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Abstract

The Boundary Element Tearing and Interconnecting (BETI) methods have recently been
introduced as boundary element counterparts of the well-established Finite Element Tearing
and Interconnecting (FETI) methods. In this paper we present inexact data—sparse versions
of the BETI methods which avoid the elimination of the primal unknowns and dense matrices.
The data-sparse approximation of the matrices and the preconditioners involved is fully based
on Fast Multipole Methods (FMM). This leads to robust solvers which are almost optimal
with respect to the asymptotic complexity estimates.

1 Introduction

[8] have recently introduced the BETI methods as boundary element counterparts of the well—
established FETI methods which were proposed by [3]. We refer the reader to the monograph
by [12] for more information and references to FETI and FETI-DP methods. In particular, we
mention the paper by [5] who introduced and investigated the inexact FETI technique that avoids
the elimination of the primal unknowns (displacements).

In this paper we introduce inexact BETI methods for solving the inhomogeneous Dirichlet bound-
ary value problem (BVP) for the homogeneous potential equation in 3D bounded domains, where
all matrices and preconditioners involved in the BETI solver are data-sparse via FMM repre-
sentations. However, instead of symmetric and positive definite systems, we finally have to
solve two—fold saddle point problems. The proposed iterative solver and preconditioner result
in an almost optimal solver the complexity of which is proportional to the numbers of un-
knowns on the skeleton up to some polylogarithmical factor. More precisely, the solver re-
quires O((H/h){D (1 + log(H/h))*loge™!) arithmetical operations in a parallel regime and
O((H/h)4D(1 + log(H/h))?) storage units per processor, where d = 3 in the 3D case con-
sidered here, and € € (0,1) is the relative accuracy of the iteration error in a suitable norm.
H and h denote the usual scalings of the subdomains and the boundary elements, respectively.
Moreover, the solvers are robust with respect to large coefficient jumps. For the sake of simplicity,
we present here only the case where all subdomains are non-floating. All results remain valid for
the general case that is discussed together with some other issues including other preconditioners
in the forthcoming paper by [6] where the reader can also find the proofs in detail.

The rest of the paper is organized as follows. In Section 2, we introduce the fast multipole boundary
element domain decomposition (DD) method. Section 3 is devoted to the inexact BETI method.
In Section 4, we describe the ingredients from which the preconditioner and the solver for the
two—fold saddle point problem that we finally have to solve is built. In Section 5, we present and
discuss the results of our numerical experiments. Finally, we draw some conclusions.



2 Fast Multipole Boundary Element DD Methods

Let us consider the Dirichlet BVP for the potential equation
—div[a(z)Vi(z)] =0forz € Q C R?, a(z) = g(z) forz € T = 99, (2.1)

with given Dirichlet data g € H'/ 2(T') as a typical model problem, where ) is a bounded Lipschitz
domain that is assumed to be decomposed into p non—overlapping subdomains ; with Lipschitz
boundaries I'; = 9Q;. We further assume that the coefficient function a(-) in the potential equation
(2.1) is piecewise constant such that a(x) =a; >0forz € Q;, i =1,...,p.

The solution 4 of (2.1) is obviously harmonic in all subdomains ;. Using the representation
formula and its normal derivative on I';, we can reformulate the BVP (2.1) as a DD boundary
integral variational problem living on the skeleton I's = UY_| T; of the DD, see [2] and [4]. After
homogenization of the Dirichlet boundary condition via the ansatz 4 = §+u with gir = g and ujr =
0, this DD boundary integral variational problem can be written as mixed variational problem of
form: find t = (t1,ta,...,t)) €T =Ty xTox...x T, = H'/2(T)) x H1/2(Ty) x ... x H-'/2(T))
and u € U = {vr, : v € Hj(Q)} such that

1 1 .
a; [(Ti,Viti)n - (Ti,(§I+Ki)U|r,-)F,-] = ai<Ti,(§I+ K3)gr,)r; (2.2)

forall ;, € T;,1=1,2,...,p, and

- p
1 A~
Zai [_<(5I+K’{)t"’v|“)ri - <Di“1"w”|1“i)n] = Zai<D‘ig|FiJv|Fi)Fi (2.3)
i=1

i=1

for all v € U, where V;, K;, K/, and D; denote the local single layer potential operator, the
local double layer potential operator, its adjoint, and the local hypersingular boundary integral
operator, respectively.

Let us now introduce the boundary element trial spaces U, = S} (I's) = span{ym}M_, C U and
T;n = SY(T;) = span{yi}n:, C T; spanned by continuous piecewise linear basis functions @y,
and by piecewise constant basis functions ¢} with respect to a regular globally quasi-uniform
boundary element mesh with the average mesh size h on I's and T';, respectively. The Galerkin
discretization finally leads to a large—scale symmetric and indefinite system of form

a1Vin —a1 K1 p Ry g t a1g,
- - : | = - (2.4)
- apVp,h_ —apKyp h By, t, g,
-aR| K, ... —aR) K, —Dy, u Ji

for defining the coefficient vectors ; € R™ and & € RM. The matrices Vi, K;p and Dy,
are data—sparse FMM approximations to the originally dense Galerkin matrices V; 5, K;p and
Dy, = Ele a,-Rz-T’hD,-,hR,-,h, respectively. The use of the FMM is indicated by the “tilde” on the
matrices and vectors. The FMM approximation of these matrices reduces the quadratic complexity
with respect to the number of unknowns to an almost linear one, but without disturbing the
accuracy. The restriction operator R; ) maps some global coefficient vector v € RM t0 the local
vector v; € IRMi containing those components of v which correspond to T; only, i = 1,2,...,p.
The matrices R;j are Boolean matrices which are sometimes also called subdomain connectivity
matrices.



3 Inexact BETI Methods

Introducing the local unknowns u; = R; pu as individual variables and enforcing again the global
continuity of the potentials by the constraints

P
i=1
we immediately arrive at the two—fold saddle point problem
V K 0 t g
K" —-D BT u|l=1|f (3.6)
0 B 0 A 0

that is obviously equivalent to (2.4), where t = (%;,... ,fp)T, u=(U,...,u,)", and A € R" is
the vector of the Lagrange multipliers. The matrices V = diag(aﬁ/i,h), K = diag(—aif(i,h) and
D = diag(a;D; ) are block-diagonal whereas B = (By,...,B,). As in the FETI method each
row of the matrix B is connected with a pair of matching nodes across the subdomain boundaries.
The entries of such a row are 1 and —1 for the indices corresponding to the matching nodes on the
interface (coupling boundaries) I'c = I's \ T" and 0 otherwise. We assume here that the number
of constraints at some matching node is equal to the number of matching subdomains minus one.
This method of a minimal number of constraints respectively multipliers is called non-redundant
(see, e.g., [12]). The matrices V;;, are symmetric and positive definite (SPD). For non—floating
subdomains assumed in this paper the matrices ﬁi,h are SPD as well. In the more complicated
case of floating subdomains, the matrices l~7,~,h must be modified due to the non-trivial kernel

ker(D; ) = span{l;}, where {1,} = (1,...,1)T, see [8] or [6].

4 Solvers and Preconditioners

Following [13], who extended the special conjugate gradient (CG) method proposed by [1] for
solving one—fold saddle point problems, to n—fold saddle point problems, we are able to construct a
very efficient saddle point conjugate gradient (SPCG) solver for our two—fold saddle point problem
(3.6) provided that appropriate precondtloners for the smgle layer potential matrices Vz n, the local
boundary element Schur complements Sz h= DZ h+K hV LK i,» and the BETI Schur complement
F = > a1 *1B S 1BT are available. We propose the following data—sparse preconditioners
which are also used in our numerical experiments:

1. Data—sparse algebraic or geometric multigrid preconditoners ﬁi,h for the matrices Vi,h: For
the geometric multigrid method, [7] proved the spectral equivalence inequalities

Qvﬂz’,h < ‘7},}1 < EVf}i,h (4.7)

where the spectral equivalence constants ¢y, and ¢y are positive and independent of h and
H.

2. Data—sparse opposite order preconditioners gi,h for the local boundary element Schur com-
plements S"i,h: In order to construct efficient preconditioners g‘i,h, we apply the concept of
boundary integral operators of the opposite order proposed by [11]. Based on the local
trial space U; , = S} (T';) of piecewise linear basis functions ¢!, as used for the Galerkin dis-
cretization of the local hypersingular boundary integral operators D;, we define the Galerkin
matrices Vz » and Mz n by

Vi,h[nvm] = (‘PZJV(Pinhn Mi,h[nam] = (‘Pi,:‘Pin)Fi



for m,n =1,..., M;. The inverse preconditioners are now defined by
Sip = M\ Vil fori=1,...,p, (4.8)

where the tilde on the top of V;  again indicates that the application of the discrete single
layer potential V; p, is realized by using the FMM. In [6] we prove the spectral equivalence
inequalities B B B

Qs(l + log(H/h))_zé‘i,h < S@h < Essi,h, (4.9)

where the spectral equivalence constants cg and ¢gs are positive and independent of h and
H. The log—term disappears in the case of floating subdomains.

3. Data—sparse BETI preconditioner F for the BETI Schur complements F: Following [8], we
define the inverse BETI preconditioner

P
Fin = (BC,*BY) 'Y " B,C,*D;nC, !B/ (BC,'B") . (4.10)

i=1

with the help of the local data—sparse discrete hypersingular operators 5,-,11 and the scaling
matrix Cy, = diag(C,,;). The definition of the diagonal matrices C, ; can be found in [12].
In [6], the spectral equivalence inequalities

cpF < F <ep(1+log(H/R))>F (4.11)

were proved, where the spectral equivalence constants cq and €g are positive and independent
of h, H and the a;’s (coefficients jumps). In the general case where non—floating as well as
floating subdomains are present in the DD, the spectral equivalence inequalities (4.11) remain
valid on an appropriate subspace.

Combining these spectral equivalence estimates with the results obtained by [13] and taking into
account the complexity estimate for the FMM, we can easily prove the following theorem.

Theorem 4.1 If the two—fold saddle point problem (3.6) is solved by the SPCG method where
the preconditioner is build from the block preconditioners 1~/i,h, g‘i,h, and F , then not more than
I(e) = O((1 + log(H/h))?loge™!) iterations and ops(c) = O((H/h)*(1 + log(H/h))*loge™)
arithmetical operations are required in order to reduce the initial error by the factor € € (0,1) in a
parallel regime. The number of iterations I(€) is robust with respect to the jumps in the coefficients.
Moreover, not more than O((H/h)?(1 + log(H/h))?) storage units are needed per processor.

The results of the theorem remain valid also in the general case where also floating subdomains
are present in the domain decomposition (see [6]). The proposed SPCG solver is asymptotically
almost optimal with respect to the complexity in arithmetic and storage as well as very efficient
on a parallel computer with distributed memory.

Remark 4.1 If we would use optimal preconditioners gi,h for the local boundary element Schur
complements gi,h, then the number of iteration I(¢) of our SPCG solver would behave like
O((1 + log(H/h))loge 1), whereas the arithmetical complezity would decrease from
O((H/h)? (1 +log(H/h))*loge 1) to O((H/h)*(1 +1og(H/h))*loge1). Such preconditioners are
available. If we convert the non—floating subdomains having a Dirichlet boundary part to floating
subdomains by including the Dirichlet boundary condition into the constraints, then the data—sparse
opposite order preconditioners S p, given above is optimal.



5 Numerical Results

Let us consider the unit cube which is subdivided into eight similar subdomains. In order to
check the behavior of the discretization error, we take the Dirichlet data g = 4 as the trace of a
regular solution 4 of the boundary value problem (2.1) on the boundary I'. We perform numerical
experiments for the Laplace equation (a; = 1 for all ¢ = 1,...,8) and for the potential equation
with large jumps in the coefficients (a; € {1,10°}) (chequerboard distribution).

Starting from the coarsest grid level L = 0 with 192 triangles on U9S);, we successively refine
the mesh by subdividing each triangle into four smaller similar triangles. N and M denote the
total numbers of triangles and nodes, respectively. M, is the total number of coupling nodes.
The numbers of local triangles and nodes on 9; are given by N; and M;, respectively. If the
boundary mesh of one subdomain 2; on level L = 6 with 98.304 triangles is uniformly extended
to the interior of the subdomain, then the corresponding finite element mesh would consist of
4.448.731 tetrahedrals resulting in almost 36 millions tetrahedrals for the whole computational
domain. In Table 1, together with the mesh features L, N, M, M., N; and M;, the time t; [sec]
for generating the system (3.6) and for setting up the preconditioner, the time ¢, [sec] spent
by the SPCG solver, the number of iterations I(e) and the absolute Lo(T;) discretization error
|& — Gn||p,(r;) are displayed. The relative accuracy e of the iteration error is chosen to be 1072,
The first line in each row for the columns t;, t5, I(¢) and Ly (T';)—error corresponds to the Laplace
case whereas the second line corresponds to the case of jumping coefficients. Table 1 shows that the
growth in the number of iterations and in the CPU times is in good agreement with the complexity
estimates given in Theorem 4.1. The efficiency of our SPCG solver is not affected by large jumps
in the coefficients of the potential equations (2.1). Moreover, the number of iterations are less
than in the Laplace case. In addition, the CPU time for the finest level L = 6 is half of the time
needed for a primal preconditioned Schur complement solver in the case of jumping coefficients.
All numerical experiments were performed on standard PCs with 3.06 Mhz Intel processors and 1
GB of RAM.

L N M MC Ni Mi t1 to I(E) LQ—GI‘I‘OI‘
0 192 63 13 24 14 0 0 6 | 2,8527E-03
1 0 6 | 2,8527E-08
1 768 261 67 96 50 1 1 33 | 7,1318E-04
1 1 29 | 7,1318E-09
2 3072 1089 319 384 194 ) 6 36 | 1,7830E-04

) 6 34 | 1,7830E-09
3 12288 4473 | 1399 | 1536 770 16 30 38 | 4,4574E-05
15 30 36 | 4,4577E-10
4 | 49152 | 18153 | 5863 | 6144 | 3074 81 | 186 41 | 1,1143E-05
79| 172 38 | 1,1144E-10
5 | 196608 | 73161 | 24007 | 24576 | 12290 | 316 | 1469 46 | 2,7859E-06
310 | 1346 44 | 2,7859E-11
6 | 786432 | 293769 | 97159 | 98304 | 49154 | 1314 | 7250 55 | 6,9647E-07
1319 | 7034 49 | 6,9651E-12

Table 1: Numerical features for the SPCG solver.

6 Conclusions

Inexact data—sparse BETI methods introduced in this paper show an almost optimal behavior with
respect to the number of iterations, the arithmetical costs and the memory consumption. More-
over, the methods are robust with respect to large jumps in the coefficients of (2.1). These results
were rigorously proved and were also confirmed by our numerical experiments. The treatment
of the outer Dirichlet problem as well as other boundary conditions is straightforward. Inexact



data—sparse BETI methods can naturally be generalized to linear elasticity BVP including elas-
ticity problems for almost incompressible materials (cf. [10]). Combining the results of this paper
with the results on inexact FETI methods obtained by [5], we can develop inexact BETI-FETI
solvers for coupled boundary and finite element equations (cf. [9] for the exact version).
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