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e-mail: [of,schwaigkofler,o.steinbach]@tugraz.at

Abstract

Solving inverse problems gets more and more important in the computer sim-
ulation of technical processes, as for example in electrical engineering. Here, we
present some methods of shape reconstruction from electrical capacitance tomogra-
phy measurement data. To minimize the cost functional,we need to calculate the
corresponding shape derivatives. Fast boundary element methods are used for solv-
ing the appropriate forward problems to reduce the quadratic effort to an almost
linear one.

1 Introduction

In electrical capacitance tomography (ECT), the aim is to determine interior objects inside
a surrounding domain from measured data (Huang et al. 1988). These measurements are
done by using multi-electrode assemblies (Wegleiter et al. 2005, Kortschak et al. 2005).
Mathematically, the direct problem corresponds to mixed boundary value problems with
predescribed potentials at the electrodes and zero fluxes elsewhere. The measured data are
then obtained from the fluxes at the electrodes. To find the shape of the inscribed objects,
we therefore have to solve the corresponding inverse problem.

The inverse problem to be solved corresponds to the minimization of a cost functional
for which the associated shape derivative is needed (Soko lowski et al. 1992, Delfour et al.
2001). The application of the Fréchet derivative corresponds to an associated transmission
boundary value problem (Kirsch 1992, Hettlich et al. 1996, Hettlich et al. 1998). By using
the adjoint state, the shape derivative itself can be described as the unique solution of a
related transmission problem (Pironneau 1984, Ito et al. 2001). The unknown shape can
be described either by using a suitable parameterization (Kirsch 1992) or by using level
set functions (Osher et al. 1988). The latter allows to handle changes in the topology
and to identify objects without any a priori information, see (Santosa 1996, Litman et
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al. 1998, Dorn et al. 2000, Burger 2001, Ito et al. 2001, Hintermüller et al. 2003, Osher et
al. 2003, Dorn et al. 2006).

Since the permittivity is assumed to be piecewise constant, boundary integral equation
methods (Sauter et al. 2004, Steinbach 2003) can be used to solve the involved transmission
problems by applying domain decomposition techniques (Steinbach 2003, Toselli et al.
2005, Wohlmuth 2001). For the use of boundary element methods in the context of inverse
problems see, e.g., (Colton et al. 1983, Eppler et al. 2006, Harbrecht et al. to appear).
Since the discretization of boundary integral equations leads to dense stiffness matrices,
fast boundary element methods are required (Rjasanow et al. 2007), see also (Greengard
et al. 1987) for the fast multipole method, (Hackbusch et al. 1989) for panel clustering,
(Dahmen et al. 1993) for the use of wavelets, (Bebendorf et al. 2003) for the adaptive cross
approximation and (Hackbusch 1999) for the use of H matrix arithmetics.

The paper is organized as follows. In Section 2, we present a model problem for electrical
capacitance tomography and formulate the related shape identification problem. Section
3 is devoted to the derivation of algorithms to determine the interior objects by using the
shape derivative and the adjoint variable method in combination with level set functions.
In Section 4, we describe a boundary integral formulation to solve the involved transmission
problems by using a domain decomposition approach, we discuss the Galerkin discretization
of boundary integral operators, and comment on the use of the fast multipole method.

2 Model Problem

2.1 Electrical capacitance tomography

We are interested in the shape identification of some unknown bounded domain D ⊂ Ω
where Ω ⊂ R

3 is a bounded domain with Lipschitz boundary Γ = ∂Ω, and Ω is decomposed
by Ω = Ω0 ∪ ∂D ∪D, Ω0 := Ω\D.

In electrical capacitance tomography (ECT) (Huang et al. 1988), the shape ∂D is
identified from measurements of the coupling capacitances of a multi-electrode assembly
(Wegleiter et al. 2005, Kortschak et al. 2005). In the direct simulation, this corresponds to
a mixed boundary value problem with predescribed potentials at the electrodes and zero
fluxes elsewhere. Instead, here we will consider a model problem where the potential is
given along the boundary Γ = ∂Ω and the fluxes are considered as a result of the measure-
ment. However, the boundary integral approach as described for this model problem can
be applied to the more general case straightforwardly.

2.2 Mathematical model problem

Neglecting the wave propagation, the potential u satisfies the electrostatic field equation

− div (ε(x)∇u(x)) = 0 for x ∈ Ω,
u(x) = g(x) for x ∈ Γ

(1)
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for given Dirichlet boundary data g, where the permittivity ε is assumed to be piecewise
constant, i.e., ε(x) = ε0 for x ∈ Ω0, ε(x) = εD for x ∈ D. Defining u0(x) = u(x) for x ∈ Ω0

and uD(x) = u(x) for x ∈ D, the direct problem (1) corresponds to the transmission
boundary value problem

−∆u0 = 0 in Ω0,
−∆uD = 0 in D,

u0 = g on Γ,
u0 − uD = 0 on ∂D,

ε0
∂

∂ν
u0 − εD

∂

∂ν
uD = 0 on ∂D,

(2)

where ν denotes the exterior normal vector of ∂D. Note that the transmission boundary
value problem (2) is rather standard in domain decomposition methods, see e.g. (Steinbach
2003, Toselli et al. 2005, Wohlmuth 2001).

The solution of the direct problems (1) and (2), respectively, defines the corresponding
Neumann data, i.e. the flux

t(x) = ε0
∂

∂n
u0(x) for x ∈ Γ, (3)

where n denotes the exterior normal vector of Γ, satisfying, by using Green’s formula,
∫

Γ

t(x)v(x)dsx =

∫

Ω

ε(x)∇u(x) · ∇v(x)dx

for some suitable test functions v ∈ H1(Ω). In particular, by solving the direct problem,
this defines a formal map G of the shape ∂D describing the interior domain D onto the
related Neumann datum,

G(∂D) = ε0
∂

∂n
u0 on Γ. (4)

The inverse problem consists in finding the shape ∂D and the interior domain D, respec-
tively, from some measured flux f , in particular we have to solve the operator equation

G(∂D) = ε0
∂

∂n
u0 = f on Γ. (5)

Taking into account the physical meaning of the flux t, the appropriate cost functional Ψ
is induced by the energy norm in H−1/2(Γ) where

Ψ(∂D) =
1

2
‖G(∂D) − f‖2

H−1/2(Γ)

=
1

2
‖G(∂D) − f‖2

V (6)

and

‖w‖2
V =

1

4 π

∫

Γ

w(x)

∫

Γ

1

|x− y|
w(y) dsy dsx,
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is an equivalent norm in H−1/2(Γ) which is induced by the single layer potential V of the
Laplace operator. Therefore, the operator equation (5) corresponds to finding ∂D such
that

Ψ(∂D) =
1

2
‖G(∂D) − f‖2

V = 0 (7)

is satisfied, i.e., we have to find a minimizer of Ψ(∂D). Note that in most cases the mini-
mization of the cost functional Ψ(∂D) has to be done by adding an adequate regularization
term, see e.g. (Engl et al. 1996) and the references given therein.

3 Solution algorithms

In this section, we want to describe some algorithms to solve the inverse problem (5), i.e., to
minimize the cost functional (6) over a set X of admissible shapes. In general, these algo-
rithms may depend on the definition of X which can be given either via parameterizations,
or via the use of level set functions.

3.1 Newton algorithm

Starting from a given representation of the shape ∂Dk, a new iterate can be constructed
by introducing the formal Newton algorithm

∂Dk+1 = ∂Dk −G′[∂Dk]−1 (G(∂Dk) − f) , (8)

where G′[∂Dk] is the Fréchet derivative of G in the sense of H−1/2(Γ). Therefore, by
introducing the update

∂Dk+1 = ∂Dk + hk,

we have to solve the linearized system

G′[∂Dk]hk = f −G(∂Dk) (9)

to realize one Newton step.

3.2 Shape derivatives

For a given vector h, the application of the Fréchet derivative is given by

G′[∂D]h = ε0
∂

∂n
u′0,

where u′0 is the unique solution of the transmission problem (Hettlich et al. 1996, Hettlich
et al. 1998)

−∆u′0 = 0 in Ω0,
−∆u′D = 0 in D,

u′0 = 0 on Γ,
(10)
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with the transmission conditions

u′0 − u′D = −
εD − ε0

ε0

hν
∂

∂ν
uD,

ε0
∂

∂ν
u′0 − εD

∂

∂ν
u′D = −(εD − ε0)∇τ · (hν∇τuD)

on ∂D. Note that uD is the solution of the direct transmission problem (2), hν = h ·ν and
∇τ is the surface gradient on ∂D.

In the case of a two-dimensional star-like interior domain D and by using a suitable
parameter representation of ∂D, for example by polar coordinates, one can derive numerical
algorithms to solve the linearized systems (9), see e.g. (Hettlich et al. 1996, Hettlich et
al. 1998) and (Kirsch 1992).

3.3 Adjoint variable method

Instead of a direct evaluation of the Fréchet derivative G′[∂D]h by solving the transmission
problem (10), we are interested in alternative representations to be used in the minimization
of the cost functional Ψ(∂D) in (6). To minimize the cost functional, we first note that
the corresponding shape derivative reads

Ψ′(∂D) =

∫

Γ

V (G(∂D) − f) (G(∂D))′ dsx

=

∫

Γ

p0(x)

(
ε0
∂

∂n
u0

)′

dsx (11)

where V is the single layer potential and p0 is the adjoint state function satisfying

−∆p0 = 0 in Ω0,
−∆pD = 0 in D,

p0 = V

(
ε0
∂

∂n
u0 − f

)
on Γ.

(12)

If we require the transmission conditions

p0 − pD = 0 on ∂D,

ε0
∂

∂ν
p0 − εD

∂

∂ν
pD = 0 on ∂D

(13)

in addition, we finally obtain

Ψ′(∂D) = (εD − ε0)

∫

∂D

(∇uD · ∇p0)(h · ν) dsx.

Therefore, the steepest descent direction h
∗ to minimize the cost functional Ψ(∂D) is given

by, when assuming εD > ε0,

h
∗ = −(∇uD · ∇p0)ν on ∂D.
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To compute this search direction for a given shape ∂Dk, we have to solve both the direct
transmission problem (2) and the adjoint transmission problem (12)–(13). For an approx-
imate solution of these transmission problems, one may use, e.g., either finite element
methods or boundary element methods.

Again, this approach is independent of the chosen representation of ∂Dk. However, a
line search algorithm has to be applied to determine an appropriate step size. This can be
done for example in connection with a level set description of the interface ∂Dk.

3.4 Level set functions

For Ω ⊂ R
3, we define (Osher et al. 2003) the level set function

φ(x, t) : Ω × R
+ → R

where φ(x, t) = 0 describes the shape ∂D while the interior domain D is characterized by
φ(x, t) < 0. By using level set methods, it is quite feasible to describe the change of the
boundary ∂Dk in a given direction h

∗.
If the shape ∂Dk is perturbed by a small vector field th, the level set function φ(x, t) = 0

is changed to
φ(x + th(x), t) = 0.

Taking the derivative with respect to t results in

φt(x, t) + h(x) · ∇xφ(x, t) = 0.

By using ν = − ∇φ
|∇φ|

to describe the exterior normal vector ν on ∂D, we obtain for the
deepest descent direction

h
∗ = −(∇uD · ∇p0)ν = (∇uD · ∇p0)

∇φ

|∇φ|
on ∂D,

and therefore, choosing h = h
∗ gives an Hamilton–Jacobi equation for the level set function

φ(x, t),
φt + F (x, t)|∇φ| = 0, (14)

where
F (x, t) := ∇uD(x) · ∇p0(x), for x ∈ ∂D. (15)

Note that the Hamilton–Jacobi equation (14) can be solved by some standard numerical
scheme, e.g. by an explicit Euler method.

Summarizing this chapter, we can formulate an algorithm to determine the unknown
shape ∂D, see also (Ito et al. 2001).
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Algorithm 1 Level set algorithm for shape identification

Set k = 0 and choose an initial level set function φ0(x).
repeat

Determine ∂Dk = {x ∈ Ω : φk(x) = 0}.
Solve the direct transmission problem (2) for Dk and Ωk to compute uk.
Solve the adjoint problem (12)–(13) for Dk and Ωk to compute pk.
Calculate the normal velocity

F k(x) = ∇uk(x) · ∇pk(x).

Update the level set function

φt(x, t) + F k(x)|∇xφ(x, t)| = 0, φ(x, tk) = φk(x)

for t = tk by an explicit Euler step

φk+1(x) − φk(x)

∆t
+ F k(x)|∇φk(x)| = 0,

where

∆t = min

{
h

2‖F k‖∞
,
h

2

}
.

Set k = k + 1.
until convergence is reached, i.e.,

Ψ(∂Dk) =
1

2

∥∥∥∥ε0
∂

∂n
uk

0 − f

∥∥∥∥
2

V

< δ

is satisfied where δ is a predescribed accuracy.
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4 Fast boundary element methods

The realization of Algorithm 1 is essentially based on the solution of the direct transmis-
sion problem (2), and of the adjoint transmission problem (12)–(13). These transmission
problems have to be solved many times within the level set algorithm. Therefore, efficient
iterative solvers for these direct problems are mandatory. For the solution of transmis-
sion problems, we will use a domain decomposition approach which is based on a strong
coupling of the Dirichlet data (potential) and on a weak coupling of the associated Neu-
mann data (flux). To describe the local Dirichlet to Neumann maps, i.e. the solution of
local boundary value problems, we will use boundary integral equation methods (Sauter et
al. 2004, Steinbach 2003). Note that all required data of Algorithm 1 are provided when
using this approach. Since the discretization of boundary integral equations leads to dense
stiffness matrices, fast boundary element methods are required (Rjasanow et al. 2007).
Here, we will describe a fast multipole approach (Greengard et al. 1987, Of et al. 2005, Of
et al. 2006).

4.1 Dirichlet domain decomposition method

According to (2) and (12), we consider the general transmission boundary value problem

−∆u0(x) = 0 for x ∈ Ω0,
−∆uD(x) = 0 for x ∈ D,

u0(x) = g(x) for x ∈ Γ,
(16)

with the inhomogeneous transmission conditions

u0(x) − uD(x) = gI(x) for x ∈ ∂D,

ε0
∂

∂ν
u0(x) − εD

∂

∂ν
uD(y) = fI(x) for x ∈ ∂D.

(17)

Let u be a given continuous function which is defined on ∂D. By reformulating the Dirichlet
boundary condition using a function u such that

uD(x) = u(x) − gI(x) for x ∈ ∂D,
u0(x) = u(x) for x ∈ ∂D,
u0(x) = g(x) for x ∈ Γ,

we can ensure both the Dirichlet boundary condition in (16) and the Dirichlet transmission
condition in (17). Moreover, we can solve the local Dirichlet boundary value problems

−∆uD(x) = 0 for x ∈ D,
uD(x) = u(x) − gI(x) for x ∈ ∂D

and
−∆u0(x) = 0 for x ∈ Ω,

u0(x) = u(x) for x ∈ ∂D,
u0(x) = g(x) for x ∈ Γ,
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to compute the associated Neumann data tD and t0, compare (3). Hence, we can write the
local Dirichlet to Neumann maps as

tD(x) = SDu(x) − SDgI(x) for x ∈ ∂D,
t0(x) = S0u(x) + S0g(x) for x ∈ ∂D,

where SD and S0 are called Steklov–Poincaré operators which are related to the solution of
a local Dirichlet boundary value problem. It remains to ensure the Neumann transmission
condition in (17), in particular u has to be a solution of

ε0S0u− εDSDu = fI − εDSDgI − ε0S0g on ∂D.

The weak formulation of this operator equation to find the correct transmission data u
results in a variational problem which can be discretized as usual. In particular, when
considering piecewise linear continuous basis functions ϕi which are defined with respect
to some regular boundary element mesh of ∂D with mesh size h, this gives a linear system
of algebraic equations

(ε0S0,h − εDSD,h)u = b.

The stiffness matrices are given by

S0,h[i, j] =

∫

∂D

S0ϕi(x)ϕj(x)dsx,

SD,h[i, j] =

∫

∂D

SDϕi(x)ϕj(x)dsx,

and the vector of the right-hand side by

bj =

∫

∂D

fI(x)ϕj(x)dsx −

∫

∂D

εDSDgI(x)ϕj(x)dsx

−

∫

∂D

ε0S0g(x)ϕj(x)dsx

for i, j = 1, . . . ,MD, where MD is the number of degrees of freedom. The computation of
the above system matrices involves the solution of local Dirichlet boundary value problems.
In general, this has to be done either by a finite or by a symmetric boundary element
approximation (Steinbach 2003). To construct efficient iterative solvers for this linear
system, one may consider finite and boundary tearing and interconnecting methods (Langer
et al. 2005). Note that these methods are also robust with respect to large jumps in the
coefficients ε0 and εD. Moreover, boundary element tearing and interconnecting methods
can easily be combined with fast boundary element methods (Langer et al. 2007) or any
other local discretization scheme.

4.2 Boundary element methods

Here, we will describe the realization of the Steklov–Poincaré operators S0 and SD by a
symmetric boundary element method. For simplicity, we drop the indices of the subdo-
mains and describe the boundary element method for a single subdomain Ω with boundary
Lipschitz Γ = ∂Ω.
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The solution of the Laplace equation ∆u = 0 is given by the representation formula

u(x) =

∫

Γ

U∗(x, y)t(y)dsy −

∫

Γ

∂

∂ny
U∗(x, y)u(y)dsy

for x ∈ Ω, where ny denotes the exterior normal vector for y ∈ Γ, and U ∗(x, y) is the
fundamental solution given by

U∗(x, y) =
1

4π

1

|x− y|
.

The knowledge of the Cauchy data u(y) and t(y) := ∂
∂ny

u(y) for y ∈ Γ is sufficient to

describe the solution of the boundary value problem. So, it remains to determine the
complete Cauchy data by the help of the first boundary integral equation

u(x) =

(
1

2
I −K

)
u(x) + (V t)(x) (18)

for almost all x ∈ Γ, and of the hypersingular boundary integral equation

t(x) = (Du)(x) +

(
1

2
I +K ′

)
t(x) (19)

for almost all x ∈ Γ. Note that both boundary integral equations result from the repre-
sentation formula when considering the Dirichlet and Neumann traces, respectively. The
involved boundary integral operators are the single layer potential

(V t)(x) =

∫

Γ

U∗(x, y)t(y)dsy,

the double layer potential

(Ku)(x) =

∫

Γ\{x}

∂

∂ny
U∗(x, y)u(y)dsy,

its adjoint operator

(K ′t)(x) =

∫

Γ\{x}

∂

∂nx
U∗(x, y)t(y)dsy,

and the hypersingular operator

(Du)(x) = −
∂

∂nx

∫

Γ

∂

∂ny
U∗(x, y)u(y)dsy

for x ∈ Γ. By solving the first boundary integral equation (18), we obtain with

t(x) = (Su)(x) := V −1

(
1

2
I +K

)
u(x) (20)
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a first representation of the Steklov–Poincaré operator. Inserting (20) into the hypersin-
gular boundary integral equation (19) gives a second possible definition of the Steklov–
Poincaré operator,

(Su)(x) =

[
D +

(
1

2
I +K ′

)
V −1

(
1

2
I +K

)]
u(x). (21)

The symmetric boundary integral representation (21) is now well suited for a Galerkin
approximation. For this we consider piecewise constant basis functions {ψk}

N
k=1 to approx-

imate the flux, and piecewise linear continuous basis functions {ϕi}
M
i=1 to approximate the

potential. Then we obtain a symmetric boundary element approximation

Sh = Dh +

(
1

2
M>

h + K>
h

)
V−1

h

(
1

2
Mh + Kh

)
, (22)

where
Vh[`, k] = 〈V ψk, ψ`〉Γ, Kh[`, i] = 〈Kϕi, ψ`〉Γ,
Dh[j, i] = 〈Dϕi, ϕj〉Γ, Mh[`, i] = 〈ϕi, ψ`〉Γ

for k, ` = 1, . . . , N and i, j = 1, . . . ,M .

4.3 Fast multipole method

The stiffness matrices of the boundary element method are fully populated due to the non-
local character of the fundamental solution U ∗(x, y). Therefore, O(N 2) matrix entries have
to be computed and stored, and a single matrix times vector product is of order O(N 2),
too. These facts limit the use of standard boundary element methods to 10000–20000
boundary elements for todays personal computers. Fast boundary element methods, like
the fast multipole method (Greengard et al. 1987), overcome these limits by data-sparse
approximations of the matrices. Most of these methods are quite related. Here, we will
describe the main ideas of the fast multipole method for the single layer potential. For
details please see, e.g., (Greengard et al. 1987, Nishimura 2002, Of et al. 2006).

The matrix times vector product w = Vht of the Galerkin matrix of the single layer
potential V reads for the `-th component, ` = 1, . . . , N ,

w` =

N∑

k=1

Vh[`, k]tk =
1

4π

N∑

k=1

tk

∫

τ`

∫

τk

1

|x− y|
dsydsx

where τk denotes a boundary element. The effort of such a matrix times vector product
is of order O(N 2) as none of the matrix entries vanishes. This effort can be reduced by
separation of variables using a Taylor series expansion of the fundamental solution. An
expansion by spherical harmonics is more suitable,

U∗(x, y) =
1

4π

1

|x− y|
≈

1

4π

p∑

n=0

n∑

m=−n

|x|nY −m
n (x̂)

Y m
n (ŷ)

|y|n+1
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with spherical harmonics

Y ±m
n (x̂) =

√
(n−m)!

(n+m)!
(−1)m dm

dx̂m
3

Pn(x̂3)(x̂1 ± ix̂2)m

for m ≥ 0 and x̂ = x/|x|. Pn denotes the Legendre polynomial of n–th order and these
polynomials can be computed efficiently by recursion formulas. The expansion has been
truncated for the computational realization. The induced error can be controlled to guaran-
tee optimal convergence rates of the fast method, see, e.g., (Of et al. 2006). The expansion

is only valid for |x|
|y|
< 1

d
where d > 1. Therefore, the expansion can be applied only for well

separated boundary elements. This leads to a separation of the matrix into a farfield (FF)
and a nearfield (NF) part where the expansion can be applied or not, respectively. The
approximation of the matrix times vector product now reads as

w̃` =
∑

k∈NF(`)

Vh[`, k] tk +

p∑

n=0

n∑

m=−n

∫

τ`

|x|nY −m
n (x̂)dsxL

m
n (`)

with the coefficients

Lm
n (`) =

∑

k∈FF(`)

tk
4π

∫

τk

Y m
n (ŷ)

|y|

n+1

dsy.

If the coefficients Lm
n (`) are known, a fast evaluation of the matrix times vector product

is given. Unfortunately, the coefficients Lm
n (`) depend on the index ` of the evaluation

element τ`. Further, these coefficients have to be recomputed in each matrix times vector
product.

The second main ingredient of the fast multipole method is a hierarchical structure
which is used to compute the coefficients Lm

n (`) efficiently (Greengard et al. 1987). To this
end, neighbored elements are clustered, and an appropriate cluster tree is defined. The
contribution of each cluster is expressed by a truncated expansion. The separation into
nearfield and farfield is also applied to the cluster tree defining admissible cluster pairs.
Finally, all the farfield sums for τ` and τk belonging to admissible pairs of clusters are
assembled efficiently by exploiting the hierarchical tree structure. As a consequence, one
matrix times vector multiplication is performed with the almost linear effort of O(N log2N)
and the approximated solution of the discrete system will provide an approximation whose
error is of the same order as in the a priori error estimate. For details and numerical
examples of complex structures for industrial applications please see, e.g., (Of et al. 2005, Of
et al. 2006).

Conclusions

We have described a fast symmetric boundary element method for ECT inverse problems,
in particular for a model problem. The numerical implementation will be done by using
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available fast boundary element tools. This will be extended to the more complicated con-
figuration of the sensor assembly (Wegleiter et al. 2005). Moreover, several regularization
techniques have to be considered.

Acknowledgement

This work has been supported by the Austrian Science Fund ‘Fonds zur Förderung der wis-
senschaftlichen Forschung (FWF)’ under the grant L261 ‘Fusion von Kapazitätstomographie
mit Ultraschalltomographie’.

References

Bebendorf, M., Rjasanow, S., (2003): Adaptive low-rank approximation of collocation
matrices. Computing 70(1), 1–24.

Burger, M., (2001): A level set method for inverse problems. Inverse Problems, nr. 17,
1327–1355.

Colton, D.L., Kress, R., (1983): Integral equation methods in scattering theory. Pure and
Applied Mathematics, New York: John Wiley & Sons Inc.
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