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Abstract

Fluid-structure coupled problems are investigated to predict the vibro-acoustic
behavior of submerged bodies. The finite element method is applied for the structural
part, whereas the boundary element method is used for the fluid domain. The focus
of this paper is on partly immersed bodies. The fluid problem is favorably modeled
by a half-space formulation. This way, the Dirichlet boundary condition on the free
fluid surface is incorporated by a half-space fundamental solution. A fast multipole
implementation is presented for the half-space problem. In case of a high density of
the fluid, the forces due to the acoustic pressure which act on the structure can not
be neglected. Thus, a strong coupling scheme is applied. An iterative solver is used
to handle the coupled system. The efficiency of the proposed approach is discussed
using a realistic model problem.

1 Introduction

In recent years, the acoustic properties have become a major purchasing criteria for many
products. Therefore, special attention is paid to the simulation of the sound radiation
of vibrating structures. Basic concepts of acoustics are introduced in [1, 2, 3]. Typi-
cally, analytic solutions can only be derived for relative simple structures. More complex
structures are treated by discretization methods like the finite element method (FEM) [4]
and the boundary element method (BEM) [5], which only discretizes the boundary of the
acoustic domain. The application of the BEM to the Helmholtz equation in acoustics is
discussed in [6, 7, 8]. A more engineering oriented discussion is given in [9]. For exterior
acoustic problems, the main advantage of the BEM compared to the FEM is, that the
Sommerfeld radiation condition is implicitly fulfilled by the applied fundamental solution.
However, non-uniqueness problems may occur due to spurious modes. Several formulations
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are known to overcome this phenomenon. Besides the CHIEF method [10] the Burton–
Miller formulation [11, 12] is widely applied. Recently, stabilized BE methods have been
presented for Lipschitz boundaries in [13, 14]. The CHIEF method introduces some addi-
tional points in the interior domain, whereas the others use a linear combination of two
boundary integral equations. The Burton–Miller approach is applied in this paper.

The BEM reduces the problem to a formulation on the boundary and hence the num-
ber N of degrees of freedom. However, the standard BEM leads to fully populated matrices,
which is a major drawback compared to sparse matrices resulting from FE discretizations.
If additionally a direct solver is applied to solve the BE system, an unfavorable expense
in the order of O(N3) results. Iterative methods like a GMRES [15] in combination with
suitable preconditioners help to improve this to O(N2). The application of iterative meth-
ods to BEM matrices in acoustics is discussed in [16], which deals with scattering at a rigid
cylinder.

The use of the fast multipole method (FMM) reduces the memory requirements and
computation times of the matrix-vector product to almost linear complexity. The FMM
was first introduced for integral equations of potential theory [17]. The basic idea is to use
a series expansion of the kernel to separate the variables and to use a hierarchical clustering
to compute the coefficients of the expansion efficiently. A diagonal form of the multipole
expansion is discussed in [18, 19, 20]. Here, the convolutions for the translation operators
are transfered to a simple multiplication by transformation into the Fourier space. The
resulting overall expense using a multilevel scheme is now O(N log2 N) [21]. A survey of
the FMM for the Helmholtz equation is given by [22, 23]. In various papers, the FMM is
applied to acoustic problems. An interior acoustic tube is examined in [24], while scattering
problems are investigated in [25] and for multiple objects in [26]. The latter one also treats
the sound radiation of an engine. Application of the FMM in combination with multifield
problems is discussed in [27]. Besides the FMM, Adaptive Cross Approximations and H-
matrices [28, 7, 29] are used to improve the efficiency of the BEM. A comparison of fast
methods is presented in [30, 31].

Besides full-space problems, where a radiating structure is within an infinite acoustic
domain, also problems with a given boundary condition on an infinite plane are of interest.
These problems can efficiently be simulated using a half-space fundamental solution [32,
33, 34].

In this paper, fluid-structure coupled problems are investigated. An introduction to this
topic is for instance given in [35]. Besides FE-FE coupled problems [4], FE-BE coupling
schemes are used for exterior problems [36, 37]. A preconditioning strategy for the iterative
solution of the coupled system is proposed by [38]. Also non-conforming coupling schemes
with Lagrange multipliers exist for fluid-structure coupled problems [27], where the BE
mesh is set up completely independent of the FE mesh. A comparison of the last mentioned
methods including different preconditioners is given in [39].

Besides full-space problems, where a radiating structure is within an infinite acoustic
domain, also problems with a given boundary condition on an infinite plane are of interest.
Such problems arise naturally when computing the radiation of sound from ships. Half-
space problems can efficiently be simulated using a half-space fundamental solution [32,
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33, 34]. Application of these techniques to a ship model is reported in [40, 41].
In this paper, the fast multipole method is applied to the BEM of the half-space prob-

lem. A strong coupling scheme between the FEM for the structural part and the BEM
for the exterior fluid domain is presented. In Section 2, the governing equations of the
underlying problem are discussed in the frequency domain. In Section 3, the application of
the BEM to the half-space problem and its implementation using the FMM is shown. Fur-
thermore, the FE representation of the structural domain and the fully coupled approach
are outlined in Sections 4 and 5, respectively. The accuracy and efficiency of the half-space
FMM approach is discussed by means of a realistic model problem in Section 6.

2 Governing Equations of the Coupled Problem

In the following, the governing equations for the fluid-structure interaction problem are
presented. All variables are transformed to the frequency domain with the time harmonic
behavior e−iωt, where ω = 2 π f denotes the angular frequency and i is the imaginary unit.
The structural domain Ωs (cf. Figure 1 left) is assumed to be linear elastic with the Lamé
constants λ and µ. The material is homogeneous with the structural density ̺s. The
corresponding elastodynamic problem for the displacements u is given by

ω2̺s u(x) + µ∆u(x) + (λ + µ) grad div u(x) = 0 for x ∈ Ωs ⊂ R
3 , (1)

T u(x) = ts(x) for x ∈ Γs , (2)

and additionally the transmission condition introduced by (6) and where Γs is the surface
of the structure which is not in contact with the fluid, see Figure 1, left.

ΓIΓI ΓR

ΓHΓHΓH
ΓS

tf

ts

Ωs

Ωa ΩR

nn

R

Figure 1: Domains and boundaries of the coupled problem (left) and auxiliary problem of
the fluid domain for the derivation of the representation formula (right).

The Laplacian is denoted by ∆ and T represents the traction operator. The structure is
excited by the prescribed tractions ts. The time harmonic Helmholtz equation is applied to
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describe the acoustic pressure p in the fluid domain Ωa. Since a partly immersed structure
is investigated in this paper, the free fluid surface ΓH also has to be modeled by a Dirichlet
boundary condition. The acoustic boundary value problem reads

∆p(x) + κ2 p(x) = 0 for x ∈ Ωa, (3)

p(x) = 0 for x ∈ ΓH , (4)
∣
∣
∣
∣

∂p

∂R
− i κ p

∣
∣
∣
∣

<
cf

R2
for R = |x| → ∞ , (5)

where the additional transmission condition is given by (7). The circular wave number is
denoted by κ = ω

cf
and the speed of sound is cf . Equation (5) is called Sommerfeld radiation

condition, which ensures an outgoing wave within the exterior acoustic domain [5]. Since
a fluid with a high density is used in the following, the tractions tf due to the acoustic
pressure are not negligible. Therefore, a strong coupling scheme has to be applied, which
is represented by the two transmission conditions

T u(x) = tf(x) = −p(x) nx for x ∈ ΓI, (6)

q(x) :=
∂p(x)

∂nx

= ω2̺fu(x) nx for x ∈ ΓI , (7)

where the acoustic flux q is introduced. In the next two sections, the application of the BEM
for the acoustic boundary value problem and a FEM discretization for the elastodynamic
problem is outlined.

3 Fluid Domain: Boundary Element Method

To derive a boundary integral representation of the pressure solution of the acoustic prob-
lem, an auxiliary domain ΩR as depicted in Figure 1 (right) is introduced which reaches
Ωa in the limit case R → ∞. The closed boundary of ΩR is split into the three parts
Γ I ∪ ΓH ∪ ΓR = Γ . Starting point is Green’s second identity

∫

ΩR

△p(y) g(y) dy =

∫

ΩR

△g(y) p(y) dy +

∫

Γ

g(y)
∂p(y)

∂ny

dsy −

∫

Γ

p(y)
∂g(y)

∂ny

dsy (8)

for the closed domain ΩR with the exterior normal ny. Plugging (3) into (8) yields

∫

ΩR

(
△g(y) + κ2g(y)

)
p(y) dy +

∫

Γ

g(y)
∂p(y)

∂ny

dsy −

∫

Γ

∂g(y)

∂ny

p(y) dsy = 0 .

Choosing the function g(y) as the fundamental solution P ∗(x, y) of the Helmholtz equation,
leads to the representation formula

p(x) =

∫

Γ

P ∗(x, y)
∂p(y)

∂ny

dsy −

∫

Γ

∂P ∗(x, y)

∂ny

p(y) dsy for x ∈ ΩR . (9)
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For the investigated half-space problem, the modified fundamental solution [32, 33, 34]

P ∗(x, y) =
1

4 π

ei κ |x−y|

|x − y|
+ RH

1

4 π

ei κ |x̃−y|

|x̃ − y|
, (10)

is advantageous. For a pressure-free water surface, a reflexion coefficient RH = −1 has
to be chosen. For simplicity it is assumed that the half-space boundary ΓH is located at
x3 = 0. Thus, x̃ = (x1, x2,−x3) denotes a point which is mirrored at the plane x3 = 0. To
derive a simpler version of the representation formula, the integrals in (9) over the three
boundaries ΓI, ΓH and ΓR are investigated in detail.

Using the Sommerfeld radiation condition (5) in the usual way, one can show, that

∫

ΓR

P ∗(x, y)
∂p(y)

∂ny

dsy −

∫

ΓR

∂P ∗(x, y)

∂ny

p(y) dsy → 0 as R → ∞

and thus these integrals vanish in the limit process R → ∞. A closer look to the integrals
over the half-space surface reveals

∫

ΓH

P ∗(x, y)
∂p(y)

∂ny

dsy −

∫

ΓH

∂P ∗(x, y)

∂ny

p(y) dsy = 0 .

The first integral vanishes, since the modified fundamental solution (10) is zero for y ∈ ΓH.
The second one cancels out because of the zero pressure boundary condition on ΓH. This
way, one obtains a simplified version of the representation formula (9)

p(x) =

∫

ΓI

P ∗(x, y)
∂p(y)

∂ny

dsy −

∫

ΓI

∂P ∗(x, y)

∂ny

p(y) dsy , x ∈ Ωa . (11)

Advantages of the half-space approach are, that the zero pressure boundary condition is
exactly fulfilled and the water surface does not have to be meshed at all which reduces the
number of degrees of freedom. The representation formula (9) is valid for a point x within
the acoustic domain Ωa.

The limit process x → ΓI yields the boundary integral equations

1

2
p(x) =

∫

ΓI

P ∗(x, y)
∂p(y)

∂ny

dsy

︸ ︷︷ ︸

=:(V q)(x)

−

∫

ΓI

∂P ∗(x, y)

∂ny

p(y) dsy

︸ ︷︷ ︸

=:(Kp)(x)

, x ∈ ΓI , (12)

1

2
q(x) =

∫

ΓI

∂P ∗(x, y)

∂nx

∂p(y)

∂ny

dsy

︸ ︷︷ ︸

=:(K ′q)(x)

−
∂

∂nx

∫

ΓI

∂P ∗(x, y)

∂ny

p(y) dsy

︸ ︷︷ ︸

=:−(Dp)(x)

, x ∈ ΓI , (13)

for a smooth boundary with the single layer potential V , the double layer potential K,
its adjoint K ′ and the hypersingular operator D. If the point x is on the half-space
plane x3 = 0, the coefficient of the integral-free term changes due to an extra jump rela-
tion [33, 34]. In the following, a Galerkin variational formulation is used for which this
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extended jump relation is not needed, if the integration points are not located on the
half-space plane.

It is well known, that neither the boundary integral equation (12) nor the hypersingular
boundary integral equation (13) has an unique solution for all frequencies. Therefore, the
so-called Burton–Miller approach [12] is applied to overcome the non-uniqueness problem.
This method uses a linear combination of the boundary integral equations (12) and (13)
with a scalar coefficient α = −i/κ. The Galerkin formulation reads

∫

ΓI

ν(x)

(
1

2
I + K

)

p(x) dsx − α

∫

ΓI

ν(x)(Dp)(x) dsx

=

∫

ΓI

ν(x)(V q)(x) dsx + α

∫

ΓI

ν(x)

(

−
1

2
I + K ′

)

q(x) dsx (14)

with a weighting function ν(x). The boundary is discretized with plane triangular elements.
Piecewise linear and continuous basis functions ϕi(x) are used for the approximation of p
and ν and piecewise constant ones for q. The resulting system of linear equations reads

(
1

2
M + K − αD

)

︸ ︷︷ ︸

=:KBE

p −

(

V −
1

2
αM ′ + αK ′

)

︸ ︷︷ ︸

=:CBE

q = 0 , (15)

with the nodal pressure vector p and the element flux vector q.

3.1 Standard Implementation of the Half-Space Problem

For the implementation of the modified fundamental solution, a strategy is chosen, which
is later transfered to the multipole algorithm and turns out to be quite simple and efficient.
As point x̃ in (10) is mirrored at the half-space plane, the whole model is mirrored (cf. Fig-
ure 2) for the realization. This mirror technique is also called method of images or reflexion
principle. In the following, the evaluation of the matrix-vector product w = V q is consid-
ered for the Galerkin matrix of the single-layer potential with piecewise linear test functions
and constant trial functions with a vector q

wm =

Ne∑

k=1

V [m, k] qk for m = 1, . . . , NI . (16)

The matrix entries are computed by

V [m, k] =

∫

Γ

∫

τk

νm(x) P ∗(x, y) dsydsx

=

∫

ΓI

∫

τk

νm(x) P (x, y) dsydsx −

∫

Γ̃I

∫

τk

νm+NI
(x) P (x, y) dsydsx , (17)

where

P (x, y) =
eiκ|x−y|

4π|x − y|
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1
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5

6

7
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9

10

11

12

x3=0

τk

τn

τ̃n

original model

mirrored model

Figure 2: Mirror technique and node order for the implementation of the half-space prob-
lem. Only the BE-elements on ΓI are mirrored.

is the standard fundamental solution, and Γ̃I is the mirror image of ΓI. In the computation
of a matrix entry, the integration routines are not only called for the interaction of an
element τk with an original element τn but also for the interaction with the mirrored
element τ̃n, see Fig. 2. Therefore, the identical set of integration routines are applied for
both cases. Please note, that element τk is always one of the Ne non-mirrored elements of
the model. Finally, the result of the second call, being computed for the mirrored elements,
has to be subtracted from the corresponding non-mirrored entries. This is an easy task,
if a special node ordering is employed, as visualized in Figure 2. As a Dirichlet boundary
condition is specified for the NH nodes on the half-space plane x3=0, these pressure degrees
of freedom drop out during the setup of the Galerkin matrix. Therefore, negative or zero
node-identifiers are assigned to them (cf. gray nodes in Fig 2). Consequently, the NI non-
half-space nodes of the original model start with node-id 1 (black nodes). The node-ids
of the mirrored-nodes (white colored) simply result from the corresponding non-mirrored
node-ids by addition of NI.

The memory consumption for KBE = [ · ]NI×NI
and CBE = [ · ]NI×Ne

of (15) is not
altered by the mirror-technique. Slightly more memory is needed to store the additional
model data with the mirrored elements and nodes.

Due to the realization of the half-space fundamental solution (10) by an additional
integration, the computation time is slowed up by a factor f with respect to the non-
mirrored model (here physically not meaningful), with 1 < f < 2. It is less than 2, since
the second integration does not have to deal with singular kernels occurring for identical
elements.

For standard boundary element methods, the Galerkin matrices KBE and CBE are fully
populated resulting in memory requirements and computational efforts of order O(N2) for
a problem with N unknowns. To overcome this drawback, the FMM is applied, resulting
in an almost linear expense of order O(N log2 N). Especially, in the case of the FMM, the
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sources targets

mirrored targets

original

mirrored

D

cℓ
γ

cℓ
ξ

dy

dx

y
x

x̃
x3=0

Figure 3: Clustering of the sources and the targets. The vector between y and x is split up
into the three parts dy, D and dx. The source clusters are only located in the non-mirrored
part below the half-space plane x3=0.

mirror-technique turns out to be advantageous.

3.2 Fast Multilevel Multipole Algorithm for the Half-Space Prob-
lem

In this section, the application of the fast multipole method to half-space problems is
described. Due to the mirror-technique, the original standard version for the Helmholtz
kernel is applied. To avoid convolutions appearing for the standard translation operators,
a diagonal form which works in the Fourier space is used [18, 19, 20]. The main concept
is based on two ideas, an geometric hierarchy and an approximate expansion of the ker-
nel. Here, the geometric hierarchy is built on the modified model including the mirrored
elements. It starts with a box, containing all the elements. The set of the corresponding
indices is the so-called root cluster C0

1 . The clusters Cℓ+1
γ on the next finer level ℓ + 1 are

built by bisection of the corresponding box where the boundary elements τk are assigned to
the clusters Cℓ+1

γ with respect to their geometric center point. The geometric center point
of a cluster Cℓ

γ is denoted by cℓ
γ. It is advantageous to have only non-mirrored or mirrored

elements in a single cluster, thus the root cluster is always split along the half-space plane.
All other clusters are then split along their dominant dimensions. The clusters Cℓ+1

γ are
called the sons of the father cluster Cℓ

ξ . The bisection process is repeated recursively until
a minimal number of elements within a cluster is reached. Clusters which are not split any
more are called leaf-clusters and are denoted by C̄ℓ

γ.
Since the mirror-technique is used here, only the standard Helmholtz kernel has to be
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approximated. Starting point is the expansion of the fundamental solution in the form

ei κ |x−y|

4 π |x − y|
=

iκ

(4π)2

∫

S2

eiκ dx·sML(cℓ
γ, c

ℓ
ξ, s)e

iκ dy·s dωs (18)

where dx and dy are depicted in Figure 3. The so-called translation operator ML is defined
by [20]

ML(cℓ
γ, c

ℓ
ξ, s) :=

L∑

ℓ=0

(2ℓ + 1)iℓh
(1)
ℓ (κ|D|)Pℓ(s · D̂) , (19)

where D = cℓ
ξ − cℓ

γ and D̂ = D/‖D‖2 is the unit direction (cf. Fig 3). In the numerical
implementation, s is represented on a finite set of points on the unit sphere S

2. The pa-
rameter L is called expansion length and directly influences the accuracy of the expansion.
The semi-empirical rule [42]

L(κ, dmax) = κ dℓ
max + ce log

(
κ dℓ

max + π
)

(20)

is applied, where dℓ
max denotes the maximum cluster diameter on level ℓ, and ce is a constant

which has to be chosen by the user. Since a regular cluster tree is used, the translation
operators can be reused.

Since this expansion is only valid for well separated points, one has to distinguish
between a far-field (FF), where the expansion is admissible and a near-field (NF), which
has to be treated in the classical way. A cluster Cℓ

γ is in the near-field of the cluster Cℓ
ξ on

the same level ℓ, if the condition

|cℓ
γ − cℓ

ξ| ≤ cd max
{
rℓ
γ , r

ℓ
ξ

}
(21)

is fulfilled. Here, rℓ
γ denotes the radius of the cluster Cℓ

γ and cd is a constant which has to be
chosen larger than 2. Clusters, whose father clusters satisfy the near-field condition (21),
but themselves are not their mutual near-fields, form the interaction list (IL).

The approximate matrix-vector product of (16) with the multilevel FMM is now pre-
sented exemplarily for the single layer potential with piecewise linear test functions and
constant shape functions. The overall product reads

wm ≈
∑

k∈NF(m)

Ṽ [m, k] qk +
iκ

(4 π)2

∑

ξ|m∈C̄ℓ
ξ

∫

Γξ

νm(x)

∫

S2

R(cℓ
ξ, x, s) N ℓ

ξ (s)dωs dsx

−
iκ

(4 π)2

∑

ξ|(m+NI)∈C̄ℓ
ξ

∫

Γξ

νm+NI
(x)

∫

S2

R(cℓ
ξ, x, s) N ℓ

ξ(s)dωs dsx (22)

where

Ṽ [m, k] =

∫

ΓI

∫

τk

νm(x) P (x, y) dsydsx − δ(m, k)

∫

Γ̃I

∫

τk

νm+NI
(x) P (x, y) dsydsx (23)

9



with

δ(m, k) =

{

1 for all k ∈ NF(m + NI)

0 else .
(24)

Note, that ξ|m ∈ C̄ℓ
ξ denotes all indices ξ of leaf clusters C̄ℓ

ξ , which contain elements which
share the node m. Additionally, the relation

R(a, b, s) = eiκ(b−a)·s (25)

holds. The so-called near-field signatures N ℓ
ξ (s) are computed by a fast multipole cycle in

the following way: First, the far-field signatures F ℓ
γ(s) are computed for all non-mirrored

leaf clusters C̄ℓ
γ

F ℓ
γ(s) =

∑

k∈C̄ℓ
γ

∫

τk

R(y, cℓ
γ, s) qk dsy . (26)

After this, the far-field signatures are converted and summed up as near-field signature for
all clusters in the interaction list (IL) (outer-inner translation)

N ℓ
ξ (s) =

∑

Cℓ
γ∈IL(Cℓ

ξ
)

ML(cℓ
γ , c

ℓ
ξ, s)F

ℓ
γ(s) , (27)

where M(cℓ
γ , c

ℓ
ξ, s) is the translation operator (19). Then, for both sons, F ℓ

γ(s) is shifted to

their common father Cℓ−1
ζ by (outer-outer translation)

F ℓ−1
ζ (s) =

∑

Cℓ
γ∈ sons(Cℓ−1

ζ )

R(cℓ
γ , c

ℓ−1
ζ , s) F ℓ

γ (28)

and summed up there. The last two steps are repeated until the coarsest level is reached.
This completes the upward pass. In the downward pass, N ℓ

ζ (s) is shifted to the sons and
summed up there by (inner-inner translation)

N ℓ+1
ξ (s) = N ℓ+1

ξ (s) + R(cℓ
ζ , c

ℓ+1
ξ , s) N ℓ

ζ (s) (29)

The last step is repeated until a leaf cluster is reached. There, the solution is recovered by
the integration over the unit sphere and the elements, see (22).

The presented FMM algorithm with the mirror-technique has clearly two advantages.
First, only a small amount of clusters in the mirrored part are in the near-field of a non-
mirrored cluster. Thus, there is only a small number of additional integrations for the
sparse near-field matrix. Therefore, the computational time is only slightly increased with
respect to a non-mirrored model. As before, the memory consumption for the near-field
matrix remains unchanged. The second advantage lies in the multipole compression. Since
most of the mirrored clusters are far away from the non-mirrored ones, the interaction is
represented on a coarse level, leading to a quite efficient algorithm.
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4 Structural Domain: Finite Element Method

The discretization of the structural problem (1) and (2) results in a system of linear equa-
tions

(
−ω2M s − iωDs + Ks

)

︸ ︷︷ ︸

=:KFE

u = f s + f f , (30)

where M s and Ks denote the mass matrix and the stiffness matrix, respectively. In this
paper, Rayleigh damping is considered with the damping matrix [43]

Ds = αD M s + βD Ks , (31)

and the damping parameters αD and βD. The vector f s incorporates the tractions ts due
to the driving forces, while the vector f f results from the tractions tf on the coupling
interface ΓI and is discussed in the next section, which focuses on the formulation of the
coupled problem.

The finite element package ANSYS is utilized to set up the matrices M s, Ks and
the right hand side vector f s. They are imported into the research code by a binary
interface [44]. This data exchange only has to be done once for a given model, as M s

and Ks are frequency independent. Typically, shell elements with rotational degrees of
freedom are applied for thin structures. Thus, each node has six degrees of freedom, which
are {ux,uy,uy,θx,θy,θz}.

5 Coupled Problem

In this section, the discrete coupled system is formulated using the BE system (15), the
FE system (30) and the transmission conditions. Here, matching grids for the FE and the
BE part are considered. The first transmission condition (6) links the acoustic pressure p
with the tractions tf of the structure and reads in matrix notation

f f = −CFE p , (32)

where CFE is assembled of the element matrices

Ck
FE = −

∫

τk

NT
u nk N p dsx . (33)

Here, the matrices with the shape functions of the structure and the fluid are denoted
by Nu and N p, respectively. A lumped force loading is applied, which neglects moments.
Please note, that only nodes on the coupling interface ΓI have non-zero entries in CFE. All
other entries, including those resulting from rotational degrees of freedom, are simply set
to zero. Piecewise linear and bilinear shape functions are applied for N p and N u.

Due to the second transmission condition (7), the acoustic flux q on each boundary
element τm is computed from the structural displacements of the adjacent nodes k by

q = T qu . (34)
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where each row corresponds to

qm =
1

3
̺fω

2
∑

k∈m

uk · n
m , (35)

with the fluid density ̺f . This projection is a simple averaging which turned out to be
suitable for engineering applications [39]. Again, T q has zero entries for rotational degrees
of freedom and those related to interior structure nodes.

As outlined in [39], substituting q in the BE system (15) by (34) and f f in the FE
system (30) by (32) and eliminating u from the BE system (15) by (30) yields a Schur
complement representation of the coupled system

(
KBE − CBET q K−1

FECFE

)

︸ ︷︷ ︸

=:S

p = −CBET q K−1
FEf s , (36)

where S denotes the Schur complement.
In the following, a GMRES solver is applied for solving (36). A simple diagonal scaling

or an incomplete LU factorization of the near-field of KBE is applied as preconditioner. The
matrix-vector product with KBE and CBE is evaluated using the fast multipole method.
Two near-field matrices are set-up, one for KBE and one for CBE. Please note, only a single
multipole cycle is needed per iteration step. The far-field signature has to be computed
separately for the two loads. The remaining steps are done simultaneously. Especially, the
integration of the far-field contribution in the leaf clusters only has to be recovered once.
The inner inverse K−1

FE is computed by a LDLT factorization.

6 Numerical Results

In this section, the proposed coupling approach is applied to the vibro-acoustic simulation
of a cylindrical test structure. First, the test scenario is outlined in the following section.
Then, the pure BE half-space problem is investigated, using an artificial analytical sound
field. After this, the results of a fully coupled simulation are discussed. Finally, the
efficiency of the proposed approach is considered.

6.1 Test Scenario

The cylindrical test structure is depicted in Figure 4 (a) and (b). The hull consists of a
20m long cylinder with a radius of 1m. At both ends, circular disks and hemispherical
endcaps are mounted, resulting in a total length of 22m. The internal structure consists
of ring stiffeners, which are inserted every 0.8m along the center line. In longitudinal
direction, stiffeners are located every 30◦ with respect to the center line. Additionally, the
structure is strengthened by an intermediate floor, which is again supported by stiffeners
in longitudinal and transverse direction. The thickness of all components is 1.5 cm, and
steel (Young’s modulus=207GPa, Poisson’s ratio=0.3, density ̺s=7669kg/m3) is used as
material.

12
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Figure 4: Cylindrical test structure with waterlines (a) and internal structure with driving
forces (b).

The test structure is partly immersed in water (̺f=1000kg/m3, cf=1387m/s). The vibro-
acoustic behavior for two different drafts is investigated. In the first case, the waterline is
at a distance of 1m above the bottom of the hull, i.e. exactly one half of the structure is
submerged. Thus, the black part in Figure 4 (a) is in contact with the water. The other
waterline in the second case is at a height of (1+sin 60◦)m≈ 1.866m. In this case, also the
dark gray part of the structure is immersed.

The finite element model consists of 32,812 quadrilateral and 128 triangular elements of
the ANSYS type SHELL181. Thus, the number of structural degrees of freedom is 186,774.
Rayleigh damping as defined in (31) with αD = 1 s−1 and βD = 5 · 10−6 s is applied for this
model. A conforming coupling scheme is applied. The boundary element mesh for the fluid
part is directly generated from the faces of the structure elements. A quadrilateral element
is transfered to two triangular boundary elements. The number of fluid degrees of freedom
is 6,059 for the 1m draft and 10,403 for the draft with 1.866m, respectively.

The structure is excited by 194 forces. These act at all nodes which are marked by the
black lines in Figure 4 (b). Only two forces are plotted exemplarily. In this area of the
model, additional cross-shaped ribs are integrated below the bottom. The first 97 forces
act in x-direction. The remaining 97 forces act in y-direction and have a phase shift of π/2.
All forces have an artificial amplitude of 1N. These forces may result from an unbalance
due to a combustion engine or auxiliary equipment.

6.2 Simulation Error of the Acoustic Problem

In this subsection, only the acoustic part of the problem and its simulation error is consid-
ered. The structural domain is neglected completely. An analytic sound field is generated
using nine monopole sources, which are uniformly distributed along the center line with a
distance of 2.5m in-between each other. To fulfill the Dirichlet boundary condition on the
fluid surface, the monopole sources have to be mirrored on the half-space plane and sup-

13



50 100 150 200
0

0.2

0.4

0.6

0.8

1

frequency [Hz]

D
ir

ic
h
le

t
E

rr
or

e D
[%

]

cd=3, ce=5, L fixed at f = 80Hz

cd=3, ce=5

cd=4, ce=5, L fixed at f = 80Hz

classic

Figure 5: Dirichlet error eD of the pure acoustical problem for different multipole parame-
ters.

plied with a negative strength as demanded by (10). The acoustic flux q is then computed
for every boundary element and directly used as boundary condition instead of the trans-
mission condition (7). The multipole BEM is applied to compute the pressure p on the
nodes. Since the analytical pressure distribution pmono is known by (10), too, the Dirichlet
error

eD =
‖p − pmono‖L2

‖pmono‖L2

(37)

can be computed, where ‖ · ‖L2
denotes the L2-norm. The model with 1.886m draft is con-

sidered in the following. The Dirichlet errors eD for the frequency range f = [5 Hz, 200 Hz]
are visualized in Figure 5 for different expansion lengths. Obviously, the naive use of the
semi-empirical rule (20) for the expansion length with ce=5 results in low errors for the
higher frequencies (dashed gray line). But for lower frequencies, the error increases rapidly.
The reason for this is the large ratio of elements per wavelength, which is 142 at f=100Hz.
However, the semi-empirical rule (20) is optimized for 6-10 elements per wavelength. This
small element size is needed for the structural domain. Since a conforming coupling scheme
is used, the same element size also has to be used for the BE part. But if the semi-empirical
rule (20) is evaluated at a given frequency f = 80Hz and the expansion lengths on the dif-
ferent levels are kept fixed for all frequencies, the result looks much better (black line). For
engineering applications, an error of approximately 0.2% is often sufficient. Consequently,
this parameter set is chosen for all simulations of the coupled problem. If the near-field
parameter cd = 4 is used (gray line), hardly any difference compared to the classical solu-
tion without FMM is observable (crosses), which shows the correct implementation of the
half-space FMM.
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Figure 6: Velocity in x-direction at node A (see Figure 4) for the frequency range up to
200Hz (left). Comparison of the velocity response for different drafts (right).

6.3 Results of the Coupled Fast BE-FE Simulation

Now, the fully coupled system (36) is investigated. Therefore, a simulation is performed
every 0.5Hz up to 200Hz. The velocities in x-direction for node A (cf. Figure 4) are
visualized in Figure 6. The first eigenmodes in the low frequency regime correspond to
the global beam-like modes. Here, the different modes are clearly separated. Since point
A is located on the hull between the nearby stiffeners, also local modes are observed in
the higher frequency regime, see Figure 6 (left). Altogether, the velocity range covers five
orders of magnitude.

In Figure 6 (right), the frequency response is analyzed for different drafts. Starting from
the pure structural response, i.e. without any surrounding water, the resonance frequencies
of the global modes decrease with an increasing waterline as expected. This decrease
is especially observable for the second mode, which is shifted from 60Hz for the pure
structural problem to 40Hz in case of the 1.866m draft. This investigation clearly shows,
that a strong coupling scheme is absolutely necessary, since the water has a significant
influence on the vibration behavior of the structure.

6.4 Efficiency of the Half-Space Fast BEM

In this subsection, the efficiency of the fast multipole implementation of the half-space
problem is discussed. First, the number of computed and applied translation operators is
investigated. Since a regular clustering is applied, the translation operators can be reused
for the same kind of translation on a given level. Thus, the number of computed operators
differs from the number of performed translations, as summarized in Table 1. The original
model corresponds to the non-mirrored model and reflects the application of the standard
multipole implementation as used in [39]. This is physically not meaningful, but it allows to
detect the additional expenses, which are necessary for considering the half-space problem.
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Table 1: Number of computed and applied translation operators on the different levels ℓ.

level ℓ computed applied
original mirrored increase % original mirrored increase %

ℓ̂−12 − 8 − − 12 −

ℓ̂−11 12 8 −33.3 42 36 −14.2

ℓ̂−10 2 4 100.0 14 28 100.0

ℓ̂ − 9 0 0 − 0 0 −

ℓ̂ − 8 8 28 250.0 80 592 640.0

ℓ̂ − 7 48 67 39.6 1264 2228 76.2

ℓ̂ − 6 54 81 50.0 2120 4160 96.2

ℓ̂ − 5 166 184 10.8 6628 8936 34.8

ℓ̂ − 4 230 230 0.0 11914 14162 18.9

ℓ̂ − 3 188 190 1.0 15662 18002 14.9

ℓ̂ − 2 264 264 0.0 15730 18494 17.6

ℓ̂ − 1 286 286 0.0 29168 34642 18.8

ℓ̂ 172 176 2.3 1344 1544 14.9
∑

1430 1526 6.7 83966 102836 22.5

Please note, that the mirrored model has one additional cluster-level due to the doubled
geometry.

The number of computed translation operators hardly increases for levels with small
clusters, being close to the maximum level ℓ̂. Only on the coarser levels one can observe a
growth. This reflects the fact, that most of the interaction to the mirrored part takes place
on coarser levels due to well separated clusters. This way, the overall number of computed
translation operators only increases by 6.7%. Thus, the memory consumption for storing
the translation operators remains almost unchanged.

A similar behavior is observed for the applied translations for a single multipole cycle.
As before, the number of translations increases only slightly for small clusters and more
significantly for the big ones. The overall increase of applied translations is 22.5%, which
reflects the fact, that the far-field compression with the multipole expansion helps to effi-
ciently implement the half-space fundamental solution. This increase is directly linked to
the additional time, needed for the translations to the mirrored part.

Remark 1 A mathematical asymptotical analysis of the amount of translations in the

described Fast Multipole Method for the half-space problem shows that the percentage of the

additional translations is further reduced for larger numbers of unknowns.

The computational times for the different operations of the far-field within a single
multipole cycle are summarized in Table 2. As before, the original non-mirrored model is
compared with the mirrored one. All times are normalized with respect to the total time,
needed for a cycle of the original model. The computational times for the far-field signa-
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Table 2: Computational times for the far-field portion of the matrix-vector product. The
times are normalized with respect to the total time of the original model.

multipole part original mirrored increase %
far-field signature (26) 71.9 71.7 −0.2
translation (27) 7.4 9.0 22.6
outer-outer (28) 2.2 2.2 0.0
inner-inner (29) 2.1 4.2 100.0
recover (22) 16.4 32.4 97.6
∑

100.0 119.5 19.5

ture (26) and the outer-outer transformation (28) do not change since the source clusters
are not mirrored. The slight difference between 71.9 and 71.7 is caused by measurement
errors. As pointed out before, the number of applications of the translation operators (27)
growths and consequently the computational time increases by 22.6%. In the opposite di-
rection, the inner-inner transformation (29) and the recovery of the solution by (22) has to
be performed for the original and the mirrored clusters and therefore takes approximately
twice as much time. Focusing on the total computational time for a single cycle, the in-
crease is only 19.5%. This is because most of the time is spent for the computation of the
far-field signature and this part remains unmodified.

Besides the far-field, where the multipole expansion is applied, a near-field has to be
set-up by standard BEM. As pointed out before, for large models, most of the interaction
to the mirrored part is covered by the far-field. For this model, only 7.1% of the total
integration time for the mirrored model is spent for the additional mirrored part. If both
the near-field and the far-field are taken into consideration, the additional computational
time for the multipole implementation of the half-space problem is below 20% with respect
to the original model without half-space. In case of a classical implementation, the expense
may be up to 100%.

Beside the expense of a single cycle, also the number of needed iteration steps for
the GMRES solver is of significant importance. In the following a relative accuracy of
10−6 is applied for the solver. The numbers of iteration steps for different drafts and
preconditioners are visualized in Figure 7. In the left subfigure, the two different drafts
are analyzed using a diagonal scaling as preconditioner. In case of the 1.866m draft, also
the numbers of iteration steps for the one-way coupled case are plotted. One-way coupling
means, that CFE of (36) is set to zero and this way the feedback of the pressure is neglected.
Since the second part of the Schur complement is neglected for preconditioning, the number
of iteration steps is best for the one-way coupled case. Here, one observes only a slight
increase for higher frequencies. If a waterline of 1m is considered and a strong coupling is
applied, the number of iteration steps increases with the frequency. For a larger draft this
number is even larger.

In Figure 7 (right), the scaling preconditioner is compared to an ILU preconditioner
applied to the near-field of KBE. For high frequencies, the numbers of iteration steps are
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Figure 7: Number of iteration steps with diagonal scaling preconditioner for different drafts
(left). Comparison of scaling and ILU preconditioner for 1.866m draft (right).

significantly reduced. At 200Hz, a reduction by a factor of 2 is obtained. But this is
achieved to the expense of an additional memory consumption, since the near-field has to
be stored a second time for the ILU factorization. Concerning this issue, a simple scaling is
much cheaper. The used preconditioners neglect the second part of the Schur complement
and therefore correspond to the one-way coupling. Since there is a significant difference
between the one-way coupled and fully coupled solution, these preconditioners can not be
optimal. Further research is needed to develop advanced preconditioners for the coupled
system.

7 Conclusion

A coupling scheme for fluid-structure interaction using a fast multipole boundary element
method and a finite element method is presented. Special focus is on partly immersed
bodies, where a free fluid surface exists. A special half-space fundamental solution is
applied, which allows to incorporate the Dirichlet boundary condition on the half-space
plane. The modifications of the fast multipole method for half-space problems are pointed
out. Due to the use of a mirror technique, most of the standard multipole procedures
can be applied. Additionally, this results in a good far-field compression of the introduced
mirrored part. The numerical efficiency concerning the computational time is examined for
a realistic model problem. The additional expense for the incorporation of the half-space
surface turns out to be small with respect to the overall expense.
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