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Abstract The purpose of this paper is a comparison of two different methods that can
be used for collision detection. One method is called the ray crossing method, a commonly
used geometrical approach. The other method is the fast multipole method, usually used
for boundary element methods, which is also applied for collision detection purposes here.
Both methods are especially of interest when the collision for arbitrarily shaped polyhedra
has to be detected. Here, both methods are described and compared for different examples
of complex shaped polyhedra with up to 5 · 105 faces and more than 5 · 105 test points
regarding efficiency and required calculation time.

Key words: contact, collision detection, fast multipole method, boundary element method,
ray crossing, molecular dynamics, point-in-polygon test

1 Introduction

The background of this study is the modeling and simulation of bulk good. There, as a brief
background information and motivation for the following, the calculation of the contact
forces that are applied to the bodies due to contacts are often modelled by means of the
molecular dynamics (MD) method, where penetrations between bodies appear. Contact
forces ensure a physical behavior of the particles.

In order to simulate the dynamical behavior of a system with different bodies and
frequently changing contact forces, it is necessary to know precisely which bodies are in
contact. In this paper, the efficiency of two very different methods for collision detection
of arbitrarily shaped bodies is investigated. For arbitrarily shaped bodies here a frequently
applied description is used, i.e. the surfaces of bodies are represented as compounds of
polygons and are therefore polyhedra.
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For an efficient simulation often collision detection is the bottle neck. Therefore, it is
essential to use an efficient method. Originally these methods basically check for every
body pair, whether a node of one body is inside the other body. This corresponds to the
classical point-in-polygon test from computational geometry. In this study, two different
methods for collision detection are compared with respect to efficiency in computation time.
In order to compare these methods properly, our investigation foregrounds the efficiency
of collision detection methods for a series of bodies consisting of a very large number of
geometric primitives, since for systems with only few primitives collision detection is not
the critical point.

The two collision detection methods that are used in order to find these colliding body
pairs are explained in Section 2. A very unusual approach for collision detection, the fast
multipole method, is suggested in Subsection 2.1. There, a double layer potential of a body
surface is evaluated and by means of this value the decision can be made whether a point of
another body is inside or outside this body. For comparison, in Subsection 2.2 a geometric
approach, the ray crossing method for collision detection is explained. In Section 3 both
methods are compared using several test examples and, finally some results are compared
and discussed with respect to geometrically very complicated applications.

2 Collision detection

As soon as neighboring body pairs are identified using some kind of sorting phase [1, 2, 31],
the precise but time consuming collision detection can be carried out. For these body-pairs
it is necessary to check, whether and which surface points of the bodies are located inside
another body, i.e. the point-in-polyhedron test must be performed many times. Since this
procedure is very time consuming, it is obligatory to use an efficient method in order to
perform this test. In the following, two very different methods are explained that can be
used for the point-in-polygon checks.

2.1 Double layer potential and fast multipole method

The first approach is based on a special property of the double layer potential of the
boundary element method (BEM) and the fast multipole method (FMM) providing a fast
evaluation of boundary integral operators. The main idea is to compute a certain surface
potential in evaluation points, which are here the surface nodes to be checked. Therefore,
we want to investigate an evaluation point, denoted by the position vector x, which is tested
for collision with a body Y , whose surface is discretized by a boundary mesh consisting
of triangles. The two ingredients of the method, the BEM and the FMM, are described
briefly in the following subsections and only as far as required for the collision detection.

2.1.1 The double layer potential

Let Y ⊂ R
3 be a bounded, simply connected domain with Lipschitz boundary Γ = ∂Y .

The position vectors of nodes of this body Y may be denoted as y. For the Laplace
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equation
−∆u(y) = 0 for all y ∈ Y, (1)

the second Green identity

−
∫

Y

∆u(y)v(y)dy +

∫

Γ

[ny · ∇yu(y)] v(y)dsy =

−
∫

Y

∆v(y)u(y)dy +

∫

Γ

[ny · ∇yv(y)] u(y)dsy (2)

is valid. Here, ny denotes the outer normal vector given for almost all y ∈ Γ,
∫
Γ
• dsy is the

integral over the boundary Γ described by triangles, and v(y) is an arbitrary, sufficiently
smooth function. With the constant solution v(y) = 1 of the Laplace equation, this formula
is reduced to

−
∫

Y

∆u(y)dy +

∫

Γ

ny · ∇yu(y)dsy = 0. (3)

For x 6= y, the fundamental solution

u(y) := U∗(x,y) =
1

4π

1

|x − y| (4)

of the Laplace operator in Eq. (1) is considered. In order to ensure x 6= y, which means
that x may not be equal to any point of domain Y , a small neighborhood of x is cut off
from the domain Y by a small sphere |x − y| < ε. Then, inserting Eq. (4) into Eq. (3) for
the modified domain Y \ {y ∈ Y : |x − y| < ε} leads to

− 1

4π

∫

Γ

ny · ∇y

1

|x − y|dsy =
1

4π

∫

y∈Y :|x−y|=ε

ny · ∇y

1

|x − y|dsy

=
1

4π

1

ε2

∫

y∈Y :|x−y|=ε

dsy. (5)

For arbitrary test points x ∈ R
3, the functional J : R

3 → [0, 1] defined as

J(x) := − 1

4π

∫

Γ

ny · ∇y

1

|x − y|dsy (6)

has the property

J(x) = lim
ε→0

1

4π

1

ε2

∫

y∈Y :|x−y|=ε

dsy, (7)
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see Eq. (5), where the right hand side describes some kind of solid angle. Note that the
functional J is the double layer potential applied to a function v(y) = 1. In the case of a
smooth boundary, the functional J(x) takes only the values, see e.g. [32],

J(x) =





1 for x ∈ Y,

0 for x ∈/ Y,
1
2

for x ∈ Γ.

(8)

Therefore, this functional J(x) can be used to decide whether a point x is inside (J(x) = 1)
or outside (J(x) = 0) the domain Y . If J(x) ∈]0, 1[ the point x is on the boundary Γ and
the value indicates some kind of angle of the boundary in x.

The potential J(x) can be exactly computed via definition (6) in the case that the
boundary of Y is described by plane triangles. A first approach of the method is based on
this exact evaluation of the functional. Let the boundary Γ be given by a triangulation
using N boundary elements. Then, the functional J(x) has to be computed for each of
these N elements in order to know whether a point x is inside or outside the domain. If
X contains M points, the functional J(x) is evaluated in M evaluation points x`. Then,
the corresponding effort will be of order O(NM) as the functional J has to be evaluated
for all combinations. The evaluation effort of J is comparable to the effort evaluating the
kernel on the discrete level

k(x,y) :=
1

|x − y| (9)

for M points x` and N points yk. The corresponding algorithm is linear in both the number
of evaluation points x and the number of triangles describing the boundary mesh. If both
numbers grow linearly, the effort will grow quadratically.

2.1.2 The fast multipole method

The fast multipole method (FMM) [8, 9, 28] will be used to reduce this quadratic effort
for the evaluation of the functional J(x) by introducing a systematic approximation. The
fast multipole method is used frequently in boundary element methods, e.g. in [21, 22, 23].
For an overview of the FMM see e.g. [19].

If a separation of the variables x and y is possible for the kernel k(x,y) as in

k(x,y) =

∞∑

i=0

fi(x)gi(y), (10)

the evaluation of J(x) will become cheaper by using an approximation defined by a finite
maximum expansion degree p.

The main ingredients of the fast multipole method are the approximation of the ker-
nel function by an appropriate series expansion and the use of a hierarchical structure to
compute these expansions efficiently. The series expansion is used to separate the inte-
gration variables x and y of the kernel function from each other. A first choice would be
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to use a Taylor series expansion of k(x,y), as used in the panel clustering method [11],
but an expansion based on spherical harmonics is often more suitable than a Taylor series
expansion.

Starting from

|x − y|2 = (x − y) · (x − y) = |x|2 + |y|2 − 2 |x| |y| (x̂ · ŷ)

with x̂ = x/ |x|, the kernel can be written as

k(x,y) =
1

|y|
√

1 − 2(x̂ · ŷ)
|x|
|y| +

( |x|
|y|

)2
.

From the Taylor series expansion of

1√
1 − t

=

∞∑

`=0

f (`)(0)

`!
(t − 0)` =

∞∑

`=0

(2`)!

(2``!)2
t` for |t| < 1,

where t = 2(x̂ · ŷ) |x| / |y| − (|x| / |y|)2, the expansion of the kernel k(x,y) in Legendre
polynomials

k(x,y) =

∞∑

n=0

Pn(x̂ · ŷ)
|x|n

|y|n+1

can be derived. The Legendre polynomials Pn(u) can be given by

Pn(w) =
1

2nn!

dn

dwn

[
(w2 − 1)n

]
for |w| ≤ 1,

where dn/dwn[•] is the nth derivative of the expression in brackets. The accuracy of the
approximation using the finite expansion degree p

kp(x,y) =

p∑

n=0

Pn(x̂ · ŷ)

( |y|
|x|

)n

(11)

and later of the fast multipole algorithm can be controlled, as the estimate

|k(x,y) − kp(x,y)| ≤ 1

|y| − |x|

( |x|
|y|

)p+1

for |y| > |x| (12)

shows, which can be derived by the use of the geometric series.
The separation of the variables x and y is now done by an addition theorem for Legendre

polynomials using spherical harmonics [12]. Note that all solutions of the Laplace equation
can be given by an expansion in spherical harmonics.
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The kernel function will be approximated in terms of an appropriate reformulation,
see [24, 36, 38], of the spherical harmonics by the splitting

k(x,y) =
1

|x − y| ≈ kp(x,y) =

p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x) (13)

for x 6= y. It contains the two complex valued terms

R±m
n (x) =

1

(n + m)!

dm

dwm
Pn(w)

∣∣
w=bx3

(x̂1 ± ix̂2)
m |x|n , (14)

S±m
n (y) = (n − m)!

dm

dwm
Pn(w)

∣∣
w=by3

(ŷ1 ± iŷ2)
m 1

|y|n+1 (15)

in Cartesian coordinates xi for m ≥ 0 and x̂i = xi/ |x|. The term S in Eq. (13) is the
conjugated form of S in Eq. (15). The kernel expansion will be applied to the potential
in Eq. (6), where it is integrated over all boundary elements. In the following, we want to
control the convergence and the accuracy of the truncated expansion kp.

Now, the second basic idea of this approach, the building of the hierarchical structure
becomes important. In order to do the calculation of the kernel efficiently, the whole
system is divided into boxes. Building of the hierarchy can be done from the top down.
All boundary elements {τk}N

k=1 are included in a box containing the original domain of
the body Y . The cluster ω0

1 of level 0 consists of all boundary elements {τk}N
k=1. The

hierarchical structure is build recursively by the refinement of the box corresponding to a
cluster of the level λ into eight similar boxes which form the clusters ωλ+1

j of a finer level

λ + 1. The clusters ωλ+1
j are called the sons of the father cluster ωλ

i and consist of all
the boundary elements τk whose center is inside the corresponding box. This refinement
is done until a minimum number of triangles is reached in the cluster or until a maximum
level L is reached. Each of the boundary elements τk is assigned to the cluster ωL

i which
contains the mid point of τk. In this paper, we restrict ourselves to the case of a regular
distribution of the boundary elements {τk}N

k=1 of a globally quasi uniform mesh. Empty
clusters containing no boundary elements are neglected. Nevertheless, the method can be
extended to the adaptive case, see for example [4, 17].

Since we apply this method to collision detection, we do not know the position of the
points of X beforehand. Also, the box σ0

1 containing these evaluation points x may differ
from the box ω0

1 containing the original domain Y . Therefore, a second independent cluster
tree is build. If the evaluation points were known at setup time, their distribution could
be used to build a suitable cluster tree. A second possibility, which has to be used here, is
to construct a cluster tree without any information about the number of evaluation points
and their distribution. Only the extensions of the evaluation domain σ0

1 are needed. Then
the clusters σλ

j are constructed recursively in a similar way as described before.
In the following, we will call clusters ωλ

i to be in the “nearfield” of a cluster σλ
j , if they

are located close to the box corresponding to σλ
j . Clusters are called to be in the “farfield”,

whose distance is larger.
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Since we are interested in the relation of a point x to triangles τk ⊂ Γ = ∂Y that are
inside different boxes of different cluster trees, the following criterion is used in order to
identify whether a triangle is in the nearfield or in the farfield of a point. A cluster ωλ

i on
the same level λ is called to be in the nearfield of the cluster σλ

j if the condition

dist
{
C(ωλ

i ), C(σλ
j )

}

max
{
r(ωλ

i ), r(σλ
j )

} ≤ (d + 1) (16)

is satisfied with a suitably chosen parameter d > 1. Here, C(•) denotes the center of the
box which contains the corresponding cluster, and r(•) is the corresponding cluster radius,
i.e. r(ωλ

i ) = sup
x∈ωλ

i

∣∣x − C(ωλ
i )

∣∣. Moreover, the nearfield of a father cluster σλ−1
i must

contain the nearfields of all its own sons σλ
j ⊂ σλ−1

i .
Note that the series expansion in Eq. (13) is not valid in the nearfield due to Eq. (12).

Therefore, the approximation of the functional J(x`) for ` = 1, . . . , M now reads

J̃(x`) = −
∑

k∈NF(x`)

Jk(x`) −
∑

k∈FF(x`)

1

4π

∫

τk

ny · ∇y

p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x`)dsy, (17)

where

Jk(x) :=
1

4π

∫

τk

nx · ∇x

1

|x − y|dsx (18)

is computed exactly. The set of indices of triangles in the nearfield of the cluster σλ
j con-

taining x` due to the admissibility condition (16) is NF(x`), and FF(x`) is its counterpart.
Next, the expression

Lm
n (O, k) :=

∫

τk

ny · ∇ySm
n (y)dsy (19)

is used, which contains all coefficients related to the variable y. Expression (19) is defined
with respect to the origin O of some local coordinate system. Then, utilizing the fact that
the integration only has to be done over the parts of the integration term containing y,
the approximation of the functional can be written in the form

J̃(x`) = −
∑

k∈NF(x`)

Jk(x`) −
1

4π

p∑

n=0

n∑

m=−n

Rm
n (x`)

∑

k∈FF(x`)

Lm
n (O, k)

= −
∑

k∈NF(x`)

Jk(x`) −
1

4π

p∑

n=0

n∑

m=−n

Rm
n (x`)L̃

m
n (O, FF(x`)), (20)

with the sum of all expansions of the farfield

L̃m
n (O, FF(x`)) =

∑

k∈FF(x`)

Lm
n (O, k) for n = 0, . . . , p, m = −n, . . . , n. (21)
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The coefficients Lm
n (O, k) can either be computed exactly [17, 18] or can be approximated

by the use of some numerical quadrature rule.
For each x`, ` = 1, . . . , M , the evaluation of the approximate functional J̃(x`) requires

the exact evaluation of the small nearfield part. If the coefficients L̃m
n (O, FF(x`)) of the

farfield part are known, the evaluation of the functional J̃(x`) will be very fast. The

global coefficients L̃m
n (O, FF(x`)) depending on ` can be efficiently evaluated from the

local coefficients Lm
n (O, k) by using the artificial hierarchies described before.

The efficient computation of the coefficients L̃m
n (O, FF(x`)) in Eq. (21) will be described

only very briefly. More detailed descriptions can be found, e.g., in [8, 9].
The following steps only have to be done once as a preprocessing step, independent on

the number of evaluation points. In a system containing several moving bodies, such a
hierarchy is built for each body and stored in its body fixed coordinate system.

The farfield of each cluster σL
j will be described by clusters ωλ

i which are as large
as possible and which can be used for many different farfields. For each combination of
the clusters σL

j and the corresponding farfield clusters ωλ
i the local coefficients are now

calculated to describe the effect of the farfield. In order to do this efficiently, as much
information as possible is shared when these coefficients are determined. Therefore, as a
first step, the coefficients of the multipole expansions

M̃m
n (C(ωL

j ), P (ωL
j )) =

∑

τk∈ωL
j

Mm
n (C(ωL

j ), k) =
∑

τk∈ωL
j

∫

τk

ny · ∇yR
m
n (y)dsy (22)

are computed for all clusters ωL
j on the finest level L, where P(ωλ

j ) := {k, τk ∈ ωλ
j } denotes

the index set of the panels τk belonging to the cluster ωλ
j , C(ωλ

j ) denotes the center of
the cluster ωλ

j and of the local coordinate system, described as O before. Next, these
coefficients are translated to their common fathers up to the coarsest level by

M̃m
n (C(ωλ

j ), P(ωλ
j )) =

∑

ωλ+1

i ∈Sons(ωλ
j )

n∑

s=0

s∑

t=−s

Rt
s(
−−−−−−−−−−→
C(ωλ

j )C(ωλ+1
i )) (23)

M̃m−t
n−s (C(ωλ+1

i ), P(ωλ+1
i )).

These coefficients, related to a cluster ωλ
j , contain all the contributions of the triangles

contained in ωλ
j to the functional J̃(•). They can be derived from Eq. (13) by interchanging

y and x`.
Next, these multipole expansions are converted into local expansions of σλ

j by

L̃m
n (C(σλ

j ), P(ωλ
j )) =

∞∑

s=0

s∑

t=−s

(−1)nSm+t
n+s (

−−−−−−−−→
C(ωλ

i )C(σλ
j ))M̃ t

s(C(ωλ
i ), P(ωλ

j )). (24)

These conversions are executed on the highest level possible, i.e., the level where two
clusters σλ

j and ωλ
i are in the farfield of each other but their fathers σλ−1

j and ωλ−1
i are still

in their mutual nearfield.
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In the last step of the preprocessing, the local expansions are translated from the
clusters σλ

i to their sons σλ+1
j by

L̃m
n (C(σλ+1

j ), FF(ωλ
i )) =

p∑

s=n

s∑

t=−s

Rt−m
s−n (

−−−−−−−−−−→
C(σλ

i )C(σλ+1
j ))L̃t

s(C(σλ
i ), FF(ωλ

i )) (25)

and summed until the finest level L is reached. The derivation of the translation and
conversion formulae in terms of addition theorems for the reformulated spherical harmonics
can be found, e.g., in [36, 38].

Now, the coefficients L̃m
n (FF(O,x`)) are provided for an efficient evaluation of the ap-

proximate functional in Eq. (20). In the evaluation phase, only the expansion and the
nearfield part have to be evaluated.

2.1.3 Complexity of the algorithm

The algorithm based on the functional J without using the fast multipole method is of
order O(NM). Using the fast multipole method introduces an error in the evaluation

of the functional J̃ . This error can be controlled by the expansion degree p. The error
introduced by an eventually used numerical integration formula can easily be estimated
and is neglected here. We also restrict the analysis to the case of quasi–uniform boundary
element meshes.

For simplicity, we assume that the clusters ωλ
i and σλ

j on the level λ are of about the
same size. If the sizes of the domain Y and of the evaluation domain X differ significantly,
extra levels can be introduced in the top of the corresponding cluster tree to guarantee this
feature. In what follows, we assume a global cluster radius r for all clusters on the finest
level. The error estimate

∣∣∣∣
∂

∂ny

(k(x,y) − kp(x,y))

∣∣∣∣ ≤ 1 + π

(d − 1)r2

(
p + 1 +

d

d − 1

) (
1

d

)p+2

(26)

see [22], for |x| ≤ r and |y| ≥ d r, see Eq. (16), gives the possibility to estimate the error
introduced by the fast multipole method as

∣∣∣J(x) − J̃(x)
∣∣∣ =

∣∣∣∣∣∣

N∑

k=1

∫

τk

ny · ∇y

(
k(x,y) − k̃(x,y)

)
dsy

∣∣∣∣∣∣

≤ ∆Γ
1 + π

(d − 1)r2

(
p + 1 +

d

d − 1

) (
1

d

)p+2

. (27)

While the described approach only gives an approximation J̃(x) of the functional J̃(x),
one needs to control the corresponding error. It is suitable to choose p ∼ log N as the
cluster radius r is proportional to h, while h =

√
∆τ denotes the mesh size of the boundary

elements.
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In our complexity analysis, the parameter d is fixed and the expansion degree p ∼ log N
ensures the optimal error estimate. The number of boundary elements belonging to a
cluster ωL

i on the finest level is chosen to be of order O(log2 N). So the number of clusters
on the finest level of the mesh cluster tree is Nω,L ∈ O(N/ log2 N). Also the total number
of clusters of the mesh cluster tree is Nω ∈ O(N/ log2 N) as an octree is used.

For the estimate of the number of clusters in the evaluation tree, a simplification is used
in the construction of the tree. In contrast to the method described before, the clusters σλ

j

are refined until the clusters do not have any clusters ωλ
i in their nearfield or the maximum

cluster level L is reached. This simplification produces a larger number of clusters σλ
j , so

the procedure described before will only perform better in setting up the expansions in
the fast multipole method. Both cases will be included in the estimate of the effort of the
evaluation part. For any cluster ωλ

i , a fixed maximal number of clusters σλ
j of the same

level λ is constructed. This number is given by the sons of all nearfield clusters σλ−1
j of the

father cluster ωλ−1
i and estimated by cd. The total number of clusters in the evaluation

tree can be estimated by Nσ ≤ cdNω. This is highly overestimated, as most of the clusters
σλ

j are counted many times, but this estimate is sufficient for an asymptotic complexity
estimate. The translations and conversions of the expansions are of order O(p4) as the
expansions have order O(p2) coefficients. In Table 1 the efforts for the different operations
are collected.

The total effort is then given by O(N log2 N) + O(M log2 N) and, therefore, is almost
linear in the number of boundary elements and in the number of evaluation points. When
using a variable version [29, 33] of the fast multipole method the logarithmic terms could
be dropped in the asymptotic complexity estimate.

2.2 Ray crossing method

A second approach that can be used in order to check whether nodes lie within a polyhedron
is the ray crossing method, see [20]. This approach is completely different and has its origin
in traditional computational geometry and computer graphics. There, a ray to infinity
originating from the observed point is created, see Figure 1. Then the intersections of this
ray with the surface of the body are counted.

Point P is inside the polyhedron, if the number of intersections of an arbitrary ray with
the surface of the polyhedron is odd, as shown in Figure 1. Also it can be said, that a
point, e.g. point Q in Figure 1, is outside of the polyhedron, if the number of intersections
is even for arbitrary rays from this point (where 0 is considered to belong to the even
numbers). In order to perform that check, the ray has to be tested against all separate
surface parts (faces f) of the body. The problem about counting these ray crossings is the
wide variety of possible degeneracies that could occur, compare [20]. These degeneracies
could be, e.g., a ray laying in a face, hitting a vertex or an edge, lying collinerarly to an
edge, etc. However, the treatment of such degeneracies must not be taken into account
for the implementation. Since the direction of the ray is completely arbitrary and the
creation of another ray is not time consuming, it is simply checked for each ray, whether
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Table 1: Complexity of the fast multipole approach

operation and explanation costs

simple approach

computation straight forward O(NM)

setting up all expansions

computing the coefficients up to degree p for all N boundary
elements

NO(p2)

translation of the multipole expansion of all Nω clusters to their
fathers

NωO(p4)

For all Nω clusters the conversions of multipole expansions into
local expansions of the clusters of the evaluation tree have to be
applied. The number of conversions per cluster is again bounded
by cd.

cdNωO(p4)

translation of the local expansion to all Nσ clusters from their
fathers

NσO(p4)

evaluation of the functional J̃

evaluation of the local expansions of degree p for all M evaluation
points

MO(p2)

the remaining nearfield part of one evaluation point consists of at
most O(log2 N) boundary elements

MO(log2 N)

such degeneracies exist, and if so, a new ray is created with random direction. Such a ray
to infinity can be substituted by a line segment PR that is long enough, if its endpoint R
is definitely outside a bounding box around the body.

The collision test then is accomplished in several steps. In a first step, all points of the
tested body that are not positioned within the bounding box of the other polyhedron are
discarded. For the planar example shown in Figure 2 only six nodes of body 2 are left to
be investigated instead of the original twelve nodes.

For these remaining nodes, the random rays have to be generated and tested against
all faces of body 1. Such a triangular face f consists of three nodes, F1, F2, and F3, see
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Figure 3. The example in this figure has 20 such triangular faces (ten of which are shown
in the figure, and ten more are back facing). For this part of the test now bounding boxes

2 crossings

1 crossing 1 crossing

3 crossings

0 crossings

4 crossings

P

Q

Figure 1: Collision detection by means of checking a ray for each observed point of another
body. Here, three possible rays are shown for a point P that is inside the body (one or
three crossings), and for a point Q that is located outside the body (no, two, and four
crossings).

body 1

body 2

Figure 2: Only points that are positioned within the bounding box are considered.
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$F_1$

plane

f

R
d2

P

F1

I

F3

p // f

d1

F2

Figure 3: Non-convex polyhedron with face f (F1, F2, F3), and a point P of another body
lying within the polyhedron. The distance between P and f is d1, d2 is the distance from
P to R (in normal direction of f), and I is the intersection point of line PR with f .

are laid around each of these faces. Then the ray is first tested whether it crosses the
bounding box around f . For each face, whose bounding box is crossed, a further test has
to be accomplished. It is clear that a ray cannot cross f if they are parallel. For each
case, where the ray crosses the bounding box of f and where the ray is not parallel to f ,
the ray definitely crosses the plane, in which f is located. By controlling, whether such
an intersection point of the ray with the plane of a surface really lies on the surface of the
body, i.e. on the triangle f , the ratio of d1 (which is the distance between the observed
point to the plane) to d2 (that is the distance in normal direction between R and P ) has
to be considered, see Figure 3. This ratio can be determined as

r =
(F − P) · n
(R − P) · n =

d1

d2

, (28)

see [20, 35]. Here, P and R are the position vectors to the points P and R, respectively,
and F is the position vector to a point of face f . This point is therefore in the plane of f .
If d1 equals zero, it is clear that the observed point, too, is located on the plane of f , and
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it has to be checked, whether the point is located within the boundary of triangle f . If d2

equals zero and d1 is not equal to zero, then this ray is parallel to f and, therefore, never
crosses it. In this case, the ray can be tested against the other faces. The case that d1 and
d2 are zero at the same time is one of the earlier mentioned degeneracies – in this case a
new ray is generated and tested against all faces again. If neither d1 nor d2 are equal to
zero, the ratio r is computed.

By means of this ratio, the position vector of I, which is the intersection point of PR
with the plane, can be computed,

I = P + r (R − P). (29)

The meaning of Eq. (29) is clear if one adopts the theorem on intersecting lines, see Figure 3.
That means, r of Eq. (28) is the ratio of d1 to d2 that is equal to the ratio of PI to PR.

If r is negative or greater than 1, then point I is not on f and the next face can be
tested. For r = 1, I would be equal to R, but since R is outside the body, in this case, too,
I is not located on f . That means, only in cases where r = 0 (i.e. d1 = 0) and 0 < r < 1,
it is possible that I (or P ) are lying on f .

To check whether P is located on f , both, P and f are projected in normal direction
of f onto a plane, see Figure 4.

Then the position of the projected point P ′ to the projected face is determined by
checking its position versus the edges of the projected triangle. This is shown on the right
side of Figure 4. For each area the “Area-Signs” are calculated. That means, it is checked
whether a point P ′ that is possibly within that area is to the left or to the right of the three
edges that form the triangle. If P ′ is to the right of any of these edges (that are directed
counter clockwise around f), the projection is not inside f , and, therefore, the ray does
not cross f . In this case, the next face can be tested. Only if the point is to the left of
all three edges, P ′ is located on f . Also cases, where P is lying on a vertex or edge of f ,

+−+

++−

−−+

−++

−+−

+−−

+++
F3

F1

F2

F
′

1

F
′

2

e2

e3

F
′

1

F
′

2

F
′

3

P
′

e1

F
′

3

P

Figure 4: Projection of a face (left), signs received for the projected point in the special
areas (right), see [20, 35].
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can be determined. The results for the “Area-Signs” along the projections would then be
0−−, −0−, or −− 0 for the edges and 0− 0, 00−, and −00 for the vertices. Then, if one
of these six cases or +++ is valid, the other faces do not have to be tested anymore, since
it is directly clear, that the point is located on f and, hence, on the surface of the body.
However, if none of these seven cases is valid, P is not located on f or its boundaries, and
the other faces of the body have to be tested.

Still, we have to handle the case that the ratio of Eq. (28) is 0 < r < 1. In this case,
similar to the case r = 0, it has to be tested, whether I (the intersection point of the ray
with the plane of f) is located on f or outside the boundaries of the triangle. In order
to determine this, a “Volume-Sign” is calculated, that is very similar to the “Area-Sign”
explained above. Here, the location of the segment PR to the face f is of interest. The
signed volumes of the three tetrahedra defined by PR and each edge of f are determined.
Again it is detected, whether “Volume-Signs” are negative for any of these tetrahedra.
Figure 5 shows three exemplary cases, where the “Volume-Sign” of the three volumes are
shown.

The “Volume-Signs” for the cases shown in Figure 5 are + + +, +0+ and +00. Again,
if one or more of the determined “Volume-Signs” are negative, then I is outside of f .
That means that the segment PR does not cross f , and the next faces of the body can be
determined. If one or more of the “Volume-Signs” are zero, as for the two right examples
of Figure 5, then it is not directly clear to which face the ray belongs. Such a case is
considered as a degeneracy, and a new ray is created, that has to be tested against all faces
again. If, however, all three “Volume-Signs” are positive, then it is clear that I is located
on f , and, therefore, the ray crosses this face. The total number of such crossings between
the ray and the faces is of interest. Therefore, this whole procedure has to be done for all
faces.

Finally it can be said that either this determination has stopped in between with the
result, that P is located on the surface of the body, or we get a number of crossings of

0

1

2

0

1

2

0

1

P

R

P

R

R

P

I

I=2I

Figure 5: “Volume-Signs” of three cases, where I is inside f , on an edge of f and on a
vertex of f , see [20].
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P is outside
if no

crossings =0

is point in box around body?

create bounding box for each face

new ray necessary

location of segment / plane (rate r)?

no crossings

no crossings

no crossings

no crossings

no crossings

crossings+=1

some zero

Volume-Sign?
some neg.

all are pos.

if no

if crossings even

else

I is lying on surface,

else

else
does segment cross the bounding box?

how is the location of segment / face f?

r < 0 or r > 1

r = 1 no crossings

r = 0

0 < r < 1

AreaSign neg.?

for all faces

create ray-segment

r = 0 & denom = 0

r 6= 0 & denom = 0

Figure 6: Overview of the ray crossing method.

the segment PR with the surface of the body. If this number is odd, P is lying inside the
body, and if it is even or zero, the point is outside the body, as it is shown in Figure 1.

A summary of the whole process is shown in Figure 6. This whole procedure has to be
carried out for each point of two neighboring body-pairs that is inside the bounding box
of the other body.
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3 Comparisons and results

The techniques introduced shall be compared with respect to simulation times for various
but always high numbers of faces and testpoints. In order to investigate solely the depen-
dence on the simulation time for different system sizes, several test series are used. The
goal of these series is, to keep some system traits as constant as possible and to change
only some well defined influencing factors.

The program used for the comparisons is written in C. All program runs were performed
on the same 2.8GHz Linux PC that features a working memory of 1 GB. Both methods
give correct results and work, therefore, reliably.

3.1 Comparison of the methods using a sphere

In this first, more academic numerical example, approximations of the unit sphere are
used for the body Y . The coarsest approximation of the sphere is built by eight triangles.
Then these triangles are refined uniformly and the created new nodes are projected onto
the surface of the sphere. In this way, seven refinement steps are executed until the finest
approximation of the sphere is reached consisting of 131072 triangles. A regular distribution
of test points in the surrounding cube is used as scattered grid X. In particular 103, 203,
403, and 803 points are used. This setting gives the possibility to compare the two methods
and to observe several special features of the fast multipole approach.

First, the results obtained by the fast multipole method are discussed. There, the choice
of the maximum level of the cluster tree is important for the performance of the method.
With the usually not available knowledge of the number of triangles as well as the number
of evaluation points, the depth of the cluster tree can be chosen quite well in advance. In
the following this will be called well chosen (WC) cluster tree. The results obtained by
means of these choices are shown in Figure 7.

These results are better than the results that can be obtained with a tree depth only
depending on the number of triangles. Since in collision detection applications it is usually
not known, which and how many points one has to test against the body, in Figure 8 the
results which have been obtained with a depth only depending on the number of triangles
are shown. In the following this will be called pre-chosen (PC) cluster tree.

At a first sight, these results may seem surprisingly. As the number of evaluation points
is increased by a factor of eight with each grid and the number of triangles is increased by
a factor of four in each refinement step, one would expect to see these factors in the results
due to the asymptotic analysis in Section 2.1.2. However, the results in Figure 7 seem to be
better than linear. In the following a linear behavior will be called an asymptotic behavior,
so here the results in Figure 7 are not converging asymptotically but behave better than
that. The reason is that the total computational time consists of the time for setting up
the coefficients of expansion in Eq. (20) and the time for evaluating the expansion and
the nearfield part. The time for setting up the coefficients depends only on the number of
triangles and on the maximum level of the cluster tree, while the time for the evaluation
part depends on the number of evaluation points and on the maximum level of the cluster
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Figure 7: Results of the fast multipole ap-
proach using a well chosen (WC) depth of
the cluster tree.
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Figure 8: Results of the fast multipole ap-
proach using a pre-chosen (PC) depth of
the cluster tree.

tree. Therefore, the method is linear in the number of triangles and in the number of
evaluation points. As both parts of the computation time depend on the maximum level of
the cluster tree, this level is used to balance the two parts and this gives the better results.
As long as none of the two numbers is dominating, one does not see the asymptotic, but
a better, behavior. The computational times for the grid with only 103 evaluation points
get closest to the asymptotic linear case as these numbers are dominated by the number of
triangles due to the rather low number of evaluation points. If the numbers of triangles and
evaluation nodes are both increased by the same factor at the same time, the asymptotic
behavior will be seen.

The results in Figure 8 have been obtained using a fixed maximum level of the cluster
tree for each of the meshes. When two lines almost touch each other, the total time is
dominated by setting up the coefficients of the expansions as the maximum level of the
cluster tree is too large for the small numbers of evaluation points. On the other hand,
some of the computational times of the grid with 803 evaluation points are dominated by
the time for evaluating the nearfield part as the depth of the cluster tree is chosen too
small. Therefore, the total computational time is reduced sometimes for a refined mesh
compared to the previous mesh due to a larger depth of the cluster tree. In the case of
the fixed depth of the cluster tree, the linear dependence on the number of evaluation
points can be observed in the evaluation part, see Table 2. For example, the shares in
computational times for the evaluation part are less than one second, about three seconds,
about 24 seconds and 202 seconds in the case of the finest mesh. The numbers also show
that the computational times for the mesh of 131072 triangles are reduced in comparison
to the times for the mesh of 32768 triangles. This is due to the larger depth of the cluster
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tree as described before.

Table 2: Computational times in seconds for the evaluation part

# points 8192 32768 131072
103 < 1 ≈ 1 < 1
203 ≈ 1 5 3
403 10 40 24
803 83 329 202

In Figure 9, the computational times obtained by the ray crossing method are shown.
The lines show a linear dependency of the method in both the number of triangles and the
number of evaluation points. The two different approaches are compared in Figure 10 for
the two grids of 103 and 803 evaluation points.
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Figure 9: Results obtained by means of
the ray crossing method.
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Figure 10: Comparison of both ap-
proaches.

In the case of the grid with 103 points, the ray crossing method is faster for the meshes
with a smaller number of triangles and the fast multipole method is a little bit faster for
the finest meshes. In the case of the grid with 803 points, the ray crossing method is
only faster for the bodies consisting of few triangles. For fine meshes, the fast multipole
approach is faster, as the evaluation part is more dominant which is almost independent of
the number of triangles in the fast multipole approach. The FMM with a maximum level
of the cluster tree depending only on the number of triangles sometimes performs worse
than the one with the “optimally” chosen maximum level.
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3.2 Comparison using a complicated foam structure

The second example is a foam structure which is approximated by three different meshes
consisting of 28952, 120868, and 494124 triangles. These meshes have been provided by
Dr. Heiko Andrä, Fraunhofer Institut Techno– und Wirtschaftsmathematik, Kaiserlautern.
One of these foams, the one with the smallest mesh, is shown in Figure 11.

Figure 11: Mesh of the foam.

Now the two collision detection methods are applied again. The same number of test
points, 103, 203, 403 and 803, are checked whether they are inside or outside these bodies.
For the FMM again an optimal choice of cluster tree depth (using knowledge of both, the
number of surface triangles and the number of grid points) is used and another tree depth
is chosen only by means of the knowledge of the number of triangles. In the case of the
FMM with the optimally chosen depth of the cluster tree, a similar performance as for the
sphere is obtained, see Figure 12. The computational times increase less than linear with
respect to the number of triangles for a fixed number of evaluation points. This is due to
the fact that the depth of the cluster tree is used to balance the times for setting up the
coefficients and for the evaluation. If the number of triangles and the number of evaluation
points are increased at the same time, the asymptotic linear behavior will be observed.

The computational times for the not optimally chosen (PC) maximum level are shown
in Figure 13. Again, the results are not as good as for the optimal choice (WC) of the
cluster tree depth. Especially the results for the finest mesh are dominated strongly by the
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Figure 12: Results of the FMM using a
well chosen (WC) cluster tree depth.
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Figure 13: Results of the FMM using a
pre-chosen (PC) depth of cluster tree.

time required to set the coefficients since the maximum level is chosen too high due to the
huge number of triangles.

For the ray crossing method again the linear dependency of the method can be seen
nicely in Figure 14. In the comparison of the different approaches in Figure 15, again the
better performance of the fast multipole method for large numbers of faces can be observed.
For the smallest grid, the ray crossing method shows a better performance than the results
obtained by means of the FMM when there is no knowledge about the numbers of points
given. For the large grid, both versions of the FMM show a strongly better performance.

4 Conclusions

In this paper two very different methods that can be used for collision detection have
been explained and compared with respect to required computation time. Here, systems
containing bodies that are highly complex, i.e. containing many faces, are of interest. In
order to investigate the behavior of such systems properly, in the comparisons a scattered
grid of points is tested with a body whose complexity is increased.

For the FMM it has to be distinguished between results that are obtained using an
optimal choice for the depth of the cluster tree and results where this knowledge is not
available. In our example, both, the number of elements of the body as well as the number
of points of the scattered grid is known. Having this knowledge, the obtained results are for
most cases better than the results obtained by means of the ray crossing method, especially
if many faces have to be checked.

However, using this method for a simulation of a system consisting of some bodies, it
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the ray crossing method.
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is not known from the beginning, how many points have to be tested against a body. The
results obtained by using only the knowledge of the complexity of the body are often very
similar for all scattered grids, since the chosen tree depth for these cases is only dependent
on the number of elements of the body, and is therefore often chosen too high. Comparing
the RC method with these results shows that for the foam tested with the small scattered
grid, the RC method is more efficient, whereas for the largest scattered grid the FMM
method is a lot better than the RC method. For the sphere a similar conclusion can be
drawn. Here, for the smallest scattered grid and the five coarsest discretizations of the
sphere the RC method is better than the FMM method, and even for the largest scattered
grid a better result of the RC method can be obtained for the three smallest spheres. It can
be said that both methods are efficient and useful for collision detection purposes. While
the FMM has its advantages mainly for very large bodies consisting of a huge number of
nodes, the RC method is more appropriate for simpler bodies.
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