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Abstract

We consider the electrostatic field computations with floating potentials in a
multi-dielectric setting. A floating potential is an unknown equipotential value asso-
ciated with an isolated perfect electric conductor, where the flux through the surface
is zero. The floating potentials can be integrated into the formulations directly or can
be approximated by a dielectric medium with large permittivity. We apply boundary
integral equations for the solution of the electrostatic field problem. In particular, an
indirect single layer potential ansatz and a direct formulation based on the Steklov–
Poincaré interface equation are considered. All these approaches are analyzed and
compared for several examples including some industrial applications.

1 Introduction

For the solution of 3D electrostatic field problems, boundary element methods are widely
used and are, in particular, advantageous in the presence of an unbounded domain. In ad-
dition to Dirichlet and Neumann boundary conditions, so-called floating potentials might
occur. Isolated perfect electric conductors result in equipotential surfaces. The equipoten-
tial value of the surface is unknown, but, in addition, the flux through the closed surface
must be zero in the absence of sources. Such floating electrodes are found in, e.g., some
lightning protection systems and can modify the breakdown probability of air gaps [17].
While there are numerous papers on the solution of electrostatic field problems with floating
potentials by boundary element methods and related methods, like the charge simulation
method [5, 19], in the engineering literature, a mathematical view and an a detailed analysis
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seem to be missing. In this paper, we try to close this gap and, in addition, compare several
formulations in several practical examples. In particular, we consider boundary element
methods, see, e.g., [11, 18, 21], for the solution of electrostatic field problems with floating
potentials in a multi-dielectric setting. We apply an indirect approach based on the single
layer potential and a domain decomposition method based on symmetric approximations
of the local Dirichlet to Neumann maps, the so-called Steklov–Poincaré operators, see e.g.
[6, 8, 9, 10]. These two methods have been compared for magnetostatic problems in [2, 3].
Here, we apply these formulations for electrodes at floating potentials, which are equivalent
to dielectric bodies with infinite permittivity. Thus a common strategy, see e.g. [13], is
to approximate the floating potential by a dielectric medium with large permittivity. We
compare this strategy to the direct integration of the constant but unknown potential and
of the zero flux constraint into the formulations.
The paper is organized as follows: A model problem of the electrostatic field computation
with floating potential is introduced in Sect. 2. In Sect. 3, the formulations by the Steklov–
Poincaré interface equation and by the single layer potential ansatz are presented, and
the unique solvability of the variational formulations is proven. The boundary element
discretization of both formulations is described in Sect. 4, and first academic examples in
Sect. 5 show the advantages and disadvantages of the considered approaches. Finally we
discuss several extensions of the model problem and apply the methods to examples of
industrial applications like an arrester, a bushing, and an insulator with partial wetting in
Sect. 6.

2 Floating Potentials in Electrostatic Field Problems

We apply the scalar potential ansatz for the computation of an electrostatic field E = −∇ϕ.
We consider the union Ω0 = ΩE ∪ΩF ∪ΩD of several disjoint Lipschitz domains, a domain
ΩE of an electrode, a domain ΩF with a floating potential, and a dielectric domain ΩD.
In addition we define the exterior domain Ωc

0 = R3 \ Ω0. For the ease of presentation
we assume that the intersection of the closures of any two domains ΩE, ΩF , and ΩD is
empty. We will comment on more general situations in Sect. 6. The model problem reads:
ϕD = ϕ|ΩD

, ϕ0 = ϕ|Ωc
0
, and a constant α = ϕ|ΩF

are the solution of

−∆ϕD(x) = 0 for x ∈ ΩD, (2.1)

−∆ϕ0(x) = 0 for x ∈ Ωc
0, (2.2)

ϕ0(x) = g for x ∈ ΓE := ∂ΩE, (2.3)

ϕD(x) = ϕ0(x) for x ∈ ΓD, (2.4)

εD
∂

∂nD

ϕD(x) = ε0
∂

∂nD

ϕ0(x) for x ∈ ΓD, (2.5)

ϕ0(x) = O(|x|−1) as |x| → ∞, (2.6)

ϕ0(x) = α for x ∈ ΓF := ∂ΩF , (2.7)∫
ΓF

∂

∂nF

ϕ0(x)dsx = 0. (2.8)
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Here ni denotes the exterior unit normal vector on ∂Ωi, i ∈ {0, D,E, F}, and is defined
almost everywhere. On the surface ΓE of the electrode a constant potential g is given in
(2.3), while we enforce continuity of the potential as well as of the flux for the dielectrics by
(2.4) and (2.5). In addition, we introduce Γ as the union of all boundaries. The dielectric
domain is characterized by its relative permittivity εD and the exterior domain Ωc

0 by ε0.
For the floating potential, we assume a constant but unknown potential α on the boundary
ΓF in (2.7), but the total flux through this surface is zero, see (2.8). Note that a floating
potential is the limit case of a dielectric medium with infinite relative permittivity.
We will consider two approaches to solve such boundary value problems with a floating
potential numerically. The first approach is to solve the boundary value problem in the
form (2.1)–(2.8), taking into account the constant but unknown potential α and the con-
straint (2.8) directly. The second approach is to approximate the floating potential by
considering ΩF to be a dielectric medium with a high relative permittivity εF , i.e., to de-
termine a potential ϕF instead of α. In this case we end up with a system consisting of
(2.1)–(2.6) with additional transmission conditions on ΓF :

ϕF (x) = ϕ0(x) for x ∈ ΓF , (2.9)

εF
∂

∂nF

ϕF (x) = ε0
∂

∂nF

ϕ0(x) for x ∈ ΓF . (2.10)

3 Boundary Integral Equations

If we use ΓC = Γ\ΓE = ΓD∪ΓF instead of ΓD in (2.4) and (2.5) and set the permittivities ε
correctly, the model with a high relative permittivity εF is the special case (2.1)–(2.6) of
the full model (2.1)–(2.8) with a floating potential. Thus we will derive the boundary
integral equations for the full model only. For the model with a high relative permittivity
we just need to drop the boundary integral equations related to ΓF and take into account
the ones of ΓD for ΓF in addition.
We consider an approach which is based on the Steklov–Poincaré interface equation known
from domain decomposition methods, see e.g. [16, 23], and an indirect ansatz leading to a
single layer boundary integral equation.

3.1 Steklov–Poincaré Interface Equation

The solutions of the Laplace equations (2.1) and (2.2) are given by the representation
formulae

ϕD(x) =

∫
ΓD

U∗(x, y)tD(y)dsy −
∫

ΓD

∂

∂ny

U∗(x, y)ϕD(y)dsy for x ∈ ΩD,

ϕ0(x) = −
∫

Γ0

U∗(x, y)t0(y)dsy +

∫
Γ0

∂

∂ny

U∗(x, y)ϕ0(y)dsy for x ∈ Ωc
0,
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with tD := ∂
∂nD

ϕD, t0 := ∂
∂n0

ϕ0, and the fundamental solution

U∗(x, y) =
1

4π

1

|x− y|
.

Thus we need to determine the unknown parts of the Cauchy data [ti, ϕi], i ∈ {0, D}.
The interior Steklov–Poincaré operator SD : H1/2(ΓD) → H−1/2(ΓD) maps some given
Dirichlet datum ϕD onto the related Neumann datum tD = SDϕD of the corresponding
solution of the Laplace equation (2.1). Analogously the exterior Steklov–Poincaré operator
S0 : H1/2(Γ0)→ H−1/2(Γ0) gives t0 = −S0ϕ0. These two operators can be defined in their
so-called symmetric representation, see e.g. [21], by

SD = DD + (
1

2
I +K ′D)V −1

D (
1

2
I +KD),

S0 = D0 + (
1

2
I −K ′0)V −1

0 (
1

2
I −K0).

The single layer boundary integral operator Vi, the double layer boundary integral operator
Ki, its adjoint K ′i, and the hypersingular operator Di are defined with respect to Γi,
i ∈ {0, D,E, F}, by

(Viti)(x) =

∫
Γi

U∗(x, y)ti(y)dsy, (Kiϕi)(x) =

∫
Γi

∂

∂ny

U∗(x, y)ϕi(y)dsy,

(K ′iti)(x) =

∫
Γi

∂

∂nx

U∗(x, y)ϕi(y)dsy, (Diϕi)(x) = − ∂

∂nx

∫
Γi

∂

∂ny

U∗(x, y)ϕi(y)dsy.

As the two Steklov–Poincaré operators SD and S0 correspond to the solution of local
Dirichlet boundary value problems, it remains to satisfy the boundary and transmission
conditions. We need to find a global function ϕ ∈ H1/2(Γ) such that

ϕ(x) = g for x ∈ ΓE, ϕ(x) = α for x ∈ ΓF ,

i.e., the boundary conditions (2.3) and (2.7) as well as the transmission condition (2.4)
are satisfied. Using t0 = −S0ϕ, tD = SDϕ|ΓD

, and the splitting ϕ = ϕD + g1E + α1F ,
where 1i(x) = 1 for x ∈ Γi and 0 else, the remaining transmission condition (2.5) and the
constraint (2.8) result in the final system: Find ϕD ∈ H1/2(ΓD) and α ∈ R such that(

εDS
D + ε0S

0
)
ϕD(x) + αε0(S01F )(x) = −gε0(S01E)(x) for x ∈ ΓD, (3.1)∫

ΓF

((S0ϕD)(x) + α(S01F )(x))dsx = −g
∫

ΓF

(S01E)(x)dsx. (3.2)

3.2 Single Layer Boundary Integral Operator Formulation

For the global solution ϕ of the boundary value problem (2.1)–(2.8) we consider a global
single layer potential ansatz by

ϕ(x) =

∫
Γ

U∗(x, y)w(y)dsy for x ∈ R3 \ Γ
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for any single layer charge density w ∈ H−1/2(Γ). With this choice the local partial
differential equations (2.1) and (2.2), the continuity condition (2.4) as well as the radiation
condition (2.6) are satisfied. The remaining Dirichlet boundary condition (2.3), the floating
potential condition (2.7), the flux transmission condition (2.5), and the scaling condition
(2.8) provide the equations to determine the unknown density w ∈ H−1/2(Γ):

(V w)(x) = g for x ∈ ΓE, (3.3)

(V w)(x)− α = 0 for x ∈ ΓF , (3.4)

1

2

εD + ε0

εD − ε0

w(x) + (K ′w)(x) = 0 for almost all x ∈ ΓD, (3.5)∫
ΓF

(
−1

2
w(x) + (K ′w)(x)

)
dsx = 0, (3.6)

where V denotes the global single layer boundary integral operator and K ′ is the global
adjoint double layer boundary integral operator for x ∈ Γ:

(V w)(x) =

∫
Γ

U∗(x, y)w(y)dsy, (K ′w)(x) =

∫
Γ

∂

∂nx

U∗(x, y)w(y)dsy.

3.3 Unique Solvability

Lemma 3.1. There exists a unique solution (ϕD, α) ∈ H1/2(Γ)×R satisfying (3.1)–(3.2).

Proof. Using the splitting ϕ = ϕD + α1F + g1E, we can reformulate (3.1)–(3.2) as: Find
ϕ ∈ X := {ψ ∈ H1/2(Γ) : ψ|ΓF

= α, α ∈ R, ψ|ΓE
= 0}:

〈(εDSD + ε0S
0)ϕ, ψ〉Γ = −〈gε0S

01E, ψ〉Γ for all ψ ∈ X.

This variational formulation admits a unique solution, as X ⊂ H1/2(Γ), the exterior
Steklov–Poincaré operator S0 is H1/2(Γ)–elliptic, and the interior Steklov–Poincaré op-
erator SD is H1/2(ΓD)–semi-elliptic, see, e.g., [16, 21].

Lemma 3.2. Let (ϕD, α) ∈ H1/2(Γ) × R be a solution of the Steklov–Poincaré interface
equations (3.1)–(3.2), and let w ∈ H−1/2(Γ) be a solution of the indirect single layer
approach (3.3)–(3.6). Then there holds the relation

ϕ(x) = ϕD(x) + α1F (x) + g1E(x) = (V w)(x) for x ∈ Γ.

Proof. Obviously, the statement holds true for all x ∈ ΓE, as the condition (3.3) for the
single layer potential approach coincide with the choice of ϕ for the Steklov–Poincaré
interface equation. On ΓD we start from the continuity (3.5) of the flux for the single layer
potential approach, use w = V −1V w and the symmetry relation K ′V −1 = V −1K, see e.g.
[21],

0 = εD

(
1

2
I +K ′

)
w(x) + ε0

(
1

2
I −K ′

)
w(x)

= εDV
−1

(
1

2
I +K

)
V w(x) + ε0V

−1

(
1

2
I −K

)
V w(x) for x ∈ ΓD.
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For the first term u = V −1
(

1
2
I +K

)
z we can apply some simplifications using the splitting

of the functions and operators

(VDuD)(x) + (VEuE)(x) + (VFuF )(x) =
1

2
zD(x) + (KDzD)(x) + (KEzE)(x) + (KF zF )(x)

for almost all x ∈ ΓD, which reduces to

(VDuD)(x) = (
1

2
I +KD)zD(x) for almost all x ∈ ΓD

because there holds

(Viti)(x) + (Kizi)(x) = 0 for x ∈ Ωc
i , i ∈ {E,F},

for any solution zi and ti = ∂zi
∂ni

of the local Laplace equations. With the so-called non-

symmetric representations SD = V −1
D (1

2
I + KD) and S0 = V −1

0 (1
2
I −K0) of the Steklov–

Poincaré operators we end up with

εDS
D(V w)(x) + ε0S

0(V w)(x) = 0 for x ∈ ΓD.

Applying the same technique for the constraint (3.6) of the single layer potential ansatz,
we end up with ∫

ΓF

S0(V w)(x)dsx = 0.

Taking into account the floating potential (3.4), these two equations coincide with the
formulation (3.1)–(3.2) of the Steklov–Poincaré interface equation, and hence we conclude
ϕ = V w on Γ.

Due to equivalence of the two formulations we conclude the unique solvability of the indirect
approach (3.3)–(3.6) from Lemma 3.1.

4 Boundary Element Methods

For the discretization of the considered boundary integral formulations, we assume a quasi-
uniform mesh of the surface Γ with N plane triangles and M nodes. The considered trial
and ansatz spaces are the space S0

h(Γ) = span{ψ0
`}N`=1 of piecewise constant functions

and the space S1
h(Γ) = span{ψ1

`}M`=1 of piecewise linear and continuous functions. We
use Galerkin variational formulations for the discretization of the domain decomposition
method (3.1)–(3.2) and of the single layer boundary integral equations (3.3)–(3.6).
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4.1 Steklov–Poincaré Interface Equation

We transfer the splitting ϕ = ϕD +α1F + g1E of the solution of (3.1)–(3.2) to the Steklov–
Poincaré operators such that S0

ij indicates that S0 is applied to a function defined on Γj

only and evaluated on Γi for i, j ∈ {D,E, F}.
Thus the discrete Galerkin variational formulation is to find (ϕD,h, α) ∈ S1

h(ΓD)× R such
that

〈(εDSD
DD + ε0S

0
DD)ϕD,h, vh〉ΓD

+ αε0〈S0
DF1F , vh〉ΓD

= −ε0g〈S0
DE1E, vh〉ΓD

,

ε0〈S0
FDϕD,h, 1F 〉Γ + αε0〈S0

FF1F , 1F 〉Γ = −ε0g〈S0
FE1E, 1F 〉Γ

for all vh ∈ S1
h(ΓD). Due to the inverse of the single layer potential, a direct computation

of S0 and SD is not possible in general. But we can use the approximations

SD
h := DD,h +

(
1

2
M>

D,h +K>D,h

)
V −1
D,h

(
1

2
MD,h +KD,h

)
,

S0
h := D0,h +

(
1

2
M>

0,h −K>0,h
)
V −1

0,h

(
1

2
M0,h −K0,h

)
.

These approximations are symmetric, positive semi-definite, and positive definite, respec-
tively, and sustain the same asymptotic error behavior as the exact operators, see e.g. [21,
Lemma 12.11]. The Galerkin matrices are given by

Di,h[k, `] = 〈Diψ
1
` , ψ

1
k〉Γi

, Vi,h[m,n] = 〈Viψ0
n, ψ

0
m〉Γi

,

Ki,h[m, `] = 〈Kiψ
1
` , ψ

0
m〉Γi

, Mi,h[m, `] = 〈ψ1
` , ψ

0
m〉Γi

for k, ` = 1, . . . ,Mi; m,n = 1, . . . , Ni, and i ∈ {D,E, F}. Finally, we have to solve the
following system of linear equations(

εDS
D
DD,h + ε0S

0
DD,h a

a> λ

)(
ϕ
D

α

)
=

(
f
D

fF

)
(4.1)

where
a[`] := 〈S0

DF,h1F , ψ
1
` 〉ΓD

, λ := 〈S0
FF,h1F , 1F 〉ΓF

.

Due to the positive semi-definiteness of SD
h and the positive definiteness of S0

h the linear
system (4.1) is uniquely solvable, see Lemma 3.1.
For the approach, which approximates the floating potential by considering ΩF to be a
dielectric with a high relative permittivity εF , we have to solve the following system of
linear equations(

εDS
D
DD,h + ε0S

0
DD,h ε0S

0
DF,h

ε0S
0
FD,h εFS

F
FF,h + ε0S

0
FF,h

)(
ϕ
D

ϕ
F

)
=

(
f
D

f
F

)
. (4.2)
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4.2 Single Layer Boundary Integral Operator Formulation

We use piecewise constant functions from S0
h(Γ) as test and ansatz functions in the sys-

tem (3.3)–(3.6). As before we apply the splitting of the unknown density wh ∈ S0
h(Γ)

into (wF,h, wE,h, wD,h) ∈ S0
h(ΓF ) × S0

h(ΓE) × S0
h(ΓD). So the discrete variational formu-

lation of the single layer boundary integral operator formulation (3.3)–(3.6) is to find
(wF,h, wE,h, wD,h, α) ∈ S0

h(ΓF )× S0
h(ΓE)× S0

h(ΓD)× R such that

〈VEFwF,h + VEEwE,h + VEDwD,h, ψE〉ΓE
= g〈1E, ψE〉ΓE

,

〈VFFwF,h + VFEwE,h + VFDwD,h, ψF 〉ΓF
− α〈1F , ψF 〉ΓF

= 0,

〈K ′DFwF,h +K ′DEwE,h +K ′DDwD,h, ψD〉ΓD
+

1

2

εD + ε0

εD − ε0

〈wD,h, ψD〉ΓD
= 0,

〈K ′FFwF,h +K ′FEwE,h +K ′FDwD,h, 1F 〉ΓF
− 1

2
〈wF,h, 1F 〉ΓF

= 0, (4.3)

for all test functions ψi ∈ S0
h(Γi) for i ∈ {F,E,D}. In the considered geometric setting,

the equation (4.3) allows for some simplification utilizing the adjointness and the kernel
properties of the double layer potential operator:

0 = 〈K ′FFwF,h +K ′FEwE,h +K ′FDwD,h, 1F 〉ΓF
− 1

2
〈wF,h, 1F 〉ΓF

= 〈wF,h, KFF1F 〉ΓF
− 1

2
〈wF,h, 1F 〉ΓF

= −〈wF,h, 1F 〉ΓF
.

This formulation is equivalent to the following system of linear equations
VEE,h VEF,h VED,h

VFE,h VFF,h VFD,h −b
K̃>DE,h K̃>DF,h

1
2
εD+ε0
εD−ε0

M̃h + K̃>DD,h

b>



wE

wF

wD

α

 =


f
E

0
0
0

 , (4.4)

where

Vij,h[m,n] = 〈Vjψ0
n, ψ

0
m〉Γi

, K̃ij,h[m,n] = 〈Kjψ
0
n, ψ

0
m〉Γi

,

M̃ij,h[m,n] = 〈ψ0
n, ψ

0
m〉Γi

, b[m] = 〈ψ0
m, 1F 〉ΓF

for i, j ∈ {D,E, F},m, n = 1, . . . , Ni or Nj.
For the approach, which approximates the floating potential by considering ΩF as a dielec-
tric with a high relative permittivity εF , the corresponding system readsVEE,h VEF,h VED,h

K̃>FE,h
1
2
εF +ε0
εF−ε0

M̃h + K̃>FF,h K̃>FD,h

K̃>DE,h K̃>DF,h
1
2
εD+ε0
εD−ε0

M̃h + K̃>DD,h


wE

wF

wD

 =

fE

0
0

 . (4.5)
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5 Numerical Examples

In this section, we consider a few rather academic examples to compare the introduced
approaches to solve the electrostatic potential problem (2.1)–(2.8). We compare four for-
mulations in total. We apply the Steklov–Poincaré (SP) operator formulation (4.2) and the
indirect single layer potential (SL) ansatz (4.5) for the full dielectric approach (full dielec-
tric) with a high relative permittivity εF = 10000 to approximate the floating potential. For
the direct incorporation (floating) of the floating potential we solve the Steklov–Poincaré
(SP) system (4.1) and the indirect single layer potential (SL) ansatz (4.2), respectively.
For the computations, we used an implementation [15] of the proposed boundary element
methods which is based on the Fast Multipole Method [7] for fast and data-sparse re-
alizations of the involved boundary integral operators. The Steklov–Poincaré operator
formulation is implemented by means of MPI and we used one process per active subdo-
main, i.e. two processes for (4.1) and three processes for (4.2). The implementation of
the Fast Multipole Method utilizes OpenMP and we used two threads for each instance
of the program. The computations were done on a Workstation with 2 Intel Xeon E5620
processors and 24 GB RAM.
We use the concept of operators of opposite order [22] for the preconditioning of the
Steklov–Poincaré operator formulations (4.1) and (4.2). We apply the artificial multilevel
preconditioning [20, 14] for the inner inversion of the Galerkin matrix of the single layer
boundary integral operator in the Steklov–Poincaré operator formulations. For the systems
(4.4) and (4.5) of the indirect single layer potential ansatz, we use the artificial multilevel
preconditioning for the block of the single layer boundary integral operator and a diagonal
scaling for the block of the adjoint double layer potential operator.

5.1 Two Spheres

The two spheres of our first example [4] have the same diameter which is twice the distance
of the two spheres. The first sphere ΩE is an electrode with a given potential of ϕ = g = 100
on its surface. The second sphere ΩF is either a floating potential or a dielectric with
relative permittivity εF = 10000, depending on the considered approach. The surrounding
air has the relative permittivity ε0 = 1.

number of elements 256 1040 4160
SP floating 32.41 1 s 33.63 8 s 33.86 35 s
SL floating 32.41 1 s 33.63 4 s 33.86 20 s
SP full dielectric 32.40 2 s 33.62 12 s 33.85 50 s
SL full dielectric 32.39 1 s 33.62 5 s 33.86 28 s
2D ELFI 33.9

Table 1: Approximate values of the floating potential α on ΓF and computational times
for the example of two spheres.

9



In Table 1, we provide the approximations of the floating potential α and the computational
times of the four formulations for several refinement levels. For this setting an approximate
solution of an axial symmetric charge simulation solver (ELFI, [1]) is used for comparison.
For the full dielectric approach, we do not determine α directly but provide the mean
value of the potential on ΓF . Even on the finest refinement level the potential ϕF is not
constant, it has a range of 0.1983 for the indirect approach and 0.0209 for the Steklov–
Poincaré operator formulation.
We notice that all four formulations result in good and similar approximate solutions. Only
the indirect single layer formulation (4.5) for the full dielectric model gives a potential
which is not quite constant although we consider approximations of smooth objects. We
will encounter this behavior to a greater extend in the next example.

5.2 Sphere and Bicone

Now we consider an example consisting of a sphere and a bicone [4]. Both have the same
diameter and are arranged at a distance of one eighth of their diameter. One spike of the
bicone points towards the sphere. The sphere ΩE is an electrode with a given potential
ϕ = g = 100. The bicone ΩF has a floating potential and the exterior domain has a relative
permittivity of ε0 = 1. In Table 2, we present the approximations of the floating potential
α and the computational times. Again an approximate solution of the potential on the
surface ΓF of the cone by an axial symmetric FEM solver is used for comparison.

number of elements 384 1536 6144 24576
SP floating 44.512 2 s 45.339 15 s 45.572 79 s 45.637 329 s
SL floating 44.512 2 s 45.341 7 s 45.573 28 s 45.637 124 s
SP full dielectric 44.512 3 s 45.340 27 s 45.573 106 s 45.636 569 s
SL full dielectric 44.433 2 s 45.355 11 s 45.553 34 s 45.632 168 s
2D ELFI 45.7

Table 2: Approximate values of the floating potential α on ΓF and computational times
for the example of a sphere and a bicone.

Note that the mean value of the potential on the surface ΓF is given for the full dielectric
approaches. Therefore we analyze the range of ϕF for theses approaches in Table 3. The
Steklov–Poincaré operator formulation gives an almost constant potential ϕF on the whole
surface ΓF . But we observe that the potential varies strongly for the single layer potential
ansatz, even more than in the last example. The extremal values are taken at the spikes
of the bicone. Such a behavior can be observed for geometries with corners and edges and
results in significant loss of accurracy, see, e.g., [2, 3].
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number of elements 384 1536 6144 24576
SP full dielectric 44.51–44.53 45.33–45.36 45.55–45.59 45.62–45.654
SL full dielectric 40.38–61.91 42.34–58.26 43.34–54.93 44.02–52.41

Table 3: Range of the floating potential ϕF for the sphere and the bicone.

6 Extensions and Applications

We observed some problems of the single layer potential ansatz for large jumps in the
permittivities ε in the example of the sphere and the bicone. For such simple examples
the single layer potential ansatz with direct realization of the floating potential gives good
results. But the same problems with artificial singularities in the solution are observed
in the presence of dielectric media already for relative permittivity εD of 800 and higher,
see e.g. [2, 3]. But for more general examples we have to cope such jumps in the relative
permittivities. Due to these significant drawbacks of the single layer potential ansatz, we
will consider the Steklov–Poincaré operator formulations only.
For real world examples, we need to consider more general settings. For the ease of presen-
tation we have restricted the description of the formulations to one representative of each
kind of subdomains and to well separated subdomains. We will now comment on some
extensions.
The extension to several electrodes and dielectric subdomains is straightforward. For
each boundary ΓFi

and ΓDi
the corresponding boundary integral equations have to be

considered separately. For each floating subdomain ΓFi
a separate degree of freedom αi

and the corresponding constraint ∫
ΓFi

∂

∂nFi

ϕ(x)dsx = 0

have to be considered.
If two subdomains are in contact, we have to make some additional modifications. If a
dielectric subdomain is in contact with an electrode, we use a discrete extension of the
given potential to the surface ΓD of the dielectric and determine the unknown remainder
of ϕD. If the floating potential is surrounded by a dielectric medium instead of the exterior
air domain the vector a and the coefficient λ in (4.1) involve SD instead of S0. In (4.2),
εDS

D and ε0S
0 are interchanged.

If ΩF has interfaces to more than one subdomain, the constraint of the floating potential
has to be taken with care. In the case of an interface to ΩD and to the exterior domain Ωc

0

the constraint reads as

εD

∫
ΓF∩ΓD

∂

∂nF

ϕD(x)dsx + ε0

∫
ΓF∩Γ0

∂

∂nF

ϕ0(x)dsx = 0.

This extended constraint can be transferred straightforward to the approach of Steklov–
Poincaré interface equation by the means of the related Steklov–Poincaré operators. For
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the indirect single layer potential ansatz, the simplification of the related constraint (4.3)
seems not to be possible in general.

6.1 IEC Arrester

The two remaining Steklov–Poincaré operator formulations are compared for the computa-
tion of the electric potential of the IEC surge arrester [12, Annex L] shown in Fig. 1. Each
of the three sections of the arrester (gray) consists of a metal-oxide cylindrical column with
the equivalent relative permittivity εD = 800 surrounded by a porcelain housing with the
relative permittivity εD = 5. In between the two dielectric domains there is a layer of air.
The three sections are separated by two metal flanges (dark gray) at floating potentials.
At the light gray parts the potential is given. The pedestal and the large surrounding
cylinder are grounded electrodes with potential ϕGND = 0. The top high voltage lead and
the toroidal grading ring are electrodes with potential ϕHV = 100. The exterior domain
and the air inside the porcelain housing are modeled as dielectrics with ε = 1.

grading
ring

metal-oxide
column

metal
flange

porcelain
housing α2

α1

ϕGND

ϕHV

Figure 1: IEC Arrester: The gray shades indicate the subdomains.

The difficulties in numerical 3D computations of the IEC arrester are related to the large
permittivity of the metal-oxide as well as to the large differences between the radial and
axial dimensions. Therefore, the accuracy of the potential computations using different
approaches (FEM versus BEM or 2D versus 3D) is typically in the range of 2 % as indi-
cated in [12, Annex L]. The results in Table 4 show that the accuracy can be improved
with the new Steklov–Poincaré operator formulation to the level of 0.5 % (in spite of a
relatively rough mesh). The values of the solution on the two floating potentials and the
computational times are given in Table 4 for a surface mesh of 32939 global nodes. As in
the previous examples we observe a significant decrease of the computational time for the
direct realization of the floating potential, while the solutions of the two approaches do not
differ much. Therefore we dismiss the full dielectric model for the next examples.
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α1 α2 time
SP floating 57.44 24.28 4559 s
SP full dielectric 57.41 24.23 9659 s
2D ELFI 57.62 24.42

Table 4: Approximate values of the floating potentials and computational time for the IEC
arrester.

6.2 Bushing

The next example models a high voltage bushing [1] shown in Fig. 2a. It consists of
a cylindrical conductor (light gray) with potential ϕHV = 100 surrounded by five thin
metallic foils embedded in a solid dielectric material (gray) with the relative permittivity
εD = 5. The most outer foil (light grey) is grounded ϕGND = 0 while the other four foils
(dark grey) are at floating potentials. The role of the floating foils is enforcing a uniform
potential distribution along the conical surface of the bushing. The difficult aspect of
modeling bushings is the small thickness of the foils: for the bushing in Fig. 2a the ratio
between the foil thickness and its axial length is in the range of 10−3. Consequently the
distance between elements created on the parallel foil surfaces is approximately 100 times
smaller than the elements’ size. In spite of these extreme geometrical relations the floating
potentials calculated for all foils with the Steklov-Poincaré operator approach show a good
agreement with the 2D solution as presented in Table 5.

α1 α2 α3 α4

SP floating 70.7 51.4 35.1 19.0
2D ELFI 70.8 51.4 35.0 18.9

Table 5: Approximate values of the floating potentials for the bushing.

6.3 Insulator with Partial Wetting

The last example as depicted in Fig. 2b is an isolator with embedded electrodes (light
gray) at potentials ϕHV = 100 and ϕGND = 0. The relative permittivity of the insulator
(grey) is εD = 5. The upper surface of both insulator sheds is covered by a water layer
(dark grey). For the operational frequency of 50–60 Hz water behaves like a conducting
material and can be approximated for a capacitive electrostatic field computation as an
electrode. Consequently, the two very thin domains of water (dark gray) on the insulator
sheds are modeled as electrodes at floating potentials. The geometrical dimensions of this
arrangement are as follows: electrodes’ diameter = 40 mm, distance between electrodes =
14 mm, insulation thickness between electrode and air = 5 mm, shed diameter = 160 mm,
shed thickness = 6 mm, and water layer thickness = 1 mm.
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α4
α3
α2
α1

ϕGND

ϕHV

solid
dielectric

(a) Clip of the bushing.

α2

α1

ϕGND

ϕHV

insulator

(b) Clip of the insulator with partial wetting.

Figure 2: Geometric settings of the bushing and the partially wet isolator.

The solution of the floating version of the Steklov–Poincaré operator approach and the 2D
solution are given in Table 6.

α1 α2

SP floating 80.93 51.71
2D ELFI 81.49 52.74

Table 6: Approximate values of the floating potentials for the bushing for the insulator
with partial wetting.

7 Conclusions

In our comparison the direct formulation based on the Steklov–Poincaré interface equation
turned out to be superior to the indirect single layer potential ansatz, as the results are a lot
better in the case of large jumps of the permittivity. In particular, the indirect approach
shows unphysical singularities close to edges and corners. The direct integration of the
floating potential and of the zero flux constraint proved to be faster than the approximation
obtained by a dielectric media with large permittivity because of a smaller number of
degrees of freedom and a smaller number of steps of the iterative solver. Thus the additional
effort for the implementation of the modified system pays off.
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