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Steyrergasse 30, 8010 Graz, Austria

Abstract

The space-time finite element discretization of parabolic evolution
equations results in very large linear systems of algebraic equations.
In this context, for the iterative solution we propose the use of finite
element tearing and interconnecting (FETI) domain decomposition
methods where the local subproblems are solved directly, while the
Schur complement system is solved by using a GMRES method glob-
ally. We also discuss the handling of floating subdomains and an all-
floating (total) FETI approach. First numerical results for the heat
equation and the time-dependent Stokes system indicate the potential
of space-time FETI methods.

1 Introduction

Finite element tearing and interconnecting (FETI) domain decomposition
methods [4] are well established for the parallel solution of elliptic prob-
lems. This is mainly due to their simple implementation and the availabil-
ity of efficient and robust preconditioning strategies. Among other variants
to deal with floating subdomains, total FETI [2] or all-floating FETI [8]
methods handle all subdomains as floating, incorporating Dirichlet bound-
ary conditions by using Lagrange multipliers as well. This can simplify the
implementation, in particular when considering systems of partial differental
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equations. While the original derivation of the FETI method was based on
a constrained minimization problem, related methods can be formulated for
the Helmholtz equation [12] and the Maxwell equation [13] as well, using
tearing and interconnecting on the discrete level only.

So far, domain decomposition and FETI methods are mainly restricted
to elliptic problems, or to time-dependent problems which are discretized by
using tensor-product ansatz spaces. Parallelization in time is in most cases
based on the parareal algorithm [7] combing coarse and fine temporal grids.

In recent years, space-time discretization methods have become very pop-
ular, see, e.g., the review article [14] and the references given therein. These
methods consider time as just another spatial coordinate, using a finite el-
ement discretization in the whole space-time domain [10]. As this allows
an adaptive resolution in space and time simultaneously, the solution of the
resulting linear system of algebraic equations requires the use of efficient so-
lution strategies in parallel. Domain decomposition methods are a natural
choice to provide efficient and robust preconditioning, and allow paralleliza-
tion when considering one subdomain per processor.

While the work presented in [11] considers standard domain decomposi-
tion methods [1, 5] for the heat equation, the focus of the present contribution
is on FETI methods applied to the Stokes system and the heat equation. In
Sect. 2 we describe the space-time finite element discretization of the related
model problems. For the solution of the resulting linear systems we present in
Sect. 3 a FETI method, including a discussion on floating subdomains. When
considering all subdomains as floating, we end up with an all-floating FETI
method. First numerical results in Sect. 4 indicate the great potential of
space-time FETI domain decomposition methods, including parallel-in-time
algorithms.

2 Space-time finite element methods

As a first model problem, we consider the homogeneous Dirichlet problem
for the transient heat equation

∂tu−∆xu = f in Q, u = 0 on Σ, u = 0 on Σ0, (1)

where for a bounded domain Ω ⊂ Rd, d = 1, 2, 3, and a finite time hori-
zon T we have the space-time domain Q := Ω × (0, T ) ⊂ Rd+1 with the
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lateral boundary Σ := ∂Ω × (0, T ), and Σ0 := Ω × {0}. For simplic-
ity, we only consider homogeneous boundary and initial conditions, but
inhomogeneous data and other types of boundary conditions can be han-
dled as well. The space-time variational formulation of (1) reads to find
u ∈ X := L2(0, T ;H1

0 (Ω)) ∩H1
0,(0, T ;H−1(Ω)) such that∫ T

0

∫
Ω

[
∂tu v +∇xu · ∇xv

]
dx dt =

∫ T

0

∫
Ω

f v dx dt (2)

is satisfied for all v ∈ Y := L2(0, T ;H1
0 (Ω)). Note that the ansatz space

X covers zero boundary and initial conditions. For a space-time finite el-
ement discretization of (2), we introduce conforming finite element spaces
Xh ⊂ X and Yh ⊂ Y , where we assume Xh ⊂ Yh. In particular, we use
the finite element spaces Xh = Yh of piecewise linear and continuous ba-
sis functions, defined with respect to some admissible decomposition of the
space-time domain Q into shape regular simplicial finite elements. For a de-
tailed stability and error analysis of this space-time finite element method we
refer to [10, 11]. The space-time finite element discretization of (2) results
in a large linear system of algebraic equations which we shall solve using an
appropriate tearing and interconnecting domain decomposition method.

As a second model problem, we consider the time-dependent Stokes sys-
tem

∂tu− ν∆xu+∇xp = f, ∇x · u = 0 in Q, u = 0 on Σ, u = 0 on Σ0. (3)

Again we only consider homogeneous boundary and initial conditions, for
simplicity. The variational formulation of (3) seeks u ∈ Xd and p ∈ L2(Q)
such that∫ T

0

∫
Ω

[
∂tu · v + ν∇xu : ∇xv − p∇x · u

]
dx dt =

∫ T

0

∫
Ω

f · v dx dt (4)

is satisfied for all v ∈ Y d and∫ T

0

∫
Ω

∇x · u q dx dt+

∫ T

0

(∫
Ω

p dx

∫
Ω

q dx

)
dt = 0 (5)

is satisfied for all q ∈ L2(Q). Note that the additional term in (5) ensures the
scaling condition p(t) ∈ L2

0(Ω) for all t ∈ (0, T ). The space-time variational
formulation (4), (5) can be analyzed similarly to what was done in [10] in
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the case of the heat equation, extending to the space-time setting the spa-
tial inf-sup stability condition for the divergence. Note that inhomogeneous
essential boundary and initial conditions g and u0 can be handled through
homogenization by using suitable extensions of such data into the space-time
domain. For the space-time finite element discretization of (4) and (5) we use
inf-sup stable pairs to approximate uh and ph. In particular, we extend the
well established Taylor–Hood elements to the space-time setting using simpli-
cial finite elements. As an alternative we may also use prismatic space-time
Taylor–Hood elements, see [9] for first numerical results. A more detailed
stability and error analysis will be published elsewhere.

3 Tearing and interconnecting domain

decomposition methods

The space-time finite element discretization of the heat equation (1) and
of the Stokes system (3) results in very large linear systems of algebraic
equations which must be solved in parallel, and if possible, simultaneously
in space and time. One possible approach is to use space-time finite element
tearing and interconnecting methods, which are well established for elliptic
problems. Here we generalize this approach to parabolic time-dependent
problems.

The space-time domain Q = Ω × (0, T ) is decomposed into s non-over-
lapping space-time subdomains Qi which can be rather general, see Fig. 1
for a selection of possible simple decompositions. With respect to this space-
time domain decomposition we consider the localized problems, where the
continuity of the primal unknowns along the interface is enforced via discrete
Lagrange multipliers. This results in the global linear system

K1 B>1
. . .

...
Ks B>s

B1 · · · Bs




u1
...
us
λ

 =


f

1
...
f
s

0

 , (6)

where theKi are the local space-time finite element stiffness matrices, and the
Bi are Boolean matrices. While (6) corresponds directly to the heat equation
(1), it formally also includes the Stokes problem (3) with all quantities defined
accordingly. Although we have chosen to enforce the interface continuity
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of the pressure field, this is in principle not necessary since the variational
problem allows p ∈ L2(Q).

At this time we assume that all local matrices Ki are invertible, so that
when using direct solvers locally, we end up with the Schur complement
system

s∑
i=1

BiK
−1
i B>i λ =

s∑
i=1

BiK
−1
i f

i
. (7)

The global linear system (7) is solved here by a GMRES method, either with-
out preconditioning or with a simple diagonal preconditioner. More advanced
preconditioning strategies also including some coarse grid contributions seem
to be mandatory for more complex problems, and this is a topic of further
research.

Figure 1: Different decompositions for the space-time domain Q = Ω ×
(0, T ) ⊂ R3.

In what follows, we will discuss the more general situation in which a
local matrix Ki is not invertible, i.e., when the subdomain Qi is floating.
Using a pseudo-inverse K+

i of Ki, we can describe the solutions of the local
subproblems as

ui = K+
i (f

i
−B>i λ) +Riαi, (8)

where the local matrices Ri describe the kernels N (Ki) of Ki, and αi are un-
known coefficients to be determined. The application of the pseudo-inverse
K+
i also requires the solvability condition f

i
−B>i λ ∈ R(Ki), which is equiv-

alent to
R̃>i (f

i
−B>i λ) = 0,
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where the local matrices R̃i describe the kernels N (K>i ). In the case of
floating subdomains we therefore end up with the Schur complement system(

S −G
G̃> 0

)(
λ
α

)
=

(
d
e

)
, (9)

where

S =
s∑
i=1

BiK
+
i B

>
i , G =

(
B1R1, · · · , BsRs

)
, G̃ =

(
B1R̃1, · · · , BsR̃s

)
,

and

d =
s∑
i=1

BiK
+
i f i, e =

 R̃>1 f 1
...

R̃>s f s

 .

Similarly as in FETI methods for elliptic problems, we introduce a projection

P := I −G(G̃>G)−1G̃>,

and it remains to solve the constrained linear system

PSλ = Pd, G̃>λ = e , (10)

which can be done by using a projected GMRES method [6]. Afterwards we
can compute

α = (G̃>G)−1G̃>(Sλ− d) .

Notice that the square matrix G̃>G is small, since it does not depend on the
finite element mesh but only on the number s of subdomains. In fact, its
dimension is simply s for the heat equation, or s× d for the Stokes problem.
Therefore, the inverse (G̃>G)−1 can be computed directly and works as a
coarse-grid solver.

It remains to characterize the kernels N (Ki) and N (K>i ) of the local
space-time stiffness matrices Ki and their transposed, respectively. For this
we consider the heat equation in the floating space-time subdomain Qi = Ωi×
(ti−1, ti), where the matrix Ki corresponds to the space-time discretization of
the heat equation in Qi with zero Neumann boundary conditions and without
initial or terminal conditions at ti−1 or ti, respectively. In the continuous case,
the solution in Qi is given by

ui(x, t) =
∞∑
k=0

ui,ke
−λi,ktvi,k(x) for (x, t) ∈ Qi, (11)
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where vi,k are the eigenfunctions of the Neumann eigenvalue problem for the
spatial Laplacian in Ωi, with eigenvalues λi,k ≥ 0. For the space-time finite
element discretization we use piecewise linear and continuous basis functions
as partition of unity in Qi, i.e., vi,0 ∈ Xh|Qi

for λi,0 = 0. Due to the ex-
ponential decay in the solution (11) for k ≥ 1, no more eigenfunctions are
represented in the local finite element space Xh|Qi

, and hence we conclude
N (Ki) = {1} in the case of the heat equation (1). Similarly, for the Stokes
problem (3) we have d constant eigenfunctions for the velocity, and addition-
ally null pressure [15]. In both cases, the constant eigenfunctions remain true
for general space-time subdomains Qi.

While the kernel N (Ki) is trivially constructed, the basis for N (K>i )
is in general mesh-dependent. Such bases are however easily obtained as
subproducts of numerical techniques for computing pseudo-inverses K+

i , see
[3].

To simplify the implementation and to include all subdomains in the
coarse-grid matrix G̃>G, we may consider all subdomains as floating, incor-
porating Dirichlet boundary conditions by using Lagrange multipliers as well.
This results in the all-floating [8] or total [2] FETI approach.

4 Numerical results

As a first numerical example we consider the Stokes system (3) in the spatial
domain Ω = (0, 1)2 for T = 1, i.e., Q = (0, 1)3. In order to check the expected
order of convergence we consider for ν = 1 the manufactured solution

u1(x, t) = 2(1− e−t)(x2 − 3x2
2 + 2x3

2)[x1(1− x1)]2,

u2(x, t) = 2(1− e−t)(3x2
1 − x1 − 2x3

1)[x2(1− x2)]2,

p(x, t) = (1 + x1 − e−x1x2t)t2,

with the right-hand side f computed accordingly. In this first example we
consider decompositions of the space-time domain Q into only a few sub-
domains, see Fig. 1. Our particular interest is in the effect of the interface
orientation on the number of required GMRES iterations to reach a given
relative accuracy of ε = 10−6, see also the discussion in [11] in the case of
a standard domain decomposition approach for the heat equation. We solve
the global Schur complement system without any preconditioning (I), and
with a simple diagonal preconditioner (D). In all cases we observe a signifi-
cant reduction in the number of iterations, with the best results appearing
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when considering a decomposition in time (a) or space (b) only, and for the
diagonal decomposition (c). The results are not as good when considering
the decomposition (d) and the inclusion (e). In general, some coarse-grid
preconditioner should be used to further reduce the number of iterations.

Table 1: Space-time FETI domain decomposition method for the time-
dependent Stokes system in Q = (0, 1)3. Number of GMRES iterations for
the Schur complement system without (I) and with diagonal preconditioning
(D), for different numbers Ne of elements.

Domain decomposition
a) b) c) d) e)

Ne ‖∇x(u− uh)‖L2 ‖p− ph‖L2 I D I D I D I D I D
192 6.86e-3 2.63e-2 15 11 26 13 31 15 36 19
1536 2.19e-3 1.64 6.53e-3 2.01 25 13 54 17 57 20 79 29 72 28
12288 5.82e-4 1.92 1.57e-3 2.05 36 17 94 22 105 27 165 44 181 50
98304 1.47e-4 1.98 3.81e-4 2.04 55 22 180 34 206 39 374 66 325 83

In the second example we consider the heat equation (1) in the spatially
one-dimensional domain Ω = (0, 1) and with the final time T = 1, i.e.,
Q = (0, 1)2. As solution we have chosen u(x, t) = sin 1

2
πt sin πx. Here we

consider a decomposition of the space-time domain Q into up to 64 time
slabs, applying both the space-time FETI approach and the all-floating for-
mulation. The results are given in Table 2, where we observe a reasonable
number of iterations in all cases. Note that the number of degrees of free-
dom is significantly larger when using the all-floating approach instead of
the standard FETI method. However, the all-floating method may require
fewer iterations when the number of subdomains is large enough, see Table 2
and also the discussion in [2, 8]. It is obvious that this approach is strongly
related to the parareal algorithm [7] where the coarse grid corresponds to the
time slabs of the domain decomposition, see also the results in [11].

5 Conclusions

In this contribution, we have presented and described first results for space-
time finite element tearing and interconnecting domain decomposition meth-
ods, including also the all-floating approach. Model problems include the
heat equation and the Stokes system, but more complex partial differential
equations can be considered as well. The space-time finite element discretiza-
tion and the tearing and interconnecting approach follow the lines of the
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Table 2: Classical and all-floating (AF) space-time FETI methods for the
heat equation. Number of GMRES iterations for a sequence of time slabs
and meshes.

s = 2 s = 4 s = 8 s = 16 s = 32 s = 64
Ne FETI AF FETI AF FETI AF FETI AF FETI AF FETI AF
128 5 12 7 12 9 12
512 7 12 8 14 12 18 17 17
2048 8 13 10 15 14 21 23 29 34 27
8192 9 15 11 18 16 24 26 36 40 53 69 49
32768 9 18 12 23 17 29 28 44 47 68 79 104

FETI method for elliptic problems, considering time as just an additional
spatial coordinate. The main distinction here lies on the asymmetry of the
space-time stiffness matrix, which requires a modified projection operator
and also a numerical procedure to construct local kernels. First numerical
results show the potential of the proposed method, in particular when using
state-of-the-art parallel computing facilities for time-dependent problems. It
is clear that a more detailed numerical analysis, in particular with respect to
suitable preconditioning strategies for general space-time domain decompo-
sitions, is required. Related results will be published elsewhere.
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