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Abstract

For the solution of magnetostatic field problems we discuss and compare several
boundary integral formulations with respect to their accuracy, their efficiency, and
their robustness. We provide fast boundary element methods which are able to deal
with multiple connected computational domains, with large magnetic permeabilities,
and with complicated structures with small gaps. The numerical comparison is based
on several examples, including a controllable reactor as a real–world problem.

1 Introduction

An efficient and accurate numerical simulation of magnetostatic field problems contributes
to the solution of challenging problems in engineering and industry. Such a simulation
tool has to satisfy several requirements, for example, a robust handling of geometrical
singularities at edges and corners as well as the treatment of small gaps, and the ability to
handle complex real–world structures. Although not considered in this paper, an efficient
treatment of nonlinearities and the coupling with other physical fields is of increasing
interest. However, all approaches as described in this paper can be extended appropriately,
also including a possible coupling of finite and boundary element methods.

As a model problem we consider the magnetostatic field equations where some magnetic
material is placed within a bounded domain, and where a prescribed current density is ap-
plied in the surrounding unbounded air domain. For the solution of this model problem we
present a comparative analysis of several boundary element based approaches emphasizing
their advantages and drawbacks with respect to the above mentioned requirements. We
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analyze boundary integral formulations using single and double layer charge distributions,
and a Steklov–Poincaré operator formulation. While all of the boundary integral equa-
tions are equivalent to each other on the continuous level, they are quite different when
considering their boundary element discretizations, i.e., we compare these methods with
respect to their accuracy, their efficiency, and their robustness. The aim of this paper is
to highlight and, through comparison, to conclude the most suitable boundary element
approach that successfully covers all of the above mentioned requirements. As a particu-
lar result of this comparison we provide accurate, efficient, and robust boundary element
methods which are able to deal with multiple connected computational domains, with large
magnetic permeabilities, and with complicated structures involving small gaps.

The numerical analysis of magnetostatic field problems has been widely considered in
a number of references describing either finite element methods, see, e.g., [2, 5, 6, 13, 15],
or boundary element methods, see, e.g., [3, 8, 10, 11, 12, 14, 16, 17, 22]. In this paper we
give a unified approach for the solution of magnetostatic field problems by using a scalar
magnetostatic potential and Galerkin boundary element methods for the discretization of
different related boundary integral equations. Note that all boundary element formulations
as discussed in this paper can be considered also within a coupling with finite element
methods.

This paper is organized as follows: In Sect. 2 we describe the model problem under
consideration, and we introduce a scalar magnetostatic potential to obtain a transmission
problem for a Laplace equation with piecewise constant material parameters. For the solu-
tion of the resulting transmission problem we introduce three different boundary integral
formulations in Sect. 3. The use of a single layer potential, which ensures the continuity of
the scalar potential, results in a second kind boundary integral equation with the adjoint
double layer potential. In contrast, the use of a double layer potential ensures the conti-
nuity of the fluxes, but requires a reformulation of the inhomogeneous flux transmission
conditions. In this case, we have to solve a second kind boundary integral equation with
the double layer potential. Based on the solution of local boundary value problems we end
up with a Steklov–Poincaré operator formulation to find the unknown scalar magnetostatic
potential on the interface. Finally we discuss unique solvability of all boundary integral
equations, and we prove the equivalence of all formulations on the continuous level. In
Sect. 4 we describe the numerical solution of all boundary integral formulations under con-
sideration by using fast Galerkin boundary element methods. Several numerical examples
are given in Sect. 5. A first example covers a sphere where we check the accuracy of the
approximate solutions for an analytically known solution. As an example for a multiple
connected domain we consider a ring with a square as cross section. As an example of
industrial interest we consider a controllable reactor. Finally, we give some conclusions in
Sect. 6.
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2 Magnetostatic field problems

We consider the magnetostatic field equations for the magnetic flux density B and for the
magnetic field intensity H satisfying

curl H(x) = j(x), div B(x) = 0, B(x) = µ(x)H(x) for x ∈ R
3, (2.1)

where j is a prescribed current density. Let Ω ⊂ R
3 be some bounded domain describing

some magnetic material, while in the unbounded domain Ωc := R
3\Ω we model air, i.e.,

µ(x) = µ1 for x ∈ Ω, µ(x) = µ0 for x ∈ Ωc, 0 < µ0 < µ1 .

In addition to the above relations we include transmission conditions for x ∈ Γ = ∂Ω,

[B(x) · nx]|x∈Γ = 0, [H(x) × nx]|x∈Γ = 0, (2.2)

where nx is the exterior normal vector for x ∈ Γ almost everywhere. A particular solution
of Ampere’s law in (2.1) is given by the Biot–Savart integral

Hj(x) = curlx

∫

V

1

4π

j(y)

|x− y|
dy =

1

4π

∫

V

j(y) ×
x− y

|x− y|3
dy for x ∈ R

3, (2.3)

where V is the support of the current j which is located somewhere in the exterior domain
Ωc. By construction we have

curl Hj(x) = j(x), div Hj(x) = 0 for x ∈ R
3 (2.4)

and it remains to find the vector field H0 satisfying

curl H0(x) = 0, div B(x) = 0, B(x) = µ(x)[H0(x) + Hj(x)] for x ∈ R
3. (2.5)

For this we may introduce a scalar potential

H0(x) = −∇ϕ(x) for x ∈ R
3 (2.6)

to obtain the representations

H(x) = Hj(x) −∇ϕ(x), B(x) = µ(x)[Hj(x) −∇ϕ(x)] for x ∈ R
3 . (2.7)

Therefore, by combining (2.4) and (2.5) we have to solve the potential equation

−div[µ(x)∇ϕ(x)] = 0 for x ∈ R
3 . (2.8)

Instead of (2.8) we consider the local partial differential equations

−∆ϕ1(x) = 0 for x ∈ Ω, −∆ϕ0(x) = 0 for x ∈ Ωc (2.9)

3



to find the local restrictions ϕ1 = ϕ|Ω and ϕ0 = ϕ|Ωc satisfying the transmission boundary
condition

ϕ1(x) = ϕ0(x) for x ∈ Γ. (2.10)

From the continuity of the normal component of the magnetic flux B, see (2.2), we conclude
a second transmission boundary condition, i.e.,

µ1

∂

∂nx

ϕ1(x) − µ0

∂

∂nx

ϕ0(x) = (µ1 − µ0) Hj(x) · nx for x ∈ Γ. (2.11)

Finally, we have to include the radiation condition

ϕ0(x) = O
( 1

|x|

)
as |x| → ∞. (2.12)

In what follows we will discuss several boundary integral formulations to solve the transmis-
sion boundary value problem (2.9)–(2.12) by using different boundary element approaches.
Afterwards we will compare these different methods with respect to their accuracy, their
efficiency, and their robustness.

3 Boundary integral equations

3.1 Single layer potential formulation

For the solution of the transmission boundary value problem (2.9)–(2.12) we first consider
a single layer potential ansatz, i.e.,

ϕ(x) =
1

4π

∫

Γ

1

|x− y|
w(y)dsy =: (Ṽ w)(x) for x ∈ R

3\Γ, (3.1)

where w ∈ H−1/2(Γ) is an unknown single layer charge. Note that by using ϕ = Ṽ w the
local partial differential equations (2.9), the Dirichlet transmission condition (2.10), and
the radiation condition (2.12) are satisfied. It remains to fulfil the Neumann transmission
condition (2.11). For this we consider the interior and exterior normal derivatives

∂

∂nx
ϕ|Ω(x) =

1

2
w(x) + (K ′w)(x),

∂

∂nx
ϕ|Ωc(x) = −

1

2
w(x) + (K ′w)(x) for x ∈ Γ

which have to be understood in a weak sense. Recall, that

(K ′w)(x) =
1

4π

∫

Γ

∂

∂nx

1

|x− y|
w(y)dsy for x ∈ Γ

denotes the adjoint double layer integral operator. Formally, from the Neumann transmis-
sion condition (2.11) we finally conclude the second kind boundary integral equation

1

2
(µ1 + µ0)w(x) + (µ1 − µ0)(K

′w)(x) = (µ1 − µ0) Hj(x) · nx for x ∈ Γ.
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In particular, the single layer charge w ∈ H−1/2(Γ) is a solution of the boundary integral
equation

1

2
w(x) +

µ1 − µ0

µ1 + µ0

(K ′w)(x) =
µ1 − µ0

µ1 + µ0

Hj(x) · nx for x ∈ Γ. (3.2)

3.2 Steklov–Poincaré operator formulation

The solution of the interior Laplace equation in (2.9) is given by the representation formula

ϕ1(x) =
1

4π

∫

Γ

1

|x− y|

∂

∂ny

ϕ1(y)dsy −
1

4π

∫

Γ

∂

∂ny

1

|x− y|
ϕ1(y)dsy for x ∈ Ω, (3.3)

from which we obtain the boundary integral equation of the direct approach

1

4π

∫

Γ

1

|x− y|

∂

∂ny
ϕ1(y)dsy =

1

2
ϕ1(x) +

1

4π

∫

Γ

∂

∂ny

1

|x− y|
ϕ1(y)dsy for x ∈ Γ. (3.4)

By using the single and double layer integral operators

(V w)(x) =
1

4π

∫

Γ

1

|x− y|
w(y)dsy, (Kv)(x) =

1

4π

∫

Γ

∂

∂ny

1

|x− y|
v(y)dsy for x ∈ Γ,

we can rewrite the boundary integral equation (3.4) as

(V
∂

∂n
ϕ1)(x) = (

1

2
I +K)ϕ1(x) for x ∈ Γ.

Since the single layer integral operator V is invertible, we therefore obtain the Dirichlet to
Neumann map

∂

∂nx
ϕ1(x) = V −1(

1

2
I +K)ϕ1(x) =: (S1ϕ1)(x) for x ∈ Γ. (3.5)

Note that the interior Steklov–Poincaré operator S1 admits an alternative representation,
see, e.g., [24],

S1 = V −1(
1

2
I +K) = D + (

1

2
I +K ′)V −1(

1

2
I +K), (3.6)

where in addition to the adjoint double layer integral operator we used the hypersingular
boundary integral operator

(Dv)(x) := −
1

4π

∂

∂nx

∫

Γ

∂

∂ny

1

|x− y|
v(y)dsy for x ∈ Γ.

Note that the symmetric representation of the Steklov–Poincaré operator S1 results when
considering the normal derivative of the representation formula (3.3).

As in (3.3) we can describe the solution of the exterior Laplace equation in (2.9) by
using the representation formula

ϕ0(x) = −
1

4π

∫

Γ

1

|x− y|

∂

∂ny
ϕ0(y)dsy +

1

4π

∫

Γ

∂

∂ny

1

|x− y|
ϕ0(y)dsy for x ∈ Ωc. (3.7)
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From this we conclude the boundary integral equation

(V
∂

∂n
ϕ0)(x) = (−

1

2
I +K)ϕ0(x) for x ∈ Γ,

and therefore the related Dirichlet to Neumann map

∂

∂nx
ϕ0(x) = −V −1(

1

2
I −K)ϕ0(x) =: −(S0ϕ0)(x) for x ∈ Γ. (3.8)

Again, the exterior Steklov–Poincaré operator S0 admits an alternative representation,

S0 = V −1(
1

2
I −K) = D + (

1

2
I −K ′)V −1(

1

2
I −K). (3.9)

By using the interior and exterior Dirichlet to Neumann maps (3.5) and (3.8), respectively,
and by using the Dirichlet transmission condition ϕ(x) = ϕ1(x) = ϕ0(x) for x ∈ Γ, the
Neumann transmission condition (2.11) can be rewritten as a boundary integral equation
to find the scalar potential ϕ ∈ H1/2(Γ) such that

µ1(S1ϕ)(x) + µ0(S0ϕ)(x) = (µ1 − µ0) Hj(x) · nx for x ∈ Γ. (3.10)

3.3 Double layer potential formulation

In (3.1) a single layer potential ansatz was used which satisfies the homogeneous Dirichlet
transmission condition (2.10). Alternatively one may use a double layer potential to de-
scribe the solutions of the local partial differential equations (2.9). But due to the jump
relations, the interior and exterior normal derivatives of the double layer potential are
continuous, but the interior and exterior Dirichlet traces are discontinuous. Hence we will
reformulate the transmission problem (2.9)–(2.12) in an appropriate way to be able to use
a double layer potential ansatz.

First, we define ϕj as a solution of the interior Neumann boundary value problem

−∆ϕj(x) = 0 for x ∈ Ω,
∂

∂nx
ϕj(x) = Hj(x) · nx for x ∈ Γ. (3.11)

To ensure solvability of this boundary value problem, we need to assume the solvability
condition ∫

Γ

Hj(x) · nx dsx =

∫

Ω

div H j(x) dx = 0,

which is satisfied for any bounded domain with only one surface, i.e., we may also consider
multiple connected domains Ω such as a torus. We will use the first boundary integral
equation to determine ϕj from

(
1

2
I +K)ϕj(x) = V (Hj · n)(x). (3.12)

Additionally, we enforce the constraint
∫
Γ
ϕj(x)dsx = 0 to get a unique ϕj, see, e.g., [24].
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Remark 3.1 For simply connected domains Ω the potential ϕj can be computed by using

path integrals [11, 22]. In contrast, the presented approach is applicable to both simply and

multiple connected domains. In the case of simply connected domains the gradient of ϕj

equals Hj, see Lemma 3.4.

For the solution of the transmission problem (2.9)–(2.12) we now consider the ansatz

ϕ1(x) :=
1

µ1

[ϕ̃1(x) + (µ1 − µ0)ϕj(x)] for x ∈ Ω, ϕ0(x) :=
1

µ0

ϕ̃0(x) for x ∈ Ωc, (3.13)

where ϕ̃1 and ϕ̃0 are solutions of the local partial differential equations

−∆ϕ̃1(x) = 0 for x ∈ Ω, −∆ϕ̃0(x) = 0 for x ∈ Ωc. (3.14)

From the Neumann transmission condition (2.11) we then conclude

µ1

∂

∂nx
ϕ1(x) − µ0

∂

∂nx
ϕ0(x) =

∂

∂nx
ϕ̃1(x) + (µ1 − µ0)

∂

∂nx
ϕj(x) −

∂

∂nx
ϕ̃0(x)

=
∂

∂nx
ϕ̃1(x) −

∂

∂nx
ϕ̃0(x) + (µ1 − µ0)Hj(x) · nx,

i.e., we have to require the homogeneous Neumann transmission conditions

∂

∂nx

ϕ̃1(x) −
∂

∂nx

ϕ̃0(x) = 0 for x ∈ Γ. (3.15)

For the Dirichlet transmission condition (2.10) we obtain

1

µ1

[ϕ̃1(x) + (µ1 − µ0)ϕj(x)] =
1

µ0

ϕ̃0(x) for x ∈ Γ,

i.e., we conclude the inhomogeneous Dirichlet transmission conditions

µ0ϕ̃1(x) + (µ1 − µ0)µ0ϕj(x) = µ1ϕ̃0(x) for x ∈ Γ. (3.16)

Finally, instead of the radiation condition (2.12) we now have to require

ϕ̃0(x) = O
( 1

|x|

)
as |x| → ∞ . (3.17)

Instead of the original transmission problem (2.9)–(2.12) we now solve the equivalent trans-
mission problem (3.14)–(3.17). For this we may consider the double layer potential ansatz

ϕ̃(x) = −(Wv)(x) = −

∫

Γ

∂

∂ny
U∗(x, y)v(y)dsy for x ∈ R

3\Γ, (3.18)

where v ∈ H1/2(Γ) is an unknown double layer charge. By using the restrictions ϕ̃1 = ϕ̃|Ω

and ϕ̃0 = ϕ̃|Ωc , the local partial differential equations (3.14), the Neumann transmission
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condition (3.15), and the radiation condition (3.17) are satisfied. It remains to fulfil the
Dirichlet transmission condition (3.16). The application of the interior and exterior trace
operators to the double layer potential (3.18) gives

µ1(
1

2
I +K)v(x) + µ0(

1

2
I −K)v(x) + (µ1 − µ0)µ0ϕj(x) = 0 for x ∈ Γ.

In particular, the double layer charge v ∈ H1/2(Γ) is a solution of the boundary integral
equation

1

2
v(x) +

µ1 − µ0

µ1 + µ0

(Kv)(x) = −
µ1 − µ0

µ1 + µ0

µ0ϕj(x) for x ∈ Γ. (3.19)

3.4 Unique solvability of boundary integral equations

In the previous subsections we have presented three different boundary integral formula-
tions to describe the solution of the transmission problem (2.9)–(2.12), and therefore of
the magnetostatic field equations (2.1). It turns out that, on the continuous level, all
formulations are equivalent to each other.

Theorem 3.1 Let w ∈ H−1/2(Γ) be a solution of the single layer integral operator equation

(3.2), let ϕ ∈ H1/2(Γ) be a solution of the Steklov–Poincaré operator equation (3.10), and

let v ∈ H1/2(Γ) be a solution of the double layer integral operator equation (3.19). Then

there hold the following relations

ϕ(x) = (V w)(x) = −
1

µ0

(
1

2
I +K)v(x) for all x ∈ Γ.

Proof. Let us first rewrite the single layer potential boundary integral equation (3.2) as

µ1(
1

2
I +K ′)w(x) + µ0(

1

2
I −K ′)w(x) = (µ1 − µ0)Hj(x) · nx for x ∈ Γ,

and in the following, by using the identity I = V −1V , as

µ1(
1

2
I +K ′)V −1V w(x) + µ0(

1

2
I −K ′)V −1V w(x) = (µ1 − µ0)Hj(x) · nx for x ∈ Γ.

With the symmetry relation V K ′ = KV , see, e.g., [24], we conclude K ′V −1 = V −1K and
therefore we obtain

µ1V
−1(

1

2
I +K)V w(x) + µ0V

−1(
1

2
I −K)V w(x) = (µ1 − µ0)Hj(x) · nx for x ∈ Γ.

With the Steklov–Poincaré operators S1 = V −1(1

2
I+K) and S0 = V −1(1

2
I−K) we further

obtain
µ1S1V w(x) + µ0V

−1S0V w(x) = (µ1 − µ0)Hj(x) · nx for x ∈ Γ,

which shows the equivalence with the Steklov–Poincaré operator equation (3.10) when
introducing ϕ = V w.
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Let us now consider the double layer integral operator equation (3.19), i.e.,

µ1(
1

2
I +K)v(x) + µ0(

1

2
I −K)v(x) + (µ1 − µ0)µ0ϕj(x) = 0 for x ∈ Γ.

Recall, that ϕj is a solution of the Neumann boundary value problem (3.11). Hence, by
using the boundary integral equation

(
1

2
I +K)ϕj(x) = (V [H j · n])(x) for x ∈ Γ,

and by multiplying the double layer integral operator equation with (1

2
I +K) we obtain

µ1(
1

2
I +K)(

1

2
I +K)v(x) + µ0(

1

2
I +K)(

1

2
I −K)v(x) + (µ1 − µ0)µ0(

1

2
I +K)ϕj(x) = 0,

and therefore

µ1(
1

2
I +K)(

1

2
I +K)v(x) + µ0(

1

2
I +K)(

1

2
I −K)v(x) + (µ1 − µ0)µ0(V [Hj · n])(x) = 0.

Recall that

µ0ϕ(x) = ϕ̃0(x) = −(
1

2
I +K)v(x) for x ∈ Γ.

Hence we conclude

µ1(
1

2
I +K)[−µ0ϕ(x)] + µ0(

1

2
I −K)[−µ0ϕ(x)] + (µ1 − µ0)µ0(V [Hj · n])(x) = 0,

and in the following

µ1(
1

2
I +K)ϕ(x) + µ0(

1

2
I −K)ϕ(x) − (µ1 − µ0)(V [Hj · n])(x) = 0.

An application of the inverse single layer integral operator V −1 finally results in the Steklov–
Poincaré operator equation (3.10).

Remark 3.2 Note that the single layer potential formulation (3.2) as well as the double

layer potential formulation (3.19), which seem to be indirect approaches, can be rewritten

as direct formulations, see, e.g., [14].

As a corollary of Theorem 3.1 we conclude, that unique solvability of one boundary integral
formulation implies unique solvability of the remaining ones. Let us first consider the second
kind boundary integral equation (3.19), or equivalently, the second kind boundary integral
equation (3.2).
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Theorem 3.2 Let 0 < µ0 ≤ µ1. The operator

1

2
I +

µ1 − µ0

µ1 + µ0

K = I −

(
1

2
I −

µ1 − µ0

µ1 + µ0

K

)
: H1/2(Γ) → H1/2(Γ)

admits a unique inverse by the Neumann series

(
1

2
I +

µ1 − µ0

µ1 + µ0

K

)−1

=

∞∑

k=0

(
1

2
I −

µ1 − µ0

µ1 + µ0

K

)k

,

i.e., the operator
1

2
I −

µ1 − µ0

µ1 + µ0

K : H1/2(Γ) → H1/2(Γ)

is a contraction satisfying

‖

(
1

2
I −

µ1 − µ0

µ1 + µ0

K

)
v‖V −1 ≤

1

2

(
1 +

µ1 − µ0

µ1 + µ0

)
‖v‖V −1 for all v ∈ H1/2(Γ).

Proof. For v ∈ H1/2(Γ) we use an equivalent norm which is induced by the inverse single
layer boundary integral operator,

‖v‖V −1 :=
√
〈V −1v, v〉Γ .

Note that we have, see, e.g., [26],

‖(
1

2
I −K)v‖V −1 ≤ ‖v‖V −1 for all v ∈ H1/2(Γ),

where the equality holds for all constant v. Then,

‖

(
1

2
I −

µ1 − µ0

µ1 + µ0

K

)
v‖V −1 = ‖

µ1 − µ0

µ1 + µ0

(
1

2
I −K)v +

1

2

(
1 −

µ1 − µ0

µ1 + µ0

)
v‖V −1

≤
µ1 − µ0

µ1 + µ0

‖(
1

2
I −K)v‖V −1 +

1

2

(
1 −

µ1 − µ0

µ1 + µ0

)
‖v‖V −1

≤

[
µ1 − µ0

µ1 + µ0

+
1

2

(
1 −

µ1 − µ0

µ1 + µ0

)]
‖v‖V −1

=
1

2

(
1 +

µ1 − µ0

µ1 + µ0

)
‖v‖V −1 .

As a corollary of Theorem 3.2 we conclude the unique solvability of the double layer
boundary integral operator equation (3.19) in H1/2(Γ), and of the single layer boundary
integral operator equation (3.2) in H−1/2(Γ). Note that the contraction rate as given in
Theorem 3.2 degenerates as µ1 → ∞.

To investigate the unique solvability of the Steklov–Poincaré operator equation (3.10)
we can use an ellipticity estimate as follows.
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Theorem 3.3 The boundary integral operator

µ1S1 + µ0S0 : H1/2(Γ) → H−1/2(Γ)

is H1/2(Γ)–elliptic satisfying

〈(µ1S1 + µ0S0)v, v〉Γ ≥ µ0〈S0v, v〉Γ ≥ µ0(1 − cK)‖v‖2

V −1 for all v ∈ H1/2(Γ),

where cK < 1 is the contraction rate of 1

2
I +K.

Proof. The Steklov–Poincaré operator S1, which is related to the interior Dirichlet
boundary value problem, is only positive semi–definite, i.e.,

〈S1v, v〉Γ ≥ 0 for all v ∈ H1/2(Γ),

where equality holds for all constant functions v. Moreover, the Steklov–Poincaré operator
S0 is H1/2(Γ)–elliptic satisfying

〈S0v, v〉Γ = 〈V −1(
1

2
I −K)v, v〉Γ = 〈V −1v, v〉Γ − 〈V −1(

1

2
I +K)v, v〉Γ

≥ 〈V −1v, v〉Γ − ‖(
1

2
I +K)v‖V −1‖v‖V −1 ≥ (1 − cK)‖v‖2

V −1 .

From this we obtain the assertion.

For an application of a boundary element method, instead of the Steklov–Poincaré operator
equation (3.10) we will consider a system of boundary integral equations, which is based
on the use of the symmetric representations as given in (3.6) and (3.9), respectively. In
this case we can rewrite (3.10) as

µ1[D + (
1

2
I +K ′)V −1(

1

2
I +K)]ϕ(x) + µ0[D + (

1

2
I −K ′)V −1(

1

2
I −K)]ϕ(x)

= (µ1 − µ0)Hj(x) · nx for x ∈ Γ .

By introducing

t1 = µ1V
−1(

1

2
I +K)ϕ ∈ H−1/2(Γ), t0 = µ0V

−1(
1

2
I −K)ϕ ∈ H−1/2(Γ)

we obtain a system of boundary integral equations,

(µ1 + µ0)Dϕ+ (
1

2
I +K ′)t1(x) + (

1

2
I −K ′)t0(x) = (µ1 − µ0)Hj(x) · nx for x ∈ Γ,

1

µ1

(V t1)(x) − (
1

2
I +K)ϕ(x) = 0 for x ∈ Γ,

1

µ0

(V t0)(x) − (
1

2
I −K)ϕ(x) = 0 for x ∈ Γ.

Unique solvability of the above system follows from the unique solvability of the Steklov–
Poincaré operator equation (3.10). Moreover, we can prove an ellipticity estimate for the
bilinear form which is related to the above system of boundary integral equations.
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3.5 Evaluation of the magnetic field

After determining the scalar potential ϕ as the solution of the transmission problem (2.9)–
(2.12) we may use the representation (2.7) to compute the magnetic field

H(x) = Hj(x) −∇ϕ(x) for x ∈ R
3.

It is well known that, if Ω is simply connected,

H(x) = Hj(x) −∇ϕ1(x) → 0 for x ∈ Ω as µ1 → ∞.

In particular for large µ1 there holds

∇ϕ1(x) ≈ Hj(x) for x ∈ Ω.

For small relative errors of the numerical approximation of ∇ϕ1 we observe large relative
errors for the approximation of H . Therefore we are interested in an alternative approach
to compute the magnetic field in Ω more robustly. For this we consider the approach as
described in Subsect. 3.3, where the scalar potential was given by

ϕ1(x) =
1

µ1

[ϕ̃1(x) + (µ1 − µ0)ϕj(x)] for x ∈ Ω,

and where ϕj is a solution of the Neumann boundary value problem (3.11). From (2.7) we
then obtain

B(x) = µ1[Hj(x) −∇ϕ1(x)]

= µ0Hj(x) −∇ϕ̃1(x) + (µ1 − µ0)[Hj(x) −∇ϕj(x)]

= µ0Hj(x) −∇ϕ̃1(x) for x ∈ Ω, (3.20)

where we used the following result.

Lemma 3.4 Let ϕj be a solution of the Neumann boundary value problem (3.11), i.e.,

−∆ϕj(x) = 0 for x ∈ Ω,
∂

∂nx
ϕj(x) = Hj(x) · nx for x ∈ Γ,

where Hj(x) is given as in (2.3). Additionally, let a simply connected domain Ωs ⊃ Ω
exist such that supp j ∩ Ωs = ∅. Then there holds Hj(x) = ∇ϕj(x) for almost all x ∈ Ω.

Proof. From Green’s first formula and by using the Neumann boundary condition we
have for all ψ ∈ H1(Ω)

∫

Ω

∇ϕj(x) · ∇ψ(x)dx =

∫

Γ

∂

∂nx

ϕj(x)ψ(x)dsx =

∫

Γ

[Hj(x) · nx]ψ(x)dsx.

12



On the other hand, by using integration by parts and (2.4), we get
∫

Γ

[Hj(x) · nx]ψ(x)dsx =

∫

Ω

[div Hj(x)ψ(x) + Hj(x) · ∇ψ(x)] dx

=

∫

Ω

Hj(x) · ∇ψ(x) dx,

and therefore ∫

Ω

[Hj(x) −∇ϕ(x)] · ∇ψ(x)dx for all ψ ∈ H1(Ω)

follows. Since Ωs is simply connected and curl Hj(x) = 0 for x ∈ Ωs, Hj can be written
as a gradient field in Ωs. Insertion of ψ = Hj −∇ϕ concludes the identity in the sense of
L2(Ω).

Remark 3.3 Lemma 3.4 can be used for the evaluation of the excitation field inside a

simply connected domain Ω.

i. For the single layer potential ansatz as described in Subsect. 3.1 the excitation field

Hj is represented by solving

1

2
wj(x) + (K ′wj)(x) = Hj(x) · nx for x ∈ Γ

and finally the evaluation reads

H(x) = (∇Ṽ wj)(x) − (∇Ṽ w)(x) for x ∈ Ω.

ii. For the Steklov–Poincaré operator formulation as used in Subsect. 3.2 the equation

(S1ϕj)(x) = Hj(x) · nx for x ∈ Γ (3.21)

is solved and the associated Neumann datum is calculated by

∂

∂nx

ϕj(x) = (S1ϕj)(x) for x ∈ Γ.

Finally the excitation field can be evaluated as the gradient of a representation formula

for ϕj(x), x ∈ Ω.

The projection of Hj to the same spaces as H0 provides a more accurate evaluation of

H(x), x ∈ Ω, for the discrete approximation of these two approaches [12].

4 Boundary element methods

We describe briefly the discrete systems of linear equations and the approximate compu-
tation of H . For details on boundary element methods see, e.g., [21]. For all presented
approaches, we use a Galerkin variational formulation to solve the boundary integral equa-
tions.
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4.1 Single layer potential formulation

The Galerkin variational formulation of the boundary integral equation (3.2) is to find a
piecewise constant approximation wh ∈ S0

h(Γ) = span{ψ0

ℓ }
N
ℓ=1

such that

〈(
µ1 + µ0

µ1 − µ0

1

2
I +K ′)wh, zh〉Γ = 〈Hj · n, zh〉Γ

is satisfied for all zh ∈ S0

h(Γ). This is equivalent to a linear system of algebraic equations,

(
1

2

µ1 + µ0

µ1 − µ0

M̃h + K̃ ′
h

)
w = f0

where for k, ℓ = 1, . . . , N

M̃h[k, ℓ] = 〈ψ0

ℓ , ψ
0

k〉Γ, K̃ ′
h[k, ℓ] = 〈K ′ψ0

ℓ , ψ
0

k〉Γ, f 0

k = 〈Hj · n, ψ
0

k〉Γ.

In the case of a simply connected domain Ω, we use an indirect single layer approach to
solve the interior boundary value (3.11),

1

2
wj(x) + (K ′wj)(x) = Hj(x) · nx for x ∈ Γ,

∫

Γ

wj(x)dsx = 0. (4.1)

Thus we compute, in the case of a simply connected domain, an approximation wj,h ∈ S0

h(Γ)
of the density function wj in (4.1) as the solution of

(
1

2
M̃h + K̃ ′

h + a a⊤
)
wj = f 0 (4.2)

where for k = 1, . . . , N
ak = 〈ψ0

k, 1〉Γ.

We utilize the rank one term a a⊤ to get a uniquely solvable system of linear equations
and to fix the constant part of the non–unique solution of the Neumann boundary value
problem (3.11). The linear systems are solved by a GMRES method with a simple diagonal
preconditioning. To compute H we evaluate

H(x) = ∇Ṽ (wj,h − wh)(x) for x ∈ Ω

in the case of a simply connected domain Ω and otherwise

H(x) = Hj(x) −∇(Ṽ wh)(x) for x ∈ R
3.
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4.2 Double layer potential formulation

Here, we approximate the unknown density v by vh ∈ S1

h(Γ) = span{ψ1

m}
M
m=1 by using

piecewise linear and continuous basis functions ψ1

m which are defined with respect to an
admissible triangulation of the boundary. First, we determine an approximation of the
interior Neumann boundary value problem (3.11) based on the boundary integral equation
(3.12) by the system of linear equations

(
1

2
M̂h + K̂h + b b⊤)ϕ

j
= V̂hg

where for m,n = 1, . . . ,M , ℓ = 1, . . . , N

M̂h[m,n] = 〈ψ1

n, m
1

k〉Γ, K̂h[m,n] = 〈Kψ1

n, ψ
1

m〉Γ, V̂h[m, ℓ] = 〈V ψ0

ℓ , ψ
1

m〉Γ, bm = 〈ψ1

m, 1〉Γ,

and g ∈ R
M is the vector of the L2 projection gh ∈ S0

h(Γ) of Hj · n onto the space of
piecewise constant functions. As before, the linear system is solved by a GMRES method
with diagonal preconditioning.

Remark 4.1 If we apply the indirect ansatz (4.1) to solve the interior boundary value

problem (3.11), we end up with a worse approximation of the magnetic field, see the ex-

ample considered in [18]. In general, density functions of indirect approaches show a lower

regularity than the direct quantities, see, e.g., [4, 20]. In this case, the approximation order

of the discrete approximation is reduced.

The Galerkin discretization of the boundary integral equation (3.19) by using piecewise
linear and continuous basis functions ψ1

m, i.e. we have vh ∈ S1

h(Γ), results in the linear
system of algebraic equations

(
1

2

µ1 + µ0

µ1 − µ0

M̂h + K̂h

)
v = M̂hϕj

which is again solved by a GMRES method with diagonal preconditioning.
Based on the ansatz (3.13) we evaluate H by

H(x) = Hj(x) +
1

µ0

∇(Wvh)(x) for x ∈ Ωc

and

H(x) = Hj(x) +
1

µ1

∇(Wvh)(x) −
µ1 − µ0

µ1

(
(Ṽ ϕj,h)(x) − (Wgh)(x)

)
for x ∈ Ω,

and in the case of a simply connected domain by using (3.20)

H(x) =
µ0

µ1

Hj(x) +
1

µ1

∇(Wvh)(x) for x ∈ Ω.
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4.3 Steklov–Poincaré operator formulation

For the Galerkin discretization of the Steklov–Poincaré operator equation (3.10) we use
piecewise linear and continuous basis function ψ1

m, i.e., we have ϕh ∈ S1

h(Γ). In this case
we have to solve the linear system of algebraic equations

(µ1S1,h + µ0S0,h)ϕ = (µ1 − µ0)f
1, (4.3)

where for k = 1, . . . ,M
f 1

k = 〈Hj · n, ψ
1

k〉Γ.

Since a direct discretization of the Steklov–Poincaré operators S0 and S1 is not possible in
general, we use the approximations

S1,h = Dh + (
1

2
M⊤

h +K⊤
h )V −1

h (
1

2
Mh +Kh), S0,h = Dh + (

1

2
M⊤

h −K⊤
h )V −1

h (
1

2
Mh −Kh)

where

Dh[m,n] = 〈Dψ1

n, ψ
1

m〉Γ, Kh[k, n] = 〈Kψ1

n, ψ
0

k〉Γ,Mh[k, n] = 〈ψ1

n, ψ
0

k〉Γ, Vh[k, ℓ] = 〈V ψ0

ℓ , ψ
0

k〉Γ

for m,n = 1, . . . ,M and k, ℓ = 1, . . . , N . We use an artificial multilevel preconditioner [23]
for the preconditioning of the iterative inversion of Vh by a CG method, and the application
of an operator of opposite order [25] for the iterative solution of the global system (4.3)
again by a CG method. Finally we solve

Vht1 = (
1

2
Mh +Kh)ϕ, Vht0 = (

1

2
Mh −Kh)ϕ

to obtain the complete Cauchy data. Then the magnetic field is evaluated based on the
representation formulae (3.3) and (3.7), respectively. On the transmission interface we can
build the linear combination

H(xk) = Hj(xk) − (ti,knk + ∇tϕh(xk))

with the tangential derivative ∇t to evaluate the magnetic field in the centers xk of the
triangles τk with normal direction nk. In the case of a simply connected domain we replace
Hj in the evaluation as described in Remark 3.3.

We use the fast multipole method [9] for a data–sparse discretization and for a fast
application of all boundary integral operators of the systems of linear equations and for
the evaluation of the magnetic field. For details, see [19] and the references therein.

5 Numerical results

In this section, we present several examples to compare the accuracy of the approximate
solutions of the presented approaches to solve the transmission problem (2.9)–(2.12). In
addition, we comment on the advantages and the drawbacks of the discussed approaches
and present some computational times. In all examples, we consider µ0 = 4π · 10−7 and
µ1 = µ0µr with different values of the relative permeability µr.
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5.1 Sphere

We first consider a sphere of diameter 10−3 to check the accuracy of the approximate so-
lutions for an analytically known solution. For a given excitation field Hc = (0, 0, 17)⊤

the resulting magnetic field is given by H = (0, 0, 51/(µr + 2))⊤, see [12]. In Figure 1, the
relative L2(Γ) errors of the approximate solutions of H are given for several values of µr

and for an approximation of the sphere by 288 plane triangles. The single layer potential
formulation (SL) is compared to the direct Steklov–Poincaré operator formulation (SP) and
the double layer potential formulation (DL). Since the sphere is simply connected, approx-
imation problems appear for higher µr. This problem has been discussed in Subsection 3.5,
which concluded in the modified evaluation as discussed in Remark 3.3 for the single layer
potential ansatz and the Steklov–Poincaré operator formulation and in formula (3.20) for
the double layer potential ansatz.

1e+02 1e+04 1e+06 1e+08 1e+10 1e+12
Relative Permeability

1e-02

1e-01

1e+00

1e+01

1e+02

L
_2

-E
rr

or

DL
DL re. eval.
SL
SL re. eval.
SP
SP re. eval.

Figure 1: The L2(Γ)-error of the gradient plotted versus the relative permeability for all
formulations.

Indeed, the error for the single layer potential ansatz and the error for the Steklov–Poincaré
operator formulation increase dramatically without the rewritten evaluation for increasing
µr. The modified evaluation solves that problem for a large range of values of µr. However,
the rewritten evaluation is only feasible up to a relative permeability of about 5 · 109. For
higher permeabilities the error of the evaluation increases. Without taking care of the
simply connected domain, the double layer potential approach produces roughly the same
accuracy up to a permeability of 5 · 106. For higher permeabilities the accuracy decreases
dramatically again. However, the accuracy for the rewritten evaluation (3.20) seems to
be stable even up to µr = 5 · 1019. Comparing the accuracy of the three methods, the
Steklov–Poincaré operator formulation gives better results than the double layer potential
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formulation which in turn is more accurate than the single layer potential ansatz.
Concluding, the rewritten evaluations produce a higher accuracy for simply connected

domains in all our examples. Further on these rewritten evaluations will be used for all
three approaches in the case of simply connected domains.

5.2 Ring

As a multi–connected domain, a three–dimensional ring with a square as cross section
(Fig. 2) is considered and approximated by several surface meshes. The excitation field is
produced by one conductor loop. The radius of the ring is 0.1, and the length and height
of the cross–section are 0.05. The radius of the conductor loop is 0.1. The coil current is
500 A.

Crosssection

Excitation coil

Figure 2: 2D projection of the ring and dotted line of evaluation points.

Figure 3: Approximations of H for the single layer potential ansatz (left), the double layer
potential ansatz (middle) and for the Steklov–Poincaré operator formulation (right) for
µr = 50000 and 2024 triangles.

In Fig. 3, the magnetic field H on the interior of the boundary is plotted in the centers of
each triangle for the single layer potential ansatz on the left–hand side, the double layer
ansatz in the middle and for the Steklov–Poincaré operator formulation on the right–hand
side. Further away from the edges the results look alike, whereas towards the edges the
vector fields differ significantly. Especially in the last two elements towards the geometrical
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edges, we observe a non–physical approximation by the single layer potential approach. If
we fix such an observation point and refine the mesh further, the magnetic field at that
observation point for the single layer potential formulation converges against the result of
the Steklov–Poincaré approach and the double layer potential ansatz, which both show
good approximations of the magnetic field. It can be concluded that the approximation of
the magnetic field towards the geometrical edges for the single layer potential formulation
has a very low accuracy. The same effect was observed for all tested µr in all examples
where edges appear. For meshes, which are graded towards the geometrical edges, the
effect is even worse.

Additionally, the magnetic field for a relative permeability µr = 50000 is evaluated
along the dotted line in the center of the cross section as shown in Fig. 2. It is well known
that for µr → ∞ the magnitude of the magnetic field tends towards a uniform distribution
along this line. In Fig. 4 and Fig. 5, the magnitudes of the magnetic field are plotted
for refinement levels one to five (L1–L5) with 560, 2024, 8096, 32384 and 128832 plane
triangular elements.

0 1 2 3 4 5 6
Angle

770

780

790

800

810

820

830

840

M
ag

ne
ti

c 
fi

el
d 

[A
/m

]

SL L1
SL L2
SL L3

0 1 2 3 4 5 6
Angle

770

780

790

800

810

820

830

840

M
ag

ne
ti

c 
fi

el
d 

[A
/m

]

DL L1
DL L2
DL L3

0 1 2 3 4 5 6
Angle

770

780

790

800

810

820

830

840

M
ag

ne
ti

c 
fi

el
d 

[A
/m

]

SP L1
SP L2
SP L3

Figure 4: Magnetic field along the dotted line of the ring.
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Figure 5: Closeup of the magnetic field along the dotted line of the ring.

For the coarsest mesh the geometrical approximation dominates the errors for all three
approaches, however the single layer potential ansatz (SL) is significantly worse than the
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double layer potential approach (DL) and the Steklov–Poincaré operator formulation (SP).
After one refinement, the geometry seems to be dissolved fine enough and one can observe a
significant increase in the accuracy especially for the Steklov–Poincaré operator formulation
and almost similar but slightly smaller for the double layer potential approach. For the
single layer potential ansatz the accuracy is far worse. The second and third level of the
Steklov–Poincaré operator formulation do not differ that much in Fig. 4 and the almost
uniform distribution is already visible. Taking a closer look at the zooms in Fig. 5, the
single layer potential ansatz on level five (SL L5) is comparable with the Steklov–Poincaré
operator formulation on level two (SP L2), whereas the double layer potential approach
for level five (DL L5) is comparable to the Steklov–Poincaré operator formulation on level
three (SP L3).

Furthermore in Table 1, the computational times for the ring are given in seconds.

L # Elements SL DL SP

1 560 1 5 13
2 2024 5 46 81
3 8096 14 87 268
4 32384 75 448 1443
5 128832 248 1623 4832

Table 1: Solution time for the ring in seconds

The computational times include the setup and solving of the linear systems as well as the
evaluation in the interior points and the computation of the gradient on the surface. For a
fixed level L, the increase of computational times from the single layer potential ansatz to
the double layer potential approach is mainly due to the setup of the additional matrices,
the higher polynomial degree of the ansatz and test functions, and the solution of the
second system of linear equations. In the case of the Steklov–Poincaré operator formulation,
all boundary integral operators have to be computed and local Dirichlet boundary value
problems have to be solved in each iteration step of the global system. If we take into
account the accuracy of the approaches, the Steklov–Poincaré operator formulation turns
out to be comparable with respect to computational times. A comparison is given in
Table 2. The solution of the Steklov–Poincaré operator formulation at level five was chosen
as a reference solution. In Table 2 the method, the number of elements, the solution time,
and the relative error of the point evaluation in the l2 norm are given for some selected
computations.

The error of the single layer potential ansatz at level five is 4.4 · 10−4. The other two
approaches at similar accuracy outperform the single layer potential ansatz by a factor
of three. For this accuracy the double layer potential approach and the Steklov–Poincaré
operator formulation are almost identical comparing the computational times. However,
the accuracy of the Steklov–Poincaré operator formulation is twice as high. Comparing
the last level of the double layer potential approach to level three of the Steklov–Poincaré
operator formulation, the latter is clearly faster and yields a higher accuracy.
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Method # Elements Solution Time rel. l2-error

DL L3 8096 87 5.25e-4
SL L5 128832 248 4.40e-4
SP L2 2024 81 2.45e-4

DL L5 128832 1623 7.79e-5
SP L3 8096 268 3.24e-5

Table 2: Comparison of the different method for different levels.

Remark 5.1 The presented computational times depend highly on the implementation of

the boundary element method. Our integration routines are based on semi–analytic integra-

tion formulae [21] and exploit the lowest order elements in K ′
h as well as the large blocks of

zero entries in Kh and K ′
h. The fast multipole method is optimal suited for a low number

of matrix times vector multiplications. Therefore our implementation is more favorable for

the potential approaches.

The use of integration routines based on the Duffy transformation [7] would not give the

potential approaches such an advantage. The use of the adaptive cross approximation [1]
would increase the setup and evaluation times in general, but the times for solving a system

would be reduced significantly. The Steklov–Poincaré operator formulation would benefit a

lot in comparison to the potential approaches.

5.3 Controllable reactor

All discussed formulations are finally compared for the computation of the magnetostatic
field of a controllable reactor. Controllable reactors, sometimes called shunt reactors, are
important components in Extra/Ultra High Voltage power systems used for voltage regu-
lation issues. One of their important roles is to compensate the reactive power. Typically
fixed shunt reactors are used for such compensation. Alternative concepts introduced
recently are controllable reactors. The controlling effect of an orthogonal flux type con-
trollable reactor is achieved by controlling the saturation level of the parts of the magnetic
core (saturable reactor). The key information when analyzing this kind of devices are the
controllable reluctances.

Fig. 6 shows the typical structure of a controllable reactor. The cylindric structure
in the middle, which is wrapped by the main winding in the complete setup, consists of
alternating layers of iron discs and control discs. By adjusting the current in the windings
wounded around the control discs the total inductance, i.e., the reluctance of the reactor
can be controlled. The simulation of such a reactor model is featured by the most of the
requirements as mentioned in the introduction: complex structure, small gaps between fix
and controllable discs having a major impact on the cross–talk between the discs, sharp
edges of the discs influencing the accuracy of the calculation, treatment of the continuous
changes of the saturations with the changes of the DC current in control windings, etc.
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Figure 6: Controllable reactor and a closeup of the small gaps.

For the comparison purpose in this paper we assume a linear and isotropic behavior of the
magnetic material with a relative permeability of µr = 200. The reactor is meshed with
122880 triangular elements. The results of the three approaches are plotted in Fig. 7. The
plots show the magnetic field on the surface of one of the iron discs.

Figure 7: Magnetic field of the single layer potential ansatz (left), the double layer potential
ansatz (middle), and the Steklov–Poincaré operator formulation (right) for µr = 200.

As expected the same phenomena at corners and edges appears as in the example of the
ring as discussed in Sect. 5.2. Essentially the magnetic field near edges is completely
different for the single layer potential ansatz. Additionally, the result differs close to the
center of the surface of the disc, where the boundary is smooth. This can be explained by
the fact, that the gap to the next control disc is very small and these control discs have
a small hole in the middle. Thus a corner is very close to these elements, which seems to
disrupt the solution on the iron disc.
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6 Conclusions

We presented three boundary integral approaches and compared them with respect to
accuracy and computational times. In contrast to many other formulations in the litera-
ture, all presented formulation are not only applicable to simply connected domains but
to multiple connected domains, too. We have proven the equivalence of the single and
double layer potential formulations and the Steklov–Poincaré operator formulation for the
considered transmission problem on the continuous level. For the discrete systems this is
not the case anymore. The single layer potential ansatz, which seems to be the easiest to
implement and faster on the first glance, shows really bad approximations towards geomet-
rical edges and in general lower orders of convergence for the considered examples. The
double layer potential approach and the Steklov–Poincaré operator formulation provide
good approximations close to the edges and significantly higher accuracy. In particular,
the Steklov–Poincaré operator formulation gives the best approximations. In our examples
the potential approaches needed one to three additional uniform refinements to achieve a
comparable accuracy. Requiring a certain accuracy, the Steklov–Poincaré operator formu-
lation and the double layer potential approach are superior to the single layer potential
ansatz. For high accuracy, the Steklov–Poincaré operator formulation is the most favorable
one. In addition, the Steklov–Poincaré operator formulation is designed to handle settings
with several different permeabilities and many subdomains.

Acknowledgement

This work was supported by the FP7 Marie Curie IAPP Project CASOPT (Controlled
Component and Assembly Level Optimization of Industrial Devices, www.casopt.com).

References

[1] M. Bebendorf, S. Rjasanow: Adaptive low–rank approximation of collocation matrices.
Computing 70 (2003) 1–24.

[2] A. Bossavit: A rationale for edge–elements in 3D fields computations. IEEE Trans.
Magn. 24 (1988) 74–79.

[3] A. Buchau, W. M. Rucker, O. Rain, V. Rischmüller, S. Kurz, S. Rjasanow: Compar-
ison between different approaches for fast and efficient 3D BEM computations. IEEE
Trans. Magn. 39 (2003) 1107–1110.

[4] M. Costabel, E. P. Stephan: Boundary integral equations for mixed boundary value
problems in polygonal domains and Galerkin approximations. In: Mathematical Mod-
els and Methods im Mechanics. Banach Centre Publ. 15, PWN, Warschau (1985)
175–251.

23



[5] J.–L. Coulomb: Finite elements three dimensional magnetic field computation. IEEE
Trans. Magn. 17 (1981) 3241–3246.

[6] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, A. Zdunek: Com-
puting with hp–adaptive finite elements. Vol. 2. Frontiers: three–dimensional elliptic
and Maxwell problems with applications. Chapman & Hall/CRC, Boca Raton, 2008.

[7] S. Erichsen, S. A. Sauter: Efficient automatic quadrature in 3-D Galerkin BEM.
Comput. Methods Appl. Mech. Eng. 157 (1998) 215–224.

[8] H. Forster, T. Schrefl, R. Dittrich, W. Scholz, J. Fidler: Fast boundary methods for
magnetostatic interactions in micromagnetics. IEEE Trans. Magn. 39 (2003) 2513–
2515.

[9] L. Greengard, V. Rokhlin: A fast algorithm for particle simulations. J. Comput. Phys.
73 (1987) 325–348.

[10] W. Hafla, F. Groh, A. Buchau, W. M. Rucker: Magnetostatic field computations by
an integral equation method using a difference field concept and the fast multipole
method. Proceedings of the 10th International IGTE Symposium on Numerical Field
Calculation in Electrical Engineering, TU Graz, pp. 262–266, 2002.

[11] K. Ishibashi, Z. Andjelic: Nonlinear magnetostatic BEM formulation using one un-
known double layer charge, Proceedings of the 14th International IGTE Symposium
2010, Graz, 2010.

[12] B. Krstajic, Z. Andjelic, S. Miloijkovic and S. Babic: Nonlinear 3D magnetostatic
field computation by the integral equation method with surface and volume magnetic
charges. IEEE Trans. Magn. 28 (1992) 1088–1091.
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