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Abstract

The aim of this work is to compare algebraic multigrid preconditioned
GMRES methods for solving the nonsymmetric and positive definite lin-
ear systems of algebraic equations, that arise from a space–time finite
element discretization of the heat equation in 3D and 4D space–time do-
mains. The finite element discretization is based on a Galerkin–Petrov
variational formulation employing piecewise linear finite elements simul-
taneously in space and time. We focus on a performance comparison of
conventional and modern algebraic multigrid methods for such finite ele-
ment equations, as well as robustness with respect to the mesh discretiza-
tion and the heat capacity constant. We discuss different coarsening and
interpolation strategies in the algebraic multigrid methods for coarse grid
selection and coarse grid matrix construction. Further, we compare alge-
braic multigrid performance for the space–time finite element discretiza-
tion on both uniform and adaptive meshes consisting of tetrahedra and
pentachora in 3D and 4D, respectively. The mesh adaptivity occurring in
space and time is guided by a residual based a posteriori error estimation.

Keywords: algebraic multigrid, coarsening, interpolation, space–time finite
element, adaptivity
2010 MSC: 65M60, 65M50

1 Introduction

Space–time finite element methods have received more and more interest since
the pioneering work in [22]; see some recent work, e.g., [2, 5, 6, 13, 14, 15,
17, 19, 27, 34, 35, 41, 42, 47]. A common difficulty of these methods concerns
the efficient solution of the related large scale linear system of algebraic equa-
tions which is often harder than the solution of the linear system from more
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conventional time stepping methods. Recently, in [19, 34, 35], robust paral-
lel geometric multigrid methods for parabolic problems using a discontinuous
Galerkin space–time finite element approach have been proposed, where a spe-
cial coarsening strategy is determined by a certain precise criterion. In [13],
a multilevel preconditioner for the linear first–order hyperbolic evolution sys-
tems by a discretization method combining discontinuous Galerkin in space and
Petrov–Galerkin in time has been developed. In [2], a block–diagonal precon-
ditioner resulting from a sparse algebraic wavelet–in–time transformation has
been studied, where the individual spatial blocks are preconditioned by standard
spatial multigrid in parallel. In [17], a multigrid reduction based optimal–scaling
time–parallel method for solving diffusion equations has been presented.

In this work, we follow the Galerkin–Petrov space–time finite element method
for the heat equation on arbitrary admissible finite element meshes [42], con-
sisting of tetrahedra and pentachora in 3D and 4D space–time domains, respec-
tively. We use non–tensor product based simplex meshes for the space–time
finite element discretization. On the one hand this brings flexibility on the
space–time finite element adaptivity using local mesh refinements, and on the
other hand this introduces some challenges for solving the resulting large scale
linear system of algebraic equations, that is nonsymmetric and positive definite.
Unlike space–time geometrical multigrid methods [19], where semi–coarsening
in time or full–coarsening in space–time can be determined by a precise crite-
rion, we are not able to distinguish the spatial and temporal contributions easily
on arbitrary finite element meshes.

Considering unstructured grids, that may come from local adaptivity, we use
the algebraic multigrid (AMG [10, 12, 37, 45]) preconditioned GMRES method
[38] to solve the nonsymmetric linear system. An important issue is how to
select coarse grids properly in order to effectively interpolate the algebraically
smoothing errors on the fine grids. As experimental tests of possible coarsening
strategies for such nonsymmetric and positive definite systems, we implement
several known methods as representatives of coarsening strategies in both clas-
sical Ruge–Stüben type and modern AMG methods, that are based on pure
matrix–graph [26], a greedy coarse–grid selection [30], compatible relaxation
[11], and Petrov–Galerkin smoothed aggregation [49]. Here, we mainly focus on
performance comparison of different AMG methods for the adaptive space–time
finite element equations. We mention here other well known coarsening meth-
ods, e.g., the classical Ruge–Stüben coarsening [37], the independent set–based
coarse–grid selection [21, 1], and the Schur complement approach [51], to name
a few.

The remainder of this paper is organized as follows: In Section 2, we present
the adaptive space–time finite element approach while Section 3 deals with the
algebraic multigrid methods for the solution of the related large scale linear
systems. Some numerical experiments are described in Section 4. Finally, some
conclusions are drawn in Section 5.
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2 Adaptive space–time finite element methods

2.1 A space–time finite element discretization

Recently, a space–time finite element method has been analyzed in [42] for
solving the Dirichlet boundary value problem for the heat equation,

α∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ), (1)

with given boundary and initial conditions, i.e., u(x, t) = 0 for (x, t) ∈ Σ :=
∂Ω × (0, T ), and u(x, 0) = u0(x) for x ∈ Ω, respectively. Here, Ω ⊂ Rn, and
therefore Q ⊂ Rn+1, n = 2, 3, is a bounded Lipschitz domain, and α ∈ R+ is
the heat capacity constant.

The Galerkin–Petrov variational formulation for the Dirichlet boundary value
problem (1) is to find u ∈ X := {v ∈ L2(0, T ;H1

0 (Ω))∩H1(0, T ;H−1(Ω)), v(x, 0) =
0 for x ∈ Ω} such that

a(u, v) = 〈f, v〉 − a(u0, v) (2)

is satisfied for all v ∈ Y := L2(0, T ;H1
0 (Ω)), where

a(u, v) :=

∫ T

0

∫
Ω

[
α∂tu(x, t)v(x, t) +∇xu(x, t) · ∇xv(x, t)

]
dx dt,

〈f, v〉 :=

∫ T

0

∫
Ω

f(x, t)v(x, t) dx dt,

and u0 ∈ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;H−1(Ω)) denotes an arbitrary but fixed

extension of the initial datum u0 ∈ H1
0 (Ω), and f ∈ L2(0, T ;H−1(Ω)). Existence

and uniqueness of the solution to (2) is provided in [42], see also [41, 47]. We
mention that for v ∈ X, we have

a(v, v) =

∫ T

0

∫
Ω

∂tvv dx dt+

∫ T

0

∫
Ω

∇xv · ∇xv dx dt

=
1

2

∫ T

0

d

dt
‖v‖2L2(Ω)dt+ ‖v‖2L2(0,T ;H1

0 (Ω))

=
1

2
‖v(T )‖2L2(Ω) + ‖v‖2L2(0,T ;H1

0 (Ω))

≥ ‖v‖2L2(0,T ;H1
0 (Ω)),

which implies later that the system matrix is positive definite.
The related discrete Galerkin–Petrov variational formulation is to find uh ∈

Xh ⊂ X such that
a(uh, vh) = 〈f, vh〉 − a(u0, vh) (3)

is satisfied for all vh ∈ Yh ⊂ Y where we assume Xh ⊂ Yh. A standard stability
and error analysis for the space–time finite element method was concluded from
a discrete inf–sup condition as shown in [42]. In particular, the space–time
cylinder Q is decomposed into admissible and shape regular finite elements q`,
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i.e. Qh = ∪N`=1q`. For simplicity, we assume that Ω is polygonal (n = 2) or
polyhedral (n = 3) bounded, i.e. Q = Qh. The finite element spaces are given
by Xh = S1

h(Qh) ∩X and Yh = Xh with S1
h(Qh) = span{ϕi}Mi=1 being the span

of piecewise linear and continuous basis functions ϕi. The following energy error
estimate is proved in [42],

‖u− uh‖L2(0,T ;H1
0 (Ω)) ≤ c h |u|H2(Q), (4)

where u ∈ X and uh ∈ Xh denote the unique solutions of the variational
problems (2) and (3), respectively, c > 0 is a constant independent of the mesh
size h, and we assume u ∈ H2(Q).

In comparison with other space–time methods, this approach is very suitable
for the development of h–adaptivity simultaneously in space and time. However,
the solution of the global linear system in space and time requires the use
of some efficient solver. Here we propose to use a GMRES method which is
preconditioned by algebraic multigrid methods.

2.2 A heuristic residual based error indicator

Let uh ∈ Xh be the space–time finite element solution of the variational problem
(3) implying uh := u0 + uh for which we can define the local residuals

Rq`(uh) := [f + ∆xuh − α∂tuh]|ql

on each tetrahedral/pentachoral element q`, and the jumps of the normal flux

Jγ(uh) := [nx · ∇xuh + n′x · ∇xu′h] |γ

in the spatial direction across any inner boundary γ shared by q` and its neigh-
bouring element q′`. Here, nx and n′x denote the spatial components of the unit
outward normal vectors to the inner boundary γ ⊂ ∂q` and γ ⊂ ∂q′`, respec-
tively, u′h the discrete solution on the neighbouring element q′l. Then the local
error indicator on each element q` is defined as

ηq` =
{
c1 h

2
q`
‖Rq`(uh)‖2L2(q`) + c2 hq` ‖Jγ(uh)‖2L2(∂q`)

} 1
2

, (5)

with suitably chosen positive constants c1, c2, that may depend on the model
problem and domain shape, and where hq` denotes the local mesh size. For
more details, we refer to our recent work [43]. In comparison with more conven-
tional adaptive methods for time–dependent problems, see, e.g., [16, 40, 33], our
method allows to perform the spatial and temporal adaptivity simultaneously.

2.3 Adaptive mesh refinement methods in 3D and 4D

The following local adaptive refinement methods for space–time meshes in 3D
and 4D are adopted in this work, namely, 3DBey—3D tetrahedral grid refine-
ment using octasection by J. Bey [7], 3DArnold — 3D tetrahedral grid refine-
ment using bisection by D. N. Arnold et al. [4], 3DStevenson — 3D tetrahedral
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grid refinement using bisection by R. Stevenson [44], and 4DStevenson — 4D
pentachoral grid refinement using bisection by R. Stevenson [44]. While they
show very different local refinement patterns as illustrated in the numerical ex-
amples, all these methods keep shape regularity through the refining procedure.

2.4 The adaptive space–time finite element loop

The adaptive loop in the space–time finite element method follows the one in
the standard adaptive finite element approach, see, e.g., [50], that consists of the
following four main steps: Given a conforming decomposition Q0 at the initial
mesh level k = 0,

1. SOLVE: Solve the discrete problem (3) on the adaptive mesh level k, stop
if the solution is accurate enough,

2. ESTIMATE: Compute the local error indicators (5) on each element q`,
3. MARK: Mark the elements for refinement using a proper marking strategy,
4. REFINE: Perform the local mesh refinement using octasection or bisec-

tion, increase level k := k + 1, obtain the conforming decomposition Qk,
and go to Step 1.

For the module MARK we use the maximal marking strategy: For a given
parameter ϑ ∈ [0, 1], mark all elements qk that fulfill

ηqk ≥ ϑ max
`=1...,Mk

ηq` , (6)

where Mk denotes the total number of space–time finite elements on the current
level k. Those marked and the affected neighbouring elements will be refined on
the next level k + 1. In our numerical experiments, ϑ = 0.5. We mention that
ϑ = 0 corresponds to a conforming uniform refinement in the adaptive 3DBey,
3DStevenson and 4DStevenson methods.

3 Algebraic multigrid methods

We aim to solve the following large sparse n × n linear system of algebraic
equations

Ax = b, (7)

arising from the space–time finite element variational formulation (3). It is clear
from [42] that the matrix A is nonsymmetric and positive definite. The linear
system (7) is solved by the preconditioned GMRES method with different AMG
preconditioners. In particular, we use two V(1,1)–cycles with one pre– and post–
smoothing step as a preconditioner in the GMRES method. We do not assume
any underlying mesh information except the stiffness matrix A. The coarsening
and interpolation will be constructed based on A in a purely algebraic manner.
For simplicity, we assume that all matrices and vectors in equations are on the
same AMG level.
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3.1 Smoother

In particular, we employ one sweep of the Kaczmarz relaxation scheme [23] as
pre– and postsmoother: Let x0 be a given initial guess, for i = 1, ..., n,

xi = xi−1 +
bi − 〈Ai, xi−1〉
‖Ai‖2l2

Ai, (8)

with Ai being the ith row of A presented as a column vector, and bi the ith
component of b. The algebraic multigrid smoothing property of the Kaczmarz
relaxation scheme for even more general nonsymmetric matrices has been dis-
cussed in [8, 36]. Although for a small heat conductivity parameter α, one
sweep of the symmetric Gauss–Seidel method, i.e. one forward on the down cy-
cle plus one backward on the up cycle, is sufficient, but it fails when α becomes
large. Therefore, in all of our numerical experiments with varying α, we use the
Kaczmarz relaxation scheme for smoothing, because it is a more robust method.

3.2 Coarsening

3.2.1 Pure matrix–graph (AMG Graph)

Red–black coloring (Algorithm 2 in [26]) belongs to a class of simplest pure
matrix–graph based AMG coarsening strategies:

1. Start with a black degree of freedom (Dof) (coarse),
2. all neighbouring degrees of freedom (Dofs) are marked in red color (fine),
3. go to Step 1 if some Dofs are not marked.

Then the fine Dofs (red) are interpolated by taking an average over their neigh-
bouring coarse Dofs (black), which implies a linear interpolation operator P .
It is easy to see that this simple strategy yields a very aggressive coarsening
method, and rather low operator and grid complexities since it treats all con-
nection equally without taking into account the strength of a connection in the
classical Ruge–Stüben AMG [12, 37]. Such a coarsening strategy has also been
applied to the AMG method for solving some coupled fluid–structure interaction
problems [28].

3.2.2 A greedy coarse–grid selection (AMG Greedy)

In the conventional AMG method, the strength of a connection has to be taken
into account and only strong connections are to be considered in the defini-
tion of the interpolation operator. In particular, we consider a special greedy
partitioning algorithm (Algorithm 3 in [30]), in which a dynamic measure

γi =
|Aii|∑

j∈F∪U
|Aij |

(9)

is used to decide about the diagonal dominance of row i among those rows
already selected as F–Dofs or undesignated U–Dofs. For a given threshold
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γ ∈ ( 1
2 , 1], make an initial selection such that the Dofs with γi > γ are selected

as fine Dofs through all Dofs:
1. Select a Dof with minimal γi as a coarse Dof and remove it from the

undecided Dof set,
2. update γi of all neighbouring Dofs of the previously selected coarse Dof,

add neighbours with γi > γ to the fine Dof set,
3. go to Step 1 if some Dofs are not selected.

In the AMG coarsening this greedy algorithm needs to be augmented by the
second pass [12, 37] , changing certain F–Dofs to C–Dofs in order to properly
define the classical interpolation operator P [12] for the F–Dofs. The set of
Dofs that a Dof i strongly depends on is defined as in the classical Ruge–Stüben
AMG:

Si =

{
j : i 6= j and −Aij ≥ βmax

k 6=i
{−Aik}

}
(10)

with β being a properly chosen parameter, e.g., β = 0.25 typically for second
order elliptic problems.

3.2.3 Compatible relaxation (AMG CR)

The concept of compatible relaxation for selecting coarse Dofs was proposed in
[9]. The compatible relaxation acts as a modified relaxation scheme, in which
the coarse variable stays invariant. It was shown in [18] that the quality of
the set of coarse variables is measured by the convergence rate of compatible
relaxation. More intuitively, the Dofs on which the smoothing is inefficient
tend to be selected as coarse Dofs. The compatible relaxation is fundamentally
different from the classical AMG method and does not depend on a strength of
connection measure. In particular, we use the coarsening algorithm (Algorithm
3.1 in [11]) to select the coarse Dofs:

1. Run compatible relaxation on the homogeneous equation Ae = 0 with a
constant vector as the initial guess, that represents a nonzero vector of a
near null–space of the operator A,

2. compute a coarse Dof candidate set according to the candidate set mea-
sures (when the relative error at that Dof is larger than a given threshold),

3. add the independent set of candidate sets to the coarse Dof set,
4. go to Step 1 if the compatible relaxation convergence factor is above a

threshhold.
After selection of coarse Dofs, we run the second pass as in classical AMG
[12, 37] and construct the interpolation (prolongation) operator as in Section
3.2.2. The interpolation truncation [11, 20, 46] may be needed in order to reduce
the operator complexity. In particular, we use a simple truncation approach as
proposed in [46] to drop some small entries in the constructed interpolation
operator.
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3.2.4 Smoothed aggregation (AMG SA)

In the smoothed aggregation AMG [39, 48, 49], the interpolation operator is
constructed by smoothing a tentative interpolation operator (e.g., piecewise
constant) on the Dof decomposition into small disjoint subsets. In particular, we
use the greedy aggregation algorithm (Algorithm 2 in [49]) to form aggregates:

1. Collect an unaggregated node (as root-node) only if all of its strongly
coupled neighboring nodes are unaggregated, and use this set to form an
aggregate Gi, repeat until no new aggregate is formed,

2. add each remaining node to an existing aggregate, to which it is strongly
coupled.

In a conventional way, a node j is in the strongly coupled neighborhood of i if

|Aij | ≥ ε
√
|AiiAjj | (11)

is satisfied with ε ∈ [0, 1) being a chosen parameter for certain symmetric posi-
tive definite problems; see, e.g., [31, 49]. From the definition (11) it is obvious
that this measure becomes nonsymmetric for nonsymmetric problems. Smaller ε
tend to generate bigger aggregates containing more nodes, which may lead to too
few coarse Dof selections, lower operator and grid complexity, but slower AMG
convergence. While larger ε tend to generate smaller aggregates containing few
nodes, which may lead to too many coarse node selections, higher operator and
grid complexity, but faster AMG convergence. Thus, there is a trade–off be-
tween robustness and efficiency in choosing such an optimal parameter. In the
extreme case ε = 0, every nodal connection is treated equally.

Next, a tentative prolongator P̃ is formed as a partition of unity. The
tentative restriction operator R̃ is defined as R̃ = P̃T . We then use the prolon-
gator smoothing and restriction smoothing to smooth the tentative operators,
which is proposed in [39] for nonsymmetric problems. In the standard smoothed
aggregation, global damping parameters are considered. Here, local damping
parameters associated with single basis functions (columns of prolongator) are
obtained by minimizing each quadratic scalar function ‖Pj‖2ATA with Pj being
jth column of P . A similar technique has been considered for the restriction
operator; see more details in Section 4 [39].

4 Numerical experiments

4.1 A 3D example

As a 3D example, we consider Ω = (0, 1)2 and T = 1, i.e., Q = (0, 1)3, and the
solution u given by

u(x, t) = (x2
1 − x1)(x2

2 − x2)(t2 − t)e−100.0((x1−0.25)2+(x2−0.25)2+(t−0.25)2).

The solution has a “peak” near the point (0.25, 0.25, 0.25) in the space–time
domain, where local mesh refinements are needed; it is very “flat” in the re-
maining region, where only coarse mesh is sufficient; see the left plot in Fig. 1.

8



As we observe later, this behaviour can be nicely captured using our adaptive
methods. Therefore, it is a good example to test our space–time adaptive refine-
ments, and compare them with the uniform refinements. For more tests on our
space–time adaptive schemes, we refer to a collection of examples considered in
[43]; see also subsection 4.4 for comparison of uniform and adaptive refinements
in 3D and 4D with low regularity. We mention that all the numerical tests
are performed with our home–made package. It has included the finite element
methods, the adaptive mesh refinements, and the AMG methods. The ultimate
aim of the work is to provide users with such an open–source in the future.
Some related work using different refining strategies for high dimension in the
space–time finite element methods can be found in, e.g., [6, 24, 25, 35]. All our
numerical tests are performed on a laptop computer with an Intel Core i5 of
1.60GHz and 8 GB memory.

As illustrated in Fig. 1, for the 3DBey and 3DArnold refinement methods,
we start from an initial mesh with 125 vertices and 384 tetrahedral elements;
while for the 3DStevenson method, we start from an initial mesh with 29 ver-
tices and 60 tetrahedral elements, which fulfills the reflection condition of any
two neighbouring elements [44]. The number of degrees of freedom on the finest
level is about 200, 000. As an illustration of different adaptive mesh refine-
ment methods, we plot adaptively refined meshes using 3DBey, 3DArnold, and
3DStevenson during one refining step in Fig. 2. We mention that for simplicity,
we only consider isotropic mesh refinements in space and time. In some situa-
tions, we may face problems where the space–time domain could be completely
anisotropic. To handle such problems, we may need anisotropic refinements [3]
in temporal and spatial directions. Another approach is to rescale the time
variable in order to get comparable length in space and time, as used in [5].

Figure 1: An illustration of the solution (left), and initial meshes for the 3DBey
and 3DArnold methods (middle) and the 3DStevenson method (right).

To make a relatively fair comparison, we compare the iteration number and
the computational cost in seconds of the preconditioned GMRES method using
different AMG preconditioners, namely, AMG Graph, AMG Greedy, AMG CR,
and AMG SA, in order to reach the same accuracy of the numerical solution.
The error eh := u−uh between the given and the discrete solutions is measured
in the L2(0, T ;H1

0 (Ω))–norm. For all the following tests, we use the relative
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Figure 2: An illustration of the three local mesh refinements at a step of adaptive
refinements: 3DBey, 3DArnold, and 3DStevenson (from left to right).

residual error ε = 10−7 as the stopping criterion for GMRES, and run two
V(1,1)–cycles in each preconditioning step. We show the AMG performance
results for α = 1, 100 since the solver is relatively robust for α = 10 as well.

The estimated order of convergence (eoc) with respect to the number of
degrees of freedom (#Dof) is illustrated in Fig. 3. We observe a linear order of
convergence for both the uniform (ϑ = 0) and adaptive refinements as expected.
To reach the same accuracy, the adaptive refinement allows us to use much fewer
degrees of freedom than the uniform refinement.

Figure 3: Estimated order of convergence (eoc) for α = 1, 10, 100 (from left to
right) on both uniform (ϑ = 0) and adaptive (ϑ = 0.5) refinements.

The iteration number of the AMG preconditioned GMRES and the correspond-
ing computational times in seconds are illustrated in Fig. 4 (AMG Graph),
Fig. 5 (AMG Greedy), Fig. 6 (AMG CR), and Fig. 7 (AMG SA), respectively.
We observe that all the adaptive refinements (ϑ = 0.5) show more efficiency
than the uniform refinements (ϑ = 0) by reducing the number of GMRES it-
erations as well as computational costs. Except the AMG Graph method, all
the other three AMG methods show similar performance with respect to the
preconditioned GMRES iterations and computational costs. The AMG Graph
preconditioned GMRES method needs more iterations and computational time.
All the AMG methods show relatively good performance with respect to α, i.e.,
the iteration numbers of AMG preconditioned GMRES method stay in a similar
range when α increases. The AMG Greedy, AMG CR and AMG SA precon-
ditioned GMRES methods show relatively good robustness with respect to the
mesh discretization parameter, i.e., the iteration numbers stay in a similar range
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when the mesh is refined. This tells us that the strength of connection becomes
important here in the coarsening even though the Poisson operator in space
is isotropic. This is because the Poisson operator merely in space becomes a
highly anisotropic operator in space and time, i.e., −∆xu(x, t)− κ∂2u(x, t)/∂t2

with κ→ 0. In addition, the first order time–derivative is involved as a kind of
convection term (see [5]), which makes the coarsening even harder than classical
diffusion problems.

Figure 4: Comparison of AMG Graph preconditioned GMRES iterations (#It)
(left) and costs in seconds (right) with both the uniform (ϑ = 0) and adaptive
(ϑ = 0.5) refinements for α = 1 (up) and 100 (down).

We observe that the AMG methods on the adaptive refinements show the
superiority over the uniform refinements in terms of the error reduction in
L2(0, T ;H1

0 (Ω))–norm. That is mainly because the problem size of the adap-
tive refinements is much smaller than the uniform refinements to reach the
same accuracy, which saves computational cost. We further observe that the
AMG methods show comparable performance on both the uniform and adap-
tive refinements in terms of the number of degrees of freedom. We compare
the iterations and cost in second for the AMG Greedy preconditioned GMRES
method on uniform and adaptive 3DStevenson refinements in Fig. 8. From this
comparison, it is easy to see that the AMG method on both the refinements
needs similar iterations and cost.
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Figure 5: Comparison of AMG Greedy preconditioned GMRES iterations (#It)
(left) and costs in seconds (right) with both the uniform (ϑ = 0) and adaptive
(ϑ = 0.5) refinements for α = 1 (up) and 100 (down).

4.2 A 4D example

As a 4D example, we consider Ω = (0, 1)3 and T = 1, i.e., Q = (0, 1)4, and the
given solution

u(x, t) = (x2
1−x1)(x2

2−x2)(x2
3−x3)(t2−t)e−100.0((x1−0.25)2+(x2−0.25)2+(x3−0.25)2+(t−0.25)2).

The initial mesh contains 178 vertices and 960 pentachorona. The uniform
and adaptive refinements are realized by using the 4DStevenson method and
choosing ϑ = 0 and 0.5, respectively.

The estimated order of convergence (eoc) for α = 1, 10 and 100 using both
the uniform refinement (ϑ = 0) and adaptive refinement (ϑ = 0.5) is demon-
strated in Fig. 9. We observe a linear order of convergence (in comparison with
the solid black line in Fig. 9) and efficiency of the adaptive refinement in saving
number of degrees of freedom. For the uniform refinements, we need to perform
further refinements in order to see the linear order of convergence. That is be-
cause of the “peak” in the solution near the point (0.25, 0.25, 0.25, 0.25) as in
the 3D example, which requires sufficiently many degrees of freedom to resolve
it.

For the tests in this section, we use the relative residual error ε = 10−7 as
the stopping criterion for GMRES, and run two V(1,1)–cycles in each precondi-
tioning step. The iteration number of the preconditioned GMRES method and
computational time measured in seconds using different AMG preconditioners
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Figure 6: Comparison of AMG CR preconditioned GMRES iterations (#It)
(left) and costs in seconds (right) with both the uniform (ϑ = 0) and adaptive
(ϑ = 0.5) refinements for α = 1 (up) and 100 (down).

(AMG Greedy, AMG CR, AMG SA) are shown in Fig. 10. We mention that
the poor performance of the AMG Graph method carries over from 3D to 4D.
Therefore, we do not show the 4D result using this method. In addition, we
show results for α = 1, 100. The solver is relatively robust for α = 10 as well.

From our numerical experiments, we observe that the iteration numbers
needed by the AMG Greedy and AMG CR methods stay in a relatively small
range (about 10 on the finest level); the iteration number of the AMG SA
method slightly increases; the iteration number of the AMG Graph method
drastically increases. The AMG Greedy and AMG CR methods result in very
similar AMG performance. That is because similar operator and grid complex-
ities are obtained using coarsening of both methods. In addition, they show
relatively good robustness with respect to the mesh discretization and material
parameters. In all of the AMG methods, the adaptive refinement leads us to
more efficiency than the uniform refinement by reducing both the number of
preconditioned GMRES iterations and computational time. Finally, the perfor-
mance of the AMG Greedy and AMG CR methods slightly drops with respect
to a larger heat capacity constant α due to a growing operator complexity when
α becomes larger. It will be further studied in future work to reduce the operator
complexity for large α.

As in the 3D example, we further observe that the AMG methods show
comparable performance on both the uniform and adaptive refinements in terms
of the number of degrees of freedom; see the comparison in Fig. 11 using the
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Figure 7: Comparison of AMG SA preconditioned GMRES iterations (#It)
(left) and costs in seconds (right) with both the uniform (ϑ = 0) and adaptive
(ϑ = 0.5) refinements for α = 1 (up) and 100 (down).

AMG Greedy preconditioned GMRES method on 4DStevenson refinements.

4.3 Further discussion on AMG performance

We perform further tests with AMG Greedy and AMG SA methods on 3DSteven-
son and 4DStevenson uniform refinements (ϑ = 0) since AMG CR has sim-
ilar performance with AMG Greedy, and AMG Graph has poor performance
in comparison with other methods. In the following tests, we use the relative
residual error ε = 10−7 as the stopping criterion for the AMG preconditioned
GMRES methods. We use one V(1,1)–cycle and one V(2,2)–cycle as precondi-
tioners, respectively.

For the 3D example as considered in Section 4.1, the number of AMG Greedy
and AMG SA preconditioned GMRES iterations and cost in second with one
V(1,1)–cycle and one V(2,2)–cycle are compared in Table 1 and Table 2, respec-
tively. Analogously, the number of GMRES iterations and cost in second for
the 4D example as considered in Section 4.2 are demonstrated in Table 3 and
Table 4, respectively. On the one hand, we observe a mild mesh dependence of
the AMG methods. On the other hand, as we pointed out earlier, for large α,
the AMG Greedy coarsening may lead to relatively high operator complexity,
which requires further investigation on the improvement of the coarsening algo-
rithm. With more pre– and post–smoothing steps, we may further reduce the
number of iterations. However, the AMG performance may drop due to cost of
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Figure 8: Number of AMG Greedy preconditioned GMRES iterations (left) and
cost in second (right) with respect to degrees of freedom for α = 1, 100 on both
uniform and adaptive 3DStevenson refinements.

Figure 9: Estimated order of convergence (eoc) for α = 1, 10, 100 on both
uniform (ϑ = 0) and adaptive (ϑ = 0.5) 4DStevenson refinements.

the Kaczmarz relaxation scheme.

4.4 Further convergence study with low regularity

In this subsection, we further compare the uniform and adaptive refinements
when the solution has less regularity with respect to both space and time. We
use the heat equation (1) with α = 1. As a 3D example, we adopt the solution
u given by

u(x, t) = sin

(
1

1
10π +

√
x2

1 + x2
2 + t2

)
,

which is non–differentiable and singular at the original point (0, 0, 0); see the left
and right plots as an illustration in Fig. 12. For the 3DStevenson refinement,
we use an initial mesh as shown in the right plot of Fig. 12, which results from
a special decomposition of the mesh in the middle of Fig. 1 and fulfills certain
reflection conditions required in [44]. For the 3DBey and 3DArnold refinements,
we use the same initial mesh as in the middle of Fig. 1. The adaptive mesh
refinements near the original point are shown in Fig. 13. Because of less regu-
larity of the solution, the linear order of convergence will not be achieved using
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Figure 10: Comparison of AMG Greedy (up), AMG CR (middle) and AMG SA
(down) preconditioned GMRES iterations (#It) (left) and cost in second (right)
to reach the same accuracy using both the uniform (ϑ = 0) and adaptive (ϑ =
0.5) refinements for α = 1, 100.

our space–time finite element methods on the uniform refinements; however,
all the adaptive refinements recover the linear order of convergence. For this
3D example, the estimated order of convergence on both uniform and adaptive
refinements is demonstrated in the left plot of Fig. 14.

Analogously, we further consider a 4D example with the solution u given by

u(x, t) = sin

(
1

1
10π +

√
x2

1 + x2
2 + x2

3 + t2

)
,

which is singular at the original point (0, 0, 0, 0). We start from the same initial
mesh as for the 4D example in subsection 4.2. Due to less regularity of the
solution, we do not observe clear convergence order with our space–time finite
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Figure 11: Number of AMG Greedy preconditioned GMRES iterations (left)
and cost in second (right) with respect to degrees of freedom for α = 1, 100 on
both uniform and adaptive 4DStevenson refinements.

#Dof
α = 1 α = 10 α = 100

AMG Greedy AMG SA AMG Creedy AMG SA AMG Greedy AMG SA

961 8 (7) 15 (12) 7 (6) 14 (11) 12 (8) 20 (13)

2881 10 (9) 18 (15) 10 (8) 17 (13) 10 (7) 15 (11)

11457 11 (10) 16 (13) 11 (9) 14 (11) 19 (13) 22 (16)

53569 17 (14) 43 (34) 15 (11) 34 (26) 12 (9) 18 (13)

168577 27 (23) 53 (40) 17 (15) 54 (41) 12 (9) 18 (14)

Table 1: Comparison of the GMRES iterations using one V(1,1)–cycle precondi-
tioner and one V(2,2)–cycle preconditioner (in the bracket) on the 3DStevenson
uniform refinement.

element methods on the uniform refinement up to nearly 106 degrees of free-
dom. However, with the adaptive refinement, the linear order of convergence
is recovered. For this 4D example, the estimated order of convergence on both
uniform and adaptive refinements is shown in the right plot of Fig. 14.

5 Conclusions

In this work, we have compared preconditioned GMRES methods for solving the
adaptive space–time finite element discretized heat equation in 3D and 4D using
different AMG preconditioners, namely, AMG Graph, AMG Greedy, AMG CR
and AMG SA. These methods show relatively good performance with respect to
the mesh discretization and material parameters, and local adaptive refinements.
On the one hand, we have observed that the iteration numbers of the AMG
preconditioned GMRES method stay in a similar range when the mesh is refined.
On the other hand, the AMG performance does not deteriorate so much when
the heat capacity constant α becomes large.
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#Dof
α = 1 α = 10 α = 100

AMG Greedy AMG SA AMG Greedy AMG SA AMG Greedy AMG SA

961 0.01 0.04 0.01 0.02 0.02 0.02
(0.02) (0.02) (0.02) (0.03) (0.03) (0.02)

2881 0.06 0.1 0.06 0.08 0.4 0.11
(0.08) (0.1) (0.07) (0.09) (0.5) (0.07)

11457 0.3 0.5 0.3 0.4 1.0 0.5
(0.4) (0.6) (0.4) (0.5) (1.1) (0.5)

53569 2.4 7.6 2.2 6.3 4.0 2.3
(2.8) (8.8) (2.7) (7.2) (4.9) (2.2)

168577 13.6 27.8 9.1 28.8 16.3 10.2
(15.1) (29.5) (11.4) (30.5) (21.0) (9.4)

Table 2: Comparison of cost in second of the GMRES iterations using
one V(1,1)–cycle preconditioner and one V(2,2)–cycle preconditioner (in the
bracket) on the 3DStevenson uniform refinement.

The ongoing work is to further study the coarsening strategies in order to
reduce the operator complexity and meanwhile keep the robustness of the AMG
methods for such nonsymmetric and positive definite linear systems of equations.
We may consider some nonsymmetric AMG methods for solving the space–
time finite element equations, e.g., the so-called root–node based AMG method
[31], a combination of classical and aggregation–based multigrid. Further, it
is obvious that our ultimate aim is to solve large scale systems of space–time
finite element equations on parallel machines for realistic examples, in order
to show the advantages of this kind of methods in comparision with classical
time marching methods. In fact, the method used in this work is very suitable
for parallelizaiton. We may consider parallel AMG methods for solving such
problems. In particular, we will need to parallelize the coarsening strategies
as in BoomerAMG [21]. Some variants of the Kaczmarz algorithms have been
considered in parallelization; see, e.g., [29, 32], which may be adapted to our
AMG methods.
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#Dof
α = 1 α = 10 α = 100

AMG Greedy AMG SA AMG Creedy AMG SA AMG Greedy AMG SA

715 6 (5) 10 (7) 6 (5) 10 (6) 10 (7) 17 (10)

2185 6 (5) 12 (9) 6 (5) 13 (8) 9 (6) 20 (12)

9225 8 (7) 18 (13) 7 (6) 17 (12) 10 (7) 20 (13)

26593 8 (7) 16 (12) 8 (6) 17 (12) 10 (7) 25 (17)

134113 11 (10) 29 (21) 11 (9) 29 (21) 10 (7) 24 (15)

Table 3: Comparison of the GMRES iterations using one V(1,1)–cycle precondi-
tioner and one V(2,2)–cycle preconditioner (in the bracket) on the 4DStevenson
uniform refinement.

Figure 12: An illustration of solution near the original point (0, 0, 0) (left),
warped by a scalar 0.006 in the direction (−1,−1,−1) (middle), the initial
mesh for the 3DStevenson refinement (right).
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