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Abstract. We consider tracking-type, distributed elliptic optimal con-
trol problems with standard L2 and more general energy regularizations.
We propose, analyze, and test new robust preconditioned iterative solvers
for systems of linear algebraic equations arising from the finite element
discretization of the reduced optimality systems defining the optimal so-
lution in the case of the optimal choice of the regularization parameter.
In particular, we study variable regularization parameters adapted to
the local behavior of the mesh-size that can heavily change in the case of
adaptive mesh refinements as required for discontinuous target functions.

Keywords: Elliptic optimal control problems · L2 regularization · en-
ergy regularization · finite element discretization · iterative solvers.

1 Introduction

In this paper, we consider elliptic optimal control problems of the form: find the
state y% ∈ Y = H1

0 (Ω) and the control u% ∈ U minimizing the cost functional

J(y%, u%) :=
1

2
‖y% − yd‖2L2(Ω) +

1

2
‖√% u%‖2U , (1)

subject to the elliptic boundary value problem

By% = u% in U ⊂ Y ∗ = H−1(Ω), (2)

where the computational domain Ω ⊂ Rd, with d ∈ {1, 2, 3}, is assumed to
be bounded and Lipschitz. We use the standard notations for Lebesgue and
Sobolev spaces. We emphasize that the regularization “parameter” % ∈ L∞(Ω)
can be a uniformly positive function. If % = constant > 0, then 1

2‖
√
% u%‖2U turns

into the usual Tikhonov-like regularization term %
2‖u%‖

2
U . Besides the standard
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L2 regularization where U = L2(Ω), we also consider the energy regularization
given by U = Y ∗; see [4] for more details. We take the Laplace operator −∆ as
model for the elliptic operator B : Y → Y ∗ defined by the variational identity

〈By, z〉 = (∇y,∇z)L2(Ω) :=

∫
Ω

∇y · ∇z dx ∀y, z ∈ Y, (3)

where 〈·, ·〉 : Y ∗ × Y → R is the duality pairing. The unique solvability of the
optimal control problem (1)-(2) follows from standard arguments; see, e.g., [7].

The optimal solution to (1)-(2) can be found by solving the first-order opti-
mality system that is nothing but a system of coupled PDEs. The finite element
(fe) discretization of the reduced (after elimination of the control u%) optimality
system leads to a symmetric, but indefinite system of the form: find the fe nodal
vectors (ph,yh) ∈ RNh=nh+nh , representing the fe approximations to the adjoint
p% and the state y%, such that[

A%h Kh

K>h −Mh

] [
ph
yh

]
=

[
0h
−ydh

]
, (4)

where the stiffness matrix Kh, the mass matrix Mh, and the regularization ma-
trix A%h are symmetric and positive definite (spd), and ydh ∈ Rnh is the fe load
vector representing the desired state yd. In the standard case of a constant posi-
tive regularization parameter %, the regularization matrix A%h equals %−1Mh for
the L2 regularization and %−1Kh for the energy regularization. In the case of a
variable regularization parameter %(x), we have A%h = M%h (L2 regularization)
and A%h = K%h (energy regularization) defined by the variational identities

(M%hvh,wh) = (%−1vh, wh)L2(Ω) and (K%hvh,wh) = (%−1∇vh,∇wh)L2(Ω) (5)

for all vh and wh ∈ Rnh , and the corresponding fe functions vh and wh from
the fe space Ph = Yh = Vh ⊂ P = Y = V = H1

0 (Ω) spanned by the fe
basis functions ϕh1, . . . , ϕhnh

, where (·, ·) denotes the Euclidean inner product.
Here we only consider continuous, piecewise affine-linear basis functions on a
shape-regular triangulation Th of Ω, where h is a suitably chosen discretization
parameter such that nh = O(h−d). We mention that the system (4) turns into
an equivalent positive definite, but nonsymmetric (block-antisymmetric) system
when the second block-row of (4) is multiplied by (-1). Further, eliminating the
fe adjoint state ph from (4), we arrive at the Schur-complement system: find the
fe state yh ∈ Rnh such that

S%hyh = ydh (6)

with the spd Schur-complement matrix S%h = KhA
−1
%hKh +Mh. Therefore, sys-

tem (6) can be solved by the preconditioned conjugate gradient (PCG) method
provided that a good preconditioner is available. The matrix-by-vector multipli-
cation S%h ∗ yh, which is the basic operation in the PCG, always requires the
action of A−1%h , i.e. the solution of a system with the matrix A%h with high accu-
racy. This is a principle drawback of the Schur-complement approach. However,
in the case of the constant energy regularization, A−1%h = %K−1h , and, therefore,
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S%h = %Kh +Mh. A good preconditioner for %Kh +Mh will turn the PCG into
a perfect solver. In general, when we want to avoid the action of A−1%h , we can
directly solve the saddle-point problem (4) by some Krylov subspace iteration
method. There we only need preconditioners for S%h and not the application of
S%h. There is a huge amount of literature on efficient preconditioned solvers for
saddle-point systems like (4) in general; see, e.g., the survey papers [2, 8]. Special
h and % robust preconditioned iterative solvers for discrete (reduced) optimality
systems of the kind (4) in the case of the standard L2 regularization with a con-
stant regularization parameter % were investigated, e.g., in [10, 13]; see also [11]
and [1] for handling control and state constraints, and the references therein.

In this paper, we consider the case of the optimal choice of the regularization
parameter or function % with respect to the best approximation of the desired
state yd by the computed fe state y%h in the L2(Ω) norm. The first step to-
wards such estimates was made in [9] where ‖y% − yd‖L2(Ω) was estimated in
terms of % and the regularity of yd without any discretization. Then these es-
timates have been used in [5] and [4, 6] to show that the choices % = h4 and
% = h2 lead to asymptotically optimal estimates of ‖y%h − yd‖L2(Ω) for the L2

regularization and the energy regularization, respectively. These choices of the
regularization parameter imply that the mass matrix Mh is spectrally equiva-
lent to the Schur complement S%h in both cases; see [5]. Therefore, its diagonal
replacement diag(Mh) or the lumped version lump(Mh) can be used as simple
preconditioners for S%h. The adaption of the regularization parameter % to the
local (element) mesh size hτ for τ ∈ Th was studied in [4]. It was shown that
%(x) = h2τ for x ∈ τ again leads to best-balanced estimates of ‖y%h− yd‖L2(Ω) in
the case of the energy regularization. In the same paper numerical experiments
supported that the scaled mass matrix M%h is an efficient preconditioner for the
Schur complement S%h, but without any rigorous analysis. We mention that the
spectral analysis used in the case of a constant regularization parameter does
not work here. In the next section, we will provide a new rigorous analysis of the
spectral equivalence of the scaled mass matrix M%h and the Schur complement
S%h in the case of the popular L2 regularization. This result is the basis for the
construction of efficient solvers for (4) or even (6) when A%h = M%h.

2 Solvers in the Case of Optimal L2 Regularizations

Let us first recall the case of the L2 regularization with constant % = h4

that is the optimal choice when aiming at the best approximation of the de-
sired state yd by the computed fe state y%h with respect to the L2(Ω) norm.
Then A%h = M%h = %−1Mh, and, therefore, S%h = %KhM

−1
h Kh + Mh. Ex-

panding vectors vh =
∑nh

i=1 v
e
i ehi into the Mh-orthonormal eigenvector basis

eh1, . . . , ehnh
provided by the generalized eigenvalue problem Khehi = λhiMhehi

with (Mhehi, ehj) = δij and eigenvalues 0 < c
KM
≤ λh1 ≤ · · · ≤ λhnh

≤ cKMh
−2,

we get

(S%hvh,vh) = ((%KhM
−1
h Kh +Mh)vh,vh) =

nh∑
i=1

(%λ2hi + 1)(vei )
2,
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from which the spectral equivalence inequalities

c
SM
Mh ≤ S%h ≤ cSMMh, (7)

with c
SM

= 1 and cSM = c2KM + 1, immediately follow; see [5] for details.
Now let us consider the more interesting case of variable regularization pa-

rameters defined by

%(x) = h4τ for all x ∈ τ and for all τ ∈ Th. (8)

Then the regularization matrix A%h = M%h is defined by (5). It is well-known
that the mass matrix Mh is spectrally equivalent to Dh = diag(Mh) that is
nothing but the diagonal matrix with the same diagonal elements as Mh. The
same is true for the scaled mass matrix M%h.

Theorem 1. There are positive, and mesh-independent constants cMD and cMD

such that the spectral inequalities

c
MD
D%h ≤M%h ≤ cMDD%h (9)

hold, where D%h = diag(d1, . . . , dnh
) = diag(M%h).

Proof. Here we skip the proof. It is even easy to compute the constants on the
basis of the corresponding element matrices. ut

Due to the locally scaled mass matrix M%h, we cannot use the same approach for
estimating the Schur complement S%h by Mh from above as in the case % = h4.
Fortunately, we can prove the following spectral equivalence theorem by means
of another technique that allows localization.

Theorem 2. Let us assume that % = %(x) is chosen as in (8). Then the spectral
equivalence inequalities (7) hold with c

SM
= 1 and cSM = c + 1, where c is a

generic constant that does not depend on the mesh refinement but only on the
shape regularity parameters.

Proof. It is obviously sufficient to estimate (KhM
−1
%h Khvh,vh) from above. Us-

ing (9) and the fact that D%h is spd, we get the estimate

(KhM
−1
%h Khvh,vh) ≤ c−1

MD
(D−1%hKhvh,Khvh) = c−1

MD
‖D−1/2%h Khvh‖2. (10)

Now we proceed to represent ‖D−1/2%h Khvh‖ as follows:

‖D−1/2%h Khvh‖ = sup
wh∈Rnh

(D
−1/2
%h Khvh,wh)

‖wh‖
= sup

wh∈Rnh

(Khvh, D
−1/2
%h wh)

‖wh‖

= sup
wh∈Rnh

(∇vh,∇w̃h)L2(Ω)

‖wh‖
= sup

wh∈Rnh

∑
τ∈Th(∇vh,∇w̃h)L2(τ)

‖wh‖

= sup
wh∈Rnh

∑
τ∈Th(Kτvτ , D

−1/2
τ wτ )

‖wh‖
(11)

= sup
wh∈Rnh

∑
τ∈Th(D

−1/2
τ Kτvτ ,wτ )

‖wh‖
,
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where the fe function w̃h =
∑nh

i=1 d
−1/2
i wiϕhi ∈ Vh corresponds to the fe vector

D
−1/2
%h wh ∈ Rnh via the fe isomorphism, vτ ,wτ ∈ R|τ | are the corresponding

local fe vectors, Kτ is the |τ | × |τ | element stiffness matrix, and Dτ is the |τ | ×
|τ | diagonal matrix with diagonal entries from D%h corresponding to τ ∈ Th.
We mention that the supremum over wh ∈ Rnh always means wh ∈ Rnh \ {0h}.
Using the Cauchy-Schwarz inequality twice and

(∑
τ∈Th ‖wτ‖2

)1/2 ≤ cm‖wh‖
that follows from the shape regularity of the mesh (maximal number of simplicies
around the vertices) for estimating (11), we arrive at the estimate

‖D−1/2%h Khvh‖ ≤ sup
wh∈Rnh

(∑
τ∈Th ‖D

−1/2
τ Kτvτ‖2

)1/2 (∑
τ∈Th ‖wτ‖2

)1/2
‖wh‖

,

≤ cm

(∑
τ∈Th

‖D−1/2τ Kτvτ‖2
)1/2

. (12)

Using ‖D−1τ ‖ ≤ cDh4τh−dτ , ‖Kτ‖ ≤ cKhd−2τ , and c−1M hdτ (vτ ,vτ ) ≤ (Mτvτ ,vτ ), we
arrive at the estimates∑

τ∈Th

‖D−1/2τ Kτvτ‖2 =
∑
τ∈Th

(D−1τ Kτvτ ,Kτvτ )

≤
∑
τ∈Th

‖D−1τ ‖‖Kτ‖2‖vτ‖2

≤ cDc2K
∑
τ∈Th

h4τh
−d
τ (hd−2τ )2‖vτ‖2

= cDc
2
K

∑
τ∈Th

hdτ‖vτ‖2 ≤ cDc2KcM
∑
τ∈Th

(Mτvτ ,vτ )

= cDc
2
KcM(Mhvh,vh). (13)

We note that the positive constants cM, cD, and cK can be chosen globally due
to the shape regularity assumption. Combining (10), (11), (12), and (13), we get
the upper bound cSM = c+ 1 with c = c−1

MD
c2mcDc

2
KcM. The lower bound c

SM
= 1

is trivial. This concludes the proof of the theorem. ut

Remark 1. Theorem 2 even remains valid for nonsymmetric stiffness matricesKh

arising from the fe discretization of more general elliptic equations like diffusion-
convection-reaction equations. Indeed, we have to estimate (K>hM

−1
%h Khvh,vh) =

(M−1%h Khvh,Khvh) that can be done as in the proof of Theorem 2.

It is now clear from the spectral equivalence Theorems 1 and 2 that, in (7),
the mass matrix Mh can be replaced by a suitable diagonal approximation Dh

such as diag(Mh) or the lumped mass matrix lump(Mh).
Using these spectral equivalence results, we can now construct robust and

efficient preconditioned iterative Krylov subspace solvers like the preconditioned
MINRES or Bramble-Pasciak’s Preconditioned Conjugate Gradient (BP-PCG)



6 U. Langer et al.

tailored to symmetric, but indefinite systems like (4). In this paper, we focus on
the BP-PCG that was proposed in [3]; see also [12] for improved convergence
rate estimates. Thus, we consider a properly scaled diagonal approximation

D%h = δ diag(M%h) or D%h = δ lump(M%h)

such that (9) is valid with 1 < c
MD
≤ cMD, i.e. D%h < M%h as requested in

BP-PCG. We note that the positive scaling parameter δ can be easily calculated
on element level. Furthermore, we consider

Dh = diag(Mh) or Dh = lump(Mh) (14)

that are spectrally equivalent to S%h under the assumptions of Theorem 2. Then
the BP-PCG is nothing but the PCG applied to the spd system

Kh
[
ph
yh

]
=

[
0h
−ydh

]
, with Kh =

[
M%hD

−1
%h − I 0h

KhD
−1
%h −I

] [
M%h Kh

K>h −Mh

]
, (15)

which is equivalent to (4), with the preconditioner

Ph =

[
M%h −D%h 0h

0h Dh

]
. (16)

The BP-PCG converges with an h-independent rate in asymptotically optimal
complexity O(nh ln(ε−1)), where ε ∈ (0, 1) denotes a fixed relative accuracy with
respect to the preconditioned residual norm; see [3] and [12].

Alternatively, we can solve the spd Schur complement system (6), arising from
(4) when the term (%−1v, w)L2(Ω) is discretized by the lumped mass techniques
leading to A%h = lump(M%h), by means of the PCG method preconditioned by
Dh as defined in (14). This Schur complement PCG solver converges in optimal
complexity; see [5] for numerical results in the case of constant % = h4.

3 Numerical Results

We here focus on the three-dimensional (d = 3) case with the discontinuous
desired state yd(x) that is equal to 1 for x ∈ (0.25, 0.75)3 and 0 elsewhere, where
the computational domain Ω = (0, 1)3. Thus, the desired state yd is not con-
tained in the state space Y = H1

0 (Ω) and has a rather low regularity. More
precisely, yd ∈ H1/2−ε(Ω) for any ε > 0. The same example was already nu-
merically studied in [4] where the variable energy regularization was considered.
Here we focus on the variable L2 regularization in connection with the same
simple adaptive procedure as in [4]. This adaptive procedure will considerably
improve the accuracy in comparison with the uniform refinement. We expect
that the preconditioners presented in Section 2 lead to asymptotically optimal
and robust iterative solvers.

The domain Ω = (0, 1)3 is decomposed into uniformly refined tetrahedral
elements. The starting mesh contains 384 tetrahedral elements and 125 ver-
tices, leading to an initial mesh size h = 2−2. Our numerical tests are run-
ning on 8 uniformly refined mesh levels Li, i = 1, ..., 8. On the finest level,
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we have 135, 005, 697 vertices, 270, 011, 394 degrees of freedom (#Dofs), h =
2−9 = 1.9531e−3, and % = h4 = 2−36 = 1.4552e−11. For the tests performed on
the adaptive meshes, we have employed the conventional red-green refinement
of tetrahedral elements, and we have chosen the local regularization parameter
%τ = h4τ on each tetrahedral element τ . The comparison of convergence on both
uniform and adaptive refinements is illustrated in Figure 1, from which we easily
see that the adaptive refinement leads to a much better convergence rate h0.75

than the uniform one h0.5. In all numerical tests, we run the BP-PCG iterations
until the preconditioned residual is reduced by a factor 106. A comparison of the
number of iterations (Its) on both adaptive and uniform refinements is given in
Table 1. It is clearly observed that our preconditioner is robust with respect to
the mesh size and the local adaptivity under the choice %τ = h4τ .

Fig. 1. Comparison of convergence using uniform and adaptive refinements.

Level
Adaptive Uniform

#Dofs ‖yh − yd‖L2(Ω) Its #Dofs ‖yh − yd‖L2(Ω) Its

L1 250 3.28255e−1 12 250 3.28255e−1 12
L2 446 2.38883e−1 118 1, 458 2.30561e−1 99
L3 2, 102 1.90941e−1 171 9, 826 1.63827e−1 137
L4 9, 170 1.37227e−1 204 71, 874 1.15682e−1 141
L5 21, 620 1.07761e−1 202 549, 250 8.16986e−2 138
L6 65, 828 8.14778e−2 201 4, 293, 378 5.77278e−2 132
L7 223, 162 5.93121e−2 198 33, 949, 186 4.08032e−2 123
L8 330, 422 5.48633e−2 201 270, 011, 394 2.88463e−2 114
L9 1, 084, 164 4.01323e−2 199
L10 3, 891, 800 2.88341e−2 191
L11 4, 907, 338 2.77892e−2 208
L12 17, 034, 046 2.01781e−2 191
L13 51, 731, 508 1.47666e−2 186
L14 53, 049, 534 1.46249e−2 188
L15 234, 045, 680 1.01634e−2 181
Table 1. Comparison of the PB-PCG solver on both adaptive and uniform refinements.
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4 Conclusions

We have shown that the mass matrix Mh and, therefore, suitable diagonal rep-
resentations Dh such as diag(Mh) or lump(Mh) are robust preconditioners for
the Schur complement S%h in the case of the variable choice of the regularization
parameter %(x) = h4τ for x ∈ τ and for all τ ∈ Th. Together with a similar,
but appropriately scaled diagonal preconditioner D%h for M%h, the correspond-
ing BP-PCG is a robust and efficient solver for the reduced discrete optimality
system (4) in the case of both constant and variable L2 regularizations which
correspond to uniform and adaptive mesh refinements, respectively. These theo-
retical results are well supported by the numerical results. The numerical results
given in [4] show a similar behavior for the variable energy regularization, but
a rigorous analysis is still missing. Furthermore, in applications, these solvers
should be embedded in a nested iteration strategy.

References

1. Axelsson, O., Neytcheva, M., Ström, A.: An efficient preconditioning method for
state box-constrained optimal control problems. J. Numer. Math. 26(4), 185–207
(2018)

2. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta
Numer. 14, 1–137 (2005)

3. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems
resulting from mixed approximations of elliptic problems. Math. Comp. 50(181),
1–17 (1988)
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