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Preconditioned space–time boundary element
methods for the one-dimensional heat equation

Stefan Dohr and Olaf Steinbach

1 Introduction

Space–time discretization methods, see, e.g., [8], became very popular in recent
years, due to their ability to drive adaptivity in space and time simultaneously, and
to use parallel iterative solution strategies for time–dependent problems. But the
solution of the global linear system requires the use of some efficient preconditioner.

In this note we describe a space–time boundary element discretization of the heat
equation and an efficient and robust preconditioning strategy which is based on the
use of boundary integral operators of opposite orders, but which requires a suitable
stability condition for the boundary element spaces used for the discretization. We
demonstrate the method for the simple spatially one-dimensional case. However, the
presented results, particularly the stability analysis of the boundary element spaces,
can be used to extend the method to the two- and three-dimensional problem [2].

Let Ω = (a,b) ⊂ R, Γ := ∂Ω = {a,b} and T > 0. As a model problem we
consider the Dirichlet boundary value problem for the heat equation,

α∂tu−∆xu = 0 in Q := Ω × (0,T ), u = g on Σ := Γ × (0,T ), u = u0 in Ω (1)

with the heat capacity constant α > 0, the given initial datum u0, and the boundary
datum g. The solution of (1) can be expressed by using the representation formula
for the heat equation [1], i.e. for (x, t) ∈ Q we have

u(x, t) =
∫

Ω
U?(x− y, t)u0(y)dy+

1
α

∫

Σ
U?(x− y, t− s)

∂
∂ny

u(y,s)dsyds

− 1
α

∫

Σ

∂
∂ny

U?(x− y, t− s)g(y,s)dsyds,
(2)
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where U? denotes the fundamental solution of the heat equation given by

U?(x− y, t− s) =





(
α

4π(t− s)

)1/2

exp
(−α|x− y|2

4(t− s)

)
, s < t,

0 , else.

Hence it suffices to determine the yet unknown Cauchy datum ∂nu|Σ to compute
the solution of (1). It is well known [5] that for u0 ∈ L2(Ω) and g ∈ H1/2,1/4(Σ)
the problem (1) has a unique solution u ∈ H1,1/2(Q,α∂t −∆x) with the anisotropic
Sobolev space

H1,1/2(Q,α∂t −∆x) :=
{

u ∈ H1,1/2(Q) : (α∂t −∆x)u ∈ L2(Q)
}
.

In the one-dimensional case the spatial component of the space–time boundary Σ
collapses to the points {a,b} and therefore we can identify the anisotropic Sobolev
spaces Hr,s(Σ) with Hs(Σ). The unknown density w := ∂nu|Σ ∈ H−1/4(Σ) can be
found by applying the interior Dirichlet trace operator γ int

0 : H1,1/2(Q)→ H1/4(Σ)
to the representation formula (2),

g(x, t) = (M0u0)(x, t)+(V w)(x, t)+((
1
2

I−K)g)(x, t) for (x, t) ∈ Σ .

The initial potential M0 : L2(Ω)→ H1/4(Σ), the single layer boundary integral op-
erator V : H−1/4(Σ)→ H1/4(Σ), and the double layer boundary integral operator
1
2 I−K : H1/4(Σ)→ H1/4(Σ) are obtained by composition of the potentials in (2)
with the Dirichlet trace operator γ int

0 , see, e.g., [1, 6]. In fact, we have to solve the
variational formulation to find w ∈ H−1/4(Σ) such that

〈V w,τ〉Σ = 〈(1
2

I +K)g,τ〉Σ −〈M0u0,τ〉Σ for all τ ∈ H−1/4(Σ), (3)

where 〈·, ·〉Σ denotes the duality pairing on H1/4(Σ)×H−1/4(Σ). The single layer
boundary integral operator V is bounded and elliptic, i.e. there exists a constant
cV

1 > 0 such that

〈V w,w〉Σ ≥ cV
1 ‖w‖2

H−1/4(Σ)
for all w ∈ H−1/4(Σ).

Thus, the variational formulation (3) is uniquely solvable. When applying the Neu-
mann trace operator γ int

1 : H1,1/2(Q,α∂t − ∆x)→ H−1/4(Σ) to the representation
formula (2) we obtain the second boundary integral equation

w(x, t) = (M1u0)(x, t)+((
1
2

I +K′)w)(x, t)+(Dg)(x, t) for (x, t) ∈ Σ
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Fig. 1 Sample BE mesh.
We consider an arbitrary
decomposition of the space–
time boundary Σ . Note that
there is no time-stepping
scheme involved Ω× (0,T )

x

t

with the hypersingular boundary integral operator D : H1/4(Σ)→ H−1/4(Σ), and
with the adjoint double layer boundary integral operator K′ : H−1/4(Σ)→H−1/4(Σ).
Moreover, M1 : L2(Ω)→ H−1/4(Σ).

2 Boundary element methods

For the Galerkin boundary element discretization of the variational formulation
(3) we consider a family {ΣN}N∈N of arbitrary decompositions of the space–time
boundary Σ into boundary elements σl , i.e. we have

Σ N =
N⋃

`=1

σ ` .

In the one-dimensional case the boundary elements σ` are line segments in temporal
direction with fixed spatial coordinate x` ∈ {a,b} as shown in Fig. 1. Let (x`, t`1) and
(x`, t`2) be the nodes of the boundary element σ`. The local mesh size is then given
as h` := |t`2 − t`1 | while h := max`=1,...,N h` is the global mesh size.
For the approximation of the unknown Cauchy datum w = γ int

1 u ∈ H−1/4(Σ) we
consider the space S0

h(Σ) := span
{

ϕ0
`

}N
`=1 of piecewise constant basis functions

ϕ0
` , which is defined with respect to the decomposition ΣN . The Galerkin-Bubnov

variational formulation of (3) is to find wh ∈ S0
h(Σ) such that

〈V wh,τh〉Σ = 〈(1
2

I +K)g,τh〉Σ −〈M0u0,τh〉Σ for all τh ∈ S0
h(Σ) . (4)

This is equivalent to the system of linear equations Vhw = f where

Vh[`,k] = 〈V ϕ0
k ,ϕ

0
` 〉Σ , f[`] = 〈(1

2
I +K)g,ϕ0

` 〉Σ −〈M0u0,ϕ0
` 〉Σ , k, `= 1, . . . ,N.

Due to the ellipticity of the single layer operator V the matrix Vh is positive definite
and therefore the variational formulation (4) is uniquely solvable as well. Moreover,
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when assuming w ∈ Hs(Σ) for some s ∈ [0,1], there holds the error estimate

‖w−wh‖H−1/4(Σ) ≤ ch1/4+s|w|Hs(Σ) .

Using standard arguments we also conclude the error estimate

‖w−wh‖L2(Σ) ≤ chs|w|Hs(Σ)

which implies linear convergence of the L2(Σ)–error of the Galerkin approximation
wh if w ∈ H1(Σ) is satisfied.

3 Preconditioning strategies

Since the boundary element discretization is done with respect to the whole space–
time boundary Σ we need to have an efficient iterative solution technique. In fact,
the linear system Vhw = f with the positive definite but nonsymmetric matrix Vh
can be solved by using a preconditioned GMRES method. Here we will apply a
preconditioning technique based on boundary integral operators of opposite order
[10], also known as operator or Calderon preconditioning [3]. Since the single layer
integral operator V : H−1/4(Σ)→ H1/4(Σ) and the hypersingular integral operator
D : H1/4(Σ)→H−1/4(Σ) are both elliptic, the operator DV : H−1/4(Σ)→H−1/4(Σ)
behaves like the identity. Hence we can use the Galerkin discretization of D as a pre-
conditioner for Vh. But for the Galerkin discretization Dh of the hypersingular inte-
gral operator D : H1/4(Σ)→ H−1/4(Σ) we need to use a conforming ansatz space
Yh = span{ψi}N

i=1 ⊂H1/4(Σ) while the discretization of the single layer integral op-
erator V is done with respect to S0

h(Σ). Since the boundary element space S0
h(Σ) of

piecewise constant basis functions ϕ0
k also satisfies S0

h(Σ)⊂H1/4(Σ) we can choose
Yh = S0

h(Σ). The inverse hypersingular operator D−1 is spectrally equivalent to the
single layer operator V , therefore the approximation of the preconditioning opera-
tor corresponds to a mixed approximation scheme, and hence we need to assume a
discrete stability condition to be satisfied.

Theorem 1 ([3, 10]). Assume the discrete stability condition

sup
06=vh∈Yh

〈τh,vh〉L2(Σ)

‖vh‖H1/4(Σ)

≥ cM
1 ‖τh‖H−1/4(Σ) for all τh ∈ S0

h(Σ). (5)

Then there exists a constant cκ > 1 such that

κ
(

M−1
h DhM−>h Vh

)
≤ cκ

where, for k, `= 1, . . . ,N,

Vh[`,k] = 〈V ϕ0
k ,ϕ

0
` 〉Σ , Dh[`,k] = 〈Dψk,ψ`〉Σ , Mh[`,k] = 〈ϕ0

k ,ψ`〉L2(Σ) .
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Thus we can use C−1
V = M−1

h DhM−>h as a preconditioner for Vh. Since Mh is sparse
and spectrally equivalent to a diagonal matrix, the inverse M−1

h can be computed
efficiently. It remains to define, for given S0

h(Σ), a suitable boundary element space
Yh such that the stability condition (5) is satisfied. In what follows we will discuss a
possible choice.

If we choose Yh = S0
h(Σ) for the discretization of the hypersingular operator D,

then Mh becomes diagonal and is therefore easily invertible. In order to prove the
stability condition (5) we need to establish the H1/4(Σ)–stability of the L2(Σ)–
projection Q0

h : L2(Σ)→ S0
h(Σ)⊂ L2(Σ) which is defined as

〈Q0
hv,τh〉L2(Σ) = 〈v,τh〉L2(Σ) for all τh ∈ S0

h(Σ).

Following [7], and when assuming local quasi-uniformity of the boundary element
mesh ΣN we are able to establish the stability of Q0

h : H1/4(Σ)→ H1/4(Σ), see [2]
for a more detailed discussion: For ` = 1, ...,N we define I(`) to be the index set
of the boundary element σ` and all its adjacent elements. We assume the boundary
element mesh ΣN to be locally quasi-uniform, i.e. there exists a constant cL ≥ 1 such
that

1
cL
≤ h`

hk
≤ cL for all k ∈ I(`) and `= 1, ...,N.

In this case the operator Q0
h : H1/4(Σ)→ H1/4(Σ) is bounded, i.e. there exists a

constant c0
S > 0 such that

∥∥Q0
hv
∥∥

H1/4(Σ)
≤ c0

S ‖v‖H1/4(Σ) for all v ∈ H1/4(Σ). (6)

By using the stability estimate (6) we can conclude

1
c0

S
‖τh‖H−1/4(Σ) ≤ sup

06=vh∈S0
h(Σ)

〈τh,vh〉L2(Σ)

‖vh‖H1/4(Σ)

for all τh ∈ S0
h(Σ).

Hence the stability condition (5) holds and we can use C−1
V = M−1

h DhM−>h as a
preconditioner for Vh.

4 Numerical results

For the numerical experiments we choose Ω = (0,1), T = 1, and we consider
the model problem (1) with homogeneous Dirichlet conditions g = 0, and some
given initial datum u0 satisfying the compatibility conditions u0(0) = u0(1) = 0.
The Galerkin boundary element discretization of the variational formulation (3) is
done by piecewise constant basis functions. The resulting system of linear equa-
tions Vhw = f is solved by using the GMRES method. As a preconditioner we use
the discretization C−1

V = M−1
h DhM−>h of the hypersingular operator D with piece-

wise constant basis functions.
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Uniform refinement

The first example corresponds to the initial datum u0(x) = sin 2πx and a globally
uniform boundary element mesh of mesh size h = 2−L. Table 1 shows the L2(Σ)–
error ‖w−wh‖L2(Σ) and the estimated order of convergence (eoc), which is linear
as expected. Moreover, the condition numbers of the stiffness matrix Vh and of the
preconditioned matrix C−1

V Vh as well as the number of iterations to reach a relative
accuracy of 10−8 are given which confirm the theoretical estimates.

Table 1 Error, condition and iteration numbers in the case of uniform refinement

L N ‖w−wh‖L2(Σ) eoc κ(Vh) It. κ(C−1
V Vh) It.

0 2 2.249 - 1.001 1 1.002 1
1 4 1.311 0.778 2.808 2 1.279 2
2 8 0.658 0.996 4.905 4 1.422 4
3 16 0.324 1.021 7.548 8 1.486 8
4 32 0.160 1.017 11.140 16 1.541 14
5 64 0.079 1.010 16.724 31 1.563 13
6 128 0.040 1.006 13.470 41 1.590 13
7 256 0.020 1.003 22.053 50 1.615 12
8 512 0.010 1.001 32.043 59 1.636 12
9 1024 0.005 1.001 60.957 70 1.777 11
10 2048 0.002 1.000 88.488 82 1.762 11
11 4096 0.001 1.000 125.957 96 1.765 10

Adaptive refinement

For the second example we consider the initial datum u0(x) = 5e−10x sin πx which
motivates the use of a locally quasi-uniform boundary element mesh resulting from
some adaptive refinement strategy. The numerical results as given in Table 2 again
confirm the theoretical findings, in particular the robustness of the proposed precon-
ditioning strategy in the case of an adaptive refinement which is not the case when
using none or only diagonal preconditioning C̃V = diagVh.

5 Conclusions and outlook

In this note we have described a space–time boundary element discretization of the
spatially one-dimensional heat equation and an efficient and robust preconditioning
strategy which is based on the use of boundary integral operators of opposite orders,
but which requires a suitable stability condition for the boundary element spaces
used for the discretization. In the particular case of the spatially one-dimensional
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Table 2 Error, condition and iteration numbers in the case of adaptive refinement

L N ‖w−wh‖L2(Σ) κ(Vh) It. κ(C̃−1
V Vh) It. κ(C−1

V Vh) It.

0 2 1.886 1.00 2 1.001 2 1.002 2
1 3 1.637 3.97 3 2.553 3 1.16 3
2 5 1.272 12.23 5 4.055 4 1.166 4
3 7 0.914 34.21 7 3.611 6 1.156 6
4 9 0.615 92.08 9 3.164 8 1.149 8
5 11 0.401 118.59 11 2.945 10 1.224 10
6 13 0.267 338.26 13 2.803 12 1.21 12
7 20 0.166 621.77 20 3.524 18 1.197 13
8 31 0.101 1608.08 31 4.457 27 1.252 12
9 47 0.063 2344.90 47 5.779 32 1.574 11
10 74 0.039 6141.47 74 8.348 37 1.692 11
11 114 0.024 8409.92 114 10.950 42 1.561 10
12 177 0.015 23007.60 173 14.324 47 1.716 10
13 278 0.010 27528.30 200 21.094 53 1.677 10

heat equation we can use the space S0
h(Σ) of piecewise constant basis functions to

discretize both the single layer and the hypersingular boundary integral operator V
and D, respectively. This is due to the inclusion S0

h(Σ) ⊂ H1/4(Σ) where the latter
is the Dirichlet trace space of the anisotropic Sobolev space H1,1/2(Q). In the case
of a spatially two- or three-dimensional domain Ω a conformal approximation of
the Dirichlet trace space H1/2,1/4(Σ) and therefore the discretization of the hyper-
singular integral operator D requires the use of continuous basis functions. Hence,
to ensure the stability condition (5) we may use the space S1

h(Σ) of piecewise linear
and continuous basis functions for the discretization of V and D, respectively, see
[7, Theorem 3.2], and when assuming some appropriate mesh conditions locally [7,
Section 4]. However, due to the approximation properties of S1

h(Σ) such an approach
is restricted to spatial domains Ω with smooth boundary where the unknown flux is
continuous.

When using the discontinuous boundary element space S0
h(Σ) for the approxi-

mation of the unknown flux we need to choose an appropriate boundary element
space Yh to ensure the stability condition (5). A possible approach is the use of a
dual mesh using piecewise constant basis functions for the approximation of V , and
piecewise linear and continuous basis functions for the approximation of D, see Fig.
2 for the situation in 1D. For a more detailed analysis of the proposed precondi-
tioning strategy and suitable choices of stable boundary element spaces we refer to
[2].
An efficient solution of local Dirichlet boundary value problems is an important tool
when considering domain decomposition methods for the heat equation, see e.g. [9]
in the case of the Laplace equation. Moreover, the preconditioning strategy of us-
ing operators of opposite order can also be used when considering related Schur
complement systems on the skeleton, as they also appear in tearing and intercon-
necting domain decomposition methods, see, e.g., [4]. This also covers the coupling
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Fig. 2 Sample dual mesh.
The piecewise linear and
continuous functions ϕ1

i are
used for the discretization of
D. The piecewise constant
basis functions ϕ̃0

i are used
for the discretization of V

0 0.2 0.4 0.6 0.8 1
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4 ϕ1
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ϕ̃0
1 ϕ̃0

2 ϕ̃0
3 ϕ̃0

4 ϕ̃0
5

t

of space–time finite and boundary element methods. Related results on the stability
and error analysis as well as on efficient solution strategies for space–time domain
decomposition methods will be published elsewhere.
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