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Fast evaluation of volume potentials in

boundary element methods

G. Of, O. Steinbach, P. Urthaler

Institute of Computational Mathematics
Graz University of Technology

Steyrergasse 30, 8010 Graz, Austria

Abstract

The solution of inhomogeneous partial differential equations by boundary element
methods requires the evaluation of volume potentials. A direct standard computation
of the classical Newton potentials is possible, but expensive. Here, a fast evaluation of
the Newton potentials by using the fast multipole method is described and analyzed.
In particular, an approximation by the fast multipole method is investigated and
related error estimates are given. Furthermore, an indirect evaluation of the normal
derivative of the Newton potential is presented. A numerical analysis is presented
for all approaches mentioned above. Numerical results are given for the Poisson
equation, and for the system of linear elastostatics.

1 Introduction

Fast boundary element methods are well established when solving homogeneous partial
differential equations, see, e.g., [15]. This is mainly due to the fact that only a boundary
triangulation is needed. When dealing with inhomogeneous partial differential equations,
volume potentials require an integration over the whole domain, and the advantage of the
boundary element methods seems to be lost. Besides a direct evaluation of the volume
potential, there are several approaches available to deal with those volume integrals. In
engineering, the most common one seems to be the dual reciprocity method, see [1, 5]
and the references given therein. The main idea of the dual reciprocity approach is to
use integration by parts to rewrite the volume integrals as surface potentials. In fact, a
particular solution of the partial differential equation is constructed. In particular, the
right hand side of the partial differential equation is approximated by basis functions, e.g.
radial basis functions, which allow a simple solution of the partial differential equation.
On the other hand, particular solutions are computed by finite difference methods or
by finite element methods [11] by embedding the domain into an auxiliary domain and
solving the inhomogeneous equation on a uniform grid. Due to the uniform grid fast
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Fourier transformation based solvers can be used [2]. A particular solution can also be
obtained by evaluating the Newton potential of such an auxiliary domain by a fast multipole
method, which was done for example in [4] for a two-dimensional Poisson problem. Given
a particular solution one has to solve the homogeneous boundary value problem with
modified boundary values. The inhomogeneity can also be incorporated directly into the
formulation, which requires the evaluation of the Newton potential of the domain itself
by the fast multipole method. In [10], the dual reciprocity method, the computation of a
particular solution by finite element methods and the evaluation of the Newton potential
of the domain by the fast multipole method are compared for 2D. In their comparison, the
fast multipole method seems to be superior. In the literature, Dirichlet boundary value
problems in 2D are treated mostly. Thus the normal derivative of the Newton potentials as
in the hypersingular boundary integral equation is often neglected. Evaluation of volume
potentials in 3D are studied for the solution of volume integral equations e.g. in [17, 26].
Here we will consider an acceleration of the direct evaluation of Newton potentials by
using fast boundary element methods. In this paper, we propose and analyze the use of
the fast multipole method [6, 7, 12] for an efficient evaluation of the Newton potentials in
the symmetric formulation of boundary integral equations. Additionally, we investigate an
indirect approach for the evaluation of the normal derivative of the Newton potential as
used within the hypersingular boundary integral equation which is based on the knowledge
of the first Newton potential only. It turns out, that the latter approach seems to be
more efficient than the direct evaluation of both Newton potentials. This approach can be
extended directly to handle non–linear and time dependent boundary value problems.
The paper is organized as follows: In Sect. 2 we describe the symmetric formulation of
boundary integral equations and the use of a Galerkin boundary element method to solve
mixed boundary value problems for the Poisson equation. In Sect. 3 we first discuss the
standard evaluation of Newton potentials, before describing the use of fast multipole meth-
ods for their acceleration. In addition, we derive an alternative representation of the normal
derivative of the Newton potential. Then we analyze the fast multipole approximation of
both Newton potentials and derive related error estimates for the boundary element solu-
tions of the related boundary value problems. Finally, some numerical experiments for the
Poisson equation and for the system of linear elastostatics in Sect. 4 confirm the theoretical
results.

2 Boundary integral equations

For a simply connected bounded domain Ω ⊂ R
3 with a Lipschitz boundary Γ = ∂Ω, we

consider the Poisson equation with mixed boundary conditions as a model problem

−∆u(x) = f(x) for x ∈ Ω, u(x) = gD(x) for x ∈ ΓD,
∂

∂nx
u(x) = gN(x) for x ∈ ΓN (2.1)

where Γ = ΓD ∪ ΓN , and nx is the exterior unit normal vector which is defined for almost
all x ∈ Γ. The solution of the mixed boundary value problem (2.1) is given by the
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representation formula for x ∈ Ω

u(x) =

∫

Γ

U∗(x, y)t(y)dsy −

∫

Γ

∂

∂ny
U∗(x, y)u(y)dsy +

∫

Ω

U∗(x, y)f(y)dy (2.2)

where

U∗(x, y) =
1

4π

1

|x− y|

is the fundamental solution of the Laplace operator, and t = ∂
∂n
u is the related normal

derivative of u. We will use the symmetric formulation of boundary integral equations to
compute the remaining Cauchy data. When applying the Dirichlet and Neumann traces
to the representation formula (2.2), we obtain a system of boundary integral equations,

(
u

t

)
=

( 1
2
I −K V

D 1
2
I +K ′

)(
u

t

)
+

(
N0f

N1f

)
. (2.3)

In (2.3),

(V w)(x) =

∫

Γ

U∗(x, y)w(y)dsy for x ∈ Γ

is the single layer potential V : H−1/2(Γ) → H1/2(Γ),

(Kv)(x) = lim
ε→0

∫

y∈Γ:|y−x|>ε

∂

∂ny
U∗(x, y)v(y)dsy for x ∈ Γ

is the double layer potential K : H1/2(Γ) → H1/2(Γ),

(K ′w)(x) = lim
ε→0

∫

y∈Γ:|y−x|>ε

∂

∂nx
U∗(x, y)w(y)dsy for x ∈ Γ

is the adjoint double layer potential K ′ : H−1/2(Γ) → H−1/2(Γ), and

(Dv)(x) = −
∂

∂nx

∫

Γ

∂

∂ny

U∗(x, y)v(y)dsy for x ∈ Γ

is the hypersingular boundary integral operator D : H1/2(Γ) → H−1/2(Γ). Note that the
mapping properties of all boundary integral operators are well known, see, e.g. [3, 9, 16,
20]. In particular, the single layer potential V is H−1/2(Γ)–elliptic, and the hypersingular
boundary integral operator D is H1/2(Γ)–semi–elliptic.
Due to the inhomogeneous partial differential equation, we have to introduce in addition
the Newton potentials

(N0f)(x) =

∫

Ω

U∗(x, y)f(y)dy for x ∈ Γ (2.4)
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and

(N1f)(x) =
∂

∂nx

∫

Ω

U∗(x, y)f(y)dy for x ∈ Γ. (2.5)

When using the symmetric formulation of boundary integral equations to solve the mixed
boundary value problem (2.1), the first equation in (2.3) is considered for x ∈ ΓD, while
the second equation in (2.3) is used for x ∈ ΓN . In particular, let g̃N ∈ H−1/2(Γ) and
g̃D ∈ H1/2(Γ) be arbitrary but fixed extensions of the given data gN ∈ H−1/2(ΓN) and
gD ∈ H1/2(ΓD), respectively. Then we have to find

t̃ = t− g̃N ∈ H̃−1/2(ΓD), ũ = u− g̃D ∈ H̃1/2(ΓN)

as the unique solution of the system of boundary integral equations,

(V t̃)(x) − (Kũ)(x) = (
1

2
I +K)g̃D(x) − (V g̃N)(x) − (N0f)(x) for x ∈ ΓD, (2.6)

(K ′t̃)(x) + (Dũ)(x) = (
1

2
I −K ′)g̃N(x) − (Dg̃D)(x) − (N1f)(x) for x ∈ ΓN . (2.7)

Let

S0
h(ΓD) = span{ψk}

ND
k=1 ⊂ H̃−1/2(ΓD), S1

h(ΓN) = span{ϕi}
MN
i=1 ⊂ H̃1/2(ΓN)

be some boundary element spaces, e.g. of piecewise constant basis functions ψk and piece-
wise linear basis functions ϕi, which are defined with respect to an admissible bound-
ary element mesh of mesh size h. ND denotes the number of elements of ΓD, while
MN is the number of nodes without Dirichlet boundary conditions. The Galerkin vari-
ational problem of the system of boundary integral equations (2.6) and (2.7) reads: Find
(t̃h, ũh) ∈ S0

h(ΓD) × S1
h(ΓN) such that

〈V t̃h, τh〉ΓD
− 〈Kũh, τh〉ΓD

= 〈(
1

2
I +K)g̃D − V g̃N −N0f, τh〉ΓD

(2.8)

for all τh ∈ S0
h(ΓD) and

〈K ′t̃h, vh〉ΓN
+ 〈Dũh, vh〉ΓN

= 〈(
1

2
I −K ′)g̃N −Dg̃D −N1f, vh〉ΓN

(2.9)

for all vh ∈ S1
h(ΓN). The Galerkin formulation (2.8) and (2.9) is equivalent to a linear

system of algebraic equations,

(
Vh −Kh

K⊤
h Dh

)(
t̃

ũ

)
=

(
f

1

f
2

)
−

(
N0

N1

)
, (2.10)

where the blocks of the stiffness matrix are

Vh[ℓ, k] = 〈V ψk, ψℓ〉ΓD
, Kh[ℓ, i] = 〈Kϕi, ψℓ〉ΓD

, Dh[j, i] = 〈Dϕi, ϕj〉ΓN
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for k, ℓ = 1, . . . , ND, i, j = 1, . . . ,MN . Moreover, for ℓ = 1, . . . , ND and for j = 1, . . . ,MN

we have

f1,ℓ = 〈(
1

2
I +K)g̃D − V g̃N , ψℓ〉ΓD

, f2,j = 〈(
1

2
I −K ′)g̃N −Dg̃D, ϕj〉ΓN

.

In the case of an inhomogeneous partial differential equation, the right hand side of the
linear system (2.10) involves contributions due to the Newton potentials N0f and N1f . In
particular, we need to compute, for ℓ = 1, . . . , ND and j = 1, . . . ,MN ,

N0,ℓ =

∫

ΓD

ψℓ(x)

∫

Ω

U∗(x, y)f(y)dy dsx, (2.11)

N1,j =

∫

ΓN

ϕj(x)
∂

∂nx

∫

Ω

U∗(x, y)f(y)dy dsx . (2.12)

Note that the bilinear form

a(t, u; τ, v) = 〈V t, τ〉ΓD
− 〈Ku, τ〉ΓD

+ 〈K ′t, v〉ΓN
+ 〈Du, v〉ΓN

which is related to the variational problem (2.8) and (2.9) is bounded, i.e.

a(t, u; τ, v) ≤ cA2 ‖(t, u)‖H−1/2(Γ)×H1/2(Γ)‖(τ, v)‖H−1/2(Γ)×H1/2(Γ) (2.13)

for all (t, u), (τ, v) ∈ H̃−1/2(ΓD) × H̃1/2(ΓN), and H̃−1/2(ΓD) × H̃1/2(ΓN)–elliptic, i.e.

a(τ, v; τ, v) ≥ cA1 ‖(τ, v)‖2
H−1/2(Γ)×H1/2(Γ) (2.14)

for all (τ, v) ∈ H̃−1/2(ΓD) × H̃1/2(ΓN), where

‖(τ, v)‖2
H−1/2(Γ)×H1/2(Γ) = ‖τ‖2

H−1/2(Γ) + ‖v‖2
H1/2(Γ) .

Hence we conclude the unique solvability of the Galerkin variational problem (2.8) and
(2.9), and of the linear system (2.10). Moreover, there holds the error estimate, see, e.g.,
[20, Sect. 12.3],

‖(t̃− t̃h, ũ− ũh)‖
2
H−1/2(Γ)×H1/2(Γ) = ‖t̃− t̃h‖

2
H−1/2(Γ) + ‖ũ− ũh‖

2
H1/2(Γ)

≤ c h3
[
|t̃|2H1

pw(Γ) + |ũ|2H2(Γ)

]
(2.15)

when assuming g̃N ∈ H1
pw(Γ) and g̃D ∈ H2(Γ). Note that the error estimate (2.15) remains

valid when a fast boundary element method is used to accelerate the application of the
discrete boundary integral operators which are involved in the linear system (2.10), see,
e.g., [14, Theorem 4.1, Remark 4.3] for the use of a fast multipole method in the case of a
homogeneous partial differential equation. Note that an appropriate choice of all involved
fast multipole parameters is required in this case.
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3 Evaluation of Newton potentials

3.1 Direct evaluation

To compute the discrete Newton potential N 0 as given in (2.11), the order of integration
is interchanged first. In particular, for a piecewise constant basis function ψℓ we have

N0,ℓ =

∫

Ω

f(y)

∫

τℓ

U∗(x, y)dsxdy =

NΩ∑

k=1

∫

Tk

f(y)

∫

τℓ

U∗(x, y)dsxdy

where Ω =
⋃NΩ

i=1 Ti is some volume mesh with suitable chosen elements Ti, e.g. tetrahedra.
Then, by using some numerical integration scheme, this gives

Ñ0,ℓ =

NΩ∑

k=1

∆k

MT∑

ι=1

ωιf(yk
ι )

∫

τℓ

U∗(x, yk
ι )dsx (3.1)

where ∆k is the volume of the element Tk, and MT is the number of local integration nodes.
Note that the remaining surface integral corresponds to the discretization of the single
layer potential via collocation which can be computed analytically, see, e.g., [15, Appendix
C.2.1]. For the discrete Newton potential N1 as defined in (2.12) we get analogously

N1,j =

NΩ∑

k=1

∫

Tk

f(y)

∫

Γ

ϕj(x)
∂

∂nx
U∗(x, y)dsx dy .

Hence we compute the approximation

Ñ1,j =

NΩ∑

k=1

∆k

MT∑

ι=1

ωιf(yk
ι )

∫

Γ

ϕj(x)
∂

∂nx

U∗(x, yk
ι )dsx, (3.2)

where the remaining surface integral corresponds to the discretization of the double layer
potential via collocation which again can be computed analytically [15, Appendix C.2.2].
While the error of the numerical integration formulae (3.1) and (3.2) can be included in the
resulting error estimates of the perturbed variational formulation via the Strang lemma,
see e.g. [20], the numerical effort to compute (3.1) and (3.2) is not optimal. In particular,
the complexity is at least of order NΓNΩ where NΩ is the number of volume elements, and
NΓ is the total number of boundary elements.

3.2 Fast multipole evaluation of Newton potentials

For an efficient evaluation of the Newton potential N0f by using the Fast Multipole Method
[6, 7, 12] the kernel of the volume integral is replaced by a series expansion, i.e. for x 6= y

k(x, y) =
1

|x− y|
=

∞∑

n=0

|x|n

|y|n+1
Pn(x̂ · ŷ), x̂ =

x

|x|
, ŷ =

y

|y|
,
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where Pn are the Legendre polynomials. The truncation of the series expansion and the
separation of the variables by an appropriate reformulation of the spherical harmonics, see
e.g. [23, 25], lead to the approximation

kp(x, y) =

p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x) (3.3)

where for m ≥ 0

R±m
n (x) =

1

(n +m)!

dm

dum
Pn(u)|u=x̂3

(x̂1 ± ix̂2)
m|x|n,

S±m
n (y) = (n−m)!

dm

dum
Pn(u)|u=ŷ3

(ŷ1 ± iŷ2)
m 1

|y|n+1
.

The series expansion (3.3) approximates the kernel only well for volume elements Tk which
are well separated from the boundary elements τℓ. Therefore the domain Ω has to be
divided into a farfield FF(ℓ), where the approximation (3.3) is valid, and into a nearfield
NF(ℓ), where the approximation is not valid. Hence we obtain an approximation

Ñ0,ℓ =
∑

k∈NF(ℓ)

∫

Tk

f(y)

∫

τℓ

U∗(x, y)dsxdy +
1

4π

∫

τℓ

∑

k∈FF(ℓ)

∫

Tk

kp(x, y)f(y)dydsx .

The first sum over the nearfield NF(ℓ) is evaluated directly as given in (3.1). In the farfield
FF(ℓ), the kernel is approximated by the series expansion (3.3),

Ñ0,ℓ =
∑

k∈NF(ℓ)

∆k

MT∑

ι=1

ωιf(yk
ι )

∫

τℓ

U∗(x, yk
ι )dsx

+
1

4π

∫

τℓ

∑

k∈FF(ℓ)

∫

Tk

f(y)

p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x)dydsx

=
∑

k∈NF(ℓ)

∆k

MT∑

ι=1

ωιf(yk
ι )

∫

τℓ

U∗(x, yk
ι )dsx +

1

4π

p∑

n=0

n∑

m=−n

Mm
n (O, ℓ)L̃m

n (FF (ℓ))

where

Mm
n (O, ℓ) =

∫

τℓ

Rm
n (x)dsx, L

m
n (O, k) =

∫

Tk

Sm
n (y)f(y)dy, L̃m

n (FF (ℓ)) =
∑

k∈FF (ℓ)

Lm
n (O, k).

Note that O describes the origin of a local coordinate system. The coefficients L̃m
n (FF (ℓ))

still depend on the farfield of the boundary element τℓ. Hence, the computation of the
Newton potential Ñ0 still requires NΓNΩ operations. To end up with a more efficient eval-

uation, an approximation of the coefficients L̃m
n (FF (ℓ)) is computed by utilizing a hierar-

chical cluster structure to compute approximations of as large partial sums of L̃m
n (FF (ℓ))

as possible.
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The cluster structure is set up over the volume elements Tk and over the boundary ele-
ments τℓ as follows. First, a cube is created which contains the computational domain Ω.
All elements inside the cube define the coarse cluster ω0

1 which is subdivided into eight
clusters ω1

j . Each element is then assigned to one son cluster ω1
j by its center point. Clus-

ters which contain no elements are neglected. This process is continued recursively until a
desired depth L of the cluster tree is reached, as long as the average number of elements
per cluster does not fall below a suitable chosen minimum. For each cluster ωλ

j of level λ,
Cλ

j is the cluster center and rλ
j = supx∈ωλ

j
|x− Cλ

j | is the cluster radius. A cluster ωλ
i is in

the nearfield of a cluster ωλ
j , if

dist{Cλ
i , C

λ
j } ≤ (d+ 1) max{rλ

i , r
λ
j } (3.4)

with the nearfield parameter d > 1. The nearfield of a son cluster is always contained in
the nearfield of the father cluster. If ωL

i is the cluster containing τℓ, and ωL
j is the cluster

containing Tk, then the nearfield NF(ℓ) and the farfield FF(ℓ) of the boundary element τℓ
are defined as

NF(ℓ) := {k, 1 ≤ k ≤ NΩ : (3.4) holds}, FF(ℓ) := {1, . . . , NΩ} \ NF(ℓ).

To compute approximations of the coefficients L̃m
n (FF (ℓ)) efficiently, two kinds of series

expansions with respect to different local coordinate systems are used. Let ωL
j be a cluster

in the farfield of the cluster ωL
i which contains the boundary element τℓ. The contribution

of all elements of ωL
j to the farfield part of Ñ0,ℓ can be given by

Ñ
ωL

j

0,ℓ =
1

4π

p∑

n=0

n∑

m=−n

Mm
n (CL

i , ℓ)
∑

Tk∈ωL
j

Lm
n (CL

i , k).

The origin of the local coordinate system is chosen as the center CL
i of the cluster ωL

i . This
series expansion is called the local expansion. Alternatively, by interchanging the roles of
x and y, one can use the so called multipole expansion

N̂
ωL

j

0,ℓ =
1

4π

p∑

n=0

n∑

m=−n

∫

τℓ

Sm
n (y − CL

j )dsy

∑

Tk∈ωL
j

∫

Tk

Rm
n (x− CL

j )f(x)dx, (3.5)

where the point of origin is chosen as the center CL
j of the cluster ωL

j . The sum of all
local expansions contains the information of all elements outside the nearfield of the clus-
ter ωL

i , whereas the multipole expansion contains the information of all elements inside the
cluster ωL

j .
Next, a brief description of the fast multipole algorithm and the involved operators is
presented. For a detailed description see e.g. [6, 7, 12]. According to the multipole
expansion (3.5), the coefficients

M̂m
n (CL

j , k) =

∫

Tk

Rm
n (x− CL

j )f(x)dx (3.6)
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are calculated for each volume element Tk first, where CL
j is the center of the cluster wL

j

associated to Tk. Then the coefficients of the multipole expansion (3.5) are calculated for
all clusters ωL

j on the finest level by

M̃m
n (CL

j , ω
L
j ) =

∑

Tk∈ωL
j

M̂m
n (CL

j , k).

By the translation

M̃m
n (Cλ

j , ω
λ
j ) =

∑

ωλ+1
i ∈Sons(ωλ

j )

n∑

s=0

s∑

t=−s

Rt
s(
−−−−−→
Cλ

j C
λ+1
j )M̃m−t

n−s (Cλ+1
i , ωλ+1

i )

the coefficients of the multipole expansion are computed recursively for all father clusters
ωλ

j . Multipole expansions can be converted into local expansions by

Lm
n (Cλ

i , ω
λ
j ) =

∞∑

s=0

s∑

t=−s

(−s)nSm+t
n+s (

−−−→
Cλ

j C
λ
i )M̃ t

s(C
λ
j , ω

λ
j )

to compute approximations of the coefficients Lm
n (O, i), if ωλ

j is in the farfield of ωλ
i . This is

done on the coarsest possible cluster level, i.e., the two clusters ωλ
i and ωλ

j are in their mu-
tual farfield, whereas the father clusters are in the nearfield of each other. This procedure
guarantees that the admissibility condition is always adhered and the single expansions
can be used many times. The local coefficients are converted on several levels. Thus, their
contributions have to be shifted to the clusters of finer levels. In detail, the coefficients of
local expansion of each cluster ωλ

i are translated to its son clusters ωλ+1
j by

L̃m
n (Cλ+1

j ,FF(ωλ
i )) =

p∑

s=n

s∑

t=−s

Rt−m
s−n (

−−−−−→
Cλ

i C
λ+1
j )L̃t

s(C
λ
i ,FF(ωλ

i )).

The local coefficients L̃m
n (Cλ+1

j ,FF(ωλ+1
i )) of a cluster ωλ+1

j are defined by the sum of the
translated coefficients of the father cluster and of all local coefficients converted from mul-
tipole expansions to the cluster ωλ+1

j directly. Finally all L̃m
n (FF (ℓ)) = L̃m

n (CL
i ,FF(ωL

i ))
are computed by the described algorithm, and the farfield part of the sum (3.5) can be
evaluated efficiently.
For the Newton potential N1f , the fast multipole method can be used in almost the same
way. Again the set of volume elements Tk is split into near- and farfield. The nearfield
part is evaluated directly by (3.2), whereas in the farfield the kernel approximation is used.
This leads to the approximation

Ñ1,ℓ =
∑

k∈NF(ℓ)

∆k

MT∑

ι=1

ωιf(yk
ι )

∫

ΓN

ϕℓ(x)
∂

∂nx

U∗(x, yk
ι )dsx +

1

4π

p∑

n=0

m∑

m=−n

Mm
n (O, ℓ)L̃m

n (FF(ℓ))
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Operations Complexity

Computation of the multipole expansion for all NΩ volume elements. NΩO(p2)

Translation of the multipole expansions of all clusters of the volume
tree to its father clusters.

2aΩO(p4)

Conversion of the multipole expansion into a local expansion. For each
cluster of the boundary tree at most cd conversion occur.

cd2aΓO(p4)

Translation of the local expansions to all son cluster of the boundary
tree.

2aΓO(p4)

Evaluation of the local expansion for all NΓ boundary elements. NΓO(p2)

At most O(log2NΩ) nearfield contributions are computed per boundary
element.

NΓO(log2NΩ)

Table 1: Complexity estimation for the fast multipole method for Newton potentials.

with the coefficients

Mm
n (O, ℓ) =

∫

ΓN

ϕℓ(x)
∂

∂nx
Rm

n (x)dsx.

Approximations of the coefficients L̃m
n (FF(ℓ)) can be calculated in the same way as for

the Newton potential N0f . Thus, the only difference is the computation of the coefficients
Mm

n (O, ℓ), where linear test functions ϕℓ and normal derivatives of the coefficients Rm
n (x)

are involved.
For the direct evaluation (3.1) and (3.2) of the Newton potentials N0f and N1f one ends

up with a complexity of O(N
5/2
Γ ) essential operations, where NΩ ∼ N

3/2
Γ . Any expansion

of the fast multipole method is described by O(p2) coefficients. The number of clusters on
the finest level is denoted by aΓ for the cluster tree containing boundary elements and aΩ

for the cluster tree containing volume elements. The cluster trees can be built in such a
way that

aΓ = O

(
NΓ

log2NΓ

)
, aΩ = O

(
NΩ

log2NΩ

)
.

Due to the cluster tree, the total number of cluster is bounded by 2aΓ and 2aΩ, respectively.
For a detailed description of the notation and an analysis of the effort of a fast multipole
realization of the boundary integral operators of the Laplacian see [14]. For the fast
multipole method of the volume potentials, the computational complexity of the individual
operations is outlined in Table 1. The number of conversions of multipole expansions to the
local expansion of a single cluster is bounded by a constant cd, if the nearfield parameter
d is fixed. The expansion degree p has to be chosen proportional to logNΓ according to
the error estimates in Lemma 3.2 and 3.3. Thus the computational complexity of the fast
multipole method turns out to be O(N

3/2
Γ log2NΓ) essential operations.
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Remark 3.1. If less than O(N
3/2
Γ ) volume elements are sufficient to guarantee the optimal

accuracy of the boundary element method, e.g. by a suitable choice of cubature rules, the
fast multipole realization of the Newton potential will perform better as estimated here. Our
implementation would be able to take advantage of such a modification.

3.3 An alternative representation of N1f

The Newton potential N1f allows an alternative representation which only requires the
evaluation of the Newton potential N0f in combination with some other boundary integral
operators. In particular, the first boundary integral equation in (2.3) results in the Dirichlet
to Neumann map

t = V −1(
1

2
I +K)u− V −1N0f . (3.7)

Inserting (3.7) into the second equation in (2.3) we obtain

t = [D + (
1

2
I +K ′)V −1(

1

2
I +K)]u+N1f − (

1

2
I +K ′)V −1N0f . (3.8)

A comparison of (3.8) with (3.7) gives

N1f − (
1

2
I +K ′)V −1N0f = −V −1N0f,

and therefore we conclude the alternative representation

(N1f)(x) = (−
1

2
I +K ′)V −1(N0f)(x) for x ∈ Γ. (3.9)

For the evaluation of the discrete Newton potential N 1 as defined in (2.12), we then obtain

N1,j = 〈N1f, ϕj〉Γ = 〈(−
1

2
I +K ′)V −1N0f, ϕj〉Γ = 〈(−

1

2
I +K ′)w, ϕj〉Γ

where w = V −1N0f ∈ H−1/2(Γ) is the unique solution of the variational problem

〈V w, z〉Γ = 〈N0f, z〉Γ for all z ∈ H−1/2(Γ). (3.10)

The Galerkin discretization of the variational problem (3.10), e.g. by using piecewise
constant basis functions ψℓ, ℓ = 1, . . . , NΓ defines an approximation w̃h ∈ S0

h(Γ) as the
unique solution of the Galerkin formulation

〈V w̃h, ψℓ〉Γ = 〈Ñ0f, ψℓ〉Γ for all ℓ = 1, . . . , NΓ. (3.11)

The Galerkin formulation (3.11) is equivalent to a linear system of algebraic equations,
V hw̃ = N 0, where V h is the Galerkin stiffness matrix of the single layer potential, and
N 0 is the discrete multipole approximation of the Newton potential N0f , both are defined
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with respect to the complete boundary Γ. Inserting the approximate solution w̃h into the
definition of N1,j we further obtain

N̂1,j = 〈(−
1

2
I +K ′)w̃h, ϕj〉Γ,

and therefore we find the representation

N̂ 1 = (−
1

2
M

⊤

h +K
⊤

h )w̃ = (−
1

2
M

⊤

h +K
⊤

h )V
−1

h N0 (3.12)

where
Kh[ℓ, i] = 〈Kϕi, ψℓ〉Γ, Mh[ℓ, i] = 〈ϕi, ψℓ〉Γ

for i = 1, . . . ,MN , ℓ = 1, . . . , NΓ.

3.4 Error estimates

Due to the evaluation of the Newton potentials by using the fast multipole method as
described in Sect. 3.2, or by using the indirect evaluation of the Newton potential N1f

as described in Sect. 3.3, instead of (2.10) we have to consider a perturbed variational
problem to find (t̂h, ûh) ∈ S0

h(ΓD) × S1
h(ΓN ) such that

〈V t̂h, τh〉ΓD
− 〈Kûh, τh〉ΓD

= 〈(
1

2
I +K)g̃D − V g̃N − Ñ0f, τh〉ΓD

(3.13)

for all τh ∈ S0
h(ΓD) and

〈K ′t̂h, vh〉ΓN
+ 〈Dûh, vh〉ΓN

= 〈(
1

2
I −K ′)g̃N −Dg̃D − Ñ1f, vh〉ΓN

(3.14)

for all vh ∈ S1
h(ΓN), where Ñ0 and Ñ1 are the approximations of the Newton potentials.

It remains to estimate the errors t̃h − t̂h and ũh − ûh due to the perturbation of the right
hand side. Note that errors due to numerical integration or due to an approximation of
the boundary data are neglected. In particular, the integration of the coefficients Rm

n and
Sm

n and the integration in the nearfield are assumed to be exact. Moreover, a globally
quasi–uniform mesh is assumed for simplicity in the representation.
The approximation error of the fast multipole method can be regulated by various param-
eters such as the expansion degree p, the nearfield parameter d, and the cluster radius r.
In particular, the truncation error can be estimated as follows.

Proposition 3.1. [7, 14] Let d > 1 and r > 0. For x, y ∈ R
3 satisfying |x| ≤ r, and

|y| ≥ dr the following error estimates for the kernel k(x, y) = |x − y|−1 and for the local
expansion (3.3) hold:

|k(x, y) − kp(x, y)| ≤
1

(d− 1)r

(
1

d

)p+1

, (3.15)

∣∣∣∣
∂

∂nx

(k(x, y) − kp(x, y))

∣∣∣∣ ≤
1 + π

(d− 1)r2

(
p+ 1 +

d

d− 1

)(
1

d

)p+1

. (3.16)
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Several parameters may depend on the boundary element mesh size h: The number NΓ

of boundary elements is of order O(h−2), and thus the number NΩ of volume elements is
of order O(h−3). The number of clusters on the finest level is supposed to be of order
O(log2 h−2) which implies the inequality

r ≥ ch . (3.17)

Now we are in a position to bound the errors of the multipole approximations Ñ0f and
Ñ1f , respectively.

Lemma 3.2. Let d be fixed, and let p ∼ logNΓ = 3
2
log h−1 be appropriately chosen. For

the multipole approximation Ñ0f the error estimate holds

‖N0f − Ñ0f‖L2(Γ) ≤ ch2‖f‖L2(Ω) for all f ∈ L2(Ω). (3.18)

Proof. With the error estimate (3.15) and by using the Cauchy–Schwarz inequality we first
obtain

‖N0f − Ñ0f‖
2
L2(Γ) =

1

16π2

N∑

ℓ=1

∫

τℓ

∣∣∣∣
∑

k∈FF(ℓ)

∫

Tk

[k(x, y) − kp(x, y)]f(y)dy

∣∣∣∣
2

dsx

≤
1

16π2

N∑

ℓ=1

∫

τℓ

( ∑

k∈FF(ℓ)

∫

Tk

|k(x, y) − kp(x, y)| |f(y)|dy

)2

dsx

≤
1

16π2

1

(d− 1)2r2

(
1

d

)2p+2 ∫

Γ

(∫

Ω

|f(y)|dy

)2

dsx

≤
1

16π2

1

(d− 1)2r2

(
1

d

)2p+2

|Γ| |Ω| ‖f‖2
L2(Ω) .

To get the proposed consistency estimate (3.18), we have to choose, for a fixed nearfield
parameter d, the expansion degree p such that

1

d− 1

(
1

d

)p+1

≤ ch3

is satisfied, with c independent of h. By using (3.17), i.e. h ∼ r, the proposition follows.

Lemma 3.3. Let d be fixed, and let p ∼ logNΓ = 3
2
log h−1 be appropriately chosen. For

the multipole approximation Ñ1f there holds the error estimate

‖N1f − Ñ1f‖L2(Γ) ≤ c̃ h3/2 ‖f‖L2(Ω) for all f ∈ L2(Ω). (3.19)

Proof. We use the error estimate (3.16) and the Cauchy–Schwarz inequality to obtain in a
similar way as in the proof of Lemma 3.2

‖N1f − Ñ1f‖
2
L2(Γ) ≤

1

16π2

1

(d− 1)2r4

(
p+ 1 +

d

d− 1

)(
1

d

)2p+2

|Γ| |Ω| ‖f‖2
L2(Ω) .
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This time we have to choose the expansion degree p such that

(
p+ 1 +

1

d− 1

)(
1

d

)p+1

≤ ch7/2

is satisfied for a fixed nearfield parameter d and h ∼ r, with c independent of h, to get the
proposed consistency estimate (3.19).

Theorem 3.4. Let (t̂h, ûh) ∈ S0
h(ΓD) × S1

h(ΓN) be the unique solution of the perturbed
variational problem (2.8) and (2.9). Assume g̃N ∈ H1

pw(Γ) and g̃D ∈ H2(Γ). Then there
holds the error estimate

‖t̃− t̂h‖
2
H−1/2(Γ) + ‖ũ− ûh‖

2
H1/2(Γ) ≤ c h3

[
|t̃|2H1

pw
(Γ) + |ũ|2H2(Γ) + ‖f‖2

L2(Ω)

]
.

Proof. By the triangle inequality and by using the error estimate (2.15) we first have

‖(t̃− t̂h, ũ− ûh)‖
2
H−1/2(Γ)×H1/2(Γ)

≤ 2 ‖(t̃− t̃h, ũ− ũh)‖
2
H−1/2(Γ)×H1/2(Γ) + 2 ‖(t̃h − t̂h, ũh − ûh)‖

2
H−1/2(Γ)×H1/2(Γ)

≤ 2c h3
[
|t̃|2H1

pw(Γ) + |ũ|2H2(Γ)

]
+ 2 ‖(t̃h − t̂h, ũh − ûh)‖

2
H−1/2(Γ)×H1/2(Γ) .

Next, by using the ellipticity estimate (2.14), and by considering the difference of the
variational formulations (2.8)–(2.9) and (3.13)–(3.14), we further conclude

cA1 ‖(t̃h − t̂h, ũh − ûh)‖
2
H−1/2(Γ)×H1/2(Γ) ≤ a(t̃h − t̂h, ũh − ûh; t̃h − t̂h, ũh − ûh)

= 〈Ñ0f −N0f, t̃h − t̂h〉ΓD
+ 〈Ñ1f −N1f, ũh − ûh〉ΓN

≤ ‖Ñ0f −N0f‖L2(Γ)‖t̃h − t̂h‖L2(Γ) + ‖Ñ1f −N1f‖L2(Γ)‖ũh − ûh‖L2(Γ)

≤ c h2 ‖f‖L2(Ω)‖t̃h − t̂h‖L2(Γ) + c̃ h3/2‖f‖L2(Ω)‖ũh − ûh‖L2(Γ)

due to the error estimates (3.18) and (3.19). With the inverse inequality

‖t̃h − t̂h‖L2(Γ) ≤ cI h
−1/2 ‖t̃h − t̂h‖H−1/2(Γ)

and by using the embedding H1/2(Γ) ⊂ L2(Γ) we further obtain

cA1 ‖(t̃h− t̂h, ũh− ûh‖
2
H−1/2(Γ)×H1/2(Γ) ≤ c h3/2 ‖f‖L2(Γ)

[
‖t̃h − t̂h‖H−1/2(Γ) + ‖ũh − ûh‖H1/2(Γ)

]

and therefore
‖(t̃h − t̂h, ũh − ûh‖H−1/2(Γ)×H1/2(Γ) ≤ c h3/2 ‖f‖L2(Ω)

follows.

Instead of the multipole approximation Ñ1f we may also use the indirect approximation
N̂1f as defined in (3.12). Hence we need to estimate the related error N1f − N̂1f .
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Lemma 3.5. Let N̂1f = (−1
2
I + K ′)w̃h be an approximation of the Newton potential

N1f , where w̃h ∈ S0
h(Γ) is the unique solution of the variational problem (3.11). Assume

w = V −1N0f ∈ H1
pw(Γ). Then there holds the error estimate

‖N1f − N̂1f‖H−1/2(Γ) ≤ c h3/2
[
‖w‖H1

pw
(Γ) + ‖f‖L2(Ω)

]
.

Proof. Recall that w̃h ∈ S0
h(Γ) is the unique solution of the perturbed variational problem

〈V w̃h, τh〉Γ = 〈Ñ0f, τh〉Γ for all τh ∈ S0
h(Γ),

while w ∈ H−1/2(Γ) is the unique solution of the variational problem

〈V w, τ〉Γ = 〈N0f, τ〉Γ for all τ ∈ H−1/2(Γ).

In addition, wh ∈ S0
h(Γ) is the unique solution of the Galerkin variational problem

〈V wh, τh〉Γ = 〈N0f, τh〉Γ for all τh ∈ S0
h(Γ).

By the triangle inequality we first have

‖w − w̃h‖H−1/2(Γ) ≤ ‖w − wh‖H−1/2(Γ) + ‖wh − w̃h‖H−1/2(Γ).

While the first term can be estimated by using Cea’s lemma, we use theH−1/2(Γ)–ellipticity
of the single layer potential V to obtain for the second term

cV1 ‖wh − w̃h‖
2
H−1/2(Γ) ≤ 〈V (wh − w̃h), wh − w̃h〉Γ

= 〈N0f − Ñ0f, wh − w̃h〉Γ

≤ ‖N0f − Ñ0f‖L2(Γ)‖wh − w̃h‖L2(Γ).

By using the error estimate (3.18) and the inverse inequality in S0
h(Γ) we further have

‖N0f − Ñ0f‖L2(Γ) ≤ c h2 ‖f‖L2(Ω), ‖wh − w̃h‖L2(Γ) ≤ cI h
−1/2 ‖wh − w̃h‖H−1/2(Γ) .

Hence we conclude
‖wh − w̃h‖H−1/2(Γ) ≤ c h3/2 ‖f‖L2(Ω)

Finally, when assuming w = V −1N0f ∈ H1
pw(Γ) we obtain

‖w − w̃h‖H−1/2(Γ) ≤ c h3/2
[
‖w‖H1

pw(Γ) + ‖f‖L2(Ω)

]
.

The assertion now follows from

‖N1f − N̂1f‖H−1/2(Γ) = ‖(−
1

2
I +K ′)(w − w̃h)‖H−1/2(Γ) ≤ c ‖w − w̃h‖H−1/2(Γ).
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As in Theorem 3.4 we are now able to derive an error estimate for the approximate solution
when using the indirect approximation N̂1f of the Newton potential N1f . Since the proof
is based on the standard use of the Strang lemma we skip the details.

Theorem 3.6. Let (t̂h, ûh) ∈ S0
h(ΓD) × S1

h(ΓN) be the unique solution of the variational

problem (3.13) and (3.14), where the multipole approximation Ñ1f is replaced by the indirect

approximation N̂1f . Assume g̃N ∈ H1
pw(Γ), g̃D ∈ H2(Γ), and w = V −1N0f ∈ H1

pw(Γ).
Then there holds the error estimate

‖t̃− t̂h‖
2
H−1/2(Γ) +‖ũ− ûh‖

2
H1/2(Γ) ≤ c h3

[
|t̃|2H1

pw
(Γ) + |ũ|2H2(Γ) + ‖f‖2

L2(Ω) + ‖V −1N0f‖H1
pw

(Γ)

]
.

Remark 3.2. The assumptions of Theorems 3.4 and 3.6, i.e. t̃ ∈ H1
pw(Γ) and ũ ∈ H2(Γ)

are satisfied if we can ensure u ∈ H5/2(Ω) for the solution u of the mixed boundary value
problem (2.1), and uf ∈ H5/2(Ω) where

−∆uf = f in Ω, uf = 0 on Γ.

Note that uf is given by the representation formula

uf(x) = (V w)(x) − (N0f)(x) for x ∈ Ω

where

w =
∂

∂n
uf = V −1N0f.

Hence, if uf ∈ H5/2(Ω) is satisfied, w = V −1N0f ∈ H1
pw(Γ) follows.

The regularity assumption u ∈ H5/2(Ω) ensures an optimal convergence of Galerkin bound-
ary element methods of lowest order, as used in this paper. However, when the solution u

of the mixed boundary value problem (2.1) has only reduced regularity [3, 8, 24], we only
obtain error estimates with a reduced order of convergence. But this is not reflected by the
use of fast boundary element methods.

Remark 3.3. In addition to the energy error estimates as presented in Theorems 3.4 and
3.6 we can also derive error estimates in L2(Γ). By using standard arguments, see, e.g.,
[20], we finally obtain the following error estimates:

‖t̃− t̃h‖L2(Γ) ≤ c h
[
|t̃|2H1

pw
(Γ) + |ũ|2H2(Γ) + ‖f‖2

L2(Ω) + ‖V −1N0f‖H1
pw

(Γ)

]1/2

, (3.20)

‖ũ− ũh‖L2(Γ) ≤ c h2
[
|t̃|2H1

pw
(Γ) + |ũ|2H2(Γ) + ‖f‖2

L2(Ω) + ‖V −1N0f‖H1
pw

(Γ)

]1/2

. (3.21)

4 Numerical results

In the following numerical example, a standard Galerkin boundary element method is com-
pared to the proposed fast multipole boundary element method to solve an inhomogeneous
partial differential equation. First we consider the Dirichlet boundary value problem

−∆u(x) = −2 for x ∈ Ω = (0, 1)3, u(x) = x2
1 for x ∈ Γ = ∂Ω, (4.1)
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where the exact solution is u(x) = x2
1. Starting from a uniform volume mesh, the cube is

uniformly refined. The boundary element mesh is the restriction of the volume mesh to
the boundary. The boundary element discretization of the boundary value problem (4.1)
results in the linear system

Vht = (
1

2
Mh +Kh)g −N 0

which is solved by a conjugate gradient method with an algebraic BPX preconditioner [19].
The numerical results are given in Table 2.

NΓ NΩ N 0 Setup Solve It ‖t− th‖L2(Γ)

384 1536
3 8 0 28 1.70e-01
0 2 0 28 1.70e-01

1536 12288
94 168 1 30 8.55e-02
3 6 1 30 8.56e-02

6144 98204
2997 4188 6 34 4.28e-02

13 24 6 34 4.29e-02

24576 786432
(26.6 h) (32 h) (107)

77 112 32 38 2.15e-02

98304 6291456
(35.5 d) (39 d) (1852)

466 611 278 41 1.07e-02

Table 2: Comparison of a standard and a fast multipole boundary element method.

For each refinement level, the first line states the results of the standard Galerkin boundary
element method, whereas the second line contains the results for the proposed fast multipole
boundary element method. The first and the second column contain the number NΓ

of boundary elements and the number NΩ of tetrahedral volume elements, respectively.
Furthermore, the time in seconds is given for the evaluation of the Newton potential N0f ,
followed by the total time for the setup of the system of linear equations. In Columns 5
and 6, the time for solving the linear system and the number of CG iterations are given.
Finally, the L2–norm of the error t − th is given. The parameters for the fast multipole
method were chosen such that the related approximation error is almost the same as of the
standard method. According to the error estimate (3.20) a linear convergence is observed
for both approaches. The standard approach could be applied only up to 6144 boundary
elements due to memory restrictions. As NΓ and NΩ increase by a factor of 4 and 8,
respectively, the times for computing the Newton potential N 0 increase by a factor of 32
for the standard boundary element method. In the case of the fast multipole method, the
factor is smaller than 8 and thus better than estimated. This was achieved by various
optimizations of the cluster hierarchy. However, it is expected that this factor will tend to
8 for calculations on higher levels. The rest of the setup time increases as expected for the
standard approach with the factor 16, and for the fast multipole approach by the factor
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of about 4. Already in the first refinement level the fast multipole method is faster than
the standard method. On the finest level, it outperforms the standard method with about
8 minutes compared to about 35.5 days for the direct evaluation of the Newton potential
N 0.
In a second example, we compare the direct and the indirect evaluation of the Newton
potential N1. We consider the mixed boundary value problem

−∆u(x) = −2 for x ∈ Ω = (0, 1)3,

u(x) = gD(x) for x ∈ ΓD,
∂

∂nx

u(x) = gN(x) for x ∈ ΓN

(4.2)

where the Dirichlet boundary is ΓD = {x ∈ ∂Ω : x3 = 0}, and the Neumann boundary is
ΓN = ∂Ω \ΓD. We choose u(x) = x2 as exact solution, and the given Cauchy data gD and
gN are given accordingly. The linear system (2.10) is solved by a preconditioned GMRES
method where the single layer potential Vh is preconditioned by an algebraic BPX [19],
while the discrete hypersingular integral operator Dh is preconditioned by the single layer
potential discretized by using piecewise linear basis functions [21]. The setup times for
both approaches are given in Table 3.

NΓ NΩ Indirect evaluation FMM evaluation

N0 V hw = N 0 overall time Ñ0 Ñ 1 overall time

96 192 0 0 1 0 0 1
384 1536 1 0 10 1 2 10

1536 12288 5 1 49 1 13 49
6144 98304 27 2 160 5 66 174

24576 789432 219 15 667 40 510 895
98304 6291456 1022 76 2710 196 2486 3996

Table 3: Comparison of fast multipole and indirect evaluation of N1f .

The overall setup time for the system of linear equations is smaller for the indirect approach
compared to the direct computation by the fast multipole method. To understand this
difference the setup time was split up. The computational times for the Newton potential
N 0 and for solving the system V hw = N 0 are given in the the case of the indirect approach,
while the times for the direct evaluation of the Newton potentials Ñ 0 and Ñ 1 are stated in
the case of the direct fast multipole approach. The setup times for all boundary integral
operators and the preconditioners are included in the overall setup times, too. In the case
of the direct approach, the Newton potentials Ñ 0 and Ñ1 have to be evaluated on the
Dirichlet part and the Neumann part of the boundary, respectively. In the case of the
indirect approach, the Newton potential N0 has to be evaluated on the whole boundary.
The Newton potential N 0 can be evaluated more efficiently, since only one constant test
function per element has to be considered compared to three linear form functions for
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Ñ 1. In the case of the indirect evaluation, the additional time for computing the enlarged

matrices V h and Kh and for solving the system of linear equations to compute N̂1 is rather
small compared to the expensive direct evaluation of Ñ1. The numerical example shows
that the indirect evaluation is faster than the direct fast multipole evaluation.

NΓ NΩ indirect evaluation direct FMM evaluation
‖ũ− ũh‖L2(Γ) ‖t̃− t̃h‖L2(Γ) ‖ũ− ũh‖L2(Γ) ‖t̃− t̃h‖L2(Γ)

96 192 5.83e-02 1.55e-01 5.65e-02 1.55e-01
384 1536 1.47e-02 8.15e-02 1.43e-02 8.17e-02

1536 12288 3.70e-03 4.17e-02 3.60e-03 4.18e-02
6144 98304 9.28e-04 2.12e-02 8.95e-04 2.12e-02

24576 789432 2.34e-04 1.06e-02 2.28e-04 1.06e-02
98304 6291456 5.96e-05 5.34e-03 5.08e-05 5.35e-03

Table 4: Comparison of approximation errors.

Finally, we list the approximation errors which were obtained in both approaches in Table 4.
All errors are as predicted in the error estimates (3.21) and (3.20), in particular we get
linear convergence for the Neumann data, and quadratic convergence for the Dirichlet data.
While the Neumann error almost coincide in both approaches, the Dirichlet error for the
indirect error is slightly larger, due to the additional approximation error when computing
N̂ 1.

5 Linear elasticity problems

In this section the fast evaluation of the multipole method will be applied to the inhomo-
geneous system of linear elasticity

−

3∑

j=1

∂

∂xj
σij(u, x) =fi(x) for x ∈ Ω, i = 1, . . . , 3,

ui(x) =gD,i(x) for x ∈ ΓD, i = 1, . . . , 3
3∑

j=1

σij(u, x)nj(x) =gN,i(x) for x ∈ ΓN , i = 1, . . . , 3.

(5.1)

The fundamental solution can be represented as the fundamental solution of the Poisson
equation and its derivatives in the following way

U∗
kℓ(x, y) =

1 + ν

8πE(1 + ν)

[
(3 − 4ν)

δkℓ

|x− y|
−

1

2
xℓ

∂

∂xk

1

|x− y|
−

1

2
yℓ

∂

∂yk

1

|x− y|

−
1

2
xk

∂

∂xℓ

1

|x− y|
−

1

2
xk

∂

∂xℓ

1

|x− y|

]
.
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The fast multipole method can therefore be applied in an analogue way. The boundary
integral operators for the system of linear elasticity were realized for example in [12, 13];
see also the references given therein. In a straightforward manner, those techniques and the
techniques described in Sect. 3 can be combined for a fast evaluation of Newton potentials
in linear elasticity. The same error estimates as for the approximation of the Newton
potentials in the case of the Poisson equation can be found in a similar way [22].

5.1 Numerical example

For Ω = (0, 1)3 the boundary value problem (5.1) is considered. The Dirichlet boundary is
defined as ΓD = {(x, y, z)⊤ ∈ ∂Ω : z = 0} and the Neumann boundary as ΓN = ∂Ω \ ΓD.
The solution is given as u(x, y, z) = (x3, y3, z3)T and the Cauchy data and the volume
function f(x) are chosen accordingly. The Newton potential N1f was calculated with the
indirect approach as described in Sect. 3.3. This alternative representation is obviously also
valid for the system of linear elasticity. The resulting system of linear equations is solved by
a preconditioned GMRES method where the single layer potential Vh is preconditioned by
an algebraic BPX [19] componentwise, while the discrete hypersingular integral operator
Dh is preconditioned by the single layer potential of the Laplacian [21] componentwise.
In Table 5 the results are summarized. The same notations are used as in Table 2. Addi-
tionally, the approximation errors ‖ũ− ũh‖L2(Γ) for the Dirichlet data and ‖t̃− t̃h‖L2(Γ) for
the Neumann data are given in the L2-Norm.

NΓ NΩ N 0 Setup Solve it ‖ũ− ũh‖L2(Γ) ‖t̃− t̃h‖L2(Γ)

384 1536
8 22 1 34 5.11e-02 6.14e+01
4 16 2 34 5.11e-02 6.14e+01

1536 12288
249 462 14 39 1.50e-02 3.07e+01
18 91 21 39 1.51e-02 3.08e+01

6144 98304
8032 11509 352 43 4.29e-03 1.54e+01
102 440 117 43 4.34e-03 1.54e+01

24576 786432
(3 d) (3.6 d) (1.82 h)

631 2132 890 50 1.22e-03 7.70e+00

98304 6291456
(95 d) (105 d) (1.3 d)

3935 9829 4064 53 3.36e-04 3.88e+00

Table 5: Comparison: Direct evaluation - FMM

Due to limits in memory, the computation of the last two levels was not possible by
the standard boundary element method. As expected, the time to evaluate the Newton
potential N 0 increases the most, with the factor 32 for the standard boundary element
method and with factor 8 for the FMM. This means that at the last refinement level the
standard boundary element method would require approximately 95 days just to evaluate
the Newton potential N 0, whereas the FMM only requires little over an hour.
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The error of the Neumann data halves as expected. The Dirichlet error decreases with
a factor of about 3.4 and not 4. The reduced convergence order seems due to reduced
regularity of the density function w, which is based on the regularity of uf as stated in
Remark 3.2. The reduced oder of convergence is not caused by the approximation of the
FMM.
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