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Abstract

In this paper we describe and analyze some modified boundary element methods
to solve exterior boundary value problems for the Helmholtz equation with either
Dirichlet or Neumann boundary conditions. The proposed approach avoids spurious
modes even in the case of Lipschitz boundaries. Moreover, the regularisation is done
based on boundary integral operators which are already available in standard bound-
ary element formulations. Numerical examples are given to compare the proposed
approach with other already existing regularized formulations.

1 Introduction

The boundary integral formulation [2, 9, 13] of exterior boundary value problems for the
Helmholtz equation with either Dirichlet or Neumann boundary conditions may lead to
boundary integral equations which are either not uniquely solvable, or not solvable at all. In
particular we will have spurious modes if the wave number corresponds to an eigenvalue of
the interior eigenvalue problem for the Laplace operator with either homogeneous Dirichlet
or Neumann boundary conditions, respectively.

Hence one may use combined boundary integral formulations such as the indirect
Brakhage–Werner approach [5], or the direct Burton–Miller formulation [8] to obtain
boundary integral equations which are uniquely solvable for all wave numbers. The above
mentioned combined boundary integral formulations are usually analyzed in L2(Γ) by using
some compactness arguments for the Laplace double layer potential. Hence this approach
is restricted to the case of sufficiently smooth boundaries.

When introducing appropriate regularization operators one can formulate modified
boundary integral equations where the unique solvability can be ensured even for Lipschitz
domains when considering the resulting integral equations in the energy spaces H1/2(Γ)
and H−1/2(Γ), respectively, see, e.g., [6, 7]. For other regularisation procedures, see for
example [3, 4, 21].
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In [10] we have proposed an alternative modified boundary integral equation which is
based on the use of standard boundary integral operators only. The unique solvability
of the proposed combined boundary integral equation follows from a G̊ardings inequality
while the injectivity is based on some mapping properties of the underlying boundary
integral operators. Here we extend our previous approach to a coupled system which is
equivalent to the above mentioned combined boundary integral equation. In particular
we prove a G̊arding’s inequality also for the system which enables us to use standard
arguments [16, 19, 20, 22] to analyze a Galerkin discretization scheme for the system. Note
that the Galerkin discretization of the coupled system also defines an approximation of the
Galerkin discreitization of the combined boundary integral equation.

This paper is organized as follows: In Section 2 we recall different combined and regu-
larized boundary integral formulations for the exterior Dirichlet boundary value problem
of the Helmholtz equation. In particular we prove the unique solvability of a coupled
system of boundary integral equations. Galerkin boundary element method is formulated
and analyzed in Section 3, again for the Dirichlet problem. In Section 4 we summarize
the corresponding modified boundary element method for the exterior Neumann boundary
value problem. Numerical results for the proposed modified boundary element methods
and comparisons with other existing approaches are finally discussed in Section 5.

2 Boundary Integral Equations

As a model problem we consider the exterior Dirichlet boundary value problem for the
Helmholtz equation,

∆u(x) + κ2u(x) = 0 for x ∈ Ωc = R
3\Ω, u(x) = g(x) for x ∈ Γ = ∂Ω, (2.1)

where in addition

lim
R→∞

∫

∂BR

∣∣∣∣
∂

∂ny
u(y)− iκu(y)

∣∣∣∣
2

dsy = 0 (2.2)

is the Sommerfeld radiation condition. Moreover, κ ∈ R+ is the wave number, Ω ⊂ R
3 is

a bounded Lipschitz domain, and g ∈ H1/2(Γ) are some prescribed Dirichlet data.
By using the fundamental solution of the Helmholtz equation in R

3,

U∗
κ(x, y) =

1

4π

eiκ|x−y|

|x− y| for x 6= y,

we can find different representations to describe the unique solution of the boundary value
problem (2.1). In particular when using an indirect approach we can represent the solution
either by means of the single layer potential

u(x) = (Ṽκw)(x) =

∫

Γ

U∗
κ(x, y)w(y)dsy for x ∈ Ωc (2.3)
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where w ∈ H−1/2(Γ) is some unknown density function, or we can describe the solution of
(2.1) by means of the double layer potential

u(x) = (Wκv)(x) =

∫

Γ

∂

∂ny
U∗

κ(x, y)v(y)dsy for x ∈ Ωc (2.4)

where v ∈ H1/2(Γ) is again some unknown density function. When using a direct approach,
the solution of (2.1) is given by the representation formula

u(x) = −
∫

Γ

U∗
κ(x, y)

∂

∂ny
u(y)dsy +

∫

Γ

∂

∂ny
U∗

κ(x, y)u(y)dsy for x ∈ Ωc. (2.5)

When applying the exterior trace operator γext
0 to the single and the double layer potentials

Ṽκ and Wκ we obtain certain boundary integral equations for the yet unknown density
functions w ∈ H−1/2(Γ), v ∈ H1/2(Γ), and t = ∂

∂n
u ∈ H−1/2(Γ), respectively. In particular,

when using the single layer potential (2.3) we have to solve the first kind boundary integral
equation

(Vκw)(x) := γext
0 (Ṽκw)(x) =

∫

Γ

U∗
κ(x, y)w(y)dsy = g(x) for x ∈ Γ, (2.6)

for the double layer potential (2.4) we obtain the second kind boundary integral equation

(
1

2
I+Kκ)v(x) := γext

0 (Wκv)(x) =
1

2
v(x)+

∫

Γ

∂

∂ny
U∗

κ(x, y)v(y)dsy = g(x) for x ∈ Γ, (2.7)

and for the direct formulation (2.5) we finally get the first kind boundary integral equation

(Vκt)(x) = (−1

2
I +Kκ)g(x) for x ∈ Γ. (2.8)

It is well known that if κ2 = λ corresponds to an eigenvalue of the interior Dirichlet
eigenvalue problem

−∆uλ(x) = λuλ(x) for x ∈ Ω, uλ(x) = 0 for x ∈ Γ, (2.9)

the boundary integral equations (2.6) and (2.8) are not uniquely solvable, and if κ2 = µ

corresponds to an eigenvalue of the interior Neumann eigenvalue problem

−∆uµ(x) = µuµ(x) for x ∈ Ω,
∂

∂nx

uµ(x) = 0 for x ∈ Γ, (2.10)

the boundary integral equation (2.7) is not uniquely solvable.
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2.1 Modified Boundary Integral Equations

The idea of using combined boundary integral equations to overcome the problem of non–
unique solvability goes back to Brakhage and Werner in 1965 [5]. They used the following
representation formula

u(x) = (Wkw)(x) − iη(Ṽkw)(x) for x ∈ Ωc (2.11)

with an unknown density function w ∈ L2(Γ) and η > 0, which leads to the boundary
integral equation

(
1

2
I +Kκ)w(x) − iη(Vκw)(x) = g(x) for x ∈ Γ. (2.12)

For domains Ω with a smooth boundary Γ = ∂Ω it can be shown [5] that the boundary
integral operator corresponding to (2.12)

1

2
I +Kκ − iηVκ : L2(Γ) → L2(Γ) (2.13)

is coercive and injective, i.e. (2.12) admits a unique solution w ∈ L2(Γ).
In addition to the weakly singular boundary integral equation (2.8) we also consider

the hypersingular boundary integral equation

(
1

2
I +K ′

κ)t(x) = −(Dκg)(x) for x ∈ Γ. (2.14)

Combining the direct boundary integral equations (2.8) and (2.14), this gives the Burton-
Miller formulation [8]

[
Vκ − iη

(
1

2
I +K ′

κ

)]
t(x) =

[
iηDκ +

(
−1

2
I +Kκ

)]
g(x) for x ∈ Γ. (2.15)

Note that the unique solvability of (2.15) in L2(Γ) follows as for the Brakhage–Werner
formulation (2.12). But the problem is that the coercivity of the operator (2.13) in L2(Γ)
does not carry over to domains with a non–smooth boundary. Therefore there is a need to
consider the density function w as an element ofH−1/2(Γ), and to introduce a regularisation
operator B : H−1/2(Γ) → H1/2(Γ), which lifts w in the right energy space, see, e.g. [6, 7].
Hence we obtain the representation formula

u(x) = (Ṽκw)(x) + iη(WκBw)(x) for x ∈ Ωc

and thus the boundary integral equation to be solved

(Vκw)(x) + iη(
1

2
I +Kκ)Bw(x) = g(x) for x ∈ Γ.
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In [6, 7] several choices of regularization operators B were discussed, mostly the proofs were
based on some compactness arguments. Instead, in [10] we have proposed an alternative
regularization operator,

B = D̃−1
0 (

1

2
I +K ′

−κ) : H−1/2(Γ) → H1/2(Γ), (2.16)

which leads to the modified boundary integral equation

(Aκw)(x) := (Vκw)(x) + iη(
1

2
I +Kκ)D̃

−1
0 (

1

2
I +K ′

−κ)w(x) for x ∈ Γ. (2.17)

Note that D̃0 : H1/2(Γ) → H−1/2(Γ) is a modified hypersingular boundary integral operator
for the Laplace operator [17] defined as

〈D̃0u, v〉Γ := 〈Du, v〉Γ + 〈u, 1〉Γ〈v, 1〉Γ for u, v ∈ H1/2(Γ).

Theorem 2.1 [10] Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary Γ = ∂Ω.

Then, for all wave numbers κ ∈ R and for all positive regularization parameters η > 0
the boundary integral operator Aκ as defined in (2.17) is coercive and injective, i.e. the
modified boundary integral equation (2.17) admits a unique solution w ∈ H−1/2(Γ).

Due to the composite structure of the boundary integral operator Aκ in (2.17) a numerical
analysis of a Galerkin discretisation of (2.17) will require the use of some Strang lemma,
since the operator Aκ has to be approximated in an appropriate manner. Instead, we will
first consider a coupled variational problem which is equivalent to the boundary integral
equation (2.17) but which itself admits a G̊ardings inequality.

2.2 Variational Formulations

The boundary integral equation (2.17) is equivalent to find w ∈ H−1/2(Γ) such that

〈Aκw, τ〉Γ = 〈Vκw, τ〉Γ + iη〈(1
2
I +Kκ)D̃

−1
0 (

1

2
I +K ′

−κ)w, τ〉Γ = 〈g, τ〉

is satisfied for all τ ∈ H−1/2(Γ). By introducing ϕ = D̃−1
0 (1

2
I+K ′

−κ)w ∈ H1/2(Γ) we obtain

〈Aκw, τ〉Γ = 〈Vκw, τ〉Γ + iη〈(1
2
I +Kκ)ϕ, τ〉Γ = 〈g, τ〉

where ϕ ∈ H1/2(Γ) is the unique solution of the variational problem

〈D̃0ϕ, φ〉Γ = (
1

2
I +K ′

−κ)w, φ〉Γ for all φ ∈ H1/2(Γ).

Hence we have to find (w, ϕ) ∈ H−1/2(Γ) ×H1/2(Γ) such that

〈Vκw, τ〉Γ + iη〈(1
2
I +Kκ)ϕ, τ〉Γ = 〈g, τ〉Γ,

〈(1
2
I +K ′

−κ)w, φ〉Γ − 〈D̃0ϕ, φ〉Γ = 0
(2.18)
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is satisfied for all (τ, φ) ∈ H−1/2(Γ) × H1/2(Γ). According to this variational system we
can define a coercive bilinear form as follows.

Lemma 2.2 The bilinear form

a(w, ϕ; τ, φ) = 〈D̃0ϕ, φ〉Γ − 〈(1
2
I +K ′

−κ)w, φ〉Γ + 〈(1
2
I +Kκ)ϕ, τ〉Γ − i

η
〈Vκw, τ〉Γ

where (w, ϕ), (τ, φ) ∈ H−1/2(Γ) ×H1/2(Γ) is coercive.

Proof: By identifying (τ, φ) = (w, ϕ) ∈ H−1/2(Γ) ×H1/2(Γ) we first have

|a(w, ϕ;w, ϕ)| =

= |〈D̃0ϕ, ϕ〉Γ − 〈(1
2
I +K ′

−κ)w, ϕ〉Γ + 〈(1
2
I +Kκ)ϕ,w〉Γ − i

η
〈Vκw,w〉Γ|

= |〈D̃0ϕ, ϕ〉Γ − 〈w, (1
2
I +Kκ)ϕ〉Γ + 〈(1

2
I +Kκ)ϕ,w〉Γ − i

η
〈Vκw,w〉Γ|

= |〈D̃0ϕ, ϕ〉Γ − i

η
〈Vκw,w〉Γ|.

Since Vκ − V0 : H−1/2(Γ) → H1/2(Γ) is compact, and by using

ℑ〈V0w,w〉Γ = ℑ〈D̃0u, u〉Γ = 0

we finally conclude the coercivity estimate
∣∣∣∣a(w, ϕ;w, ϕ) +

i

η
〈(Vκ − V0)w,w〉Γ

∣∣∣∣ = |〈D̃0ϕ, ϕ〉Γ − i

η
〈V0w,w〉Γ|

=

√
〈D̃0ϕ, ϕ〉2Γ +

1

η2
〈V0w,w〉2Γ

≥ 1√
2

(
〈D̃0ϕ, ϕ〉Γ +

1

η
〈V0w,w〉Γ

)

≥ 1√
2

(
c

eD0
1 ‖v‖2

H1/2(Γ) +
cV1
η
‖w‖2

H−1/2(Γ)

)

≥ 1√
2

min{c eD0
1 ,

cV1
η
}
[
‖v‖2

H1/2(Γ) + ‖w‖2
H−1/2(Γ)

]
. �

Combining the coercivity of the bilinear form in the variational problem (2.18) with the
injectivity of the modified boundary integral operator Aκ we obtain the unique solvability
of the variational problem (2.18).

Theorem 2.3 Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary Γ = ∂Ω. Then,

for all wave numbers κ ∈ R+ and for all positive regularization parameters η > 0 there
exists a unique solution (w, ϕ) ∈ H−1/2(Γ) ×H1/2(Γ) of the variational problem (2.18).
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Proof: Since the bilinear form of the variational problem (2.18) is coercive, it remains to
prove the injectivity. But since the variational problem (2.18) is equivalent to the modified
boundary integral equation (2.17), the injectivity of the bilinear form in (2.18) follows from
the injectivity of Aκ. �

3 Boundary Element Methods

Let
S0

h(Γ) = span{ψk}N
k=1 ⊂ H−1/2(Γ)

be some conforming boundary element space, e.g. of piecewise constant basis functions ψk

which are defined with respect to some shape regular und globally quasi–uniform boundary
element mesh on Γ, where h is the related mesh size. The Galerkin discretization of the
modified boundary integral equation (2.17) is then to find wh ∈ S0

h(Γ) such that

〈Vκwh, τh〉Γ + iη〈(1
2
I +Kκ)D̃

−1
0 (

1

2
I +K ′

−κ)wh, τh〉Γ = 〈g, τh〉Γ (3.1)

is satisfied for all τh ∈ S0
h.

Proposition 3.1 [22] Since the modified operator Aκ = Vκ + iη(1
2
I+Kκ)D̃

−1
0 (1

2
I+K ′

−κ) is
injective and coercive, an associated stability (LBB) condition is satisfied, i.e. there exists
a mesh size h0 > 0 such that for all h < h0

cS‖wN‖H−1/2(Γ) ≤ sup
τh∈S0

h(Γ),‖τh‖H−1/2(Γ)
>0

|〈Aκwh, τh〉Γ|
‖τh‖H−1/2(Γ)

(3.2)

is satisfied for all wh ∈ S0
h(Γ).

Using Proposition 3.1 and applying Cea’s lemma we can conclude the unique solvability of
the discrete variational problem (3.1) as well as the a priori error estimate

‖w − wh‖H−1/2(Γ) ≤ c inf
τh∈S0

h(Γ)
‖w − τh‖H−1/2(Γ).

But since the operator Aκ is a composition of three boundary integral operators involving
the inverse D̃−1

0 it is in general not possible to compute the Galerkin weights 〈Aκψκ, ψℓ〉Γ
exactly. Hence we have to define a suitable approximation of Aκ which can be done by
considering the variational problem (2.18).

Let
S1

h(Γ) = span{ϕi}M
i=1 ⊂ H1/2(Γ)

be another boundary element space, e.g. of piecewise linear and continuous basis functions
ϕi. For simplicity we may assume that S1

h(Γ) is defined with respect to the same boundary

7



element mesh as S0
h(Γ). The Galerkin discretization of the variational problem (2.18) is

then to find (wh, ϕh) ∈ S0
h(Γ) × S1

h(Γ) such that

〈Vκwh, τh〉Γ + iη〈(1
2
I +Kκ)ϕh, τh〉Γ = 〈g, τh〉Γ,

〈(1
2
I +K ′

−κ)wh, φh〉Γ − 〈D̃0ϕh, φh〉Γ = 0
(3.3)

is satisfied for all (τh, φh) ∈ S0
h(Γ) × S1

h(Γ). Since the related bilinear form is coercive, see
Lemma 2.2, and injective, see Theorem 2.3, an associated stability (LBB) condition follows
as in Proposition 2.2 for

(
Vκ iη(1

2
I +Kκ)

(1
2
I +K ′

−κ) −D̃0

)
: H−1/2(Γ) ×H1/2(Γ) → H1/2(Γ) ×H−1/2(Γ).

This ensures, when assuming h < h0, the unique solvability of the Galerkin system (3.3)
as well as the a priori error estimate

‖w−wh‖H−1/2(Γ)+‖ϕ−ϕh‖H1/2(Γ) ≤ c

[
inf

τh∈S0
h(Γ)

‖w − τh‖H−1/2(Γ) + inf
φh∈S1

h(Γ)
‖ϕ− φh‖H1/2(Γ)

]
.

From the approximation properties of the boundary element trial spaces S0
h(Γ) and S1

h(Γ)
we further conclude the error estimate

‖w − wh‖H−1/2(Γ) + ‖ϕ− ϕh‖H1/2(Γ) ≤ c h3/2
[
|w|H1

pw(Γ) + |ϕ|H2(Γ)

]

when assuming w ∈ H1
pw(Γ) and ϕ ∈ H2(Γ). When applying the Aubin–Nitsche trick, see

e.g. [22], and when using an inverse inequality for a globally quasi–uniform mesh, we can
also derive the general error estimate

‖w − wh‖Hs(Γ) + ‖ϕ− ϕh‖Hs+1(Γ) ≤ c h1−s
[
|w|H1

pw(Γ) + |ϕ|H2(Γ)

]
(3.4)

for all s ∈ [−2, 0] when assuming w ∈ H1
pw(Γ) and ϕ ∈ H2(Γ). In particular for s = 0 we

obtain
‖w − wh‖L2(Γ) + ‖ϕ− ϕh‖H1(Γ) ≤ c h

[
|w|H1

pw(Γ) + |ϕ|H2(Γ)

]
(3.5)

while for s = −2 we get

‖w − wh‖H−2(Γ) + ‖ϕ− ϕh‖H−1(Γ) ≤ c h3
[
|w|H1

pw(Γ) + |ϕ|H2(Γ)

]
. (3.6)

Inserting wh and ϕh into the representation formula

u(x∗) = (Ṽκw)(x∗) + iη(Wκϕ)(x∗) for x∗ ∈ Ωc,

this defines an approximate solution

uh(x
∗) = (Ṽκwh)(x

∗) + iη(Wκϕh)(x
∗) for x∗ ∈ Ωc.
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To estimate the error, we compute

|u(x∗) − uh(x
∗)| =

∣∣∣(Ṽκw)(x∗) − (Ṽκwh)(x
∗) + iη(Wκϕ)(x∗) − iη(Wκϕh)(x

∗)
∣∣∣

≤
∣∣∣(Ṽκw)(x∗) − (Ṽκwh)(x

∗)
∣∣∣+ η |(Wκϕ)(x∗) − (Wκϕh)(x

∗)|

= |〈U∗
κ(x∗, ·), w − wh〉Γ| + η

∣∣∣∣〈
∂

∂n
U∗

κ(x∗, ·), ϕ− ϕh〉Γ
∣∣∣∣

≤ ‖U∗
κ(x∗, ·)‖H−s(Γ)‖w − wh‖Hs(Γ) + η‖ ∂

∂n
U∗

κ(x∗, ·)‖H−s−1(Γ)‖ϕ− ϕh‖Hs+1(Γ)

by using duality for some s ∈ [−2, 0] to obtain, in particular for s = −2

|u(x∗) − uh(x
∗)| ≤ c h3

[
|w|H1

pw(Γ) + |ϕ|H2(Γ)

]
(3.7)

when assuming w ∈ H1
pw(Γ) and ϕ ∈ H2(Γ).

The Galerkin variational formulation (3.3) is equivalent the following algebraic system
of linear equations

(
Vκ,h iη(1

2
Mh +Kκ,h)

(1
2
Mh +Kκ,h)

∗ −D̃0,h

)(
w

ϕ

)
=

(
g

0

)
(3.8)

where
Vκ,h[ℓ, k] = 〈Vκψk, ψℓ〉Γ, Kκ,h[ℓ, i] = 〈Kκϕi, ψℓ〉Γ
D̃0,h[j, i] = 〈D̃0ϕi, ϕj〉Γ, Mh[ℓ, i] = 〈ϕi, ψℓ〉Γ

for k, ℓ = 1, . . . , N and i, j = 1, . . . ,M . In addition,

gℓ = 〈g, ψℓ〉Γ =

∫

Γ

g(x)ψℓ(x)dsx for ℓ = 1, . . . , N. (3.9)

Since D̃0,h is a positve definite and symmetric matrix, we can reformulate the linear system
(3.8) as the following Schur complement system

[Vκ,h + iη(
1

2
Mh +Kκ,h)D̃

−1
0,h(

1

2
Mh +Kκ,h)

∗]w = g. (3.10)

Note that the stiffness matrix in (3.10) defines an approximation of the Galerkin matrix
Aκ,h of the composed operator Aκ.

Instead of computing the coefficients (3.9) of the right hand side exactly, one may use
an approximation gh ∈ S1

h(Γ) of the given Dirichlet data g, which can be computed either
by interpolation,

gh(x) =
M∑

i=1

g(xi)ϕi(x),
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or by using a L2 projection satisfying the variational problem

〈gh, ϕj〉Γ = 〈g, ϕj〉Γ for all j = 1, . . . ,M.

When assuming g ∈ H2(Γ) we obtain the following error estimate

‖g − gh‖Hσ(Γ) ≤ c h2−σ |g|H2(Γ)

where we have σ ∈ [0, 1] in the case of interpolation, and σ ∈ [−1, 1] in the case of the L2

projection due to an Aubin–Nitsche argument.
Now, instead of (3.8) we have to solve the perturbed linear system

(
Vκ,h iη(1

2
Mh +Kκ,h)

(1
2
Mh +Kκ,h)

∗ −D̃0,h

)(
w̃

ϕ̃

)
=

(
Mhg

0

)
(3.11)

implying perturbed solutions w̃h ∈ S0
h(Γ) and ϕ̃h ∈ S1

h(Γ), respectively. Moreover, by
inserting these perturbed solutions into the representation formula, this defines an approx-
imate solution

ũh(x
∗) = (Ṽκw̃h)(x

∗) + iη(Wκϕ̃h)(x
∗) for x∗ ∈ Ωc.

This perturbed solution satisfies the pointwise error estimate

|u(x∗) − ũh(x
∗)| ≤ c h3

[
|w|H1

pw(Γ) + |ϕ|H2(Γ) + |g|H2(Γ)

]
(3.12)

in the case of a L2 projection of g, and

|u(x∗) − ũh(x
∗)| ≤ c h2

[
|w|H1

pw(Γ) + |ϕ|H2(Γ) + |g|H2(Γ)

]
(3.13)

when considering only an interpolation of g.
Note that on a first glance it does not make any difference to compute the right hand

side (3.9) directly, or to compute the right hand side of the L2 projection. However, this
question becomes important when considering a direct approach such as the Burton–Miller
formulation (2.15).

4 Neumann Boundary Value Problem

In addition to the Dirichlet boundary value problem (2.1) we also consider the exterior
Neumann boundary value problem

∆u(x) + κ2u(x) = 0 for x ∈ Ωc = R
3\Ω, − ∂

∂nx
u(x) = f(x) for x ∈ Γ = ∂Ω (4.1)

together with the Sommerfeld radiation condition (2.2).
The formulation and analysis of stabilized boundary integral equations, as well as the

analysis of related boundary element methods is analogous as in the case of the Dirchlet
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boundary value problem. Hence, here we only provide the formulations, the linear systems
resulting from the Galerkin discretization, and comment on the related error estimates.

Resulting from the single layer potential ansatz (2.3) we get the boundary integral
equation

(−1

2
I +K ′

κ)w(x) = f(x) for x ∈ Γ, (4.2)

while from (2.4) we obtain

(Dκv)(x) = f(x) for x ∈ Γ. (4.3)

The direct approach for the Neumann boundary value problem gives the boundary integral
equation

(Dκu)(x) = −(
1

2
I +K ′

κ)f(x) for x ∈ Γ. (4.4)

As in the case of the Dirichlet boundary value problem it is known that the boundary
integral equations (4.2) and (4.4) are not uniquely solvable if κ2 = µ corresponds to an
eigenvalue of the interior Neumann eigenvalue problem (2.10). Moreover, (4.2) does not
have a unique solution if κ2 = λ corresponds to an eigenvalue of the interior Dirichlet
eigenvalue problem (2.9).

Similar to (2.12) we can find a combined boundary integral equation for the Neumann
boundary value problem as

(Dκv)(x) + iη(−1

2
I +K ′

κ)v(x) = f(x) for x ∈ Γ (4.5)

where v is considered as a function in L2(Γ). Introducing the regularisation operator

R = V −1
0 (−1

2
I +K−κ) : H1/2(Γ) → H−1/2(Γ)

leads to the modified boundary integral equation

(Dκv)(x) + iη(−1

2
I +K ′

κ)V
−1
0 (−1

2
I +K−κ)v(x) = f(x) for x ∈ Γ. (4.6)

As for the Dirichlet boundary value problem it can be shown that the corresponding bound-
ary integral operator

Dκ + iη(−1

2
I +K ′

κ)V
−1
0 (−1

2
I +K−κ) : H1/2(Γ) → H−1/2(Γ)

is coercive and injective, and therefore invertible. Hence, the modified boundary integral
equation (4.6) admits a unique solution v ∈ H1/2(Γ) for any wave number k ∈ R+.

The related variational formulation of (4.6) can be reformulated as a saddle point
formulation to find (v, ψ) ∈ H1/2(Γ) ×H−1/2(Γ) such that

〈Dκv, µ〉Γ + iη〈(−1

2
I +K ′

κ)ψ, µ〉Γ = 〈f, µ〉Γ,

〈(1
2
I +K−κ)v, ζ〉Γ − 〈V0ψ, ζ〉Γ = 0

(4.7)
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is satisfied for all (µ, ζ) ∈ H1/2(Γ) ×H−1/2(Γ). As in Lemma 2.2 we can define a coercive
bilinear form which is related to the variational problem (4.7). From this the unique
solvability of the variational problem (4.7) follows as in Theorem 2.3.

As in Section 3 we now introduce the boundary element spaces

Sh
1 (Γ) × Sh

0 (Γ) ⊂ H1/2(Γ) ×H−1/2(Γ)

of piecewise linear and piecewise constant basis functions ϕi and ψk, respectively. Since
the associated bilinear form is coercive there also holds the corresponding stability (LBB)
condition if the mesh size h is small enough. This ensures the unique solvability of the
discrete Galerkin equations which result from a Galerkin variational formulation of (4.7).
The discrete Galerkin system is equivalent to a linear system of algebraic equations,

(
Dκ,h iη(−1

2
Mh +K−κ,h)

∗

(−1
2
Mh +K−κ,h) −V0,h

)(
v

w

)
=

(
f

0

)
(4.8)

where
V0,h[ℓ, k] = 〈V0ψk, ψℓ〉Γ, K−κ,h[ℓ, i] = 〈K−κϕi, ψℓ〉Γ
Dκ,h[j, i] = 〈Dκϕi, ϕj〉Γ, Mh[ℓ, i] = 〈ϕi, ψℓ〉Γ

for k, ℓ = 1, . . . , N and i, j = 1, . . . ,M . In addition,

fj = 〈f, ϕj〉Γ =

∫

Γ

f(x)ϕj(x)dsx for j = 1, . . . ,M. (4.9)

Since the matrix V0,h is positive definite we can reformulate (4.8) as the Schur complement
system

[Dκ,h + iη(−1

2
Mh +K−κ,h)

∗V −1
0,h (−1

2
Mh +K−κ,h)]v = f. (4.10)

As for the exterior Dirichlet boundary value problem we can derive related error estimates,
in particular there holds

‖v − vh‖H1/2(Γ) + ‖w − wh‖H−1/2(Γ) ≤ c h3/2
[
‖v‖H2(Γ) + ‖w‖H1

pw(Γ)

]

when assuming v ∈ H2(Γ) and w ∈ H1
pw(Γ). Moreover, when applying the Aubin–Nitsche

trick the optimal error estimate is given by

‖v − vh‖H−1(Γ) + ‖w − wh‖H−2(Γ) ≤ c h3
[
‖v‖H2(Γ) + ‖w‖H1

pw(Γ)

]
.

Inserting the approximate solutions (vh, wh) into the representation formula

u(x∗) = (Wκv)(x
∗) + iη(Ṽκw)(x∗) for x ∈ Ωc,

this defines an approximate solution

uh(x
∗) = (Wκvh)(x

∗) + iη(Ṽκwh)(x
∗) for x ∈ Ωc

where we can conclude the pointwise error estimate

|u(x∗) − uh(x
∗)| ≤ c h3

[
‖v‖H2(Γ) + ‖w‖H1

pw(Γ)

]
. (4.11)
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5 Numerical Results

In this chapter we consider several numerical examples for the Dirichlet problem (2.1) as
well as for the Neumann problem (4.1). In particular we will compare different boundary
integral formulations as discussed in this paper.

5.1 Exterior Dirichlet Boundary Value Problem

We first consider the exterior Dirichlet boundary value problem (2.1) where the given
Dirichlet datum g is choosen such that the solution of (2.1) is defined by the monopole
function

u(x) =
eiκ|x−xs|

|x− xs|
for x ∈ Ωc, xs ∈ Ω, (5.1)

which is a radiating solution of the Helmholtz equation. For the discretiation we consider
the Galerkin variational problem (3.3) which leads to the Schur complement system (3.10)

[Vκ,h + iη(
1

2
Mh +Kκ,h)D̃

−1
0,h(

1

2
Mh +Kκ,h)

∗]w = g.

This system is solved by using a GMRES algorithm with complex arithmetics, and with
a relative error reduction of ε = 10−8. The k–th matrix by vector multiplication reads as
follows

Aκ,hw
k = Vκ,hw

k + iη(
1

2
Mh +Kκ,h)p

k, (5.2)

where

pk = D̃−1
0,h(

1

2
Mh +Kκ,h)

∗wk.

Thus we have to determine the solution pk of the linear system

D̃0,hp
k = (

1

2
Mh +Kκ,h)

∗wk (5.3)

at any step of the GMRES iteration. Since the real valued matrix D̃0,h is symmetric and
positive definite we can compute the solution of (5.3) by applying a conjugate gradient
method. Once the approximate solution (wh, ϕh) is found, we check the error behaviour
by computing an approximate solution

uh(x
∗) = (Ṽκwh)(x

∗) + iη(Wκϕh)(x
∗) for x∗ ∈ Ωc.

As computational domain we first consider the unit sphere

Ω = B1(0) = {x ∈ R
3 : |x| < 1},

with the boundary Γ = ∂B1(0) and where xs = (0, 0, 0.9)⊤ in (5.1).
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(2.17) (2.6)
M N Iter error Iter error
42 80 20 7.26 –3 20 1.20 –2
162 320 41 1.14 –3 38 5.99 –4
642 1280 55 2.20 –4 49 4.51 –5
2562 5120 70 8.94 –5 61 4.31 –6

Table 1: Exterior Dirichlet Boundary Value Poblem for a Sphere, κ = 4.

In Table 1 we present the results for the modified boundary integral equation (2.17)
and for the single layer potential ansatz (2.6) when the wave number is κ = 4, i.e. no
spurious modes appear.
Note that Iter stands for the number of GMRES iterations, and error stands for the point-
wise error

error = |uh(x
∗) − u(x∗)|

which is evaluated in the point x∗ = (1.5, 0, 0)⊤. At a first glance we can see that both
methods lead to a good accuracy at the finest level but the convergence rate for the
modified boundary integral equation is worse than the rate for the single layer potential.
This might be due to the additional approximation error which is due to the composed
boundary integral operator as used in the modified formulation.

Next we consider the wave number κ = 13 which is close to the eigenvalue λ4 = 4π of
the interior Dirichlet eigenvalue problem (2.9). The results are given in Table 2. Note that
the standard single layer potential approach fails while the proposed modified formulation
behaves as predicted.

(2.17) (2.6)
M N Iter error Iter error
42 80 26 3.77 –1 28 2.90 –1
162 320 53 2.21 –2 84 9.38 –2
642 1280 79 2.53 –3 240 4.32 –1
2562 5120 105 2.39 –4 137 1.19 –3

Table 2: Exterior Dirichlet Boundary Value Poblem for a Sphere, κ = 13.

Finally we consider the exterior Dirichlet boundary value problem where the computational
domain is the cube Ω = (0, 1

2
)3 with the monopole (5.1) for xs = (0.2, 0.1, 0.4)⊤. The first

critical wave number is k = 2
√

3π ≈ 10.883 for which the results are given in Table 3 where
the evaluation point is x∗ = (1, 0.5, 0.5)⊤ ∈ Ωc. Again the standard approach fails while
the modified formulation behaves as predicted.
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(2.17) (2.6)
M N Iter error Iter error
14 24 9 1.57 –1 9 1.94 –1
50 96 27 3.05 –3 27 2.82 –1

184 384 42 1.05 –3 42 4.93 –1
770 1536 59 3.12 –4 59 2.32

3074 6144 73 1.38 –4 76 9.05 –1

Table 3: Exterior Dirichlet Boundary Value Poblem for a Cube, κ = 2
√

3π.

5.2 Exterior Neumann Boundary Value Problem

Now we consider the exterior Neumann boundary value problem (4.1). As for the Dirichlet
problem the solution is defined by using the monopole function (5.1). The Galerkin dis-
cretisation of the modified boundary integral eqation (4.6) leads to the Schur complement
system (4.10)

[Dκ,h + iη(−1

2
Mh +K−κ,h)

∗V −1
0,h (−1

2
Mh +K−κ,h)]v = f. (5.4)

As for the Dirichlet problem we solve the system (5.4) using the GMRES algorithm for the
outer iteration and the CG algorithm for the inner iteration.

First we consider the unit sphere Ω = B1(0), xs = (0, 0, 0.9)⊤, and κ = 4, i.e. the case
of no spurious modes. In Table 4 we give the results for the modified boundary integral
formulation (4.6), for the Brakhage–Werner formulation (4.5), for the double layer potential
integral equation (4.2), and for the hypersingular boundary integral equation (4.3).

(4.6) (4.5) (4.2) (4.3)
M N Iter error Iter error Iter error Iter error
42 80 14 2.00 –2 14 4.06 –2 14 6.94 –2 14 5.18 –2
162 320 23 4.89 –3 18 1.69 –2 22 2.91 –3 19 3.97 –3
642 1280 28 1.29 –4 25 7.88 –4 25 1.11 –4 26 9.64 –4
2562 5120 36 9.57 –6 35 1.13 –4 26 3.92 –5 36 1.45 –4

Table 4: Exterior Neumann Boundary Value Problem for a Sphere, κ = 4.

Next we consider the cube Ω = (0, 1
2
)3 with the monopole (5.1) for xs = (0.2, 0.1, 0.4)⊤.

For the critical wave number κ = 2
√

3π ≈ 10.883 the hypersingular boundary integral
equation (4.3) fails, see Table 5, since the wave number corresponds to an eigenvalue of
the interior Neumann eigenvalue problem.
In addition to Table 5 we also consider the direct boundary integral equation (4.4) and the
Burton–Miller formulation (2.15), see Table 6.
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(4.6) (4.5) (4.2) (4.3)
M N Iter error Iter error Iter error Iter error
14 24 7 1.46 –1 7 3.13 –1 7 8.11 –1 7 2.90 –1
50 96 22 7.67 –3 19 9.61 –2 20 2.22 –1 19 8.10 –2
194 384 29 2.43 –3 26 1.25 –2 30 1.45 –1 29 6.01 –2
770 1536 36 3.80 –4 39 1.44 –3 35 7.05 –2 44 5.83 –2
3074 6144 50 5.56 –5 54 2.25 –4 37 3.56 –2 64 6.19 –2

Table 5: Exterior Neumann Boundary Value Problem for a Cube, κ = 2
√

3π.

(4.4) (2.15)
M N Iter error Iter error
14 24 6 2.65 –1 6 2.85 –1
50 96 19 7.33 –2 19 7.95 –2
194 384 29 1.11 –2 25 1.07 –2
770 1536 44 2.58 –3 38 2.47 –3
3074 6144 64 6.35 –4 53 6.09 –4

Table 6: Neumann Boundary Value Problem for a Cube, κ = 2
√

3π.

6 Conclusions

In this paper we have formulated and analyzed modified boundary element methods for
the Dirichlet and Neumann boundary value problems of the Helmholtz equation which
are stable for all wave numbers. In contrast to other existing approaches the proposed
method relies on the use boundary integral operators which are already available in stan-
dard boundary element methods. Therefore, the additional effort in the implementation is
neglectible.

Open questions concern the construction of efficient preconditioned iterative solution
strategies where also an optimal choice of the scaling parameter η ∈ R+ is crucial, see
[1, 14, 15]. Note that the use of fast boundary element methods [11, 12, 18] will enable us
to handle challenging applications.

Acknowledgements

We would like to thank Dr. M. Fischer and Dr. G. Of for providing us parts of their codes.
This cooperation and further discussions are greatfully acknowledged.

16



References

[1] S. Amini. On the choice of the coupling parameter in boundary integral formulations
of the exterior acoustic problem. Appl. Anal., 35(1-4):75–92, 1990.

[2] S. Amini and D. T. Wilton. An investigation of boundary element methods for the
exterior acoustic problem. Comput. Methods Appl. Mech. Engrg., 54(1):49–65, 1986.

[3] X. Antoine and M. Darbas. Alternative integral equations for the iterative solution of
acoustic scattering problems. Quart. J. Mech. Appl. Math., 58(1):107–128, 2005.

[4] W. Benthien and A. Schenck. Nonexistence and nonuniqueness problems associated
with integral equation methods in acoustics. Comput. & Structures, 65(3):295–305,
1997.
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