
Technische Universität Graz

On space-time finite element domain decomposition

methods for the heat equation

O. Steinbach, P. Gaulhofer

Berichte aus dem

Institut für Angewandte Mathematik

Bericht 2021/4





Technische Universität Graz

On space-time finite element domain decomposition

methods for the heat equation

O. Steinbach, P. Gaulhofer

Berichte aus dem

Institut für Angewandte Mathematik

Bericht 2021/4



Technische Universität Graz

Institut für Angewandte Mathematik

Steyrergasse 30
A 8010 Graz

WWW: http://www.applied.math.tugraz.at

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.



On space-time finite element domain
decomposition methods for the heat equation

Olaf Steinbach and Philipp Gaulhofer

Institut für Angewandte Mathematik, TU Graz,
Steyrergasse 30, 8010 Graz, Austria

Abstract

For the space-time finite element discretization of the heat equation
we propose to use a non-overlapping domain decomposition method.
The space-time domain is decomposed into p subdomains which can be
arbitrary in space and time. All interior degrees of freedom are elim-
inated by using direct solvers locally, and the resulting Schur com-
plement system is solved by using a global GMRES method. First
numerical results indicate the potential of space-time domain decom-
position methods.

1 Introduction

Space-time discretization methods became very popular in recent years, see
for example the review article [12], and the references given therein. Ap-
plications in mind involve not only the direct simulation of time-dependent
partial differential equations in fixed or moving domains, but also problems
from optimization, optimal control, and inverse problems. The solution of
the latter applications can be characterized by a coupled problem of a primal
forward problem, and an adjoint backward problem, which motivates the use
of space-time methods for the solution of the global problem in the space-
time domain. As an example we mention a distributed control problem for
the heat equation as considered in [6]. Space-time discretization methods
also allow the use of general and unstructured finite elements, and therefore
an adaptive resolution in space and time simultaneously. But the solution of
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the overall global system in space and time requires the use of appropriate
iterative solution strategies in parallel. Besides a pure parallelization strat-
egy using distributed memory and matrix vector products in parallel, domain
decomposition methods can be used for both the parallelization and the con-
strution of suitable preconditioners. When doing a domain decomposition in
space only, we may use the possibilty to parallelize in time, where the latter
can be done by using the parareal algorithm [8].

Following the well established approaches for domain decomposition meth-
ods for elliptic problems, e.g., [1, 5], we first consider the global space-time
finite element discretization of the heat equation, using, e.g., lowest order
piecewise linear continuous basis functions. Using a non-overlapping domain
decomposition of the space-time domain, and reordering the global stiffness
matrix accordingly, we end up with a block system of linear equations, where
we can eliminate all local degrees of freedom, e.g., using direct solution meth-
ods locally. The resulting Schur complement system is then solved by a global
GMRES iteration. In the case of a one-dimensional spatial domain we will
consider different space-time domain decomposition methods, e.g., domain
decompositions in space, in time, in space and time, and interfaces which
are obique in space and time. Although we will not consider precondition-
ing strategies in detail at this time, we will discuss possible preconditioners
for the situations mentioned above. In the particular case of a domain de-
composition into time slabs our approach is strongly related to the parareal
algorithm. In any case, the numerical results as presented in this contribution
indicate the great potential of space-time domain decomposition methods.

2 Space-time finite element methods

As a model problem we consider the Dirichlet boundary value problem for
the heat equation,

∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),
u(x, t) = 0 for (x, t) ∈ Σ := ∂Ω× (0, T ),
u(x, 0) = 0 for x ∈ Ω,

(1)

where Ω ⊂ Rn, n = 1, 2, 3, is some bounded Lipschitz domain, T > 0 is
a finite time horizon, and f is some given source. For simplicity we only
consider homogeneous boundary and initial conditions, but inhomogeneous
data as well as other types of boundary conditions can be handled as well.
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The variational formulation of (1) is to find u ∈ X such that

a(u, v) :=

∫ T

0

∫
Ω

[
∂tu v +∇xu · ∇xv

]
dx dt =

∫ T

0

∫
Ω

f v dx dt = 〈f, v〉Q (2)

is satisfied for all v ∈ Y . Here we use the standard Bochner spaces

X := L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω)), Y := L2(0, T ;H1
0 (Ω)),

including zero boundary and initial conditions, with the norms

‖v‖Y := ‖∇xv‖L2(Q), ‖u‖X :=
√
‖∂tu‖2

Y ∗ + ‖u‖2
Y =

√
‖w‖2

Y + ‖u‖2
Y ,

where w ∈ Y is the unique solution of the variational problem∫ T

0

∫
Ω

∇xw · ∇xv dx dt =

∫ T

0

∫
Ω

∂tu v dx dt for all v ∈ Y. (3)

Unique solvability of the variational problem (2) is based on the inf–sup
stability condition [10, 11]

1√
2
‖u‖X ≤ sup

06=v∈Y

a(u, v)

‖v‖Y
for all u ∈ X. (4)

For the discretization of the variational formulation (2) we introduce conform-
ing space-time finite element spaces Xh and Yh, where we assume Xh ⊂ Yh,
i.e., we use the finite element spaces Xh = Yh of piecewise linear and continu-
ous basis functions, defined with respect to some admissible decomposition of
the space-time domain Q into shape regular simplicial finite elements. Then,
the Galerkin formulation of (2) is to find uh ∈ Xh such that

a(uh, vh) = 〈f, vh〉Q for all vh ∈ Yh, (5)

and unique solvability of (5) follows from the discrete inf-sup stability con-
dition

1√
2
‖uh‖Xh

≤ sup
06=vh∈Yh

a(uh, vh)

‖vh‖Y
for all uh ∈ Xh. (6)

Note that in (6) we use the discrete norm

‖u‖Xh
:=
√
‖wh‖2

Y + ‖u‖2
Y for u ∈ X,
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where wh ∈ Yh is the unique solution of the Galerkin variational formulation∫ T

0

∫
Ω

∇xwh · ∇xvh dx dt =

∫ T

0

∫
Ω

∂tu vh dx dt for all vh ∈ Yh. (7)

From (6) we then conclude the quasi-optimal a priori error estimate

‖u− uh‖Xh
≤ 3 inf

vh∈Xh

‖u− vh‖X ,

and when assuming u ∈ H2(Q) we finally obtain, when using piecewise linear
continuous basis functions, i.e., Xh = span{ϕk}Mk=1,

‖∇x(u− uh)‖L2(Q) ≤ c h |u|H2(Q). (8)

The Galerkin variational formulation (5) is equivalent to a linear system of
algebraic equations, Khu = f , where the stiffness matrix Kh and the load
vector f are given as, for k, ` = 1, . . . ,M ,

Kh[`, k] =

∫
Q

[
∂tϕk(x, t)ϕ`(x, t) +∇xϕk(x, t) · ∇xϕ`(x, t)

]
dx dt, (9)

f` =

∫
Q

f(x, t)ϕ`(x, t) dx dt .

For a more detailed numerical analysis of this space-time finite element
method we refer to [11], and the review article [12].

3 A space-time domain decomposition method

Although the finite element stiffness matrix Kh as defined in (9) is invertible,
it is neither symmetric nor definite. Hence we will use the GMRES method
as iterative solver. But since we are discretizing the problem in the whole
space-time domain Q, preconditioning and parallelization both in space and
time are mandatory.

One possible approach is to use a non-overlapping domain decomposition
method as originally designed for elliptic problems, see, e.g., [1, 5]. For the
space-time domain Q := Ω× (0, T ) ⊂ Rn+1 we consider a domain decompo-
sition into p non-overlapping subdomains,

Q =

p⋃
i=1

Qi, Qi ∩Qj = ∅ for i 6= j.
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We do not necessarily assume any tensor-product structure of the subdomains
Qi as shown in Fig. 1 a), b), d), f), we may also consider subdomains arbitrary
in space and time, see, e.g., Fig. 1 c), e). We assume that the underlying
space-time finite element mesh is resolved by the domain decomposition. In
this case we can rearrange all global degrees of freedom u into local interior
ones per subdomain, i.e.,

uI =
(
u>I,1, . . . , u

>
I,p

)>
,

and the remaining global degrees of freedom uC on the coupling boundaries.
Hence we can rewrite the linear system Khu = f as(

KII KCI

KIC KCC

)(
uI
uC

)
=

(
f
I

f
C

)
, (10)

with the block-diagonal matrix

KII = diag
(
K11 . . . Kpp

)
,

where the block matrices Kii correspond to the interior degrees of freedom
in the subdomain Qi. Instead of (10) we now consider the Schur complement
system

SCuC := (KCC −KICK
−1
II KCI)uC = f

C
−KICK

−1
II f I

=: f, (11)

which will be solved by using some global iterative solver such as GMRES.
At this time we will not focus on preconditioning the Schur complement
system (11), but we will consider different cases of possible space-time domain
decompositions as given in Fig. 1 and the influence of the resulting interface
in the space-time domain.

4 Numerical results

In this section we present first numerical results for the space-time finite ele-
ment domain decomposition method in the case of a one-dimensional spatial
domain Ω = (0, 1) and the time horizon T = 1, i.e., we have Q = (0, 1)2.
In all examples we consider the smooth function u(x, t) = cos πt sinπx to
ensure optimal linear convergence in L2(0, T ;H1

0 (Ω)) as expected from the
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Figure 1: Domain decomposition of the
space-time domain Q = Ω× (0, T ) ⊂ R2.
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a priori error estimate (8). In Table 1 we also present the error in L2(Q)
where we observe second order convergence in h. Note that DoF denotes the
global number of degrees of freedom, Iter is the number of GMRES iterations
without preconditioning to reach a relative accuracy of ε = 10−7.

In Table 1 we first present the results for the case without domain decom-
position, and for the domain decompositions a)-d) as depicted in Fig. 1. We
observe that the spatial domain decomposition a) and the diagonal decom-
position c) give rather good and comparable results, while the results for the
other two cases show a more significant dependence on the mesh size h. When
considering the Schur complement system (11) in the case of the spatial de-
composition a) we note that the Schur complement matrix SC is the finite el-
ement approximation of an continuous operator S : H1/4(ΓC)→ H−1/4(ΓC),
representing the interface conditions along the coupling boundary ΓC in time
only. Since S behaves like the heat potential hypersingular boundary inte-
gral operator, e.g., [3], in particular it is an operator of order 1

2
, the spectral

condition number of SC behaves like h−1/2, and hence the number of itera-
tions to reach a given accuracy grows as h−1/4, which corresponds to a factor
of 1.19 in the case of a uniform mesh refinement. This behavior is clearly
seen in the last three refinement steps. To bound the number of required
iterations independent of the mesh level, we can use a suitable precondi-
tioning strategy. One possible option is the use of operator preconditioning,
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i.e., the Galerkin discretization of the single layer heat potential as described
in [4]. The situation is similar in the case c) of a diagonal domain decom-
position. Here, the interface ΓC is the diagonal t = x, and so the Schur
complement matrix SC is the finite element approximation of a continuous
operator S : H1/2,1/4(ΓC) → H−1/2,−1/4(Γ), using boundary trace spaces of
anisotropic Sobolev spaces in the domain. Note that the mapping properties
of related boundary integral operators remain true, and so operator precon-
ditioning can be used also in this case, as well as in the higher dimensional
case Ω ⊂ Rn, n = 2, 3.

Table 1: Numerical results for different space-time domain decompositions.

GMRES iterations
DoF ‖u− uh‖L2(Q) ‖∇x(u− uh)‖L2(Q) no a) b) c) d)
12 7.072 –2 5.969 –1 12 4 3 3 6
56 1.912 –2 1.89 3.057 –1 0.97 44 8 7 7 14
240 4.863 –3 1.98 1.538 –1 0.99 135 16 15 15 30
992 1.219 –3 2.00 7.705 –2 1.00 363 26 31 23 56

4.032 3.048 –4 2.00 3.855 –2 1.00 928 33 63 29 95
16.256 7.618 –5 2.00 1.928 –2 1.00 2414 39 127 38 161
65.280 1.907 –5 2.00 9.638 –3 1.00 6536 46 201 48 285

As the uniform finite element meshes used for the domain decompositions
a)-d) can be described within time-slabs, the proposed space-time domain
decomposition method can be applied also in the case of general space-time
finite element meshes. In the case e) of a diagonal cross domain decomposi-
tion we apply a recursive red refinement within the subdomains, as depicted
in Table 2. We observe similar results as in the case d) of a cross decomposi-
tion. Again we may use a suitable preconditioning strategy which has to take
care of the coarse grid involved. A possible approach is the combination of
opposite operator preconditioning locally, with global preconditioning using
BDDC [7].

The last example covers case f) of a domain decomposition into time
slabs, where we consider up to p = 16 temporal subdomains, see Table 3.
Even without preconditioning of the global Schur complement system (11)
we observe a rather good behavior in the number of required iterations. It is
obvious that this approach is strongly related to the parareal algorithm [8]
where the coarse grid corresponds to the time slabs of the domain decompo-
sition.
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Table 2: Space-time finite element mesh and numerical results for case e) of
a diagonal cross domain decomposition with 4 subdomains.
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DoF ‖u− uh‖L2(Q) ‖∇x(u− uh)‖L2(Q) Iter
27 2.57 –2 3.52 –1 6
119 6.93 –3 1.89 1.77 –1 0.99 14
495 1.82 –3 1.93 8.89 –2 1.00 28

2.015 4.64 –4 1.97 4.45 –2 1.00 51
8.127 1.17 –4 1.99 2.23 –2 1.00 85
32.639 2.92 –5 2.00 1.11 –2 0.99 138

Table 3: Numerical results for a domain decomposition into time slabs.

DoF p = 2 p = 4 p = 8 p = 16
12 3
56 7 17
240 15 29 49
992 31 36 65 101

4.032 63 65 91 132
16.256 127 128 133 198
65.280 201 226 255 280
261.632 281 311 383 497

5 Conclusions

In this note we have presented first numerical results for the numerical so-
lution of the heat equation by using standard domain decomposition meth-
ods. This approach is based on a space-time finite element discretization,
where the resulting global stiffness matrix is, as in standard domain decom-
position methods for elliptic problems, reordered with respect to some non-
overlapping domain decomposition of the space-time domain. Eliminating
the local degrees of freedom, we finally solve the resulting Schur comple-
ment system by a GMRES method without preconditioning. In the case
of rather simple domain decompositions of the space-time domain for a one-
dimensional spatial domain we discuss the influence of the choice of the inter-
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face in the space-time setting. Since the single layer heat potential boundary
integral operator can be defined for any manifold in the space-time domain,
it can be used for operator preconditioning of the global Schur complement
system, in combination with some coarse grid preconditioning as in BDDC
[7], or in space-time FETI methods [9]. On the other hand, the global Schur
complement matrix is spectrally equivalent to the global Galerkin matrix
of the hypersingular heat potential boundary integral operator, which then
allows the use of multigrid methods for an iterative solution, see [2] for a
related discussion in the case of boundary element domain decomposition
methods for elliptic problems. In the case of a space-time domain decom-
position into time slabs the proposed approach is obviously related to the
parareal algorithm [8].

This contribution only gives first numerical results for space-time finite
element domain decomposition methods for parabolic problems, and there
are many open problems to be resolved in future work. In addition to dif-
ferent preconditioning strategies as already discussed this covers the parallel
implementation in the case of two- or three-dimensional spatial domains, and
the application to more complex parabolic equations including problems from
fluid mechanics. Some of these topics are already ongoing work, and related
results will be published elsewhere.
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