25 % ‖u‖2H2(Ω),

which is (11) with C3 = 2c25.

The finite element space Vh = span{ϕ1, . . . , ϕNh
} is spanned by the standard nodal

Courant basis functions {ϕ1, . . . , ϕNh
}. Once the basis is chosen, the finite element

scheme (9) is equivalent to the system of finite element equations

Au = f, (16)

where the system matrix A = %K + M consists of the scaled stiffness matrix K
and the mass matrix M , respectively. The matrix entries and the entries of the
right-hand side f are defined by

Kij =

∫
Ω

∇ϕj · ∇ϕi dx, Mij =

∫
Ω

ϕj ϕi dx, fi =

∫
Ω

uϕi dx

for i, j = 1, . . . , Nh. The solution u = (uj) ∈ RNh of (16) contains the unknown
coefficients of the finite element solution

u%h =

Nh∑
j=1

ujϕj ∈ Vh

of (9). Robust and fast iterative solvers for (16) will be considered in the next
section.

3 AMG and BDDC Preconditioners

In this section, we present two precondioners that lead to robust and efficient solvers
for the system (16) of finite element equations when applying a preconditioned
conjugate gradient algorithm. The BDDC preconditioner is especially suited for
parallel computers.

3.1 The AMG preconditioner

In constrast to geometric multigrid methods, e.g, [10], usually relying on underlying
hierarchical meshes, algebraic multigrid methods [4, 5, 27, 34] are more flexible with
respect to complex geometries, adaptive mesh refinements, and so on. We refer to
[9] for a comparison between these two methods. In this work, the particular AMG
preconditioner developed in [13] in combination with the conjugate gradient (CG)
method is adopted to solve the discrete system. This AMG method was originally
developed for second-order elliptic problems. It has been extended to act as a
robust preconditioner to systems arising from the discretization of coupled vector
field problems, e.g., to fluid and elasticity problems in fluid-structure interaction
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solvers [17, 35]. More recently, in [31], by choosing a proper smoother [26], it was
also used as a preconditioner for the non-symmetric and positive definite system
that arises from the Petrov-Galerkin space-time finite element discretization of the
heat equation [30].

In this AMG method, the coarsening strategy is based on a simple red-black
colouring algorithm [13, Algorithm 2]: Pick up an unmarked degree of freedom
(Dof), and mark it black (coarse); all neighboring Dofs are marked in red (fine);
repeat this procedure until all Dofs are visited. Afterwards, the fine Dofs (red)
are interpolated by an average over their neighboring coarse Dofs (black), which
defines a linear interpolation operator P . The coarse grid operator is constructed
by Galerkin’s method, i.e., Ac = P>AP . Assume that we apply m pre- and post-
smoothing steps, the iteration operator for the two grid method is given by

Mamg := Sm(I − PA−1
c P>A)Sm,

where S is the iteration matrix for a smoothing step. For such a symmetric and
positive definite system, one sweep of the symmetric Gauss–Seidel method is used,
that is, one forward on the down cycle together with one backward on the up cycle.
Then, we may formulate the two-grid preconditioner PAMG as follows (with m = 1):

P−1
AMG := SPA−1

c P>S. (17)

Note that, in the coarse grid correction step, one may apply AMG recursively; see
[4, 5, 27], i.e., we replace A−1

c by AMG iterations starting with a zero initial guess.
In connection with optimal control problems as considered in this paper, we are
especially interested in small % ∈ (0, 1]. When %→ 0, the mass matrix M becomes
dominant in A. For the mass matrix, the condition number is O(1), which even
makes the system easier to solve as observed from our numerical tests.

3.2 The BDDC preconditioner

For the (two-level) BDDC preconditioner, we first make a reordering of the system
(16), i.e.,

Ãũ = f̃ , (18)

where

Ã :=

[
ÃII ÃIC

ÃCI ÃCC

]
, ũ :=

[
ũI
ũC

]
, f̃ :=

[
f̃I
f̃C

]
, and ÃII = diag

[
Ã1

II , ..., Ã
p
II

]
.

Here, p represents the number of polyhedral subdomains Ωi, as well as the number of
cores. These subdomains Ωi are obtained from the graph partitioning tool [12] and
a non-overlapping domain decomposition of Ω [32]. Following common notations,
the degrees of freedom in (18) are respectively decomposed into internal (I) and
interface (C) Dofs. Then, we arrive at the following Schur complement system
which is defined on the interface ΓC :

SC ũC = g, (19)

where
SC := ÃCC − ÃCIÃ

−1
II ÃIC , g := f̃

C
− ÃCIÃ

−1
II f̃ I .

Now, following similar notations as in [6, 11, 20, 21], the BDDC preconditioner
PBDDC for (19) is formed as

P−1
BDDC = R>C(Tsub + T0)RC ,
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where the operator RC represents the direct sum of restriction operators Ri
C that

map the global interface vector to its components on a local interface Γi := ∂Ωi∩ΓC

with a proper scaling. Furthermore, the coarse level correction operator T0 is defined
by

T0 = Φ(Φ>SCΦ)−1Φ>, (20)

where Φ =
[
(Φ1)>, . . . , (ΦN )>

]>
is the matrix of the coarse level basis functions.

Each basis function matrix Φi on the subdomain interface Γi is computed by solving
the augmented system: [

Si
C

(
Ci
)>

Ci 0

] [
Φi

Λi

]
=

[
0
Ri

Π

]
, (21)

where Si
C is nothing but the local Schur complement, Ci denotes the given primal

constraints of the subdomain Ωi, and each column of Λi contains the vector of
Lagrange multipliers. The number of columns of each Φi is equal to the number
of global coarse level degrees of freedom, usually living on the subdomain corners,
and/or interface edges, and/or faces. Moreover, the restriction operator Ri

Π maps
the global interface vector in the continuous primal variable space on the coarse
level to its component on Γi. We mention that these corners/edges/faces on the
coarse space may be characterized as objects from a pure algebraic manner; see,
e.g., [1]. We have recently used this abstract method in [18] for constructing BDDC
preconditioners in solving the linear system that arises from the space-time finite
element discretization of parabolic equations [15].

The subdomain correction operator Tsub is then defined as

Tsub =

N∑
i=1

[
(Ri

C)> 0
] [Si

C

(
Ci
)>

Ci 0

]−1 [
Ri

C

0

]
,

with vanishing primal variables on all the coarse levels. Here, the restriction oper-
ator Ri

C maps global interface vectors to their components on Γi. Note that this
two-level method can be extended to a multi-level method when the coarse problem
becomes too large; see, e.g., [2, 36]. This means that we may apply the BDDC
method to the inversion of Φ>SCΦ in the coarse problem (20) recursively.

4 Numerical experiments

In all numerical examples presented in this section, we consider the unit cube
Ω = (0, 1)3 as computational domain. In the first example, we choose a smooth
target, whereas a discontinuous target is used in the second example. The first
example is covered by Theorem 1, the second not. Finally, we consider an example
with a smooth target that violates the homogeneous Dirichlet boundary conditions.
The system (16) of finite element equations is solved by a preconditioned conjugate
gradient (PCG) method with both AMG and BDDC preconditioners. The PCG
iteration is stopped when the relative residual error of the preconditioned system
reaches ε = 10−8. In the AMG method, we have applied one V -cycle multigrid
preconditioner with one pre- and post-smoothing step, respectively. We run the
AMG preconditioned CG on the shared memory supercomputer MACH-21. The
BDDC preconditioned CG is performed on the high-performance distributed mem-
ory computing cluster RADON-12.

1https://www3.risc.jku.at/projects/mach2/
2https://www.ricam.oeaw.ac.at/hpc/
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4.1 Smooth target

In the first example, we consider the smooth function

ū(x1, x2, x3) = −%∆u% + u% = sin(πx1) sin(πx2) sin(πx3)

as target, which was computed from the manufactured solution

u%(x1, x2, x3) = (3%π2 + 1)−1 sin(πx1) sin(πx2) sin(πx3)

of the reduced optimality equation (5). Then the adjoint state

p%(x1, x2, x3) = −u%(x1, x2, x3)

%(3%π2 + 1)
= − 1

%(3%π2 + 1)
sin(πx1) sin(πx2) sin(πx3)

results from the gradient equation, and the optimal control

z%(x1, x2, x3) = −∆u%(x1, x2, x3) =
3π2

3%π2 + 1
sin(πx1) sin(πx2) sin(πx3)

from the state equation. To check the convergence in the L2(Ω) and H1(Ω) norms,
we first compute the discretization errors ‖u% − u%h‖L2(Ω) and ‖∇(u% − u%h)‖L2(Ω)

for finer and finer mesh sizes h and 6 different values of the regularization parameter
%; see Table 1 and Table 2, respectively. Since the given solution u% is smooth, we
observe optimal convergence rates with respect to the mesh size h. Furthermore,
the convergence does not deteriorate with respect to the regularization parameter %.
In Table 3, we numerically study the convergence of the approximation u%h to the
target ū in the L2(Ω) norm for decreasing % by choosing h = %1/2 as predicted by
Theorem 1. From Table 3, we clearly see a second-order convergence. We further
observe a second-order convergence in the H−1(Ω) norm; see also [22, Table 5].

h
%

100 eoc 10−2 eoc 10−4 eoc

2−2 3.1863e−3 3.7710e−2 3.9112e−2
2−3 9.0214e−4 1.82 8.9461e−3 2.08 8.5855e−3 2.19
2−4 2.2924e−4 1.98 2.1970e−3 2.03 2.0370e−3 2.08
2−5 5.7222e−5 2.00 5.5283e−4 1.99 5.0177e−4 2.02
2−6 1.4301e−5 2.00 1.4011e−4 1.98 1.2727e−4 1.98
2−7 3.5796e−6 2.00 3.5473e−5 1.98 3.2775e−5 1.96
2−8 8.9633e−7 2.00 8.9566e−6 1.99 8.4684e−6 1.95

h
%

10−6 eoc 10−8 eoc 10−10 eoc

2−2 3.9223e−2 3.9224e−2 3.9224e−2
2−3 8.6079e−3 2.19 8.6082e−3 2.19 8.6082e−3 2.19
2−4 2.0355e−3 2.08 2.0356e−3 2.08 2.0356e−3 2.08
2−5 4.9380e−4 2.04 4.9381e−4 2.04 4.9381e−4 2.04
2−6 1.2136e−4 2.02 1.2133e−4 2.03 1.2133e−4 2.03
2−7 3.0081e−5 2.01 3.0021e−5 2.01 3.0021e−5 2.01
2−8 7.5374e−6 2.00 7.4604e−6 2.01 7.4619e−6 2.01

Table 1: Example 4.1: Error ‖u%−u%h‖L2(Ω) with respect to h (columns), and fixed,
but different % (rows).

Table 4 provides the number of AMG preconditioned CG iterations, and the total
coarsening and solving time measured in second (s) with respect to h and %. From
these numerical results, it is clear to see the relative robustness of the AMG pre-
conditioner with respect to the mesh refinement and the decreasing regularization

8



h
%

100 eoc 10−2 eoc 10−4 eoc

2−2 3.2364e−2 8.2832e−1 1.1721e−0
2−3 1.71297e−2 0.92 4.1447e−1 1.00 5.5195e−1 1.09
2−4 8.6228e−3 0.99 2.0490e−1 1.02 2.6817e−1 1.04
2−5 4.3068e−3 1.00 1.0187e−1 1.01 1.3232e−1 1.02
2−6 2.1527e−3 1.00 5.0859e−2 1.00 6.5832e−2 1.00
2−7 1.0771e−3 1.00 2.5439e−2 1.00 3.2889e−2 1.00
2−8 5.3905e−4 1.00 1.2731e−2 1.00 1.6453e−2 1.00

h
%

10−6 eoc 10−8 eoc 10−10 eoc

2−2 1.1781e−0 1.1781e−0 1.1781e−0
2−3 5.5443e−1 1.09 5.5446e−1 1.09 5.5446e−1 1.09
2−4 2.7032e−1 1.04 2.7036e−1 1.04 2.7036e−1 1.04
2−5 1.3392e−1 1.01 1.3397e−1 1.01 1.3397e−1 1.01
2−6 6.6689e−2 1.01 6.6787e−2 1.00 6.6789e−2 1.00
2−7 3.3237e−2 1.00 3.3367e−2 1.00 3.3369e−2 1.00
2−8 1.6566e−2 1.00 1.6683e−2 1.00 1.6687e−2 1.00

Table 2: Example 4.1: Error ‖∇(u% − u%h)‖L2(Ω) with respect to h (columns), and
fixed, but different % (rows).

% ‖ū− u%h‖2H−1(Ω) eoc ‖ū− u%h‖2L2(Ω) eoc

100 3.54886e−3 1.16966e−1
10−1 2.11939e−3 0.22 6.98529e−2 0.22
10−2 1.97952e−4 1.03 6.52427e−3 1.03
10−3 3.13686e−6 1.80 1.03388e−4 1.80
10−4 3.30578e−8 1.98 1.08962e−6 1.98

Table 3: Example 4.1: Errors ‖ū− u%h‖2H−1(Ω) and ‖ū− u%h‖2L2(Ω)

for ū ∈ H1
0 (Ω) ∩H2(Ω).

parameter %. The computational time scales well with respect to the number of
unknowns. In Table 5, we study the robustness with respect to % and parallel per-
formance (strong scaling) of the BDDC preconditioned CG solver. So, we fix the
total number of unknowns to #Dofs = 2, 146, 689 that is related to h = 1/128. We
observe that the numbers of BDDC iterations are rather stable with respect to the
number of subdomains p, and the varying regularization parameter %. Further, we
observe perfect strong scalability (checking each row). Over-scaling from 32 to 64
cores may result from heterogeneity of the cluster, larger memory consumption for
small number of cores, or the shared node resources with other users.

4.2 Discontinuous target

In the second example, we consider a discontinuous target function

ū(x) =

{
1 for x ∈ (0.25, 0.75)3

0 for x ∈ Ω \ (0.25, 0.75)3,
(22)

that is similar to the first example in [22]. In this case, we solve the equation
on adaptively refined meshes that are driven by a residual based error indicator
[33]. This leads to a lot of local refinements near the interface where the target
is discontinuous. The energy regularization leads to a control that concentrates
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%
h 1

8
1
16

1
32

1
64

1
128

1
256

100 8 (0.01 s) 10 (0.06 s) 12 (0.72 s) 14 (8.29 s) 17 (127.06 s) 20 (1420.73 s)
10−2 6 (0.01 s) 8 (0.05 s) 9 (0.56 s) 11 (6.83 s) 13 (94.28 s) 15 (910.77 s)
10−4 5 (0.00 s) 4 (0.04 s) 4 (0.38 s) 5 (4.51 s) 7 (65.85 s) 8 (646.14 s)
10−6 5 (0.00 s) 5 (0.04 s) 5 (0.41 s) 5 (4.46 s) 4 (52.90 s) 4 (499.10 s)
10−8 5 (0.00 s) 5 (0.04 s) 5 (0.41 s) 5 (4.46 s) 5 (57.59 s) 5 (530.97 s)

10−10 5 (0.00 s) 5 (0.04 s) 5 (0.41 s) 5 (4.43 s) 5 (57.04 s) 5 (560.33 s)
10−12 5 (0.00 s) 5 (0.04 s) 5 (0.41 s) 5 (4.42 s) 5 (54.63 s) 5 (603.02 s)

Table 4: Example 4.1: Number of AMG preconditioned CG iterations, total coars-
ening and solving time measured in second (s), with respect to h and %.

%
p

32 64 128 256

100 34 (46.43 s) 34 (16.04 s) 35 (5.92 s) 36 (2.98 s)
10−2 32 (43.84 s) 32 (15.20 s) 33 (5.58 s) 34 (2.70 s)
10−4 27 (37.20 s) 27 (13.12 s) 28 (4.85 s) 30 (2.39 s)
10−6 20 (28.01 s) 20 (9.77 s) 22 (3.83 s) 22 (1.87 s)
10−8 20 (28.15 s) 20 (9.75 s) 21 (3.65 s) 21 (1.76 s)

10−10 20 (28.02 s) 20 (9.69 s) 21 (3.63 s) 21 (1.74 s)
10−12 20 (28.01 s) 20 (9.71 s) 21 (3.69 s) 21 (1.67 s)

Table 5: Example 4.1: Number of iterations, and time measured in second (s) for
the BDDC preconditioned CG solver, where h = 1/128 and #Dofs = 2, 146, 689.

on the interface. As an illustration, we visualize the adaptive mesh, the state
u%h, and the control z%h in Fig. 1, which are comparable to the results in [22,
Fig. 3]. Moreover, we provide the convergence of the approximation u%h to the
target ū with respect to the regularization parameter % in Table 6, i.e., an order√

1.5 for the approximation in H−1(Ω) and
√

0.5 in L2(Ω). In this case, since
ū ∈ H1/2−ε(Ω), we obtain reduced convergence of the finite element approxima-
tion to the target; see also [22, Table 1]. Due to adaptive refinements for different
regularization parameters % = 10k, k = 0,−1, . . . ,−6, the final meshes may con-
tain different number of degrees of freedom. In Fig. 2, we visualize the number
of AMG preconditioned CG iterations (left plot) and the computational time in
seconds (right plot) for different values of % during the adaptive refinement proce-
dure. We observe that the AMG preconditioned CG iterations stay in a small range
between 5 and 25; the computational time scales well with respect to the number
of unknowns. To compare the performance of BDDC preconditioners with respect
to an adaptive refinement, we select similar numbers of Dofs for all regulariza-
tion parameters, i.e., #Dofs=2,210,254 (% = 100), #Dofs=2,278,661 (% = 10−1),
#Dofs=2,537,773 (% = 10−2), #Dofs=1,853,354 (% = 10−3), #Dofs=1,301,825
(% = 10−4), #Dofs=1,910,829 (% = 10−5), and #Dofs=1,895,056 (% = 10−6). In
Table 7, we present the number of BDDC preconditioned CG iterations, and the
corresponding solving time, measured in second (s), with respect to the number of
subdomains p and the regularization parameter %. For such adaptive meshes, we
observe relatively good performance in both the number of BDDC preconditioned
CG iterations and the computational time, as well as good strong scalability with
respect to the number of subdomains p.

4.3 Smooth target with non-zero boundary conditions

In the third example, we use the smooth target

ū(x1, x2, x3) = 1 + sin(πx1) sin(πx2) sin(πx3)

10



Figure 1: Example 4.2: Adaptive meshes at the 21th refinement step with 1, 895, 056
Dofs, u%h in Ω and on the cutting plane x3 = 0.5 (up), control in Ω, near the
interface, and on the line between [0, 0.5, 0.5] and [1, 0.5, 0.5] (down), % = 10−6.

% ‖ū− u%h‖2H−1(Ω) eoc ‖ū− u%h‖2L2(Ω) eoc

100 2.1308e−3 1.2018e−1
10−1 1.3401e−3 0.20 9.0747e−2 0.12
10−2 1.9101e−4 0.85 3.6563e−2 0.39
10−3 9.0010e−6 1.33 1.1894e−2 0.49
10−4 3.1821e−7 1.45 3.8028e−3 0.50
10−5 1.0474e−8 1.48 1.2075e−3 0.50
10−6 3.3491e−10 1.50 3.7988e−4 0.50

Table 6: Example 4.2: Errors ‖ū− u%h‖2H−1(Ω) and ‖ū− u%h‖2L2(Ω) of the approxi-

mations u%h to the target ū ∈ H1/2−ε(Ω).

considered in [22]. This target violates the homogeneous Dirichlet boundary con-
ditions. As in the previous example, we solve the equation on adaptively refined
meshes, which results in many local refinements near the boundary, where the con-
trol concentrates. For an illustration, we visualize the adaptive mesh, the state u%h,
and the control z%h in Fig. 3. Further, we observe the convergence order

√
1.5 for

the approximation in H−1(Ω), and
√

0.5 in L2(Ω) with respect to %; see Table 8.
Since ū ∈ C∞(Ω), but ū /∈ H1

0 (Ω), we only expect a reduced order of convergence
for this example; see also [22, Table 7]. In Fig. 4, for each %, we visualize the num-
ber of AMG preconditioned CG iterations (left plot) and the computational time
in seconds (right plot) during the adaptive refinement levels. The AMG precondi-
tioned CG iterations are in a small range between 1 and 20. The computational
time scales well with respect to the number of unknowns. To see the performance of
the BDDC preconditioner with respect to an adaptive refinement, we select similar
numbers of Dofs for all regularization parameters, i.e., #Dofs=2,146,491 (% = 100),
#Dofs=2,146,689 (% = 10−1), #Dofs=2,146,575 (% = 10−2), #Dofs=2,654,801
(% = 10−3), #Dofs=1,997,688 (% = 10−4), #Dofs=3,688,105 (% = 10−5), and

11



Figure 2: Example 4.2: Number of AMG preconditioned CG iterations (left)
and computational time in seconds (right) with respect to different % ∈
{100, 10−1, ...10−6}.

%
p

32 64 128 256 #Dofs

100 37 (60.77 s) 46 (24.34 s) 42 (8.20 s) 52 (5.02 s) 2, 210, 254
10−1 42 (66.85 s) 45 (24.85 s) 46 (9.28 s) 43 (4.64 s) 2, 278, 661
10−2 34 (60.06 s) 38 (23.86 s) 42 (9.75 s) 43 (4.79 s) 2, 537, 773
10−3 35 (40.92 s) 39 (15.35 s) 35 (5.12 s) 40 (3.23 s) 1, 853, 354
10−4 33 (16.79 s) 31 (6.30 s) 39 (3.17 s) 36 (1.53 s) 1, 301, 825
10−5 33 (17.63 s) 33 (7.65 s) 33 (3.28 s) 38 (1.88 s) 1, 910, 829
10−6 36 (18.30 s) 37 (8.42 s) 35 (3.31 s) 44 (1.93 s) 1, 895, 056

Table 7: Example 4.2: Number of BDDC preconditioned CG iterations, solving time
measured in second (s) with respect to the number of subdomains p (= number of
cores), regularization parameter %, and different adaptive meshes (#Dofs).

#Dofs=3,676,447 (% = 10−6). Table 9 presents the number of BDDC precondi-
tioned CG iterations, and solving times measured in second (s) with respect to the
number of subdomains p and the regularization parameter %. We again observe a
relatively good performance in both the number of BDDC preconditioned CG iter-
ations and the computational time, as well as good strong scalability with respect
to the number of subdomains p.

% ‖ū− u%h‖2H−1(Ω) eoc ‖ū− u%h‖2L2(Ω) eoc

100 3.5241e−2 1.5613e−0
10−1 2.1590e−2 0.21 1.0842e−0 0.16
10−2 2.5430e−3 0.93 3.2593e−1 0.52
10−3 8.8234e−5 1.46 9.5243e−2 0.53
10−4 2.7302e−6 1.51 3.0292e−2 0.50
10−5 8.5525e−8 1.50 9.6709e−3 0.50

Table 8: Example 4.3: Errors ‖ū− u%h‖2H−1(Ω) and ‖ū− u%h‖2L2(Ω) of the approxi-

mations u%h to the target ū ∈ C∞(Ω, ū /∈ H1
0 (Ω).
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Figure 3: Example 4.3: Adaptive meshes at the 12th refinement step with 3, 688, 306
Dofs, u%h in Ω and z%h in Ω (up); u%h and z%h along the line between [0, 0.5, 0.5]
and [1, 0.5, 0.5] (down), % = 10−6.

5 Conclusions

Using estimates for the error between the exact solution u% of the optimal control
problem (1) and the target u in terms of the regularization parameter %, derived
in [22], we have investigated the error between the finite element solution u%h and
the target u in terms of % and h. Furthermore, we have studied AMG and BDDC
preconditioned CG solvers for (adaptive) finite element equations arising from the
elliptic optimal control problem with energy regularization. Both preconditioners
have shown good performance with respect to (adaptive) mesh refinements and a
(decreasing) regularization parameter. Moreover, the BDDC preconditioner has
shown its strong scalability with respect to the number of subdomains on a dis-
tributed memory computer.

While in this paper we have considered a distributed control problem subject to
the Poisson equation, a related analysis can be done in the case of a parabolic heat
equation. These results will be published elsewhere, but see [16] for a space-time
discretization approach.
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