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Söllerhaus, 2.–5.10.2008

U. Langer, O. Steinbach, W. L. Wendland (eds.)

Berichte aus dem
Institut für Numerische Mathematik

Book of Abstracts 2008/4





Technische Universit ät Graz
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Program

Friday, 3.10.2008
9.00–9.30 W. L. Wendland (Stuttgart)

The Gauss problem
9.30–10.00 H. Harbrecht (Bonn)

Fast methods for 3D Electric Impedance Tomography
10.00–10.30 S. Engleder (Graz)

The mathematical model of the forward problem of MIT
10.30–11.00 Coffee
11.00–11.30 D. Lukas (Ostrava)

Optimal shape design for nonlinear axisymmetric magnetostatics
using a coupled FEM-BEM scheme

11.30–12.00 D. Pusch (Baden)
Impact of basis functions in BEM (FEM) calculation of eddy
current problems

12.00–12.30 C. Jerez-Hanckes (Zürich)
A hybrid BEM formulation for surface acoustic wave
interdigital transducers modelling

12.30 Lunch
15.00–15.30 Coffee
15.30–16.00 A. Salvadori (Brescia)

Analytical integrations in 3D BEM for hyperbolic problems
16.00–16.30 S. Ferraz–Leite (Wien)

Simple a posteriori error estimators for boundary element
methods in 3D

16.30–17.00 C. Fasel (Saarbrücken)
Advances in nonlocal electrostatics

17.00–17.30 Break
17.30–18.00 M. Radrainarivony (Bonn)

Hierarchical surface mesh generation for wavelet BEM solvers
18.00–18.30 G. Haase (Graz)

GPU accelerated algorithms
18.30 Dinner
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Saturday, 4.10.2008
9.00–9.30 Z. Andjelic (Baden)

BEM based component-level optimisation
9.30–10.00 J. E. Ospino (Hannover)

A skin effect approximation for three–dimensional eddy current
problems

10.00–10.30 M. Fleck (Saarbrücken)
Higher-order Whitney forms

10.30–11.00 Coffee
11.00–11.30 T. Samrowski (St. Augustin)

An adaptive fast multipole method for the rapid solution of the
stationary linearized Navier-Stokes system

11.30–12.00 A. Radcliffe (Hannover)
Mixed finite element/boundary element coupling for the
two–dimensional exterior Stokes problem

12.00–12.30 L. Raguin (Zürich)
Spectral Fourier methods with projectors of the Calderon type
for surface plasmon polaritons ehanced nanostructures

12.30 Lunch
13.30–18.00 Hiking tour
18.30 Dinner

Sunday, 5.10.2008
9.00–9.30 P. Urthaler (Graz)

Modelling of poroelastic materials
9.30–10.00 M. Messner (Graz)

Accelerating an elastodynamic boundary element formulation
by using adaptive cross approximation

10.00–10.30 Coffee
10.30–11.00 R. Grzibovski (Saarbrücken)

Modelling the elastic properties of composite materials using BEM
11.00–11.30 W. Elleithy (Linz)

On the adaptive coupling of finite elements and boundary elements
for three-dimensional elasto-plastic analysis

11.30 Closing
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BEM–Based Component-Level Optimization

Z. Andjelic, D. Pusch, I. Erceg

ABB Corporate Research Switzerland

Here we give a brief description of the BEM-based procedures for the component-
level optimization of practical apparatus. After some information on the non-para-
metric, non-gradient formulation we proceed with the corresponding numerical im-
plementation. Finally, the application of the developed procedures is illustrated on
the optimization of some real-world problems.
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On the Adaptive Coupling of Finite Elements and Boundary Elements
for Three-Dimensional Elasto-Plastic Analysis1

W. Elleithy, U. Langer

Johannes Kepler Universität Linz

We present adaptive finite element-boundary element coupling method (FEM-BEM)
for solving problems in elasto-plasticity. The adaptive coupling method presented
takes care of the evolution of the elastic and plastic regions and avoids limitations
of the standard FEM-BEM coupling approaches. We propose the use of simple,
and at the same time fast, post calculations, based on energetic methods which
follow simple hypothetical elastic computations, in order to obtain fast and helpful
estimation of the FEM and BEM sub-domains. The FEM and BEM meshes are
automatically generated over the estimated plastic and the remaining linear elastic
regions, respectively. Furthermore, FEM and BEM sub-domains are progressively
adapted according to the state of computation.
The results for two- and three-dimensional applications in elasto-plasticity show the
practicality and the efficiency of the adaptive FEM-BEM coupling method.
Below, we refer to some literature that is closely related to the topic of the talk (see
also the references cited therein).

References

1. Costabel, M., Symmetric methods for the coupling of finite elements and boun-
dary elements. In Boundary Elements IX, C. Brebbia, W. Wendland, and G.
Kuhn (eds.), Springer, Berlin, Heidelberg, New York, 1987, pp. 411–420.

2. Holzer, S. M., Das Symmetrische Randelementverfahren: Numerische Realisie-
rung und Kopplung mit der Finite-Elemente-Methode zur Elastoplastischen
Strukturanalyse, Technische Universität München, 1992.

3. Stephan, E. P., Coupling of Boundary Element Methods and Finite Element
Methods, Encyclopedia of Computational Mechanics, Vol. 1 Fundamentals,
Chapter 13, E. Stein, R. de Borst and T. J. R. Hughes (eds.), John Wiley &
Sons, Chichester, 2004, pp. 375-412.

4. Elleithy, W. and Langer, U., Efficient Elasto-Plastic Analysis via an Adaptive
Finite Element-Boundary Element Coupling Method, 30. International Confe-
rence on Boundary Elements and Other Mesh Reduction Methods (BEM/MRM
XXX), Maribor, Slovenia, July 2008, pp. 229-238.

5. Elleithy, W., Analysis of Problems in Elasto-Plasticity via an Adaptive FEM-
BEM Coupling Method,Computer Methods in Applied Mechanics and Engi-
neering, in press, doi:10.1016/j.cma.2008.02.018, 2008.

1The support of the Austrian Science Fund (FWF), Project number: M950, Lise Meitner Program, is gratefully
acknowledged. The authors wish to thank Prof. O. Steinbach, Graz University of Technology, for providing the
symmetric Galerkin boundary element computer codes utilized in some parts of this investigation.
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The mathematical model of the forward problem of
Magnetic Induction Tomography

S. Engleder, O. Steinbach, S. Zaglmayr

TU Graz

Magnetic Induction Tomography is a contactless imaging modality, which aims to
obtain the conductivity distribution of the body. The method is based on exciting
the body by magnetic induction using an array of transmitting coils to induce eddy
currents. A change of the conductivity distribution in the body results in a perturbed
magnetic field, which can be measured as a voltage change in the receiving coils.
Based on these measurements the conductivity distribution can be reconstructed
by solving an inverse problem.
In this talk two models for the corresponding forward problem are presentend. The
full model uses the complete set of Maxwell’s equations, the reduced model reduces
the full model to a Poisson equation. The error between the full and the reduced
model is analyzed and some estimates for the error are given. Furthermore the
boundary element formulations for both models are discussed and some numerical
examples are presented.
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Advances in nonlocal electrostatics

C. Fasel1, S. Rjasanow1, O. Steinbach2

1Universität des Saarlandes, Saarbrücken, 2TU Graz

In contrast to local electrostatics where one usually solves the Poisson equation,
nonlocal electrostatics is more complicated. Nonlocal material behaviour occurs, for
example, when electric fields in water are observed. The extraordinary behaviour
has its origin in the existence of a network of hydrogenbonds inside the water which
are on the one hand energetically favourabble for water, and, on the other hand,
need some fixed angles between the water molecules. When applying an electric
field, the water molecules which are dipoles should orient themselves along the field
which would lead to a loss of hydrogenbonds. This results in the end in a shielding
effect that depends on the distance from the source of the field. The original model
for nonlocal electrostatics (see e.g. [1,2]) involves some differential equations in
combination with intergral equations.
We will present an equivalent system of four partial differential equations in each
domain (see e.g. [3]). For the spherical symmetric special case of an ion with charge
located at the origin, an analytical solution will be given. The problem is an in-
terface problem. The structure of the surface of an biomolecule and its size seem
to exclude numerical calculations using finite element methods, and, therefore, we
want to use boundary element methods. So we also present a fundamental solution
for the operators involved in the PDE-formulation, show their ellipticity and give a
boundary integral ial matrices for the operator on the unbounded exterior domain
will be discussed. First numerical results will be shown.
In addition to BEM, we also did some first tests using the fundamental solution me-
thod. We will discuss advantages and drawbacks of both methods for this problem.

References

1. A. A. Kornyshev, A. I. Rubinshtein, M. A. Vorotyntsev: Model nonlocal elec-
trostatics. J. Phys. C., Solid State Phys. 11 (1978) 3307–3331.

2. A. Hildebrandt, H.–P. Lenhof, R. Blossey, S. Rjasanow, O. Kohlbacher: Elec-
trostatic potentials of proteins in water: A structured continuum approach.
Bioinformatics 23 (2007) 99–103.

3. C. Fasel, S. Rjasanow, O. Steinbach: A Boundary Integral Formulation for
Nonlocal Electrostatics. In: Numerical Mathematics and Advanced Applicati-
ons. Proceedings of ENUMATH 2007 (K. Kunisch, G. Of, O. Steinbach eds.),
Springer, Heidelberg, pp. 117–124, 2008.
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Simple a posteriori error estimators
for boundary element methods in 3D

S. Ferraz–Leite, D. Praetorius

TU Wien

As model problem, we consider Symm’s integral equation

V φ(x) =
1

4π

∫

Γ

1

|x − y|
φ(y) dsy = f(y)

with weakly-singular integral operator. The h-h/2-strategy is one very basic and
well-known technique for the a posteriori error estimation. Let φ denote the exact
solution. One then considers ηH := ‖φh − φh/2‖ to estimate the error ‖φ − φh‖,
where φh is the Galerkin solution with respect to a mesh Th and φh/2 is the Galerkin
solution for a mesh Th/2 obtained from uniform refinement of Th. We stress that ηH is
always efficient ηH ≤ ‖φ − φh‖, even with known constant 1. Under the saturation
assumption ‖φ − φh/2‖ ≤ q‖φ − φh‖ with some constant q ∈ (0, 1) there holds
reliability

‖φ − φh‖ ≤
1√

1 − q2
ηH .

However, for boundary element methods, the energy norm ‖·‖ is non-local and thus
the error estimator ηH does not provide information for a local mesh-refinement.

Recent localization techniques from [1] for H̃−α-norms allow to replace the energy
norm in the case of isotropic mesh-sequences by mesh-size weighted L2-norms. For
instance the L2-norm based estimator µH := ‖h1/2(φh − φh/2)‖L2(Γ) is equivalent to
ηH .
Based on these error estimators we introduce an h-adaptive algorithm. We stress,
that convergence of the adaptive scheme has been proven recently under the sa-
turation assumption [3]. Compared to uniform mesh-refinement, the experimental
convergence rate is improved by the adaptive algorithm. Nevertheless, we do not
observe the optimal order of convergence which is due to the occurrence of edge
singularities. We therefore enhance our original algorithm by a heuristic criterion to
steer anisotropy. Numerical experiments show that the enhanced algorithm recovers
optimal convergence.

References

1. C. Carstensen, D. Praetorius: Averaging techniques for the effective numerical
solution of Symm’s integral equation of the first kind. SIAM J. Sci. Comp. 27
(2006) 1226–1260.

2. S. Ferraz-Leite, D. Praetorius: Simple a posteriori error estimators for the h-
version of the boundary element method. ASC Report 01/2007, Institute for
Analysis and Scientific Computing, Vienna University of Technology, Wien,
2007.

3. S. Ferraz-Leite, C. Ortner, D. Praetorius: Adaptive Boundary Element Method:
Simple Error Estimators and Convergence. In: Analysis of Boundary Element
Method, EMS Publishing House, Oberwolfach Report 19/2008, 2008
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Higher-order Whitney forms

M. Fleck

Universität des Saarlandes, Saarbrücken

Whitney forms are widely used for electromagnetic field problems. While it is desira-
ble to have forms of higher polynomial degree, in general these lack some properties
of their lower degree cousins. One example, which we investigate, is the precise
geometrical localisation of their degrees of freedom (i.e. the coefficients of a linear
combination of basis forms) on associated elements inside the mesh.
We discuss a variant of higher-order Whitney forms proposed by Alain Bossavit
and make suggestions of how to deal with its difficulties, especially the localisation
of degrees of freedom. Furthermore we present a discretisation of the higher-order
differential operator which acts directly on degrees of freedom instead of integral
values over mesh elements.
Finally we compare some FEM results using first and second order Whitney forms
respectively.

References

1. A. Bossavit: Generating Whitney Forms of Polynomial Degree One and Higher.
IEEE Transactions on Magnetics, Vol. 38, No. 2, 2002, pp. 341-344

2. F. Rapetti, A. Bossavit: Geometrical localisation of the degrees of freedom for
Whitney elements of higher order. IET Sci. Meas. Technol., Vol. 1, No. 1, 2007,
pp. 63-66

3. R. Hiptmair: Higher Order Whitney Forms. J. Electr. Waves and Appl., Vol.
15, 2001, pp. 271-299
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Modelling the elastic properties of composite materials using BEM

R. Grzibovski

Universität des Saarlandes, Saarbrücken

To determine effective elastic properties of a two-component composite material, an
interface problem for the Lamé system is formulated. The problem is then restated
in terms of boundary integral equations and a Galerkin BEM is applied for the
resulting system. The Adaptive Cross Approxiamtion technique is employed in order
to reduce the complexity of the numerical method. In the case when the structure
of the composite posesses symmetries, identical blocks in Galerkin matrices can
be identified. This leads to an additional reduction of memory requirement for the
numerical computaion. Several numerical examples are presented.
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GPU Accelerated Algorithms 2

G. Haase, M. Liebmann

Karl–Franzens–Universität Graz

Recent developments in graphics hardware by NVidia and ATI, and associated soft-
ware development tools as CUDA enable us to transfer numerical solver components
on the recent generation of graphics processing units (GPUs). Although the adap-
tion to the graphics processing unit requires a redesign of the solver components to
fit into the highly parallel framework of the GPU, the resulting solver outperforms
the fastest single CPU implementation by an order of magnitude. We present the
adaption of an algebraic multigrid solver for sparse unstructured system matrices
on these GPUs resulting in a performance gain of factor 6–10. Ideas how to use the
potential of the GPU for the BEM matrix generation and system solving will be
discussed.

2This work is supported by the grants for SFB F32 and AustrianGrid 2.
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Fast methods for 3D Electric Impedance Tomography

H. Harbrecht

Universität Bonn

In this talk we consider the identification of an obstacle or void of different con-
ductivity included in a three-dimensional domain by measurements of voltage and
currents at the boundary. To compute the forward solution operator and its Fréchet
derivative we apply a wavelet based boundary element method. Moreover, we discuss
the characterization and implementation of the adjoint of the Fréchet derivative. For
the solution of the inverse problem we use a regularized Newton method. Numerical
examples illustrate the performance of our method.
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A hybrid BEM formulation for Surface Acoustic Wave Interdigital
transducers modelling

C. Jerez-Hanckes, J. C. Nédélec, V. Laude

Ecole Polytechnique, Palaiseau

In this work, we consider the modelling of Surface Acoustic Wave (SAW) Interdigital
transducers (IDT) via a hybrid BEM formulation using spectral and local bases [1,2].
SAW IDTs are ubiquitous components in mobile communication systems and are
the subject of intense research for improving design tools. They can be seen as a
piezoelectric half-space over which a flat perfectly conducting layer is placed. The
metal screen is a smooth orientable bounded manifold Γ ⊂ R

2 lying in R
3 with

Lipschitz boundaries, wherein solutions are known to possess singular behaviors.
Thus, classical Galerkin or collocation methods have poor convergence. On the other
hand, due the extremely elongated form of the structures, even methods mimicking
border singularities become impractical. The proposed hybrid element approach
overcomes these issues by mixing bases according to the local singular behavior.

References

1. C. Jerez-Hanckes, V. Laude, J.-C. Nédélec, R. Lardat: 3-D Electrostatic hy-
brid elements model for SAW interdigital transducers. IEEE Trans. Ultrason.,
Ferroelec., Freq. Control, vol. 55, no. 3, pp. 686–695, 2008.

2. C. Jerez-Hanckes, V. Laude, J.-C. Nédélec, R. Lardat: 3D SAW IDT Boundary
Element Model for Massless Electrodes. Proc. IEEE Ultrasonics Symposium,
pp. 707–710, 2007.
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Optimal shape design for nonlinear axisymmetric magnetostatics using
a coupled FEM–BEM scheme

D. Lukas

Technical University of Ostrava

I present an application of optimal shape design of a DC electromagnet. For each de-
sign an underlying quasi–linear axisymmetric magnetostatic state problem is solved,
while considering Hiptmair’s ansatz for the symmetric coupling of FEM and BEM.
Assembling the BEM matrices makes use of a Duffy transform and the tensor–
product Gaussian quadrature. The nonlinear behaviour of the ferromagnetics is
modelled by FEM and it is resolved within Newton iterations. I employ a steepest–
descent method with an active set approach for the constrained optimization. Eva-
luation of shape derivatives is provided by a semi–analytic adjoint sensitivity ana-
lysis method, which involves one additional solution to the linearized adjoint state
problem.
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Aspects of the application of Adaptive Cross Approximation in an
elastic Boundary Element formulation

M. Messner, M. Schanz

TU Graz

In order to make the Boundary Element Method more competitive when dealing
with problems in elasticity the present work focuses on the adaptive cross approxi-
mation (ACA). This method enables the approximation of admissible blocks which
are identified a priori by the H-Matrix structure. Its advantage is based on the fact
that only a few of the original matrix entries have to be generated. However, pro-
blems arise when dealing with vectorial problems, e.g., in elasticity. The extension
of the well studied scalar-valued ACA to the resulting matrix-valued ACA is not
straightforward. In this work, a repartitioning of the H-Matrix is introduced to allow
for a scalar-valued approximation. Special care has to be taken in order to preserve
the efficiency of the method. Aspects of this extension will be discussed.
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A Skin Effect Approximation
for Three-Dimensional Eddy Current Problems

E. P. Stephan, J. E. Ospino

Leibniz University Hannover

We consider the scattering of time periodic electro-magnetic fields by metallic
obstacles, the eddy current problem. In this interface problem different sets of Max-
well equations must be solved in the obstacle and outside, while the tangential
components of both electric and magnetic fields are continuous across the obstacle
surface. We develop an asymptotic procedure which applies for large conductivity
and reflects the skin effect in metals. The key to our method is to introduce a special
integral equation procedure (see [1]) for the exterior boundary value problem corre-
sponding to perfect conductors. The asymptotic procedure gives a great reduction
in complexity of solution since it involves solving only the exterior boundary value
problem. In this paper we extend our procedure from the two-dimensional case in
[2] to three dimensions.

References

1. R. C. MacCamy, E. P. Stephan: Solution Procedures for Three-Dimensional
Eddy Current Problems. J. Math. Anal. Appl. 101 (1984) 348–379.

2. R. C. MacCamy, E. P. Stephan: A Skin Effect Approximation for Eddy Current
Problems. Archive for Rational Mechanics and Analysis 90 (1985) 87–98.
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Impact of basis functions in BEM (FEM) calculation
of eddy–current problems

Z. Andjelic, D. Pusch

ABB Corporate Research Switzerland

In this talk we discuss briefly the impact of the order of the shape functions when
calculating eddy–current problems using FEM or BEM. The considered model geo-
metry is given by the TEAM benchmark family P21. Several numerical results are
given for constant/linear/quadratic basis functions, for both finite and boundary
element code. The comparison suggests the appropriate choice of the order of the
shape functions with respect field penetration depth and corresponding mesh dis-
cretization.
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Mixed Finite Element/Boundary Element Coupling for the
Two-Dimensional Exterior Stokes Problem

A. Radcliffe

Leibniz Universität Hannover

A hybrid mixed finite element / boundary integral method is presented for the
primative variable formulation of the two-dimensional steady state exterior Stokes’
problem. The prognostic velocity and pressure variables are supported in the ex-
terior region with both single and double layer hydrodynamic potentials allowing
a symmetric, well conditioned, matrix structure for the velocity boundary integral
equation (VBIE) with a simple regularisation of the hyper-singular integrals for the
velocity through a repeated integration by parts.
The hyper-singular integral arising in the associated pressure boundary integral
equation (PBIE), where the integral kernals have singularities an order higher than
in the VBIE, is regularised using a simple solution technique.
To accomodate the Babuska-Brezzi, or “inf-sup”, condition in the interior region,
the velocity and pressure are modelled with a selection of different Lagrangian finite
element pairs, using both pressure corrections (where required) and mixed element
orders for the discretised velocity and pressure unknowns, yielding an indefinite
system for the interior which when coupled with the boundary integral matrices for
the exterior results in a multiple saddle point problem.
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Hierarchical surface mesh generation for Wavelet BEM solvers

M. Radrainarivony

Universität Bonn

We report on our results on surface mesh generation from CAD models. Our method
is featured by its ability of generating hierarchical meshes which are very useful
for solvers requiring nested trial spaces. To construct wavelets on manifolds the
parametric description of the boundary surface is needed.
We need to decompose the boundary of a solid into four-sided patches Fi such that
there is a regular mapping γi from the unit square to each Fi. Since we use Coons
functions to generate the mappings γi, all curves are parametrized in arc length
so that the functions γi match well at surface joints. That result is valid for any
blending functions of the Coons patches. We use a reparametrization approach which
keeps the shape of the initial curves while achieving arc length parametrization.
The decomposition techniques are applied to real CAD data which come from IGES
files. Comments about generalization into 3D solid meshes are provided.
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Spectral Fourier methods with projectors of the Calderón type for
surface plasmon polaritons enhanced nanostructures3

L. Raguin, C. Hafner, R. Hiptmair, R. Vahldieck

ETH Zürich

The development of numerical simulation algorithms to study nanostructures for
applications ranging from single-molecule sensing at visible frequencies to cancer
therapy in near infrared has attracted a considerable amount of research interest.
It is fuelled by the desire of device miniaturization exploiting plasmonic effects in
metallic particles which are much smaller than the excitation wavelength. In such a
case the response of metals is quite different from the metallic conductivity obser-
ved at lower frequencies. It leads to solving the Maxwell’s equations with material
properties presented at the nanoscale by complex valued frequency dependent diel-
ectric permittivities. Despite the linearity of materials, accurate numerical study
of plasmonic nanostructures without an extremely fast and efficient numerical al-
gorithm is not feasible even with modern computing hardware for geometrically
simple two-dimensional problems. First, the impact of the material dispersion is
so dramatic that the nanostructure characteristics can not be scaled to operate at
different wavelength. Then the problem must be solved over the whole range of
excitation wavelengths taking into account highly accurate dispersion models [2].
Second, the energy of plasmon modes is localized so strongly that the near-field am-
plitude enhancements might reach several hundred times that of the illumination
having fast decay inside the particle [1, 2]. Due to the nature of plasmonic effects the
algorithms based on Boundary Integral Equations (BIE) demonstrated to be more
promising [2] than those based on Finite Difference and Finite Element Methods.
It is caused by the advantage of using the radiating Green function for the exterior
field representation avoiding the errors caused by absorbing boundary conditions.
In addition, instead of the domain fields only the field components along the boun-
daries are calculated [1]. Spectral Fourier-Galerkin discretization with Singularity
Subtraction [2] has been found to be particularly well suited to convert the BIE
into a matrix equation due to smooth regular shapes of nanoparticles. It permits
the extensive use of FFT in order to obtain the solution with spectral accuracy,
reduced complexity and calculation time while dealing with challenging problems
of plasmonics. Although theoretically any BIE formulation based on layer potential
technique, including both direct and indirect approaches [3], may appear efficient to
solve such an electromagnetic transmission problem [4], in nanoengineering mostly
indirect approaches based on the field representation in terms of single-layer poten-
tials [2] are applied to calculate the interior and exterior magnetic fields and their
normal derivatives (traces). It was demonstrated in [1] that the algorithm based
on Stratton-Chu formulation is more efficient because the tangential components of
both electric and magnetic fields may be calculated simultaneously. On the other
hand, in most of the experiments at nanoscale only the scattered exterior fields are
analyzed. Therefore the formulations based on the boundary-integral projectors of
Calderón type [3] may become highly competitive with the BIE formulations used

3This work is supported financially by Swiss National Science Foundation project no. 200021-119976 ”Spectral
Galerkin Boundary Integral Equaiton methods for plasmonic nanostructures”.
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in [1, 2] because both interior and exterior traces may be expressed in terms of the
traces of the scattered exterior field relating them to the traces of the source field.
The goal of this work is to investigate spectral Fourier-Galerkin methods based on
various BIE formulations to solve transmission problem for the Helmholtz equati-
on in order to select that which is the most efficient to study new phenomena of
nanoscale electromagnetics.

References
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Analytical integrations in 3D BEM for hyperbolic problems

A. Salvadori, A. Temponi

Università di Brescia

Some results on the analytical integration of kernels in hyperbolic problems (acou-
stics, elastodynamics) for 3D Boundary Element Methods are presented. Adopting
polynomial shape functions of arbitrary degree (in space and time) on flat discreti-
zations, integrations are performed both in space and time for Lebesgue integrals
working in a local coordinate system. For singular integrals, both a limit to the
boundary as well as the finite part of Hadamard approach have been pursued.
Computational remarks and issues are addressed.
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An Adaptive Fast Multipole Method for the Rapid Solution of the
Stationary Linearized Navier-Stokes System

T. S. Samrowski

Fraunhofer Institute for Scientific Computing and Algorithms, Sankt Augustin

The application of an adaptive version of the fast multipole method (FMM) of
Greengard and Rokhlin for the stationary linearized Navier-Stokes system in the
two-dimensional case will be presented. FMM is one of the most efficient methods
to compute matrix-vector multiplications and hence accelerates the resolution of
linear equation systems. Here an algorithm for the evaluation of hydrodynamical
potentials with the almost linear computational complexity will be described. For
this purpose the complex representation of the hydrodynamical potentials as well as
the statements about the corresponding multipole and local expansions, translation,
rotation and conversion operators will be given. The numerical experiments we
present confirm the theoretical statements.
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Modelling of poroelastic materials

M. Schanz, O. Steinbach, P. Urthaler

TU Graz

Wave propagation in porous media is an important topic for example in geomecha-
nics or oil-industry. Assuming a geometrically linear description (small displacement
and small deformation gradients) and linear constitutive equations (Hooke’s law)
the governing equations are derived for Biot’s theory. The primary unknowns are
solid displacement and the pore pressure. This approach is only possible in the
Laplace domain. The resulting saddle point problem and simplifications of the sy-
stem are analyzed. For a semi-infinite homogeneous poroelastic domain a boundary
integral formulation is given.
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The Gauss Problem

G. Of1, W. L. Wendland2, N. Zorii3

1TU Graz, 2Universität Stuttgart, 3National Academy of Sciences of Ukraine

The Gauss problem for condensers is a classical nonlinear variational problem stated
by C. F. Gauss himself which became a central issue in abstract potential theory.
In this short lecture we present the first results on the application of the multipole
method for computing the solution to the Gauss problem on a compact condenser
A = A1 ∪ A2 consisting of two separated compact and piecewise smooth two–
dimensional surfaces A1, A2 ⊂ R

3. On A we consider charges given by measures

M(A) := {µ =
2∑

j=1

(sign Aj)µ
j and µj ∈ M+(Aj), j = 1, 2}

where sign Aj := (−1)j and M+ are the nonnegative measures. The Gauss problem
reads: Find the equilibrium state µ0 ∈ M(A, a, g) where

∫

A

∫

A

dµ0(x)dµ0(y)

|x − y|
− 2

∫

A

f(x)dµ0(x)

= inf
µ∈M(A,a,g)

{∫

A

∫

A

dµ(x)dµ(y)

|x − y|
− 2

∫

A

f(x)dµ(x)
}

=: I0 .

The set of admissible measures is given by:

M(A, a, g) := {µ ∈ M(A) with

∫

Aj

g dµj = aj , j = 1, 2} .

Here g is a given positive, continuous function on A, and a1, a2 are two given positive
constants. Hence, M(A, a, g) is an affine cone of measures.
For a compact condenser, this problem is uniquely solvable, and for f ∈ H1/2(A)
and g ∈ C0 ∩ H1/2(A), the solution has the form

µ0 = ϕ0dsA

with ϕ0 ∈ H−1/2(A), ϕ0 ≥ 0 and dsA the surface measure. Therefore, the Gauss
problem can be reduced to the case of finding ϕ0 ∈ H−1/2(A) as the minimizer of

(V ϕ, ϕ)L2(A) − 2(f, ϕ)L2(A)

on ϕ ∈ H−1/2(A) with ϕ =
2∑

j=2

(−1)jϕj and ϕj ≥ 0 with
∫
Aj

ϕjds = aj where V

denotes the simple layer boundary integral operator on A.
We approximate the problem by piecewise constant boundary elements ϕh incor-
porating the side conditions as a penalty term, show very first numerical results
and want to discuss the physical relevance of the problem and how to improve the
efficiency of the numerical method.

24



Participants

1. Prof. Dr.–Ing. Zoran Andjelic
ABB Switzerland Ltd., Corporate Research, CH 5405 Baden–Dättwil
zoran.andjelic@ch.abb.com

2. Dr. Bernhard Auchmann
CERN AT/MEL – Electromagnetic Fields, CH 1211 Genf 23
bernhard.auchmann@cern.ch

3. Dipl.–Ing. Markus Aurada
Institut für Analysis und Wissenschaftliches Rechnen, TU Wien,
Wiedner Hauptstrasse 8–10, A 1010 Wien
aurada@aurora.anum.tuwien.ac.at

4. Prof. Dr. Gernot Beer
Institut für Baustatik, TU Graz, Lessingstrasse 25, A 8010 Graz
gernot.beer@tugraz.at

5. Dipl.–Ing. Dominik Brunner
Institut für Angewandte und Experimentelle Mechanik, Universität Stuttgart,
Allmandring 5b, D 70569 Stuttgart
brunner@iam.uni-stuttgart.de

6. Dr. Christian Dünser
Institut für Baustatik, TU Graz, Lessingstrasse 25, A 8010 Graz
duenser@tugraz.at

7. Dr. Wael Elleithy
Institut für Numerische Mathematik, Johannes Kepler Universität Linz,
Altenberger Strasse 69, A 4040 Linz
wael.elleithy@numa.uni-linz.ac.at

8. Dipl.–Ing. Sarah Engleder
Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, A 8010 Graz
sarah.engleder@tugraz.at

9. Prof. Dr. Otto von Estorff
Institut für Modellierung und Berechnung, TU Hamburg–Harburg,
Denickestrasse 17, D 21073 Hamburg
estorff@tu-harburg.de

10. Dipl.–Math. Caroline Fasel
Fachrichtung Mathematik, Universität des Saarlandes
Postfach 151150, D 66041 Saarbrücken
fasel@num.uni-sb.de

25



11. Dipl.–Ing. Samuel Ferraz–Leite
Institut für Analysis und Wissenschaftliches Rechnen, TU Wien,
Wiedner Hauptstrasse 8–10, A 1040 Wien
samuel.ferraz-leite@tuwien.ac.at

12. Dipl.–Math. Marvin Fleck
Fachrichtung Mathematik, Universität des Saarlandes
Postfach 151150, D 66041 Saarbrücken
fleck@num.uni-sb.de

13. Dr. Richard Grzibovski
Fachrichtung Mathematik, Universität des Saarlandes
Postfach 151150, D 66041 Saarbrücken
richards@num.uni-sb.de

14. Prof. Dr. Gundolf Haase
Institut für Mathematik und Wissenschaftliches Rechnen,
Karl–Franzens Universität Graz, Heinrichstrasse 36, A 8010 Graz
gundolf.haase@uni-graz.at

15. Prof. Dr. Helmut Harbrecht
Institut für Numerische Simulation, Universität Bonn,
Wegelerstr. 6, D 53115 Bonn
harbrecht@ins.uni-bonn.de

16. Dr. Jerez–Hanckes
Seminar für Angewandte Mathematik, ETH Zürich, CH 8092 Zürich
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