
Technische Universität Graz

Parallel and vectorized implementation of analytic
evaluation of boundary integral operators

J. Zapletal, G. Of, M. Merta

Berichte aus dem
Institut für Numerische Mathematik

Bericht 2017/3

Technische Universität Graz

Parallel and vectorized implementation of analytic
evaluation of boundary integral operators

J. Zapletal, G. Of, M. Merta

Berichte aus dem
Institut für Numerische Mathematik

Bericht 2017/3

Technische Universität Graz
Institut für Numerische Mathematik
Steyrergasse 30
A 8010 Graz

WWW: http://www.numerik.math.tu-graz.at

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

Parallel and vectorized implementation of
analytic evaluation of boundary integral

operators
Jan Zapletal1,2, Günther Of 3, Michal Merta1,2

1 IT4Innovations, VŠB – Technical University of Ostrava, 17. listopadu 2172/15, 708 33
Ostrava-Poruba, Czech Republic
2 Department of Applied Mathematics, VŠB – Technical University of Ostrava, 17. listopadu
2172/15, 708 33 Ostrava-Poruba, Czech Republic
3 Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30,
A-8010 Graz, Austria

In the paper we describe an efficient analytic evaluation of boundary integral oper-
ators. Firstly, we concentrate on a novel approach based on a simultaneous evaluation
for all three linear shape functions defined on a boundary triangle. This results in the
speedup of 2.35–3.15 compared to the old approach of separate evaluations. In the
second part we comment on the OpenMP parallelized and vectorized implementa-
tion of the suggested formulae. The employed code optimizations include techniques
such as data alignment and padding, array-of-structures to structure-of-arrays data
transformation, or unit-strided memory accesses. The presented scalability results
with respect both to the number of threads employed and the width of the SIMD
register performed on an Intel R© XeonTM processor and two generations of the Intel R©

Xeon PhiTM family (co)processors validate the performed optimizations and show
that vectorization is an inherent part of modern scientific codes.
Keywords: boundary element method, analytic integration, SIMD, vectorization,
Intel Xeon Phi, many-core

1 Introduction
The computation of matrix entries and the evaluation of the representation formula are of major
importance in boundary element methods (BEM). On one hand, the often singular integrals have
to be computed with sufficient accuracy to preserve important matrix properties and the optimal
order of convergence. On the other hand, the computation has to be fast as this is a major part
of the total computational time even for fast boundary element methods. A popular approach
is to use explicit analytical formulae for the evaluation of boundary integral operators. The
related formulae have been topic of research for decades, recent publications discussing the topic
include, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]. In most cases, the formulae are provided for plane triangles,
the kernel |x − y|−1, and its derivatives. As the formulae are exact, they are obviously related.
However, the knowledge of a formula is just part of the story as certain geometric settings lead to

1

special cases in its evaluation which have to be handled with extra care in the implementation.
Thus, a pure comparison of the formulae is not sufficient to rate the quality of the approaches.
In this paper, we use a carefully developed and excessively tested implementation based on

the formulae in [4, 9]. We focus on the evaluation of single- and double-layer potentials of the
3D Laplace kernel and linear shape functions. The formulae in [4, 9] suggest to choose a local
coordinate system in the plane triangle related to the considered linear shape function. Then,
three independent computations are required to compute the integrals for the three linear shape
functions of a single triangle. In this paper, we compute these three integrals at once which
reduces the computational effort to almost one third. To do so, we present additional analytic
formulae which are related to the setting chosen in [4]. The formulae (2.13) and (2.14) for the
double-layer potential with constant basis function were known but unpublished. The formulae
(2.15) and (2.16) for the double-layer potential and some other linear basis function, as well as
the corresponding formulae (2.26) and (2.28) for the single-layer potential are new in this setting.
As we observed that all formulae of these three cases have major parts in common, we were able
to elaborate the simultaneous computation of the potentials for all three linear shape functions
of a triangle. These results are presented in Section 2.2.4 for the double-layer potential and in
Section 2.3.4 for the single-layer potential. The results of Section 4.1 show good speedups of the
related computational times ranging from 2.35 to 3.15 by the new simultaneous computation.
The second part of the paper is devoted to the efficient implementation of the suggested

evaluation routines for modern multi- and many-core (co)processors with wide SIMD registers.
It has become more or less standard in scientific codes to utilize shared- and distributed-memory
parallelism achieved by OpenMP and MPI and thus to use the computational power of all
available cores. However, in recent years the theoretical peak performance of CPUs has also been
rising due to the capabilities of vector processing units able to perform simultaneous computations
on vectors of data. This concept, known as Single Instruction Multiple Data (SIMD), becomes
increasingly important. Indeed, the newest AVX512 (Advanced Vector Extensions) instruction
set is able to operate on 512 bits of floating-point data which translates to 8 double-precision
operands. Neglecting in-core vectorization can thus reduce the performance by the factor of 8 (or
even 16 in single-precision arithmetic). Recently, several papers have been published dealing with
many-core vectorized implementation of numerical methods, see [10] for 2D BEM for the Laplace
equation, [11] for efficient quadrature routines in the context of the finite element method (FEM),
[12, 13] for stencil-based simulations of geophysical flows, [14, 15, 16] for the performance of CFD
codes, or [17] for the acceleration of the finite element tearing and interconnecting (FETI) solver.
Vectorization can be achieved via different strategies. One option is the inline assembly code

or compiler-specific intrinsic functions for compute-intensive kernels. Although these can achieve
optimal speedup, the code is not portable between multiple architectures. A second option is
to use wrapper libraries providing vector implementation of common mathematical functions
in several vector instructions sets (including, e.g., SSE4.2, AVX2, or AVX512) resulting in a
portable implementation. In [18] we describe the application of the Vc library [19] to both the
semi-analytic and numerical BEM assembly. The VCL library [20] can be used in a similar
fashion. In [21] we used OpenMP SIMD pragmas described by the OpenMP standard [22] for
the vectorization of the regularized numerical assembly of BEM matrices. Differently from [21],
where we showed that the efficiency of this approach can get very close to the optimal values,
in this paper we use OpenMP SIMD to accelerate the presented analytic evaluations. Although
this approach is a bit less explicit than the methods mentioned above, the compiler is able to
perform additional optimizations and can contribute to better performance.
This part of the paper is structured as follows. Code optimizations employed for the efficient

parallelization and vectorization of the semi-analytic assembly and the exact evaluation of the
representation formula are presented in Section 3. In Sections 4.2, 4.3 we provide results obtained

2

on multi- and many-core architectures represented by Intel Xeon and Xeon Phi families. The
suggested rather simple threading approach leads to optimal speedup on all tested architectures,
see Tables 4.2-4.4 for detailed results. For the performance of the vectorized code we refer to
Tables 4.5-4.7, where one can see that changing the width of a SIMD vector processed simulta-
neously by vector processing units leads to significant speedups ranging from 4.95 to 7.75 for the
matrix assembly and the evaluation of the representation formula, respectively.

2 Analytic evaluation of singular integrals
In the following we consider the Dirichlet boundary value problem for the Laplace equation in
three spatial dimensions. We discuss analytical formulae to compute the single- and double-
layer potentials for plane triangles and linear shape functions. In particular, we present some
analytical formulae which are new in the setting of [4, Section C.2]. The presented complete set
of formulae allows the simultaneous computation of the integral operators for the three linear
shape functions of a triangle at once to reduce the computational times significantly.

2.1 Model problem
In particular, we solve

−∆u = 0 in Ω, u = g on ∂Ω (2.1)

where Ω ⊂ R3 denotes a bounded Lipschitz domain and g ∈ H1/2(∂Ω) is the given Dirichlet
datum. An explicit formula for the solution to (2.1) is given by, see, e.g., [23],

u(x̃) =
∫
∂Ω

v(x̃, y)w(y) dsy −
∫
∂Ω

∂

∂ny
v(x̃, y)g(y) dsy for x̃ ∈ Ω (2.2)

with w := ∂u/∂n and v : R3 → R3 denoting the fundamental solution to the Laplace equation in
3D, i.e.,

v(x, y) := 1
4π

1
|x− y|

.

The unknown Neumann datum w ∈ H−1/2(∂Ω) can be determined by solving the weakly singular
boundary integral equation obtained from (2.2) by taking the limit Ω 3 x̃→ x ∈ ∂Ω,

V w(x) = 1
2g(x) +Kg(x) for almost all x ∈ ∂Ω (2.3)

with the single- and double-layer boundary integral operators

V : H−1/2(∂Ω)→ H1/2(∂Ω), V w(x) :=
∫
∂Ω

v(x, y)w(y) dsy,

K : H1/2(∂Ω)→ H1/2(∂Ω), Kg(x) :=
∫
∂Ω

∂

∂ny
v(x, y)g(y) dsy,

respectively. Both boundary integral operators are linear and bounded, and the H−1/2(∂Ω)-
ellipticity of V ensures unique solvability of (2.3), see, e.g., [23]. The variational formulation
equivalent to the equation (2.3) used for the discretization by the boundary element method
reads

〈V w, t〉∂Ω =
〈(

1
2I +K

)
g, t

〉
∂Ω

for all t ∈ H−1/2(∂Ω) (2.4)

3

with the L2(∂Ω)-based duality pairing 〈·, ·〉∂Ω .
To derive a boundary element discretization of (2.4) we decompose the polyhedral boundary

∂Ω into E planar triangular boundary elements τk with N mesh nodes xi in total. We introduce
two conforming discrete approximation spaces, namely

S1,0
h (∂Ω) := span{ϕi}Ni=1 ⊂ H1/2(∂Ω),

S1,−1
h (∂Ω) := span

{
ϕpw

3(k−1)+1, ϕ
pw
3(k−1)+2, ϕ

pw
3(k−1)+3

}E
k=1 ⊂ H

−1/2(∂Ω).

Here, S1,0
h (∂Ω) denotes the space of piecewise linear affine and globally continuous functions,

while S1,−1
h (∂Ω) is the space of piecewise linear affine functions which can be discontinuous

between elements. We denote the related basis functions by

ϕi(x) :=

1 for x = xi,

0 for x = xj 6= xi,

piecewise linear otherwise,
ϕpw

3(k−1)+m :=
{
ψτk,m in τk,
0 otherwise,

where ψτk,m (m = 1, 2, 3) are the linear shape functions related to the m–th node of triangle τk.
Using the discrete spaces to approximate the boundary data

w ≈ wh :=
3E∑
j=1

wjϕ
pw
j , g ≈ gh :=

N∑
i=1

giϕi (2.5)

in (2.4) and testing with ϕpw
` leads to the system of linear equations

Vhw =
(

1
2Mh + Kh

)
Phg (2.6)

with w, g containing the coefficients wj , gi from (2.5), the boundary element matrices

[Vh]`,j := 1
4π

∫
τb`/3c

ϕpw
` (x)

∫
τbj/3c

ϕpw
j (y) 1

|x− y|
dsy dsx, (2.7)

[Kh]`,j := 1
4π

∫
τb`/3c

ϕpw
` (x)

∫
τbj/3c

ϕpw
j (y)ny · (x− y)

|x− y|3
dsy dsx, (2.8)

[Mh]`,j =
∫
τb`/3c∩τbj/3c

ϕpw
` (x)ϕpw

j (y) dsx,

and Ph realizing the natural translation from S1,0
h (∂Ω) to S1,−1

h (∂Ω) as the continuous basis
functions ϕi can be represented by a local shape function ψτ,j in each triangle τ of the support
of ϕi. The numerical solution can then be plugged into the discretized representation formula

uh(x̃) :=
∫
∂Ω

v(x̃, y)wh(y) dsy −
∫
∂Ω

∂

∂ny
v(x̃, y)gh(y) dsy for x̃ ∈ Ω (2.9)

to evaluate the solution in the domain.
Both Mh,Ph from (2.6) are sparse and not interesting from the perspective of assembly. In [21]

we discussed the assembly of the remaining matrices Vh, Kh by a regularized numerical scheme
described, e.g., in [24]. An alternative way is to compute the inner integral analytically and
perform numerical quadrature only for the remaining integral. In the following we concentrate
on the latter approach and provide closed-form analytic formulae for the relevant integrals. In
particular, we focus on the simultaneous computations of the integrals related to all linear affine
shape functions of a boundary element.

4

Figure 2.1: Local coordinate system and basic quantities used in the analytic evaluation.

2.2 Double-layer potential
We consider the analytic computation of the collocation integrals of the double layer potential

Dj(x) = 1
4π

∫
τ

ny · (x− y)
|x− y|3

ψτ,j(y) dsy, j ∈ {1, 2, 3}, (2.10)

where τ is a plane triangle, x ∈ R3 is a collocation point, and ψτ,j , j ∈ {1, 2, 3}, are the local
linear shape functions of the triangle τ associated with its three nodes yj ∈ R3.
For the analytic evaluation we reuse the notation as in [4, Section C.2] with the exception

that for better readability we use yj to denote the nodes of the triangle instead of xj . Each
triangle defines a local coordinate system with one of its nodes serving as the origin, by default
we choose y1. The orthonormal basis is spanned by the normal vector associated to the triangle,
the direction of the edge opposite to the origin, and the perpendicular direction in the plane of
the triangle. Angle tangents α1, α2 and the length sτ describe the size and the shape of the
triangle. The quantities s and t denote the local coordinates of a point y ∈ τ , while sx, tx, and
ux are the local coordinates of the collocation point x. For an illustration and corresponding
quantities see Figure 2.1.

2.2.1 Double-layer potential for a shape function linear in s

The analytic representation of the integral D1 for the linear form function ψτ,1 is given in [4,
Section C.2.2] by

D1(x) = Ds(x) = 1
4π

∫
τ

ny · (x− y)
|x− y|3

ψτ,1(y) dsy

= 1
4π

∫ sτ

0

sτ − s
sτ

∫ α2s

α1s

ux

((t− tx)2 + (s− sx)2 + u2
x)3/2 dtds

= 1
4πsτ

(
FDs (sτ , α2)− FDs (0, α2)− FDs (sτ , α1) + FDs (0, α1)

)
(2.11)

where

FDs (s, α) = − 1
2ux log

(
v2 +A1v +B1

)
+ (sτ − sx) ux

|ux|
arctan 2v +A1

2G1

+ 1
2ux log

(
v2 +A2v +B2

)
− (sτ − sx) ux

|ux|
arctan 2v +A2

2G2

− ux
α√

1 + α2
log
(√

1 + α2(s− p) +
√

(1 + α2)(s− p)2 + q2
) (2.12)

5

with the coefficients Ai, Bi, Gi as used in [4, Section C.2]. Here, the local coordinate system is
set up with the origin y1. To compute the integrals for the other two shape functions, i.e, D2
and D3, local coordinate systems can be set up with the origin y2 and y3, respectively. Thus, the
total effort to compute all three integrals of (2.10) corresponds to three evaluations of (2.11).
Our aim is to reduce the computational time of evaluating D1, D2, and D3 to about one third,

i.e., the time necessary to evaluate one of the integrals.

2.2.2 Double-layer potential for a constant shape function

In addition to (2.11), the formula for the constant shape function is known as

D0(x) = 1
4π

∫
τ

ny · (x− y)
|x− y|3

dsy = 1
4π

∫ sτ

0

∫ α2s

α1s

ux

((t− tx)2 + (s− sx)2 + u2
x)3/2 dtds

= 1
4π
(
FD0 (sτ , α2)− FD0 (0, α2)− FD0 (sτ , α1) + FD0 (0, α1)

)
(2.13)

where
FD0 (s, α) = ux

|ux|
arctan 2v +A1

2G1
− ux
|ux|

arctan 2v +A2

2G2
. (2.14)

The calculations follow the lines of [4, Section C.2.2] by canceling the term sτ−s
sτ

. Therefore, the
logarithmic term of FDs (s, τ) is canceled and the numerator of the remaining integral changes to
(αs− tx). Thus, we apply the same partial fraction decomposition as in [4, Section C.2.2] where
only the coefficients

D1 = D2 = 0, E1/2 = ±
√

1 + α2

2

(
q ± tx − αsx

1 + α2

)
change. Note that the symbols D1, D2 from the previous formula are local variables introduced
in [4, Section C.2.2] and do not denote the integrals (2.10). In the two auxiliary integrals I1/2
the logarithmic term drops out and it remains to compute

I1/2 = ± ux
|ux|

arctan
2v +A1/2

2G1/2
.

2.2.3 Double-layer potential for a shape function linear in t

The third case, which is rather simple to compute, is

Dt(x) = 1
4π

∫ sτ

0

∫ α2s

α1s

ux(t− tx)
((t− tx)2 + (s− sx)2 + u2

x)3/2 dtds.

Using the formula [25, p. 970, eq. 207]∫
z

(z2 + a2)3/2 dz = − 1√
z2 + a2

we get

Dt(x) = −ux4π

∫ sτ

0

[
1√

(t− tx)2 + (s− sx)2 + u2
x

]α2s

α1s

ds.

6

This term is known from the calculation of Ds. In particular, it is related to

−αux
∫ 1√

(1 + α2)(s− p)2 + q2
ds

in the calculation of FDs in [4, p. 249] as

(1 + α2)(s− p)2 + q2 = (1 + α2)
(
s− αtx + sx

1 + α2

)2
+ (tx − αsx)2

1 + α2 = (αs− tx)2 + (s− sx)2 + u2
x.

In case of FDs , this integral results in the last term of (2.12). Similarly, we can state

Dt(x) = 1
4π
(
FDt (sτ , α2)− FDt (0, α2)− FDt (sτ , α1) + FDt (0, α1)

)
(2.15)

where

FDt (s, α) = −ux
1√

1 + α2
log
(√

1 + α2(s− p) +
√

(1 + α2)(s− p)2 + q2
)
. (2.16)

Note that the antiderivatives (2.12), (2.14), and (2.16) involve the same major terms and
FDs (s, α), FD0 (s, α), and FDt (s, α) can thus be computed simultaneously. This is much more
efficient than three separate evaluations of (2.11) by switching the origin among y1, y2, and y3.
To compute the integrals D2 and D3 related to the other two shape functions ψτ,2 and ψτ,3 we
build linear combinations of Ds, D0, and Dt.

2.2.4 Simultaneous computation of double-layer potentials for linear shape functions

The linear shape functions ψτ,j , j ∈ {1, 2, 3}, which are equal to 1 in the node yj and 0 in the
other nodes of the triangle τ , can be represented in the local basis 1, s−sτsτ

, and t−tx with respect
to the origin y1 by

ψτ,1(s, t) = 0 · 1 + 1 · sτ − s
sτ

+ 0 · (t− tx),

ψτ,2(s, t) = 1
α1 − α2

[(
tx
sτ
− α2

)
1 + α2

sτ − s
sτ

+ 1
sτ

(t− tx)
]
,

ψτ,3(s, t) = 1
α2 − α1

[(
tx
sτ
− α1

)
1 + α1

sτ − s
sτ

+ 1
sτ

(t− tx)
]
.

(2.17)

Thus, we can compute D2 and D3 from Ds, D0, and Dt. Using the notation

L1(s, α) := ux
2sτ (α2 − α1) log

(
v2 +A1v +B1

)
,

T1(s, α) := 1
sτ (α2 − α1)

ux
|ux|

arctan 2v +A1

2G1
,

L2(s, α) := ux
2sτ (α2 − α1) log

(
v2 +A2v +B2

)
,

T2(s, α) := 1
sτ (α2 − α1)

ux
|ux|

arctan 2v +A2

2G2
,

L3(s, α) := −ux
sτ (α2 − α1)

1√
1 + α2

log
(√

1 + α2(s− p) +
√

(1 + α2)(s− p)2 + q2
)
,

(2.18)

7

taking into account some terms of the coefficients of (2.17), for the main terms of the integrals
Ds, D0, and Dt, we can write

Dj(x) = 1
4π
(
FDj (sτ , α2)− FDj (0, α2)− FDj (sτ , α1) + FDj (0, α1)

)
, (2.19)

where

FDj (s, α) = δj,1L1(s, α) + δj,2T1(s, α) + δj,3L2(s, α) + δj,4T2(s, α) + δj,5L3(s, α) (2.20)

with the coefficients of Table 2.1. Moreover, we compute the term FDj (sτ , α)−FDj (0, α) at once.
Now we are able to compute D1, D2, and D3 simultaneously based on the computation of the
major terms (2.18).

Table 2.1: Coefficients of the antiderivatives FDj (s, t) in (2.20) of the integrals Dj in (2.19).
j δj,1 δj,2 δj,3 δj,4 δj,5

1 −(α2 − α1) (sτ − sx)(α2 − α1) (α2 − α1) −(sτ − sx)(α2 − α1) α(α2 − α1)
2 α2 −(tx − α2sx) −α2 tx − α2sx −(1 + αα2)
3 −α1 tx − α1sx α1 −(tx − α1sx) 1 + αα1

Remark 1. While we compared the results of the old formula and the new combined formulae,
we observed small, but noticeable differences in some specific cases. These differences are related
to finite precision arithmetic and cancellation of a few digits in computing the sums of the
antiderivatives. This effect is observed in both versions and is related to dominant arctangent
terms. This occurs for cases when t2x � (s2

x + u2
x) where the evaluation point x is far from the

triangle τ . To avoid this situation, we use some precomputations to find an appropriate single
origin from y1, y2, and y3 in the actual implementation . The related precomputations can be
done without any square root (otherwise necessary to set up the local coordinate system) or any
other expensive computations and only lead to a little additional effort.

2.3 Single-layer potential
For the single-layer potential we consider the analytic computation of the collocation integrals

Sj(x) = 1
4π

∫
τ

1
|x− y|

ψτ,j(y) dsy, j ∈ {1, 2, 3}, (2.21)

where τ is a plane triangle, x ∈ R3 is the collocation point, and ψτ,j , j ∈ {1, 2, 3}, are the local
linear shape functions of the triangle τ associated with its three nodes y1, y2, y3 ∈ R3.

2.3.1 Single-layer potential for a shape function linear in s

The analytic representation of the single-layer potential S1(x) for the linear shape function ψτ,1
is given in [26, p. 10] and [9, eq. (2.6)] by

S1(x) = Ss(x) = 1
4π

∫
τ

1
|x− y|

ψτ,1(y) dsy = 1
4πsτ

∫ sτ

0

∫ α2s

α1s

sτ − s√
(s− sx)2 + (t− tx)2 + u2

x

dtds

= 1
4πsτ

(
FSs (sτ , α2)− FSs (0, α2)− FSs (sτ , α1) + FSs (0, α1)

)
(2.22)

8

with

FSs (s, α) = 1
2(sx − s)(s+ sx − 2sτ) log

[
αs− tx +

√
β2(s− p)2 + q2

]
+ 1

4s
2 + 1

2s(sx − 2sτ)− 1
2u

2
x log

[
q +

√
β2(s− p)2 + q2

]
+ 1

2β2 (tx − αsx)
[
q +

√
β2(s− p)2 + q2

]
+ 1

2β [αq2 + 2(tx − αsx)(sx − sτ)] log
[
β(s− p) +

√
β2(s− p)2 + q2

]
− 1

2u
2
x log

[
(β2q − (αsx − tx)) β2(s− p)2

(q +
√
β2(s− p)2 + q2)2

+2αq β2(s− p)
q +

√
β2(s− p)2 + q2

+ β2q + (αsx − tx)
]

− 2ux(sx − sτ) arctan 1
ux

[
[β2q − (αsx − tx)](s− p)
q +

√
β2(s− p)2 + q2

+ αq

]
,

(2.23)

and β =
√

1 + α2. Note that the constant terms have been dropped compared to [26], as these
terms cancel in the summation (2.22).
Analogously as in the case of the double-layer potential discussed in Section 2.2, we will reduce

the total effort of computing the contributions S1, S2, and S3 to about one third when compared
to the old approach of switching the origin of the local coordinate system among y1, y2, and y3.

2.3.2 Single-layer potential for a constant shape function

In addition to (2.22), the formula for the constant form function is given in [4, Section C.2.1]

S0(x) = 1
4π

∫
τ

1
|x− y|

dsy = 1
4π

∫ sτ

0

∫ α2s

α1s

1√
(s− sx)2 + (t− tx)2 + u2

x

dtds

= 1
4π
(
FS0 (sτ , α2)− FS0 (0, α2)− FS0 (sτ , α1) + FS0 (0, α1)

)
(2.24)

where
FS0 (s, α) = (s− sx) log

[
αs− tx +

√
β2(s− p)2 + q2

]
− s

+ αsx − tx
β

log
[
β(s− p) +

√
β2(s− p)2 + q2

]
+ 2ux arctan 1

ux

[
[β2q − (αsx − tx)](s− p)
q +

√
β2(s− p)2 + q2

+ αq

]
.

(2.25)

2.3.3 Single-layer potential for a shape function linear in t

The third case for the shape function linear in t reads

St(x) = 1
4π

∫ sτ

0

∫ α2s

α1s

t− tx√
(s− sx)2 + (t− tx)2 + u2

x

dtds

= 1
4π

∫ sτ

0

[√
(s− sx)2 + (t− tx)2 + u2

x

]α2s

t=α1s
ds

9

St(x) = 1
4π
(
FSt (sτ , α2)− FSt (0, α2)− FSt (sτ , α1) + FSt (0, α1)

)
(2.26)

where

FSt (s, α) =
∫ √

(s− sx)2 + (αs− tx)2 + u2
x ds. (2.27)

Using the same transformations and substitutions as in [4, Section C.2.1], we can calculate

FSt (s, α) = q2

2β log
(
β(s− p) +

√
β2(s− p)2 + q2

)
+ 1

2(s− p)
√
β2(s− p)2 + q2 (2.28)

where β =
√

1 + α2. In detail, we rewrite (2.27) as

FSt (s, α) =
∫ √

β2(s− p)2 + q2 ds

and apply the transformation [4, page 247]

s = p+ q

β
sinh u, ds

du = q

β
cosh u (2.29)

to obtain

FSt (s, α) = q2

β

∫
cosh2 udu = q2

2β

(
u+ 1

2 sinh(2u)
)
.

For the inverse transformation of (2.29) we use

sinh u = β

q
(s− p), 1

2 sinh(2u) = sinh u cosh u = sinh u
√

1 + sinh2 u

to obtain

FSt (s, α) = q2

2β u+ s− p
2
√
q2 + β2)(s− p)2.

If we now use, see [4, page 248],

u = log
(
β(s− p) +

√
β2(s− p)2 + q2

)
− log q

and drop the constant term log q in the antiderivative, we obtain (2.28).

2.3.4 Simultaneous computation of single-layer potentials for linear shape functions

We can reuse the linear combinations (2.17) to compute the integrals (2.21) as

S1(x) = Ss(x),

S2(x) = 1
α1 − α2

[(
tx
sτ
− α2

)
S0(x) + α2Ss(x) + 1

sτ
St(x)

]
,

S3(x) = 1
α2 − α1

[(
tx
sτ
− α1

)
S0(x) + α1Ss(x) + 1

sτ
St(x)

]
.

(2.30)

10

In the computation of the antiderivatives of Ss(x), S0(x), and St(x) the same major terms show
up. The terms

log
[
β(s− p) +

√
β2(s− p)2 + q2

]
,

√
β2(s− p)2 + q2

are present in all three antiderivatives, and the terms

log
[
αs− tx +

√
β2(s− p)2 + q2

]
, arctan 1

ux

[
[β2q − (αsx − tx)](s− p)
q +

√
β2(s− p)2 + q2

+ αq

]

occur in FSs (x) and FS0 (x). Thus, the three antiderivatives FSs (·, ·), FS0 (·, ·), and FSt (·, ·) (and
S1, S2, S3 as well) can be computed at once at about the cost of computing FSs (·, ·).

3 Vectorized implementation
Numerical evaluation of the boundary element integrals is a generally very expensive operation
from the computational point of view. Whether using a fully numerical approach with a large
number of quadrature points or the discussed analytic formulae requiring often conditional eval-
uation of expensive arithmetic operations, a naive implementation would lead to unacceptable
computational times for even moderately sized meshes. Although the quadratic complexity of
the classical BEM can be reduced to nearly linear using some fast BEM approach, an efficient
implementation of the kernel integration routines is still necessary. In [21] we have presented
a parallelized and vectorized implementation of the fully numerical BEM quadrature routines
based on regularized four-dimensional integrals [24]. In what follows we focus on the efficient
implementation of the analytic evaluation described in the previous section.
Operations like floating point division, square root, logarithm, or arctangent belong to the most

time consuming ones. Although the fully numerical evaluation does not have to use all of these
functions, it usually requires sampling the kernel in a very large number of quadrature nodes.
Thus, the analytic evaluation is a competitive alternative. In Table 3.1 and Table 3.2 from [27] we
provide latency in core clock cycles and reciprocal throughput (processor cycles per instruction)
for some of the functions occurring in the formulae. One can see that the instructions for the
reciprocal square root (VRSQRTPD) or fused multiple-add operations (VFMADD) present in
modern instruction sets can lead to a significant performance gain. However, only with proper
vectorization and parallelization the full potential of current processors can be reached. The
wide SIMD (Single Instruction Multiple Data) registers of the Intel Xeon or Xeon Phi processors
are able to process up to four or eight, respectively, double precision operands simultaneously.

Table 3.1: Haswell instructions latency and throughput.
instruction instruction set latency reciprocal throughput
FMUL x87 f. p. 5 1
FDIV x87 f. p. 10–24 8–18
FSQRT x87 f. p. 10–23 8–17
FPATAN x87 f. p. 96–156 —
VDIVPD AVX 19–35 16–28
VFMADD AVX 5 0.5
VSQRTPD AVX 28–29 16–28

11

Table 3.2: Knights Landing instructions latency and throughput.
instruction instruction set latency reciprocal throughput
VDIVPD AVX512 32 32
VSQRTPD AVX512 37 16
VRSQRTPD AVX512 7 2
VFMADD AVX512 6 0.5

Although some level of automatic vectorization is supported by modern compilers, it is usually
necessary to significantly modify the original code and data structures and to assist the compiler
by using OpenMP directives to achieve optimal SIMD behaviour. In combination with the
shared memory parallelization this can lead to speedups in orders of tens to hundreds compared
to sequential and scalar code.
In the next sections we describe the combination of OpenMP threading and vectorization for

the assembly of the boundary element matrices following the so-called VIPO (Vectorize Inner-
most, Parallelize Outermost) approach [28]. The presented approaches are implemented in the
boundary element library BEM4I [29] developed at the IT4Innovations National Supercomputing
Center.

3.1 OpenMP threading
One of the characteristics of the Intel Xeon Phi family of (co)processors is the relatively high
number of available cores compared to Intel Xeon series widely used in HPC centers and high-
performance servers. On top of that, to achieve optimal behaviour it is often recommended to
employ hyper-threading (up to 4-way). This means that to perform well on Intel Xeon Phi the
code should scale well up to tens or even hundreds of threads.
Similarly as in finite-element codes, in BEM4I the element-based strategy is used to assemble

the boundary element matrices Vh, Kh from (2.7), (2.8). Since the assembly routines are almost
identical for both matrices, in the following we concentrate on Vh only. In our setting, the
approximated local contribution to Vh from the elements τ`, τk reads

R3×3 3 [V`,kh]m,n := 1
4π∆`

Q∑
q=1

wqϕ
pw
3(`−1)+m(xq)

∫
τk

ϕpw
3(k−1)+n(y) 1

‖xq − y‖
dsy (3.1)

with ∆` denoting the area of τ`, and quadrature weights and points wq, xq ∈ τ`, respectively.
The quadrature points are transferred to τ` from the reference element

τ̂ :=
{
µ ∈ R2 : µ1 ∈ (0, 1), µ2 ∈ (0, 1− µ1)

}
(3.2)

by the affine mapping R` : τ̂ → τ`,

x := R`(µ) := y`1 +
[
y`2 − y`1 y`3 − y`1

]
µ (3.3)

with `m denoting the global index of the m-th node of the triangle τ`. Note that in the provided
code listings we switch to the zero-based indexing.
The assembly strategy is outlined in Listing 3.1 – we loop over the pairs of triangles, assemble

a local matrix and map it to the global matrix. OpenMP threading is employed for the outer
loop over triangles, so that the granularity of each task is not too fine. All auxiliary buffers used
in getLocalMatrix and described in the following section are allocated on a per-thread basis.

12

1 # pragma omp parallel for
2 for(int tau_l = 0; tau_l < E; ++ tau_l){
3 for(int tau_k = 0; tau_k < E; ++ tau_k){
4 getLocalMatrix (tau_l , tau_k , localMatrix);
5 globalMatrix .add(tau_l , tau_k , localMatrix);
6 } }

Listing 3.1: Threaded element-based assembly.

1 # pragma omp parallel for schedule (static , 1)
2 for(int rank = 0; rank < omp_get_num_threads (); ++ rank){
3 offset = rank * chunkSize ;
4 representationFormula (points + offset , result + offset);
5 }

Listing 3.2: Threaded evaluation of the representation formula.

Thus, only the globalMatrix is shared among threads. Note, however, that due to the supports
of the used trial and test functions being limited to a single triangle, no thread-private (atomic
or critical OpenMP clauses) operations are necessary in the add function.
For the implementation of the discretized representation formula the threading is rather simple.

The array of evaluation points is split into chunks and every thread is responsible for a subset
of points, see Listing 3.2.

3.2 OpenMP vectorization
Another level of parallelism in BEM4I is provided by the SIMD paradigm. The vectorization of
code can be achieved in different ways with varying ease of use. Starting from direct interaction
with vector instructions via the assembly language, over the compiler-specific intrinsic functions,
or an external compiler- and architecture-independent library [19, 20], the most user-friendly
option is to leverage the current OpenMP specification [22] similarly as in the case of threading.
In the following, our aim is to vectorize the loop generated by the quadrature sum displayed in
(3.1). The local assembly, i.e., the function getLocalMatrix from Listing 3.1, consists of several
steps including

1. transferring reference quadrature nodes from τ̂ to τ` by (3.3),

2. setting up of the local coordinate system of τk, see Figure 2.1,

3. obtaining local coordinates of the quadrature nodes, see Figure 2.1,

4. evaluation of boundary integral operators as in Sections 2.2, 2.3.

In the following we take a closer look at the implementation of individual phases resulting in the
implementation of getLocalMatrix provided in Listing 3.7.
Let us first comment on the initial step of mapping the quadrature points from τ̂ to τ`. The

vectorized code as implemented in BEM4I is hinted in Listing 3.3. The following text should be
read in conjunction with Figure 3.1 depicting the described optimizations.
First of all, the arrays y1, y2, y3 of the length 3 contain the coordinates of the vertices of the

current inner triangle τk. More important is the structure of the arrays mu1, mu2 containing the
coordinates of the 2D quadrature points defined in the reference triangle (3.2). A classical way

13

0x607640 0x6076800x607660

peel main body remainder

Figure 3.1: Aligned and padded quadrature nodes in the structure-of-arrays (SoA) format.

1 void getGlobalQuadratureNodes (
2 double * y1 , double * y2 , double * y3
3) {
4 // transform reference points to the triangle y1 , y2 , y3
5 # pragma omp simd \
6 aligned (x1 , x2 , x3 , mu1 , mu2 : align) \
7 simdlen (width)
8 for (int i = 0; i < QPad; ++i) {
9 x1[i] = y1[0] + (y2[0] - y1[0]) * mu1[i]

10 + (y3[0] - y1[0]) * mu2[i];
11 ... // compute x2 , x3
12 } }

Listing 3.3: Transforming reference quadrature points to the current triangle.

of storing coordinates of multiple points, say µ1, µ2, . . . , µq, is the so-called array-of-structures
(AoS) format corresponding to the vector[

µ1, µ2, . . . , µq
]

=
[
µ1

1, µ
1
2, µ

2
1, µ

2
2, . . . , µ

q
1, µ

q
2
]
.

For better memory accesses utilizing unit-strided loads and stores, however, it is usually advisable
to restructure the data into the structure-of-arrays format (SoA), i.e.,[

µ1
1, µ

2
1, . . . , µ

q
1, µ

1
2, µ

2
2, . . . , µ

q
2
]
.

This is due to the fact that it is more common for scientific codes that the same coordinates of
different points interact rather than different coordinates of the same point. Thus, by storing the
first coordinates of all reference nodes in mu1 and similarly for mu2 we ensure that the memory is
loaded in unit-strides (instead of two-strided loads for the AoS format of 2D reference quadrature
nodes). Similar SoA strategy is employed for the storage of the resulting quadrature nodes stored
in the arrays x1, x2, x3 and thus also memory stores are performed in unit strides (instead of
strides of three for the AoS storage of 3D nodes in the current boundary element).
Another important detail to point out is that all the arrays processed in a vectorized fash-

ion should be aligned in the memory. For the current Intel Xeon and Xeon Phi (co)processors
the size of the cache line is 64 bytes and proper alignment can be achieved by using the clause
__attribute__((aligned(64))) in case of static allocation or by the _mm_malloc oper-
ator instead of the classical malloc or new. This ensures that the compiler will not be forced to
create the so-called peel loop for elements stored in front of such a boundary and not filling the
whole vector register. A counterpart to the peel loop possibly performed at the end of the iter-
ations is the remainder loop processing aligned elements but again not filling the whole register.
This can be overcome by data padding. For the semi-analytic assembly of BEM matrices this is

14

crucial, since the usual size of quadrature used in BEM4I is Q = 7, see [30], and with AVX512
employed this would lead to the whole loop being processed in the remainder part. Padding to
the multiple of a cache-line size is also beneficial to avoid false sharing between multiple threads.
Thus, for the instruction sets of interest (SSE4.2, AVX2, IMCI, AVX512) we set the value QPad
to 8 for Q = 7. The dummy padding values in the quadrature point arrays are duplicates of the
last quadrature point coordinates, the arrays of weights is filled with 0 so that the final result is
not influenced, see Figure 3.1.
Lastly, to tell the compiler that the loop can be processed in a vectorized fashion we add

#pragma omp simd with the relevant clauses. These include the aligned clause stating that the
listed arrays are aligned at the align-byte boundary and the simdlen clause specifying that the
length of each vector should be width. The width parameter is set to 2, 4, 8 for SSE4.2, AVX2,
and AVX512 (or IMCI), respectively, corresponding to the number of double-precision operands
fitting into the SIMD register.
The next step in the assembly is to build the local system of coordinates corresponding to τk as

described in Section 2. For simplicity, we assume here that the local coordinate system based on
the origin y1 is suitable for all quadrature points (see Remark on page 8). This leads to a simple
series of computations given in Listing 3.4 and no vectorization is employed here. In case that
different local coordinate systems (based on y2 or y3) have to be used for different quadrature
nodes, the vectors r1, r2 and the triangle parameters alpha1, alpha2, stau would have to be set
up individually for each quadrature point. The optimizations listed above including alignment,
padding, AoS to SoA conversion and vectorized processing would be used in a similar fashion in
this case.

1 void setUpLocalCoordinateSystem (
2) {
3 r2[0] = y3[0] - y2[0];
4 r2[1] = y3[1] - y2[1];
5 r2[2] = y3[2] - y2[2];
6
7 tk = std :: sqrt(dot(r2 , r2));
8
9 r2[0] /= tk; r2[1] /= tk; r2[2] /= tk;

10
11 ... // set up r1 , n (coordinate system)
12 ... // set up stau , alpha1 . alpha2 (triangle properties)
13 }

Listing 3.4: Setting up the local coordinate system.

1 void getLocalQuadratureNodes (
2 double * y1
3) {
4 // transform global coordinates into local
5 # pragma omp simd \
6 aligned (x1 , x2 , x3 , sx , tx , ux : align) \
7 simdlen (width)
8 for (int i = 0; i < QPad; ++i) {
9 sx[i] = (x1[i] - y1[0]) * r1[0]

10 + (x2[i] - y1[1]) * r1[1]
11 + (x3[i] - y1[2]) * r1[2];
12 ... // compute tx , ux
13 } }

Listing 3.5: Transforming global coordinates into local for each quadrature point.

15

1

2 double evaluatePrimitive (
3 double s, double sx , ...
4) {
5 ...
6
7
8 // do not add to f in special case
9 if (abs(s - sx) > _EPS) {

10 if (tmp2 < 0.0) {
11 // masked evaluation of sqrt
12 tmp3 = hh1 / (sqrt(
13 tmp1 * tmp1 + q_sq) - tmp2);
14 } else {
15 // masked evaluation of sqrt
16 // same argument as above !
17 tmp3 = tmp2 + sqrt(
18 tmp1 * tmp1 + q_sq);
19 }
20
21
22
23 // masked evaluation of log
24 f += (s - sx) * log(tmp3);
25 }
26 ...
27 return f;
28 }

(a) Scalar code.

1 # pragma omp declare simd simdlen (
width)

2 double evaluatePrimitive (
3 double s, double sx , ... ,
4) {
5 ...
6 // unmasked evaluation of sqrt
7 tmp4 = sqrt(tmp1 * tmp1 + q_sq);
8 // do not add to f in special case
9 if (abs(s - sx) > _EPS) {

10 if (tmp2 < 0.0) {
11 // masked division only
12 tmp3 = hh1 / (tmp4 - tmp2);
13
14 } else {
15
16 // masked addition only
17 tmp3 = tmp2 + tmp4;
18
19 }
20 } else {
21 tmp3 = 1.0;
22 }
23 // unmasked evaluation of log
24 f += (s - sx) * log(tmp3);
25
26 ...
27 return f;
28 }

(b) Vectorized code.

Listing 3.6: Typical excerpt from the evaluation of the antiderivative.

Since the analytic evaluations from Sections 2.2, 2.3 are based on the local coordinates of
the quadrature points, the global coordinates of the Q evaluation points stored in x1, x2, x3
have to be translated to the local ones stored in sx, tx, ux as shown in Listing 3.5. Since the
transformation only consists of three dot products, all optimizations described above can easily
be applied and the loop can be efficiently vectorized by #pragma omp simd.
Up to this point, the vectorization approach is quite similar to the one employed for the

numerical assembly discussed in [21]. What makes the semi-analytic assembly more complicated
is the evaluation of the auxiliary functions Dj , Sj from (2.19), (2.30), respectively. Except for
the singularity for x→ y one has to take care of special configurations when, e.g., the arguments
of the log function approach zero or when dividing by ux → 0. A typical excerpt from the
original implementation of these functions is shown in Listing 3.6a. In the scalar version, the
function evaluatePrimitive is applied to a single instance of the variables s, sx and exactly
one branch of the if statement in line 10 is executed – thus, at most one of the sqrt functions
from lines 12 and 17 is called. In the vectorized call, however, the function will be evaluated for
a whole vector of these variables. This leads to situations that the if condition from line 10 is
only satisfied for some elements of the vector and the compiler generates masked instructions,
see Figure 3.2 for an illustration of masked addition. Thus, the sqrt would be called twice with
the same vector, but different parts of the result would be filtered out. The remedy is rather
simple, in the optimized version from Listing 3.6b we evaluate the square root without a mask
for the whole vector of arguments, see line 7. Instead, the mask is applied to filter out the result
stored in tmp4 in lines 12, 17, which is a much faster operation.
A similar strategy is applied to the call of log from line 24 in Listing 3.6a. Note that the log

function is not a single CPU instruction but a series of elementary instructions including addition,

16

5

124

0 0 5

3321 4a b

c

d -22-1 4

Figure 3.2: Masked evaluation of c(d>0) = a + b.

multiplication, or division, performing, e.g., a Taylor series to approximate the result. From our
experience unmasked calls to log or atan are more efficient than their masked counterparts.
To avoid the masked version we set the argument tmp3 to a dummy value of 1.0 in line 21 of
Listing 3.6b if the condition from line 9 is not satisfied. Thus, the result of the evaluation in
line 24 is unchanged since log(1) = 0. Note that the strategy of cheap masked evaluations of
arguments instead of masked calls to expensive functions can be applied to atan in the same
way. Finally, the function is annotated with the #pragma omp declare simd clause telling the
compiler to generate its vectorized version.
Collecting the optimizations above results in the final assembly code presented in Listing 3.7.

The function collocationSingleLayer represents the vectorized unified evaluation of S1, S2,
S3 from (2.30) and calls a function similar to the computationally expensive evaluatePrimitive
from Listing 3.6b. The vectorization of the quadrature loop is enforced by #pragma omp simd.

1 getLocalMatrix (
2 int tau_l , int tau_k , FullMatrix & localMatrix
3) {
4 ...
5 // transform reference points to the triangle y1 , y2 , y3
6 getGlobalQuadratureNodes (y1 , y2 , y3);
7 // set up local coordinate system r1 , r2 , n,
8 // and auxiliary variables stau , alpha1 , alpha2
9 setUpLocalCoordinateSystem ();

10 // set up the coordinate systems and local coordinates
11 getLocalQuadratureNodes (y1);
12 // compute local matrix entries
13 # pragma omp simd \
14 reduction (+ : entry11 , ... , entry33) \
15 private (ret1 , ret2 , ret3) \
16 aligned (sx , tx , ux , wx : align) \
17 simdlen (width)
18 for (int i = 0; i < QPad; ++i) {
19 // evaluation of S_1 , S_2 , S_3
20 collocationSingleLayer (ret1 , ret2 , ret3 , stau ,
21 alpha1 , alpha2 , sx[i], tx[i], ux[i]);
22 // multiplication by weights
23 ret1 *= w[i]; ret2 *= w[i]; ret3 *= w[i];
24 // multiplication by test functions \phi_1 , \phi_2 , \ phi_3
25 entry11 += phi1 * ret1;
26 ... // compute entry {12 ,13 ,21 ,22 ,23 ,31 ,32}
27 entry33 += phi3 * ret3;
28 }
29 localMatrix .set(0, 0, entry11);
30 ... // write entry {12 ,13 ,21 ,22 ,23 ,31 ,32}
31 localMatrix .set(2, 2, entry33);
32 }

Listing 3.7: Vectorized assembly of the local matrix.

When using BEM for solving certain problems, e.g., of shape optimization only the boundary
traces of the solution are of importance. On the other hand, sometimes it is also necessary to

17

evaluate the discretized representation formula (2.9) in a relatively high number of evaluation
points in the domain. The computation is very similar to the assembly of the BEM matrices as
in Listing 3.7, however, with the difference that instead of looping over the quadrature points in
line 18 we loop over all evaluation points assigned to a single OpenMP thread. This results in
longer loops (without the artificial padding as in the case of matrix assembly) and more efficient
vectorization which is also observed in the scalability experiments summarized in the following
section.

4 Experiments
In this section we provide details on the performance of the boundary element codes presented
above on different representatives of Intel multi- and many-core (co)processors.

4.1 Simultaneous evaluation of boundary integral operators
Firstly, let us concentrate on the speedup obtained by the unified evaluation of the singular
integrals as presented in Sections 2.2.4, 2.3.4. For this purpose, an experimental C code outside
of BEM4I was implemented. In the test we evaluated the functions Dj , Sj from (2.19), (2.30),
respectively, in 125,000 evaluation points on a mesh with 28,952 surface triangles. The resulting
number of calls to the unified functions is thus 3.619 · 109. The test was performed on a single
node of the Salomon cluster located at the IT4Innovations National Supercomputing Center
equipped with two 12-core Intel Xeon E5-2680v3 (Haswell) processors. We tested both GNU
6.3.0 and Intel 2017.0.2 C compilers with the respective compile lines -O3 -fopenmp -std=c99
and -xcore-avx2 -O3 -qopenmp -std=c99. Each run was repeated five times, the presented
results represent the average run.
The results are summarized in Table 4.1, where the individual columns represent time in

seconds necessary for the evaluation of the collocation integrals by both the original and unified
approaches and by both compilers. Clearly, the speedup due to the unified evaluation ranging
from 2.35 to 3.15 justifies the effort invested in the analytic work. The timings also show that the
Intel compiler is more benevolent to optimizations since the speedup with respect to the GNU
version reaches 1.67 and 2.71 for Dj and Sj , respectively.

Table 4.1: Xeon E5-2680v3 (dual socket), evaluation times for the original vs. unified approach.
t[s] (speedup) orig. (GNU) simult. (GNU) orig. (Intel) simult. (Intel)
D1, D2, D3 308.68 117.67 (2.62) 165.94 70.54 (2.35)
S1, S2, S3 549.93 186.47 (2.95) 216.35 68.71 (3.15)

4.2 BEM4I – OpenMP threading
The second part of the performance experiments is devoted to the behaviour of BEM optimized
for multi- and many-core (co)processors with wide SIMD registers as implemented in the BEM4I
library. We tested both the assembly of the BEM matrices Vh, Kh from (2.7), (2.8) for a
mesh consisting of 12,288 surface elements and the evaluation of the discrete solution uh by
(2.9) in 100,001 evaluation points. The chosen quadrature size for the assembly is Q = 7, for the
purposes of vectorization the size of the underlying arrays (QPad) is padded to 8. The experiments

18

were performed on three Intel architectures, namely on the Salomon’s two 12-core Xeon E5-
2680v3 (Haswell) processors, 61-core Xeon Phi 7120 (Knights Corner) coprocessor available on
Salomon’s accelerated nodes, and on the second generation 64-core Xeon Phi 7210 (Knights
Landing) processor available on the Taurus supercomputer at the Center for Information Services
and High Performance Computing, TU Dresden. A unique feature of the Knights Landing
generation is the presence of an on-chip high-bandwidth 16 GB MCDRAM memory, which
served as the last-level cache shared by all cores for our experiments.
Let us firstly concentrate on the scalability of the code with respect to the number of OpenMP

threads employed. Recall that the rather simple threading strategy is described in Listings 3.1,
3.2. The following results represent average timings computed from four subsequent runs. The
compile line for the Intel compiler 2017.0.2 reads ${SIMD} -O2 -qopenmp -std=c++11 with the
variable SIMD set to the most advanced vector instruction set available including -xcore-avx2,
-mmic, and -xmic-avx512.
In Tables 4.2, 4.3, 4.4 we provide the assembly and evaluation times for all architectures and

different number of OpenMP threads and the most advanced vector instruction set available
on the given (co)processor. On the multi-core Xeon processor the speedup reaches the almost
optimal values of 23.67 (23.56, 23.78) for the computation of Vh (Kh, uh) when scaling from a
single thread to the full team of 24 threads.
More interesting is the behaviour of the code on many-core Xeon Phi architectures. The

speedup achieved on 61 threads of the first generation Knights Corner coprocessor reads 56.75
(58.43, 55.01) for Vh (Kh, uh). However, due to the dual-issue nature of the dated Knights
Corner’s cores (based on Intel Pentium) the hyper-threading (up to four-way) is crucial. This
results in the very reasonable speedup of 106.23 (124.33, 92.46).

Table 4.2: Xeon E5-2680v3 (dual socket), assembly times with different numbers of OpenMP
threads.

t[s] 1 2 4 8 12 16 24
Vh 198.79 99.53 49.94 24.98 16.72 12.54 8.40
Kh 231.14 116.16 58.05 29.26 19.47 14.63 9.81
uh 390.67 195.89 98.39 49.06 32.69 24.50 16.43

Table 4.3: Xeon Phi 7120P, assembly times with different numbers of OpenMP threads.
t[s] 1 2 4 8 16 32 61
Vh 1425.59 711.94 350.30 182.55 92.53 46.06 25.12
Kh 1539.15 777.04 377.81 198.50 99.59 51.57 26.34
uh 1811.34 908.79 455.99 226.85 118.04 63.73 32.93

122 183 244
Vh 16.29 14.03 13.42
Kh 16.68 13.49 12.38
uh 21.96 19.59 19.74

The newer Knights Landing processor is based on more recent Intel Atom Airmont cores. The
speedup without hyper-threading for Vh (Kh, uh) reaches the value of 59.30 (59.45, 59.47) and
with 4 threads per core the speedup reaches 83.55 (84.90, 81.18). For graphical visualization of

19

Table 4.4: Xeon Phi 7210, assembly times with different numbers of OpenMP threads.
t[s] 1 2 4 8 16 32 64
Vh 247.30 123.26 64.88 32.49 16.42 8.23 4.17
Kh 253.84 126.65 66.94 33.35 16.70 8.41 4.27
uh 324.73 162.44 85.53 42.78 21.45 10.73 5.46

128 192 256
Vh 3.17 3.07 2.96
Kh 3.33 3.21 2.99
uh 4.22 4.39 4.00

the achieved results see Figure 4.1 summarizing the behaviour on all three architectures and the
comparison to the optimal linear scaling (relevant up to the number of physical cores or 2-way
hyper-threading in the case Xeon Phi 7120P).

OMP threads
1 2 4 8 16 32 64 128 256

t
[s

]

0.1

1

10

100

1,000

Single-layer matrix

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(a) Vh.
OMP threads

1 2 4 8 16 32 64 128 256

t
[s

]

0.1

1

10

100

1,000

Double-layer matrix

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(b) Kh.
OMP threads

1 2 4 8 16 32 64 128 256

t
[s

]

0.1

1

10

100

1,000

Representation formula

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(c) uh.

Figure 4.1: Assembly times with different numbers of OpenMP threads.

4.3 BEM4I – OpenMP vectorization
Similarly as in the previous section, SIMD performance was evaluated with the Intel com-
piler 2017.0.2. The scalability of the code with respect to the width of the SIMD register was
tested for various configurations. First of all, the experiments were run on the most efficient num-
ber of OpenMP threads, i.e., 24, 244, and 256 for Xeon E5-2680v3, Xeon Phi 7120P, and Xeon
Phi 7210, respectively. The vector extensions were switched by setting the compile line variable
SIMD to -xsse4.2, -xcore-avx2, -xmic-avx512 based on the availability on the given architec-
ture. The only option available and necessary for Xeon Phi 7120P is -mmic. The baseline for
the test is given by compiling the code with the option -no-vec -no-simd -qno-openmp-simd
instead of ${SIMD} neglecting the OpenMP SIMD pragmas and forbidding vectorization by the
compiler. However, note that this configuration also forbids the use of new instructions brought,
e.g., by AVX512, albeit used in scalar (masked) mode. Thus, we also provide results obtained

20

Table 4.5: Xeon E5-2680v3 (dual socket), assembly times with different SIMD strategies.
t[s] scalar sse4.2(1) sse4.2(2) avx2(1) avx2(2) avx2(4)
Vh 16.52 16.51 13.28 15.47 12.48 8.40
Kh 17.13 17.09 13.46 16.53 13.39 9.81
uh 33.28 33.05 23.53 31.53 23.82 16.43

Table 4.6: Xeon Phi 7120P, assembly times with different SIMD strategies.
t[s] imci(1) imci(2) imci(4) imci(8)
Vh 48.37 76.28 40.60 13.42
Kh 53.13 43.15 26.47 12.38
uh 111.62 161.15 72.32 19.74

by the combination of the SIMD option and vectorization switched off. Lastly, we control the
length of the vector processed simultaneously by setting the width variable from the listings in
Section 3.2 to 2, 4, and 8 (if possible).
In Table 4.5 we provide the assembly and evaluation times obtained on two Haswell processors.

Here, one can utilize the SSE4.2 and AVX2 instruction sets, which can operate on 2 and 4 double-
precision operands, respectively. The label ‘scalar’ in the header of the table stands for the scalar
code without any vector extension set allowed. The labels ‘sse4.2(width)’ represent versions with
SSE4.2 and the vector width set by the simdlen(width) clause. Since the width parameter
cannot be set to 1, we use -xsse4.2 -no-vec -no-simd -qno-openmp-simd to enforce SSE4.2
in the scalar (masked) mode. The same description holds for the remaining vector instruction
sets and (co)processor architectures.
The speedup of the code utilizing AVX2 instructions with the native vector length of 4 with

respect to the purely scalar version reads 1.97 (1.75, 2.03) for the processing of Vh (Kh, uh).
Theoretically, the expected speedup between AVX2 code and the scalar version should be 4.
However, one has to take into account the lower frequency of the CPU when performing these
instructions, and also different latencies. In Table 3.1 the latency of the standard square root is
10–23, while for AVX2 it raises to 28–29. The obtained results thus seem reasonable.
From the vectorization point of view the many-core Xeon Phi (co)processors are much more

interesting since they provide registers able to accommodate 8 double-precision operands. The
computation results for the first generation Xeon Phi 7120P are summarized in Table 4.6. In this
case it is not possible to obtain pure scalar measurements as the code has always to be compiled
with -mmic enforcing the IMCI instruction set and one can thus only change the width variable.
The vectorized version with the vector length of 8 reaches the speedup 3.60 (4.29, 5.65) for Vh
(Kh, uh), which already proofs that neglecting the SIMD features of modern processors would
lead to a rather poor performance.
The effect of vectorization is most evident on the second generation of Xeon Phi processors

codenamed Knights Landing. The addition of the AVX512 instruction set does not bring wider
SIMD registers when compared to IMCI, however, the addition of new instructions plays an
important role. Moreover, the AVX512 set is not specific to the Xeon Phi family and is also
supported by the new multi-core Xeon processors (e.g., Skylake). The results obtained on Xeon
Phi 7210 are summarized in Table 4.7. Comparing the code compiled with AVX512 and width
set to the native value of 8 leads to the speedup 6.91 (8.03, 11.59) for Vh (Kh, uh). Comparing
only the effect of switching the width from 1 to 8 and using AVX512 gives the speedup 4.95 (4.95,

21

Table 4.7: Xeon Phi 7210, assembly times with different SIMD strategies.
t[s] scalar sse4.2(1) sse4.2(2) avx2(1) avx2(2) avx2(4)
Vh 20.46 20.55 15.19 20.49 15.18 7.11
Kh 24.00 24.04 13.97 23.97 14.01 7.17
uh 46.36 46.63 31.68 46.66 31.78 13.12

avx512(1) avx512(2) avx512(4) avx512(8)
Vh 14.64 14.34 6.66 2.96
Kh 14.79 13.97 7.21 2.99
uh 31.00 30.97 12.69 4.00

7.75). The better performance of the evaluation of the representation formula for uh compared
to the assembly of Vh and Kh is due to the easier unrolling commented on in Section 3.2. The
length of these loops in BEM4I can be modified and the results presented here correspond to
the length 32, i.e., 4 vectors of the size 8 are processed by a single loop. The situation is a bit
more complicated for the object-oriented implementation of the assembly of the matrices but the
results hint us where further optimizations are possible.
The relation between the computation time and the width of the SIMD register is again

presented graphically in Figures 4.2, 4.3. In Figure 4.2 the width parameter is always changed
together with the vector instruction set, for Xeon Phi 7210 we thus compare the versions ‘scalar’,
‘sse4.2(2)’, ‘avx2(4)’, and ‘avx512(8)’ from Table 4.7. In Figure 4.3 we always stick to the
most advanced vector instruction set available on the given architecture and only change the
parameter width, which for Xeon Phi 7210 translates to ‘avx512(1)’, ‘avx512(2)’, ‘avx512(4)’,
and ‘avx512(8)’. On both Xeon Phi (co)processors we can observe the overhead brought by
vectorization, i.e., by changing width from 1 to 2. However, from this point on (comparing
width ranging from 2 to 8) the line follows (or even outperforms) the optimal linear scaling
trend.

width [bit]
64 128 256 512

t[
s
]

1

10

100

Single-layer matrix

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(a) Vh.
width [bit]

64 128 256 512

t[
s
]

1

10

100

Double-layer matrix

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(b) Kh.
width [bit]

64 128 256 512

t[
s
]

1

10

100

Representation formula

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(c) uh.

Figure 4.2: Assembly times with different vector register widths and different vector extension
sets – scalar (64 bit), SSE4.2 (128 bit), AVX2 (256 bit), IMCI/AVX-512 (512 bit).

22

width [bit]
64 128 256 512

t[
s
]

1

10

100

Single-layer matrix

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(a) Vh.
width [bit]

64 128 256 512

t[
s
]

1

10

100

Double-layer matrix

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(b) Kh.
width [bit]

64 128 256 512

t[
s
]

1

10

100

Representation formula

2 x Xeon E5-2680v3
Xeon Phi 7120P
Xeon Phi 7210
linear scaling

(c) uh.

Figure 4.3: Assembly times with different vector register widths and the most advanced vector
extension set available on the given architecture – AVX2 (Xeon E5-2680v3), IMCI
(Xeon Phi 7120P), AVX-512 (Xeon Phi 7210).

Finally, let us comment on the performance comparison between individual architectures. The
theoretical dual-precision floating-point performance of a processor can be deduced from the
formula

P := f ·Ncore ·NPD ·NVPU ·NFMA, [P] = FLOP/s

with f denoting the core frequency, Ncore the number of cores, NVPU the number of vector pro-
cessing units per core, andNFMA equal to 2 if the fused multiply-add instruction is available and 1
otherwise. For the tested architectures, namely two Xeon E5-2690v3 processors, Xeon Phi 7120P,
and Xeon Phi 7210, the performance respectively reads 960 GFLOP/s, 1,210.24 GFLOP/s, and
2,662.4 GFLOP/s. Theoretically, the performance gain obtained by the deployment of the code
on the Knights Landing processor should read 2.77 and 2.20 when compared to the two Haswell
and Knights Corner (co)processors, respectively. The speedup obtained in practice is given in
Table 4.8, where we provide the ratios of best evaluation times reached on the respective archi-
tectures. The results hint that the actual gain can be better than expected, which may be caused
by better processing of vector instructions in AVX512 and also by the available high-bandwidth
memory serving as the last-level cache in case Xeon Phi 7210.

Table 4.8: Performance gain achieved by Xeon Phi 7210 over Xeon E5-2680v3 and Xeon Phi
7120P.

Xeon Phi 7210 vs. Xeon E5-2680v3 Xeon Phi 7120P
Vh 2.84 4.53
Kh 3.28 4.14
uh 4.11 4.94

23

5 Conclusion
The aim of the paper was twofold. Firstly, we described the simultaneous evaluation of boundary
integral operators with piecewise linear trial functions. As suggested in [23], the local system of
coordinates had to be set up three times individually for each local trial function supported on
the triangular element. On the contrary, the approach described here in Section 2 uses the same
coordinate system for all three evaluations which leads to a faster implementation. In Section 4.1
we showed that the speedup of the new code with respect to the original version ranges from
2.35 to 3.15.
The second part was devoted to the parallel and vectorized implementation of the assembly

of BEM matrices and the evaluation of the representation formula which are two crucial steps
of a boundary element simulation. The results in Section 4.2 show that the presented threading
strategy with thread-private buffers works very well up to tens or hundreds of OpenMP threads
both on multi- and many-core (co)processors. Specifically, the speedup on the 64-core Knights
Landing processor reaches more than 80 when comparing 4-way hyper-threading to a serial
run. The SIMD vectorization by OpenMP pragmas proves efficient especially on the Xeon Phi
(co)processors with wide SIMD registers. The speedup with respect to the scalar code presented
in Section 4.3 reaches 4.95 for the semi-analytic matrix assembly and the almost optimal value
of 7.75 for the analytic evaluation of the representation formula. This result gives us a hint for
further optimization for the assembly by unrolling the loop over the outer elements.
Although the theoretical performance of current processors is still rising, this is no longer

due to the increased clock frequency. To efficiently utilize the resources, more programming
effort is requested to utilize all available cores and SIMD lanes. The presented boundary integral
operators are specific for the Laplace equation, however, the same procedure can be applied to the
singular part of operators related to the Helmholtz operator in connection with the numerical
scheme for the regular part, see, e.g., [9], or to the Lamé equation modelling linear elasticity
problems. The analytical formulae for the single-layer potential of the Lamé equation are quite
similar, see [4, Section C.2.3], and the double-layer potential can be represented by the single-layer
potentials of the Lamé equation and by single- and double-layer potentials of the Laplacian, see
[31] and [32, 33] for its use in fast methods. Moreover, the optimizations employed here, including
AoS to SoA conversion, alignment of data, data padding, or unit-strided accesses to the memory,
can be used in different scientific codes in a very similar fashion.

Acknowledgements
The presented research was supported by the project ‘Efficient parallel implementation of bound-
ary element methods’ provided jointly by the Ministry of Education, Youth and Sports and OeAD
under the grant numbers ‘7AMB17AT028’ and ‘CZ 16/2017’. JZ and MM further acknowledge
the support provided by the Ministry of Education, Youth and Sports from the National Pro-
gramme of Sustainability (NPU II) project ‘IT4Innovations excellence in science – LQ1602’,
the Large Infrastructures for Research, Experimental Development and Innovations project
‘IT4Innovations National Supercomputing Center – LM2015070’, and the grant SP2017/165
provided by VŠB – Technical University of Ostrava.

References
[1] E. E. Okon, R. F. Harrington, The potential integral for a linear distribution over a triangular

domain, Internat. J. Numer. Methods Engrg. 18 (12) (1982) 1821–1828. doi:10.1002/nme.
1620181206.

24

http://dx.doi.org/10.1002/nme.1620181206
http://dx.doi.org/10.1002/nme.1620181206

[2] D. E. Medina, J. A. Liggett, Exact integrals for three-dimensional boundary element po-
tential problems, Comm. Appl. Numer. Methods 5 (8) (1989) 555–561. doi:10.1002/cnm.
1630050809.

[3] M. Maischak, The analytical computation of the Galerkin elements for the Laplace, Lamé
and Helmholtz equation in 3D-BEM, Tech. rep., Universität Hannover (2000).

[4] S. Rjasanow, O. Steinbach, The fast solution of boundary integral equations, Mathematical
and Analytical Techniques with Applications to Engineering, Springer, New York, 2007.

[5] S. Nintcheu Fata, Explicit expressions for 3D boundary integrals in potential theory, Inter-
nat. J. Numer. Methods Engrg. 78 (1) (2009) 32–47. doi:10.1002/nme.2472.

[6] A. Salvadori, Analytical integrations in 3D BEM for elliptic problems: Evaluation and
implementation, Int. J. Numer. Meth. Engrg. 84 (5) (2010) 505–542. doi:10.1002/nme.
2906.

[7] M. J. Carley, Analytical formulae for potential integrals on triangles, ASME. J. Appl. Mech.
80 (4) (2013) 041008–041008–7. doi:10.1115/1.4007853.

[8] S. G. Mogilevskaya, D. V. Nikolskiy, The use of complex integral representations for analyt-
ical evaluation of three-dimensional BEM integrals—potential and elasticity problems, Q.
Jl Mech. Appl. Math 67 (3) (2014) 505–523. doi:10.1093/qjmam/hbu015.

[9] J. Zapletal, J. Bouchala, Effective semi-analytic integration for hypersingular Galerkin
boundary integral equations for the Helmholtz equation in 3D, Appl. Math. 59 (5) (2014)
527–542. doi:10.1007/s10492-014-0070-6.

[10] L. Einkemmer, Evaluation of the Intel Xeon Phi 7120 and NVIDIA K80 as accelerators for
two-dimensional panel codes, PLOS ONE 12 (6) (2017) 1–16. doi:10.1371/journal.pone.
0178156.

[11] K. Banaś, F. Krużel, J. Bielański, Finite element numerical integration for first order approx-
imations on multi- and many-core architectures, Computer Methods in Applied Mechanics
and Engineering 305 (2016) 827–848. doi:10.1016/j.cma.2016.03.038.

[12] L. Szustak, K. Rojek, T. Olas, L. Kuczynski, K. Halbiniak, P. Gepner, Adaptation of MP-
DATA heterogeneous stencil computation to Intel Xeon Phi coprocessor, Scientific Program-
ming 2015 (2015) 10.

[13] A. Lastovetsky, L. Szustak, R. Wyrzykowski, Model-based optimization of EULAG kernel
on Intel Xeon Phi through load imbalancing, IEEE Transactions on Parallel and Distributed
Systems 28 (3) (2017) 787–797. doi:10.1109/TPDS.2016.2599527.

[14] M. A. A. Farhan, D. K. Kaushik, D. E. Keyes, Unstructured computational aerodynamics
on many integrated core architecture, Parallel Computing 59 (2016) 97–118, theory and
Practice of Irregular Applications. doi:http://dx.doi.org/10.1016/j.parco.2016.06.
001.

[15] I. Hadade, L. di Mare, Modern multicore and manycore architectures: Modelling, optimi-
sation and benchmarking a multiblock CFD code, Computer Physics Communications 205
(2016) 32 – 47. doi:http://dx.doi.org/10.1016/j.cpc.2016.04.006.

25

http://dx.doi.org/10.1002/cnm.1630050809
http://dx.doi.org/10.1002/cnm.1630050809
http://dx.doi.org/10.1002/nme.2472
http://dx.doi.org/10.1002/nme.2906
http://dx.doi.org/10.1002/nme.2906
http://dx.doi.org/10.1115/1.4007853
http://dx.doi.org/10.1093/qjmam/hbu015
http://dx.doi.org/10.1007/s10492-014-0070-6
http://dx.doi.org/10.1371/journal.pone.0178156
http://dx.doi.org/10.1371/journal.pone.0178156
http://dx.doi.org/10.1016/j.cma.2016.03.038
http://dx.doi.org/10.1109/TPDS.2016.2599527
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2016.06.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2016.06.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2016.04.006

[16] I. Z. Reguly, E. László, G. R. Mudalige, M. B. Giles, Vectorizing unstructured mesh com-
putations for many-core architectures, Concurrency and Computation: Practice and Expe-
rience 28 (2) (2016) 557–577. doi:10.1002/cpe.3621.

[17] M. Merta, L. Riha, O. Meca, A. Markopoulos, T. Brzobohaty, T. Kozubek, V. Vondrak,
Intel Xeon Phi acceleration of hybrid total FETI solver, Advances in Engineering Software
(2017) –doi:10.1016/j.advengsoft.2017.05.001.

[18] M. Merta, J. Zapletal, Acceleration of boundary element method by explicit vectorization,
Advances in Engineering Software 86 (2015) 70–79. doi:10.1016/j.advengsoft.2015.04.
008.

[19] M. Kretz, V. Lindenstruth, Vc: A C++ library for explicit vectorization, Software: Practice
and Experience 42 (11) (2012) 1409–1430. doi:10.1002/spe.1149.
URL https://github.com/VcDevel/Vc

[20] A. Fog, C++ vector class library (2017).
URL http://www.agner.org/optimize/vectorclass.pdf

[21] J. Zapletal, M. Merta, L. Malý, Boundary element quadrature schemes for multi- and many-
core architectures, Computers & Mathematics with Applications 74 (1) (2017) 157–173, 5th
European Seminar on Computing ESCO 2016. doi:10.1016/j.camwa.2017.01.018.

[22] OpenMP Architecture Review Board, OpenMP application program interface (7 2013).
URL www.openmp.org/mp-documents/openmp-4.5.pdf

[23] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems:
Finite and Boundary Elements, Texts in applied mathematics, Springer, 2008.

[24] S. A. Sauter, C. Schwab, Boundary Element Methods, Springer Series in Computa-
tional Mathematics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/
978-3-540-68093-2_4.

[25] I. Bronstein, K. Semendjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik., 3rd
Edition, Verlag Harri Deutsch, Frankfurt am Main, 1997.

[26] O. Steinbach, Galerkin– und Kollokations–Diskretisierungen für Randintegralgleichungen in
3D —Dokumentation—, internal report (2004).

[27] A. Fog, Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs, Copenhagen University College of Engineering.
URL http://www.agner.org/optimize/instruction_tables.pdf

[28] R. Geva, Code Modernization Best Practices: Multi-level Parallelism for Intel R©

XeonTM and Intel R© Xeon PhiTM Processors, software.intel.com/en-us/articles/
idf15-webcast-code-modernization-best-practices, [Online; accessed 11/5/2017]
(2015).

[29] M. Merta, J. Zapletal, BEM4I, IT4Innovations National Supercomputing Center, VŠB –
Technical University of Ostrava, Studentská 6231/1B, 708 33 Ostrava-Poruba, Czech Re-
public (2013).
URL http://bem4i.it4i.cz/

[30] J. Radon, Zur mechanischen Kubatur, Monatsh. Math. 52 (4) (1948) 286–300. doi:10.
1007/BF01525334.

26

http://dx.doi.org/10.1002/cpe.3621
http://dx.doi.org/10.1016/j.advengsoft.2017.05.001
http://dx.doi.org/10.1016/j.advengsoft.2015.04.008
http://dx.doi.org/10.1016/j.advengsoft.2015.04.008
https://github.com/VcDevel/Vc
http://dx.doi.org/10.1002/spe.1149
https://github.com/VcDevel/Vc
http://www.agner.org/optimize/vectorclass.pdf
http://www.agner.org/optimize/vectorclass.pdf
http://dx.doi.org/10.1016/j.camwa.2017.01.018
www.openmp.org/mp-documents/openmp-4.5.pdf
http://dx.doi.org/10.1007/978-3-540-68093-2_4
http://dx.doi.org/10.1007/978-3-540-68093-2_4
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
software.intel.com/en-us/articles/idf15-webcast-code-modernization-best-practices
software.intel.com/en-us/articles/idf15-webcast-code-modernization-best-practices
http://bem4i.it4i.cz/
http://bem4i.it4i.cz/
http://dx.doi.org/10.1007/BF01525334
http://dx.doi.org/10.1007/BF01525334

[31] V. D. Kupradze, T. G. Gegelia, M. O. Baseleisvili, T. V. Burculadze, Three-dimensional
problems of the mathematical theory of elasticity and thermoelasticity., North-Holland Se-
ries in applied Mathematics and Mechanics. Vol. 25. Amsterdam, New York, Oxford: North-
Holland Publishing Company, 1979.

[32] G. Of, O. Steinbach, W. L. Wendland, Applications of a fast multipole Galerkin boundary
element method in linear elastostatics, Comput. Vis. Sci. 8 (3–4) (2005) 201–209. doi:
10.1007/s00791-005-0010-9.

[33] M. Bebendorf, R. Grzhibovskis, Accelerating Galerkin BEM for linear elasticity using adap-
tive cross approximation, Math. Methods Appl. Sci. 29 (14) (2006) 1721–1747. doi:
10.1002/mma.759.

27

http://dx.doi.org/10.1007/s00791-005-0010-9
http://dx.doi.org/10.1007/s00791-005-0010-9
http://dx.doi.org/10.1002/mma.759
http://dx.doi.org/10.1002/mma.759

Erschienene Preprints ab Nummer 2015/1

2015/1 O. Steinbach: Space-time finite element methods for parabolic problems
2015/2 O. Steinbach, G. Unger: Combined boundary integral equations for acoustic

scattering-resonance problems problems.
2015/3 C. Erath, G. Of, F.–J. Sayas: A non-symmetric coupling of the finite volume method

and the boundary element method
2015/4 U. Langer, M. Schanz, O. Steinbach, W.L. Wendland (eds.): 13th Workshop on Fast

Boundary Element Methods in Industrial Applications, Book of Abstracts
2016/1 U. Langer, M. Schanz, O. Steinbach, W.L. Wendland (eds.): 14th Workshop on Fast

Boundary Element Methods in Industrial Applications, Book of Abstracts
2016/2 O. Steinbach: Stability of the Laplace single layer boundary integral operator in

Sobolev spaces
2017/1 O. Steinbach, H. Yang: An algebraic multigrid method for an adaptive space-time

finite element discretization
2017/2 G. Unger: Convergence analysis of a Galerkin boundary element method for electro-

magnetic eigenvalue problems
2017/3 J. Zapletal, G. Of, M. Merta: Parallel and vectorized implementation of analytic

evaluation of boundary integral operators

